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Abstract

The present article illustrates an approach to construct prospective mortality tables for which the data avail-

able are composed by heterogeneous groups observed during different periods. Without explicit consideration of

heterogeneity, it is necessary to reduce the period of observation at the intersection of the different populations

observation periods. This reduction of the available history can arm the determination of the mortality trend

and its extrapolation. We propose a model taking explicitly into account the heterogeneity, so as to preserve the

entire history available for all populations. We use local kernel-weighted log-likelihood techniques to graduate the

observed mortality. The extrapolation of the smoothed surface is performed by identifying the mortality compo-

nents and their importance over time using singular values decomposition. Then time series methods are used to

extrapolate the time-varying coefficients. We investigate the divergences in the mortality surfaces generated by

a number of previously proposed models on three levels. These concern the proximity between the observations

and the model, the regularity of the fit as well as the plausibility and consistency of the mortality trends.

Keywords. Heterogeneity, Prospective mortality table, Local likelihood, Singular values decomposition, Cox

model, Generalized linear models, Relational models, Life insurance, Graduation, Extrapolation.

Résumé

Cet article illustre une approche concernant la construction d’une table de mortalité prospective pour laquelle

les données disponibles sont constituées de groupes a priori hétérogènes et observés sur des périodes diffrentes. Sans

prise en compte explicite de l’hétérogénéité, il est nécessaire de réduire la période d’observation à l’intersection des

périodes d’observation des diffèrentes populations. Cette réduction de l’historique disponible s’avère pénalisant

pour la détermination des tendances d’évolution de la mortalité et ainsi son extrapolation. Nous proposons un

modèle intégrant explicitement la prise en compte de l’hétérogénéité, à partir du modèle de Cox, pour permettre

de conserver l’ensemble de historique disponible pour toutes les populations. Nous utilisons des méthodes non-

paramétriques de vraisemblance locale pour graduer la mortalité observée. L’extrapolation de la surface ajustée

est obtenue en identifiant dans en premier temps les composantes de la mortalité et leur importance dans le temps

par une décomposition en valeurs singulières. Des méthodes de séries temporelles sont employées pour extrapoler

les paramètres variant dans le temps. Nous analysons les divergences observées entre les surfaces de mortalité

générées sur trois niveaux. Ceux-ci concernent la proximité entre les observations et le modèle, la régularité de

l’ajustement ainsi que la plausibilité et la cohérence des tendances d’évolution de la mortalité.

Mots-clés. Hétérogénéité, Table de mortalité prospective, Vraisemblance locale, Décomposition en valeurs sin-

gulières, Modèle de Cox, Modèles linéaires généralisés, Modèles relationnels, Risque de modèle, Assurance vie,
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1 Introduction

In this article, we present an approach to construct prospective mortality tables for which the data

available are composed by heterogeneous groups observed during different periods. The approach is mo-

tivated by having the largest available history to determine the mortality trends.

It has been observed that the human mortality has globally declined over the 20th century. Life ex-

pectancy is greater than ever before and continues to improve rapidly, see Pitacco et al. (2009, Ch.3).

These improvements affect the pricing and reserving in life insurance and constitute a challenge for

actuaries and demographers in modeling the longevity.

In a pension plan, the longevity risk is transferred from the policyholder to the insurer. The latter has

to evaluate his liability with appropriate mortality tables. It is in this context that since 1993 the French

regulatory tables for annuities have been dynamic taking in account the increase of the life expectancy.

Dynamic (or prospective) mortality tables allow to determine the remaining lifetime for a group, not

according to the conditions of the moment, but given the future developments of living conditions.

However, applying exogenous tables to the group considered may result in under-provisioning the

annuities, when the mortality of the group is lower than of the reference population.

With the international regulations Solvency II and IFRS insurers are required to evaluate their liabil-

ities from realistic assumptions leading to an evaluation of the best estimate. In consequence, for pensions

regimes and more generally due to the longevity risk, insurers have to build specific mortality tables,

taking into account the expected evolution of the mortality of their insured population, see Planchet

and Kamega (2013). It is in this context that we apply our approach to the construction of a reference

mortality table from portfolios of several insurance companies. This reference could be used to adjust the

mortality specifically to each insured portfolio and construct entity specific dynamic mortality tables.

We are in the situation where the data available are composed by heterogeneous groups observed during

different periods. Without explicit consideration of heterogeneity, it is necessary to reduce the period of

observation at the intersection of the different populations observation periods. This reduction of the

available history can arm the determination of the mortality trend and its extrapolation. We propose

a model taking explicitly into account the heterogeneity so as to preserve the entire history available

for all populations. The innovative aspect lies in the articulation of a Cox model in a preliminary step

and methods to graduate and extrapolate the mortality to construct a mortality table summarizing the

mortality experience of all populations. We use local kernel-weighted log-likelihood techniques to graduate

the observed mortality in a second step. The extrapolation of the smoothed surface is then performed by

identifying the mortality components and their importance over time using singular values decomposition.

The number of parameters is determined according their explicative power. Then time series methods

are used to extrapolate the time-varying coefficients.

This article is organized as follows. Section 2 has still an introductory purpose. It specifies the notation

and assumptions used in the following. Section 3 describes our approach to take explicitly into account the

heterogeneity in constructing prospective mortality tables. Section 4 presents an application concerning

the construction of a reference table from portfolios of various French insurance companies. Finally, some

remarks in Section 5 conclude the paper.
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2 Notation, assumption

2.1 Notation

We analyze the mortality as a function of both the attained age x and the calendar year t. The force

of mortality at attained age x for the calendar year t, is denoted by ϕx(t). We denote Dx,t the number

of deaths recorded at attained age x during calendar year t from an exposure-to-risk Ex,t that measures

the time during individuals are exposed to the risk of dying. It is the total time lived by these individuals

during the period of observation. We suppose that we have data line by line originating from a portfolio.

To each of the observations i, we associate the dummy variable δi indicating if the individual i dies or

not,

δi =

 1 if individual i dies,

0 otherwise,

for i = 1, . . . , Lx,t. We define the time lived by individual i before (x + 1)th birthday by τi. We assume

that we have at our disposal i.i.d. observations (δi, τi) for each of the Lx,t individuals. Then,

Lx,t∑
i=1

τi = Ex,t and

Lx,t∑
i=1

δi = Dx,t.

2.2 Piecewise constant forces of mortality

We assume that the age-specific forces of mortality are constant within bands of time, but allowed to

vary from one band to the next, ϕx+τ (t+ ξ) = ϕx(t) for 0 ≤ τ < 1 and 0 ≤ ξ < 1.

We denote by px(t) the probability that an individual aged x in calendar year t reaches age x + 1,

and by qx(t) = 1 − px(t) the corresponding probability of death. The expected remaining lifetime of an

individual reaching age x during calendar year t is denoted by ex(t).

Under the assumption of piecewise constant forces of mortality, we have for integer age x and calendar

year t,
px(t) = exp

(
−ϕx(t)

)
and ϕx(t) = − log

(
px(t)

)
.

.

3 The approach

Our approach can be summarized as follows:

i. From a proportional hazard model, we describe how the risk of the populations changes over time.

The resulting coefficients are used in the following step to weight the exposure to risk of each

population.

ii. We smooth the surface using non-parametric local kernel-weighted log-likelihood to estimate ϕx(t)

for x ∈ [x1, xn] and t = 1, . . . ,m.

iii. We decompose the smoothed surfaces via a basis function expansion using the following model:

log ϕ̂x(t) = µ(x) +

K∑
k=1

βt,k φk(x) + εt(x) with εt(x) ∼ Normal
(
0, υ(x)

)
, (1)

where µ(x) is the mean of log ϕ̂x(t) across years and
{
φk(x)

}
is a set of orthonormal basis functions.

iv. ARIMA models are fitted to each of the coefficients
{
βt,k

}
, k = 1, . . . ,K.
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v. We extrapolate the coefficients
{
βt,k

}
, k = 1, . . . ,K, for t = m+ 1, . . . ,m+ h using the fitted time

series models.

vi. Finally, we use the resulting forecast coefficients with (1) to obtain forecasts of ϕx(t), t = m +

1, . . . ,m+ h.

3.1 Taking into account heterogeneity

In step i., we propose to describe from a proportional hazard model how the risk of the populations

changes over time. Assuming the proportional hazards assumption holds then it is possible to estimate

from a Cox model the relative risk without any consideration of the hazard function. For the population

p, we have the model:

ϕpx(t) = αp ϕ
0
x(t),

with ϕ0
x(t) the hazard function unknown and αp = exp

(
zTp θp

)
. In our case, the parameter θp measures

the influence of belonging to the population p on the intensity and zTp is the vector of covariates for the

individual i, i.e. a dummy variable indicating if the individual belongs to the population p. The resulting

coefficients are used in a following step to weight the exposure to risk of each population.

With the notation of Section 2.2 and under the assumption of a piecewise constant force of mortality,

the likelihood becomes

L
(
ϕx(t)

)
= exp

(
−Ex,t ϕx(t)

)(
ϕx(t)

)Dx,t
.

The associated log-likelihood is

`
(
ϕx(t)

)
= logL

(
ϕx(t)

)
= −Ex,t ϕx(t) +Dx,t logϕx(t).

Maximizing the log-likelihood `
(
ϕx(t)

)
gives ϕ̂x(t) = Dx,t/Ex,t which coincides with the central death

rates m̂x(t). Then it is apparent that the likelihood `
(
ϕx(t)

)
is proportional to the Poisson likelihood

based on

Dx,t ∼ P
(
Ex,t ϕx(t)

)
. (2)

Thus it is equivalent to work on the basis of the true likelihood or on the basis of the Poisson likelihood,

as recalled in Delwarde and Denuit (2005). In consequence, under the assumption of constant forces of

mortality between non-integer values of x and t, we consider (2) to take advantage of the Generalized

Linear Models (GLMs) framework.

Hence, we supposed the following Poisson model for the number of deaths of the population p:

Dp
x,t ∼ P

(
Epx,t ϕ

p
x(t)

)
,

Aggregating the populations, we obtain

∑
p

Dp
x,t ∼ P

(∑
p

Epx,t ϕ
p
x(t)

)
,

and, ∑
p

Dp
x,t ∼ P

(∑
p

Epx,t αp ϕ
0
x(t)

)
.

Université Claude Bernard Lyon 1 ISFA Page 4



The observed exposure to risk is weighted by the coefficient αp obtained from the Cox model at the

preliminary step. Hence, we consider the following model,

D◦x,t ∼ P
(
E◦x,t exp(f(x, t))

)
,

where D◦x,t =
∑
pD

p
x,t, E

◦
x,t =

∑
pE

p
x,t αp and f(x, t) is an unknown smooth function.

3.2 Local likelihood smoothing methods

When the size of the group is sufficient, we can construct a prospective mortality table with the intention

of identifying the behavior of the insured population that would differ from the regulatory tables or more

generally from the national standard. However, in practice the size of the group may be limited and the

past experience is observed over a short period.

As mentioned in Planchet and Lelieur (2007), two approaches can be proposed to smooth the crude

data and project the future mortality using past observations. We distinguish

i. Endogenous approaches, which consist of exploiting the information contained in the crude forces of

mortality to obtain a smooth surface representing the data correctly, and yield a realistic projection.

In case of a small volume of data, these techniques could lead to biased estimations of the mortality

trend.

ii. Models using an external reference mortality table (exogenous approaches) that present a solution

to overcome the difficulties associated with having a small volume of data. The idea is to adjust a

reference table to the experience of a given set of data.

Considering the limited volume of data available, our attention is focused on the second class of models

even though a comparison with the first approach is presented.

This smoothing step ii. reduces some of the inherent randomness in the observed data. For this purpose

we compare the following models described in Table 1.

Estimation method

Model Formula Ref. table Local lik. Min. dist.

M1 D◦x,t ∼ P
(
E◦x,t exp

(
f(x, t)

))
M1

M2 D◦x,t ∼ P
(
E◦x,t exp

(
f
(
log
(
ϕref
x (t)

))))
INSEE M2.INSEE

TG05 M2.TG05

M3 D◦x,t ∼ P
(
E◦x,t ϕ

ref
x (t) exp

(
f(x, t)

))
INSEE M3.INSEE

TG05 M3.TG05

M4 logit ϕx(t) = α+ β logit ϕref
x (t) + εx,t INSEE M4.INSEE

where ϕx(t) = D◦x,t/E
◦
x,t TG05 M4.TG05

Table 1: Description of the models and estimation method used in the first step.

The functions f(·) are unspecified smooth functions of attained age x and calendar year t, and forces of

mortality according to a reference table ϕref
x (t).
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With the terminology mentioned previously, Model M1 is an endogenous non-parametric approach.

Model M2 is an exogenous non-parametric relational model. Model M3 is a mixture of endogenous and

exogenous approaches including the expected number of deaths E◦x,t ϕ
ref
x (t) according to an external

reference table. Finally, model M5 is a semi-parametric brass-type relational model. This model implies

that the differences between the observed mortality and the reference can be represented linearly with

two parameters. The parameter α is an indicator of mortality affecting all ages identically while the

parameter β modifies this effect with age. The estimation is done by minimizing a weighted distance

between the estimated and observed forces of mortality. Moreover, M4 has the advantage of integrated

estimation and forecasting, as the parameters α and β are constant.

The models M1, M2 and M3 are estimated by non-parametric methods. We considered local kernel-

weighted log-likelihood methods to estimate the smooth functions f(x, t) and f
(
log
(
ϕref
x (t)

))
for x ∈

[x1, xn] and t = 1, . . . ,m. Statistical aspects of local likelihood techniques have been discussed extensively

in Loader (1996), Fan et al. (1998), Loader (1999) and Tomas (2013).

These methods have been used in a mortality context by Delwarde et al. (2004), Debón et al. (2006),

Tomas (2011) to graduate life tables with attained age. More recently, Tomas and Planchet (2013) have

covered smoothing in two dimension and introduced adaptive parameters choice with an application

to long-term care insurance. Local likelihood techniques have the ability to model relatively well the

mortality patterns even in presence of complex structures and avoid to rely on experts opinion.

The extrapolation, for t = m + 1, . . . ,m + h, relies only on the information contained in the smoothed

surface. It is performed by identifying the mortality components and their importance over time using

singular values decomposition. The number of parameters is determined according their explicative power.

Then time series methods are used to extrapolate the time-varying coefficients.

We consider two external prospective tables for the first step of our approach as references for the ex-

ogenous relational models. One is the national demographic projections for the French population over the

period 2007-2060, provided by the French National Office for Statistics, INSEE, Blanpain and Chardon

(2010). These projections are based on assumptions concerning fertility, mortality and migrations. We

choose the baseline scenario among a total of 27 scenarios. The baseline scenario is based on the as-

sumption that until 2060, the total fertility rate is remaining at a very high level (1.95). The decrease in

gender-specific and age-specific mortality rates is greater for men over 85 years old. The baseline assump-

tion on migration consists in projecting a constant annual net-migration balance of 100, 000 inhabitants.

We complete this table by adding the years 1996-2006 from a previous INSEE table. The extrapolated

part of the table, i.e. 2011-2060, being regular, we smoothed the forces of mortality of the completed

table using local kernel weighted log-likelihood to remove the erratic pattern of the years 1996-2010.

The second external reference table, denoted TG05, is a market table built for the entire French market

provided by the French Institute of Actuaries, Planchet (2006). Originally, the table is generational and

covers the period 1900-2005. We rewrite it as to obtain a prospective table covering the period 1996-2035.

It is worth to mention that this table was constructing using mortality trends originating from the INSEE

table where a prudence has been added. As a consequence, this table is not fully faithful to the data but

incorporates prudence in an arbitrary manner.

3.3 Singular values decomposition

Lee and Carter (1992) or its variants are now the dominant methods of mortality forecasting in actu-

arial sciences. The Lee-Carter method has a number of advantages, among them simplicity. The method

involves using the first principal component of the log-mortality matrix. In contrast to parametric ap-

proaches which specify the functional form of the age pattern of mortality in advance, principal compo-

nents approaches estimate the age pattern from the data.
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Improvements to the Lee-Carter estimation basis have been proposed. A Poisson log-likelihood approach

has been developed in Brouhns et al. (2002b), Brouhns et al. (2002a) and Renshaw and Haberman (2003)

to remedy to some of the drawbacks of the Lee-Carter approach, such as for instance the assumed

homoskedasticity of the errors. Cosette et al. (2007) use a binomial maximum likelihood, and a negative

binomial version of the Lee-Carter model has been developed by Delwarde et al. (2007) to take into

account the over-dispersion phenomenon.

In the following, we use singular values decomposition and fit time series models to each component

coefficient to obtain forecasts of the forces of mortality. We prefer smoothing the observed data first rather

than smoothing the component directly to place relevant constraints on the smoothing more easily. The

decomposition using an orthonormal basis (step iii.) is obtained via principal components analysis.

We want to find a set of K orthonormal functions φk(x) so that the expansion of each curve in terms of

the basis functions approximates the curve as closely as possible. For a given K, the optimal orthonormal

basis functions
{
φk(x)

}
minimize the mean integrated squared error

MISE =
1

n

m∑
t=1

∫
ε2t (x) dx

This basis set provides informative interpretation and coefficients
{
βt,k

}
that are uncorrelated, simplifying

the forecasting method as multivariate time series models are not required.

In expression 1, the parameter µx is estimated as the mean of log ϕ̂x(t). Then we estimate
{
βt,k

}
and{

φk(x)
}

using a singular values decomposition. We compute the matrix Z of dimension n×m with ele-

ment (x, t) noted zx,t given by zx,t = log ϕ̂x(t)− µ̂x. We centered the log ϕ̂x(t) according their temporal

mean.

In the following, we approximate the matrix Z such as

Z ≈
K∑
k=1

βt,k φk(x). (3)

As in Delwarde and Denuit (2005), this problem is tackled by singular values decomposition of Z.

Let uk the kth eigen vector of the squared matrix ZTZ of dimension m×m and λk the corresponding

eigen value. Thus,

ZTZ uk = λkuk and uTk uk = 1.

If we multiply both sides of the previous expression by Z, we obtain
(
Z ZT

)
Z uk = λk

(
Z uk

)
.

In consequence, for every eigen vector uk of ZTZ associated to the eigen value λk corresponds an eigen

vector Z uk of ZZT associated to the same eigen value λk. Hence, all the eigen values of ZTZ and Z ZT

are equal.

Thus, with vk the kth eigen vector of the squared matrix ZZT of dimension n×n associated to the eigen

value λk, we have, for λk 6= 0,

vk =
1
√
λk

Z uk (4)

and uk =
1
√
λk

ZT uk.
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Starting from expression (4), we have the relation Z uk = vk
√
λk, from which we multiply the two sides

by uTk before summing over the all eigen values of ZTZ,

Z

(∑
k

uku
T
k

)
=
∑
k

√
λkvk u

T
k .

As the eigen vectors uk are orthogonal and of norm 1,
∑
k uku

T
k corresponds to the identity matrix,

which leads to the following decompsition of the matrix Z:

Z =
∑
k

√
λkvk u

T
k .

The last expression is the singular values decomposition. Finally, confronting expressions (3) and (4), we

obtain

φ̂k(x) =
vk∑
i vk,i

and β̂k,t = λk

(∑
i

vk,iuk

)
, assuming

∑
i

vk,i 6= 0.

The number K of basis functions depends on many considerations. It depends on the number of

discrete points m in the original data, whether some level of smoothing is imposed by using K < m, on

the efficiency of the basis functions in reproducing the behavior of the original functions, and so on. Here,

we use the percentage of variance explained, i.e. λk/
∑
k λk, to measure the quality of the approximation

(4) obtained by the kth component and select K accordingly.

3.4 Extrapolation of the time-varying coefficients

Stochastic methods of mortality forecasting have received considerable attention, see Booth (2006)

and Booth and Tickle (2008) for recent reviews. The most widely used are those involving some forms

of extrapolation often using time series methods. Extrapolative methods assume that future trends will

essentially be a continuation of the past. In mortality forecasting, this is usually a reasonable assumption

because of historical regularities as It is generally accepted that the demographic phenomenon of inertia

is sufficient for extrapolation of past trends.

The estimated βt,k’s can be extrapolated using Box-Jenkins time series methods. We need to forecast

βt,k for k = 1, . . . ,K and t = m + 1, . . . ,m + h. For K > 1 this is a multivariate time series problem.

However, due to the way the basis functions φk(x) have been chosen, the coefficients β̂t,k and β̂t,l are

uncorrelated for k 6= l. As a consequence, univariate time series methods are adequate for forecasting

each series
{
β̂t,k

}
. It is expressed through the development of an ARIMA (p,d,q) model where p, d, and

q are integers, greater than or equal to zero and refer to the order of the autoregressive, integrated and

moving average parts of the model. Given the time series
{
β̂t,k

}
, where t is an integer index, an ARIMA

(p,d,q) model is described by

(
1−B

)d
φ
(
B
)
β̂t,k = θ

(
B
)
Zt, and

{
Zt
}
∼White Noise (σ2), (5)

where B is the backshift operator, B β̂t,k = β̂t−1,k, expressing the length of the previous data that the

model uses to provide the forecasts, and φ() and θ() are polynomials of degrees p and q respectively. We

consider a full range of ARIMA (p, d, q) models with d = 0, 1, 2 and p, q = 0, 1, 2, 3, 4 as candidates for

the period effects. The Bayes information criterion (BIC) is calculated for each ARIMA model and, on

the basis of this information, the parameters p, d and q are selected. We refer to Delwarde and Denuit

(2003) for an exhaustive application to the Lee-Carter model.
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Then, extrapolated forces of mortality are derived using estimated µ(x) and Φ, the set of the basis

functions, and extrapolated
{
βt,k

}
. Time series models have the advantage of being stochastic, enabling

the calculation of the probabilistic prediction intervals for the forecast value.

Conditioning on the observed data J =
{
ϕt(xi); t = 1, . . . ,m ; i = 1, . . . , n

}
and on the set of the basis

function Φ, we deduce h-step ahead forecasts of ϕm+h(x)

ϕ̂m,h(x) = E
[
ϕm+h(x)|J ,Φ

]
= µ̂(x) +

K∑
k=1

β̃m,h,k φ̂k(x),

where β̃m,h,k denotes the h-step ahead forecasts of βm+h,k using the estimated series β̂1,k, . . . , β̂m,k.

3.5 Completion

Finally, we would need to close the tables. Actuaries and demographers have developed various tech-

niques for the completion of the tables at high ages, see among others Denuit and Quashie (2005) for a

review. In this article, we use a simple and efficient method proposed by Denuit and Goderniaux (2005).

This method relies on the adjusted one year probabilities of death and introduces two constraints about

the completion of the mortality table. It consists to adjust, by ordinary least squares, the following

log-quadratic model:

log q̂x(t) = at + bt x+ ct x
2 + εx(t), with q̂x(t) = 1− exp

(
1− ϕ̂x(t)

)
, (6)

where εx(t) ∼ iid Normal(0, σ2), separately for each calendar year t at attained ages x∗. Two restrictives

conditions are imposed:

i. Firstly, a completion constraint,

q130(t) = 1 , for all t.

Even though human lifetime does not seem to approach any fixed limit imposed by biological factors

or other, it seems reasonable to accept the hypothesis that the age limit of end of life 130 will not

be exceeded.

ii. Secondly, an inflexion constraint,

∂

∂x
qx(t)|x=130 = 0 , for all t.

These constraints impose concavity at older ages in addition to the existence of a tangent at the point

x = 130. They lead to the following relation between the parameters at, bt and ct for each calendar year

t:

at + bt x+ ct x
2 = ct (130− x)2,

for x = x∗t , x
∗
t + 1, . . .. The parameters ct are estimated from the series {q̂x(t), x = x∗t , x

∗
t + 1, . . .} of

calendar year t with equation (6) and the constraints imposed.

4 Construction of a dynamic reference table

4.1 The data

Data are originating from 8 portfolios of various French insurance companies, denoted P1, P2, . . . , P8.

Tables 2 and 3 display the observed statistics of the male and female data respectively.
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Period of observation

Portfolios Mean Age In Mean Age Out Mean Expo Mean Age at death Beginning End

P1 40.92 49.10 8.18 60.58 01/01/1996 31/12/2010

P2 41.54 45.36 3.818 52.30 01/01/2005 31/12/2010

P3 44.43 46.69 2.26 77.04 01/07/2004 30/06/2007

P4 51.43 61.74 10.31 77.92 01/01/1996 31/12/2007

P5 41.57 46.60 5.03 55.83 01/01/2003 31/12/2009

P6 48.06 55.20 7.14 73.87 01/01/1996 31/12/2009

P7 48.81 52.79 3.97 73.51 01/01/2006 31/12/2010

P8 46.44 55.10 3.66 62.15 01/01/2005 31/12/2009

Table 2: Statistiques observes par portefeuille, population masculine.

Period of observation

Portfolios Mean Age In Mean Age Out Mean Expo Mean Age at death Beginning End

P1 41.36 49.43 8.08 64.20 01/01/1996 31/12/2010

P2 40.29 44.05 3.76 50.60 01/01/2005 31/12/2010

P3 49.66 51.94 2.28 83.61 01/07/2004 30/06/2007

P4 55.79 65.94 10.15 84.80 01/01/1996 31/12/2007

P5 42.58 47.55 4.97 57.74 01/01/2003 31/12/2009

P6 50.71 57.73 7.03 79.60 01/01/1996 31/12/2009

P7 49.08 53.00 3.93 80.58 01/01/2006 31/12/2010

P8 47.50 51.13 3.63 64.88 01/01/2005 31/12/2009

Table 3: Statistiques observes par portefeuille, female population.

The tables illustrate that the structure of the heterogeneity is changing over time as the portfolios are

not observed during the same period.

4.2 Adjusting the relative risk

The changes in the structure of the heterogeneity over time may impact the estimation of the mortality

trends over the years. Ideally we should have stuck to the same structure of the heterogeneity. In the

following, we use the proportional hazard Cox type model to describe how the risk of the populations

changes over time. Tables 4 and 5 present the resulting coefficients for the male and female population.

They are then used in a following step to weight the exposure of each portfolio to adjust their relative risk.

Portfolio coef exp(coef) se(coef) z P
[
> |z|

]
P1 0.17040 1.18578 0.02361 7.217 5.31e− 13

P2 −0.18497 0.83113 0.02586 −7.152 8.56e− 13

P3 0.40821 1.50412 0.02077 19.654 < 2e− 16

P4 0.30299 1.35391 0.02362 12.830 < 2e− 16

P5 0.30886 1.36187 0.01556 19.848 < 2e− 16

P6 0.05362 1.05508 0.01417 3.785 0.000154

P7 −0.14291 0.86683 0.01802 −7.930 2.22e− 15

Table 4: Estimated coefficients of the Cox model,
male population.

Portfolio coef exp(coef) se(coef) z P
[
> |z|

]
P1 0.20104 1.22268 0.03512 5.724 1.04e− 08

P2 −0.31841 0.72731 0.04313 −7.383 1.55e− 13

P3 0.36181 1.43592 0.02335 15.495 < 2e− 16

P4 0.30529 1.35702 0.02428 12.573 < 2e− 16

P5 0.23416 1.26385 0.02237 10.470 < 2e− 16

P6 0.15235 1.16457 0.01884 8.086 6.66e− 16

P7 0.05308 1.05451 0.02264 2.344 0.0191

Table 5: Estimated coefficients of the Cox model,
female population.
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We aggregate the portfolios by attained age x and calendar year t and weight the exposure with the

coefficients obtained from the Cox models. The age range is 30 - 90 and the observations cover the period

01/01/1996 - 31/12/2010, i.e. the union of the different periods of observation. Figure 5, in Appendix A,

displays the observed statistics of the aggregated datasets weighted by the coefficients obtained from the

Cox model for the male and female population.

4.3 Comparisons of the fits

We fitted the models presented in Table 1. Figure 6 in Appendix B displays the fits in the log scale for

the 7 models over the years for several ages. It gives us the opportunity to visualize the similarities and

differences between the smoothed surfaces obtained by the models.

We observe that the models have the following features in common. The overall level of mortality

has been declining over time and these improvements have been greater at lower ages than at higher

ages. However the models diverge in the level and speed of the improvement. For instance, models using

the national population table originating from INSEE have a greater speed of improvement than models

using the market table.

In the following section, these visual comparisons are supplemented by a range of quantitative diag-

nostics which will increase our confidence in some models and question the suitability of others for our

purposes.

4.4 Tests and quantities to compare graduations

We now carry out a number of tests to assess the impact of model choice. These concerns the proximity

between the observations and the model as well as the regularity of the fit. We apply the tests proposed by

Forfar et al. (1988), Debón et al. (2006), Tomas and Planchet (2014a) and Tomas and Planchet (2014b).

We have also obtained the values of the mean absolute percentage error MAPE and R2 used in Felipe

et al. (2002). In addition, we use the SMR test proposed by Liddell (1984).

Table 6 presents the results. We evaluate the fit according its regularity and the overall deviation from

the past mortality. A satisfying fit, characterized by an homogeneous repartition of positive and negative

signs of the response residuals and a high number of runs, should not lead to a significant gap with the

past mortality, or vice versa. Accordingly, We balance these two complementary aspects in validating the

model.

The approaches display different results. For the both populations, model M1, having the highest

degrees of freedom and being fully endogenous, has the capacity to reveal many features in the data.

Therefore, it has the lowest χ2 and deviance, lowest number of standardized residuals exceeding the

thresholds 2 and 3.

Conversely, the exogenous semi-parametric models M4 lead to the highest deviance, χ2 and MAPE, and

lowest R2. In addition, they have the highest relative difference between expected and observed number

of deaths.

The non-parametric exogenous models M2, being more flexible, perform better than the semi-parametric

models M4. With respect to the reference table used, models M2 have a lower deviance, lower number of

standardized residuals exceeding the thresholds 2 and 3, lower χ2 and MAPE, and higher R2. Also, the

expected and observed number of deaths are closer.
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The mixtures of endogenous and exogenous modeling M3 perform better than models M2. Models M3

have a better spread of the residuals between positive and negative signs, higher R2, lower MAPE and

higher p-value for the SMR test.

We observe that, in general, models incorporating the national population table originating from INSEE

produce graduations that are closer to the experience data obtained from the female population than

models using the market table TG05 as reference. For the male population, the models using the market

table TG05 seem more satisfactory.

The tests and quantities carried out in Table 6 show the strengths and weaknesses of each model to

adjust the observed mortality. The choice between the models is only a matter of judgment and depends

on the purpose for which the prospective mortality table would be used. It is up to potential users of the

table to decide the weights they place on the different criteria.

4.5 Extrapolation of the smoothed surfaces and completed tables

Figures 7 and 8, in Appendix C, display the basis functions and associated coefficients using equation

(1) for the models M1, M2 and M3. For our application, 15 sampling points are available per curve and

actually for these data a value of K as small as 2 captures most of the interesting variation in the original

data, Tables 7 and 8.

M1 M2.INSEE M2.TG05 M3.INSEE M3.TG05

1st coef 99.60 99.93 99.90 99.86 99.79

2nd coef 0.38 0.03 0.08 0.06 0.18

Table 7: Percentage of the variance explained,
male population.

M1 M2.INSEE M2.TG05 M3.INSEE M3.TG05

1st coef 91.26 98.01 86.19 96.65 91.51

2nd coef 6.42 0.81 5.71 1.81 4.11

Table 8: Percentage of the variance explained,
female population.

The average log-mortality at attained ages is similar for the models over time, Figures 7a and 7d.

Figures 7b and 7d show the first basis function for all models. The first term accounts for at least 86 % of

the variation in mortality. The coefficient, Figures 8a and 8c, indicates a fairly steady decline in mortality

over time. The basis function φ1(x) indicates that the decline has been faster for the young adults.

However, for the non-parametric exogenous models using the market table TG05, the decrease has been

greater for females aged 60− 80 than the young female adults.

The basis function φ2(x), Figures 7c and 7f, is more complicated and we do not try to explicate it. The

shape of associated coefficient Figures 8b and 8d is more irregular. Again we observed that the choice of

the reference table leads to a different pattern of the basis functions and associated coefficients.

The time-varying coefficients are forecast using univariate time series methods. Table 9, in Appendix

C, summarizes the ARIMA models, introduced in Section 3.4.

For each of the models M1, M2 and M3, we considered a full range of ARIMA(p,d,q) models with

d = 0, 1, 2 and p, q = 0, 1, 2, 3, 4 as candidates for the period effects. The Bayes information criterion

(BIC) was calculated for each ARIMA model and, on the basis of this information, the parameters p, d

and q have been selected. Figures 8e, 8f, 8g and 8h display the resulting projections for models M1, M2

and M3 for h = 28, that is until year 2035. For clarity, the confidence intervals are omitted.

We notice that some coefficients β̃m,h,2 in Figures 8e and 8g are rapidly constant. As a consequence, we

could have performed a decomposition using the first principal component as in the original Lee-Carter

method. However, it may not be the case for other datasets, as illustrated in Hyndman and Ullah (2007)

and Hyndman and Booth (2008).
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The use of several components is the main difference between this approach and the Lee-Carter method,

which uses only the first component and also involves an adjustment. The extra principal components

allow more accurate forecasting of age-specific forces of mortality, though in our application at least 86 %

of the variation is explained by the first component.

The next step is to complete the tables. We apply the model proposed by Denuit and Goderniaux

(2005) to probabilities of death. We adjust the quadratic constraint regression (6). The optimal starting

age x∗ is selected over the range
[
75, 85

]
for each calendar year.

The R2 and corresponding estimated regression parameters ct for the male and female population are

displayed in Figure 9, in Appendix D, for the seven models. As an illustration, Figure 1a presents the

results for Model M1 below.
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Figure 1: Estimated regression parameters and fits obtained by the completion method proposed by
Denuit and Goderniaux (2005) for Model M1.

The models capture more than 99.99 % of the variance of the probabilities of death at high ages,

Figure 1a top panel, for both populations. The regression parameters ĉt decrease relatively linearly with

the calendar year, Figure 1a bottom panel.

This indicator represents the evolution of the mortality trends at high ages. We see that the mortality

at high ages decreases and the speed of improvement is relatively similar for both populations for the

exogenous models M2.TG05 and M4.TG05 using the market table as reference, Figures 9e and 9g. Models

M2.INSEE, M3.INSEE and M4.INSEE using the national demographic projection as reference as well as

M3.TG05 lead to a faster improvement of mortality for the female than the male population, Figures 9b,

9c, 9d and 9f. Only for the endogenous model M1 the female mortality tends to get closer to the male

population over the years. We keep the original q̃x(t) for ages below 85 years old for both populations,

and replace the annual probabilities of death beyond this age by the values obtained from the quadratic

regression. Results for the calendar year 1996 are presented, for both populations, in Figure 1b for Model

M1 and in Figure 10, Appendix D, for the seven models.
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Figure 11, in Appendix E, displays the fits of the probabilities of death in the log scale for the 7 models

over the years for several ages. Figure 2, below, presents the results obtained for age 60. For clarity, the

confidence intervals are omitted. The forecasts produced here are based on the two first decompositions.

Compare to the original Lee-Carter method, the additional second component may serve to incorporate

relatively recent changes in pattern. The use of smoothing prior to modeling results in forecast age

patterns that are relatively smooth.
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Figure 2: Comparisons of the fits and forecasts for age 60, log scale.

As visualized in Figure 6, the overall level of mortality is declining over time and these improvements

are greater at lower ages than at higher ages. However the models diverge in the level and speed of the

improvement. Exogenous models using the national demographic projection lead to a steeper decrease

than models using the market table. Models having an endogenous component, M1 and M3, yield the

slowest decline.

4.6 Plausibility and coherence of the forecasts

Validating the extrapolated future mortality is a much more difficult exercise than judging about the

proximity about the observations and the model and a scientific statement about the future evolution of

the mortality is impossible to make, Wilmoth (2011). Hence, one can only judge the reasonableness of the

forecast and this has to be based on experts opinions such as biologists, physicians and demographers to

yield the most objective assessment. Guidances have to question three factors regarding the consistency

and the coherence. Those are the regularity and speed of improvement as well as the evolution between

the male and female mortality when data are at our disposal.

About the regularity component, most authors suggest that the extrapolated future mortality should

show a linear development. The human lifespan has been increasing for over a century as revealed by

the records of extreme ages at death in Sweden for the last 130 years, see Wilmoth et al. (2000). From

observations of national demographic statistics, Wilmoth (1998) has found that mortality has been falling

gradually and maximum age at death has been rising steadily in the industrialized countries for more than

100 years. White (2002) finds a linear trend in life expectancy for all the high-income countries during the
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second half of the 20th century. Oeppen and Vaupel (2002) argue that the process of mortality reductions

should follow a stream of continuing progress and should not be seen as a disconnected sequence of

unrepeatable revolutions.

About the speed of improvement, White (2002) also found that when a quadratic time trend was fitted

to the standardized death rates, the coefficient on the squared term was significantly positive, indicating

that the rate of improvement has been accelerating. Mortality improvements are the result of a complex

process of advances in income, salubrity, nutrition, education, sanitation, and medicine, with the mix

varying over age, period, cohort and place summarize Oeppen and Vaupel (2002). Thus, on the one hand

the advance in life expectancy is a regular stream of continuous progress but on the other it is also a

complex interaction between medical, social, economic factors, which sounds almost like a paradox for

Bengtsson (2006). Possible increases in obesity and the possibility of pandemic diseases can question the

continued long term trend of mortality improvements.

Finally, when we have at our disposal data of the male and female population exposed to the risk, we

can assess the coherence of the forecasts by judging about the evolution of the mortality improvements

of the two genders. It is well know that the mortality of males and females differs because of differences

in their physiology, biology and behavior. After a large increase during the 19th and the 20th century,

Meslé (2000) mentions that for two decades the gap in life expectancy between the two gender has been

reducing in most industrialized countries. In France, where it was specially large, it stopped increasing

in the early 1980s and decreased in the most recent years. For the author, it does not mean that female

health situation is getting worse but it is related to an acceleration of progress for males. The difference

will most probably reduce in the next years except if females would enjoy dramatic progression in old age

mortality. For France and european countries (England and Wales, Sweden, Switzerland, Italy), taken as

examples in Meslé (2000), the stabilization of the gap is mainly related to the decrease in cardiovascular

mortality for men who benefit from the same progress but later than women. In the most recent years,

the reduction of the gap is due to the trend reversal of male cancer mortality which is now decreasing,

specially because of the reduction of lung cancer mortality, see Meslé (2000). Conversely, in Japan, the

gap is still increasing specially for mortality from cancer and respiratory diseases.

Those considerations led Cairns et al. (2006) to propose the concept of biological reasonableness as an

aid in assessing the forecasts. This concept is not based on hard scientific, biological or medical facts

but should follow experts’ opinions. It is rather subjective and asks the question where the data are

originating from and based on this knowledge, what mixture of biological factors, medical advances and

environmental changes would have to happen to cause this particular set of forecasts.

In the following, we evaluate singles indices summarizing the lifetime probability distribution for dif-

ferent cohorts at several ages such as the cohort life expectancies ω
↗
e x̃, median age at death Med

[
ωTx̃

]
and the entropy H

[
ωTx̃

]
. Graphical diagnostics are also used to assess the consistency of the historical

and forecasted periodic life expectancy ω
↑
ex(t), see Tomas and Planchet (2014a) and Tomas and Planchet

(2014b). In addition, having at our disposal the male and female mortality, we can compare the trends

of improvement and judge the plausibility of the common evolution of mortality of the two populations.

We obtain the survival function calculated from the completed tables. From the survival function, we

derive a series of markers summarizing the lifetime probability distribution. We are interested in the

survival distribution of cohorts aged x̃ = 30 to 90 years old in 1996 over 40 years. Hence, we are working

along the diagonal of the Lexis diagram. Table 10, in Appendix F, presents the cohorts life expectancies,

the median age at death and the entropy for both populations.
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The exogenous models non-parametric M2 and semi-parametric M4 lead to the highest cohort life

expectancies and median age at death until 70 years old. In consequence, the entropy is smaller and the

deaths are more concentrated. At the opposite, the endogenous model M1, yields the smallest cohort life

expectancies and median age at death and the deaths are most stretched.

We observe, once more, that the choice of the reference table affects the single indices summarizing the

lifetime probability distribution. The exogenous models using the market table lead to a smaller cohort

life expectancies and median age at death until 70 years old than models using the national demographic

projection. Conversely, after 70 years old the relation is reversed.

Figure 12, in Appendix G, compares the trends in periodic life expectancies for the ages 35, 60 and 85

for the male and female population. As an illustration, Figure 3, below, presents the results obtained for

age 60. We observe that the exogenous models lead to the highest predicted periodic life expectancies.

Model M1, being fully endogenous yields the lowest. The mixture of endogenous et exogenous modeling

models M3 follow adequately the observed trend.
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Figure 3: Comparison of the trends in periodic life expectancies for age 60.

In the following, we compare the mortality trends of the male and female population to judge the

plausibility of the common improvement. Figure 13, in Appendix H, displays the ratio between the

cohorts life expectancies over 5 years of the two genders. Figure 14, in Appendix H, presents the ratio

between the fitted probabilities of death of the two genders. As an illustration, Figure 4, below, shows

the results obtained for Model M1.

.

The cohorts life expectancies of the female population, Figure 4a, are 15 % larger than the male ones

at 90 years old, 10 % at 80 and 5 % at 70 years old. The exogenous models M2 and M4 using the national

demographic projection as well as models M3 lead to relatively similar mortality trends. The ratio tends

to get closer to 1 for ages below 95 years old, and increases after 95 indicating that the female mortality

is improving more rapidly than the male for the very high ages. Models M1 and the exogenous models
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(a) Ratio of the cohort life expectancies over 5 years. (b) Ratio of the fitted probabilities of death.

Figure 4: Comparison of the male and female mortality, female / male, model M1.

M2 and M4 using the market table as reference yield a faster improvement of the male mortality than

the female for every ages, which seems to be coherent.

The ratio of the extrapolated probabilities of death, Figure 4b, shows clearly that the male mortality is

improving more rapidly than female for the young adult until 65 years old. The exogenous models M2

and M4 lead to the fastest improvement. However, for those models using the market table as reference,

the female mortality becomes even higher than the male one at the end of the forecast period. If we

cannot think about any good reason why this might happen, then we must disqualify these models on

the basis of biological reasonableness. The projections of models M3 seem reasonable, in accordance with

the set of projections with the other models.

5 Summary and outlook

In this article, we presented a an approach to construct prospective mortality tables for which the

data available are composed by heterogeneous groups observed during different periods. The approach

has been motivated by having the largest available history to determine the mortality trends.

We proposed a model taking explicitly into account the heterogeneity so as to preserve the entire

history available for all populations. We applied a proportional hazard Cox type model in a preliminary

step to describe how the risk of the populations changes over time. These coefficients have been used

at the following step to weight the exposure to risk. We have used local kernel-weighted log-likelihood

techniques to graduate the observed mortality in the second step. The extrapolation of the smoothed

surface has been performed by identifying the mortality components and their importance over time

using singular values decomposition. The number of parameters have been determined according their

explicative power. Then time series methods are used to extrapolate the time-varying coefficients.

We have applied our methodology to the construction of a reference mortality table from portfolios

of several insurance companies. This reference could be used to adjust the mortality specifically to each

insured portfolio and construct entity specific dynamic mortality tables by a Poisson generalized linear
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model including the reference has covariate and allowing age and calendar year interactions or by a

semi-parametric relational model.

We investigated the differences in the mortality surfaces generated by a number of proposed models.

Actuaries should acknowledge the use of multiple models rather than pretend that it is sufficient to adjust

the past mortality and make forecasts based on any single model. The investigation of the divergences

between the models has been assessed on three levels. The two first levels evaluate the fit according

its regularity and the overall deviation from the past mortality. A satisfying fit, characterized by an

homogeneous repartition of positive and negative signs of the response residuals and un high number of

runs, should not result in a significant gap with the past mortality, or vice versa. Accordingly, the two first

levels of the validation balance these two complementary aspects. The third level covers the coherence

and consistency of the mortality trends. We asked the question where the data are originating from and

based on this knowledge and experts’ opinions, what mixture of biological factors, medical advances and

environmental changes would have to happen to cause this particular set of forecasts.
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Université Claude Bernard Lyon 1 ISFA Page 19



Debón, A., Montes, F., and Sala, R. (2006). A comparison of nonparametric methods in the graduation

of mortality: Application to data from the Valencia region (Spain). International statistical Review,

74(2), 215–233.

Delwarde, A. and Denuit, M. (2003). Importance de la période d’observation et des âges considérés dans
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Meslé, F. (2000). Ecart d’espérance de vie entre les sexes : les raisons du recul de l’avantage féminin.
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Appendix

A The data

Figure 5 displays the observed statistics of the aggregated datasets weighted by the coefficients obtained

from the Cox model for the male and female population.

B Comparisons of the fits

Figure 6 presents the fits in the log scale for the 7 models over the years for several ages.
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C Extrapolation of the smoothed surfaces

Figures 7 and 8 display the basis functions and associated coefficients using equation (1) for the models

M1, M2 and M3. Table 9 summarizes the ARIMA models, introduced in Section 3.4.

D Completion

Figure 9 presents the R2 and corresponding estimated regression parameters ct for the male and female

population for the seven models. The fits obtained after the completion for the calendar year 1996 are

displayed in Figure 10.

E Comparison of the fits and forecasts

Figure 11 displays the fits of the probabilities of death in the log scale for the 7 models over the years

for several ages.

F Single indices summarizing the lifetime probability distribution

Table 10 presents the cohorts life expectancies, the median age at death and the entropy for both

populations.

G Comparison of the trends in periodic life expectancies

Figure 12 compares the trends in periodic life expectancies for the ages 35, 60 and 85 for the male and

female population.

H Comparison of the evolution of the male and female mortality

Figure 14 and 13 present the ratio between the cohorts life expectancies over 5 years and the ratio

between the fitted probabilities of death of the two genders respectively.
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Université Claude Bernard Lyon 1 ISFA Page 28



●
●

●

●

●
●
●

●
●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

40
60

80
10

0
12

0

−8−6−4−20

F
its

 a
fte

r 
C

om
pl

et
io

n 
− 

M
1 

− 
Ye

ar
 1

99
6

A
ge

log qxt

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●
●
●
●
●
●

●
●

●

●
●
●
●

●

●
●

●

●

●
●
●

●

●

●
●
●

●
●
●

●
●

●

●
●

● ●

O
bs

er
va

tio
ns

 F
em

al
e

O
bs

er
va

tio
ns

 M
al

e
F

it 
F

em
al

e
F

it 
M

al
e

(a
)

M
1
.

●
●

●

●

●
●
●

●
●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

40
60

80
10

0
12

0
−8−6−4−20

F
its

 a
fte

r 
C

om
pl

et
io

n 
− 

M
2.

IN
S

E
E

 −
 Y

ea
r 

19
96

A
ge

log qxt

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●
●
●
●
●
●

●
●

●

●
●
●
●

●

●
●
●

●

●
●
●

●

●

●
●
●

●
●
●

●
●

●

●
●

● ●

O
bs

er
va

tio
ns

 F
em

al
e

O
bs

er
va

tio
ns

 M
al

e
F

it 
F

em
al

e
F

it 
M

al
e

(b
)

M
2
.I

N
S
E

E
.

●
●

●

●

●
●
●

●
●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

40
60

80
10

0
12

0

−8−6−4−20

F
its

 a
fte

r 
C

om
pl

et
io

n 
− 

M
3.

IN
S

E
E

 −
 Y

ea
r 

19
96

A
ge

log qxt

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●
●
●
●
●
●

●
●

●

●
●
●
●

●

●
●
●

●

●
●
●

●

●

●
●
●

●
●
●

●
●

●

●
●

● ●

O
bs

er
va

tio
ns

 F
em

al
e

O
bs

er
va

tio
ns

 M
al

e
F

it 
F

em
al

e
F

it 
M

al
e

(c
)

M
3
.I

N
S
E

E
.

●
●

●

●

●
●
●

●
●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

40
60

80
10

0
12

0

−8−6−4−20

F
its

 a
fte

r 
C

om
pl

et
io

n 
− 

M
4.

IN
S

E
E

 −
 Y

ea
r 

19
96

A
ge

log qxt

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●
●
●
●
●
●

●
●

●

●
●
●
●

●

●
●

●

●

●
●
●

●

●

●
●
●

●
●
●

●
●

●

●
●

● ●

O
bs

er
va

tio
ns

 F
em

al
e

O
bs

er
va

tio
ns

 M
al

e
F

it 
F

em
al

e
F

it 
M

al
e

(d
)

M
4
.I

N
S
E

E
.

●
●

●

●

●
●
●

●
●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

40
60

80
10

0
12

0

−8−6−4−20

F
its

 a
fte

r 
C

om
pl

et
io

n 
− 

M
2.

T
G

05
 −

 Y
ea

r 
19

96

A
ge

log qxt

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●
●
●
●
●
●

●
●

●

●
●
●
●

●

●
●
●

●

●
●
●

●

●

●
●
●

●
●
●

●
●

●

●
●

● ●

O
bs

er
va

tio
ns

 F
em

al
e

O
bs

er
va

tio
ns

 M
al

e
F

it 
F

em
al

e
F

it 
M

al
e

(e
)

M
2
.T

G
0
5
.

●
●

●

●

●
●
●

●
●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

40
60

80
10

0
12

0

−8−6−4−20

F
its

 a
fte

r 
C

om
pl

et
io

n 
− 

M
3.

T
G

05
 −

 Y
ea

r 
19

96

A
ge

log qxt
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●
●
●
●
●
●

●
●

●

●
●
●
●

●

●
●
●

●

●
●
●

●

●

●
●
●

●
●
●

●
●

●

●
●

● ●

O
bs

er
va

tio
ns

 F
em

al
e

O
bs

er
va

tio
ns

 M
al

e
F

it 
F

em
al

e
F

it 
M

al
e

(f
)

M
3
.T

G
0
5
.

●
●

●

●

●
●
●

●
●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

40
60

80
10

0
12

0

−8−6−4−20

F
its

 a
fte

r 
C

om
pl

et
io

n 
− 

M
4.

T
G

05
 −

 Y
ea

r 
19

96

A
ge

log qxt

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●
●
●
●
●
●

●
●

●

●
●
●
●

●

●
●

●

●

●
●
●

●

●

●
●
●

●
●
●

●
●

●

●
●

● ●

O
bs

er
va

tio
ns

 F
em

al
e

O
bs

er
va

tio
ns

 M
al

e
F

it 
F

em
al

e
F

it 
M

al
e

(g
)

M
4
.T

G
0
5
.

F
ig

u
re

10
:

F
it

s
ob

ta
in

ed
a
ft

er
th

e
co

m
p

le
ti

o
n

fo
r

th
e

ca
le

n
d

a
r

ye
a
r

1
9
9
6
.
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M1 M2.INSEE M2.TG05 M3.INSEE M3.TG05 M4.INSEE M4.TG05

40
↗
e 30 38.75 38.91 38.88 38.77 38.81 38.83 38.80

40
↗
e 40 36.97 37.33 37.22 37.04 37.11 37.25 37.23

40
↗
e 50 32.85 33.44 33.18 32.93 33.00 33.40 33.32

40
↗
e 60 25.24 25.66 25.59 25.14 25.35 25.57 25.66

40
↗
e 70 16.56 16.61 16.65 16.46 16.54 16.41 16.58

40
↗
e 80 9.26 9.17 9.28 9.25 9.30 8.87 9.14

40
↗
e 90 4.31 4.20 4.33 4.26 4.38 4.03 4.23

Med
[
40T50

]
38.92 NA NA 38.66 38.94 NA NA

Male Med
[
40T60

]
28.25 28.94 28.72 28.21 28.37 28.76 28.73

population Med
[
40T70

]
18.47 18.57 18.56 18.45 18.47 18.37 18.46

Med
[
40T80

]
10.29 10.19 10.30 10.35 10.36 9.88 10.13

Med
[
40T90

]
5.06 4.95 5.10 5.00 5.17 4.78 4.98

H
[
40T30

]
0.0008 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007

H
[
40T40

]
0.0020 0.0017 0.0018 0.0019 0.0019 0.0018 0.0018

H
[
40T50

]
0.0060 0.0052 0.0055 0.0059 0.0058 0.0053 0.0054

H
[
40T60

]
0.0224 0.0209 0.0212 0.0235 0.0225 0.0216 0.0211

H
[
40T70

]
0.1003 0.0984 0.0979 0.1065 0.1028 0.1042 0.0995

H
[
40T80

]
0.4796 0.4827 0.4735 0.4999 0.4855 0.5199 0.4875

H
[
40T90

]
2.4047 2.4562 2.3781 2.4853 2.3891 2.6126 2.4523

40
↗
e 30 39.27 39.35 39.30 39.31 39.34 39.30 39.28

40
↗
e 40 38.24 38.54 38.42 38.45 38.49 38.53 38.46

40
↗
e 50 35.65 36.36 36.01 36.12 36.22 36.38 36.26

40
↗
e 60 29.41 30.37 29.81 29.92 30.22 30.29 30.18

40
↗
e 70 20.49 20.85 20.56 20.59 20.77 20.79 20.69

40
↗
e 80 11.87 11.87 11.94 11.91 11.88 11.79 11.91

40
↗
e 90 5.54 5.44 5.67 5.56 5.55 5.33 5.63

Med
[
40T50

]
NA NA NA NA NA NA NA

Female Med
[
40T60

]
32.85 34.21 33.24 33.48 33.81 33.99 33.66

population Med
[
40T70

]
22.94 23.27 22.86 22.94 23.12 23.20 22.92

Med
[
40T80

]
13.31 13.28 13.40 13.37 13.29 13.17 13.35

Med
[
40T90

]
6.36 6.22 6.53 6.40 6.38 6.10 6.50

H
[
40T30

]
0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

H
[
40T40

]
0.0011 0.0009 0.0010 0.0010 0.0009 0.0009 0.0009

H
[
40T50

]
0.0031 0.0025 0.0027 0.0027 0.0026 0.0024 0.0025

H
[
40T60

]
0.0119 0.0098 0.0111 0.0108 0.0102 0.0101 0.0103

H
[
40T70

]
0.0573 0.0517 0.0563 0.0554 0.0534 0.0530 0.0547

H
[
40T80

]
0.3011 0.2883 0.2982 0.2966 0.2927 0.2953 0.2966

H
[
40T90

]
1.6871 1.6821 1.6509 1.6747 1.6630 1.7282 1.6563

Table 10: Single indices summarizing the lifetime probability distribution
for cohorts of several ages in 1996 over 40 years.
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