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abstract

This paper considers a wide range of stochastic reserving models for use in general insurance,
beginning with stochastic models which reproduce the traditional chain-ladder reserve estimates.
The models are extended to consider parametric curves and smoothing models for the shape of
the development run-off, which allow extrapolation for the estimation of tail factors. The
Bornhuetter-Ferguson technique is also considered, within a Bayesian framework, which allows
expert opinion to be used to provide prior estimates of ultimate claims. The primary advantage
of stochastic reserving models is the availability of measures of precision of reserve estimates,
and in this respect, attention is focused on the root mean squared error of prediction (prediction
error). Of greater interest is a full predictive distribution of possible reserve outcomes, and
different methods of obtaining that distribution are described. The techniques are illustrated with
examples throughout, and the wider issues discussed, in particular, the concept of a `best
estimate'; reporting the variability of claims reserves; and use in dynamic financial analysis
models.
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". Introduction

1.1 Although the last twenty years have witnessed increasing interest in
stochastic claims reserving methods, they are still only used by a limited
number of practitioners. A number of reasons for this could be suggested,
including: a general lack of understanding of the methods; lack of flexibility
in the methods; lack of suitable software; and so on. However, the main
reason is probably lack of need for the methods, when traditional methods
suffice for the calculation of a best estimate of outstanding claims reserves.
More recently, greater interest has been expressed in estimating the downside
potential of claims reserves, in addition to a best estimate. For that, it is
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necessary to be able to estimate the variability of claims reserves, and
ideally, to be able to estimate a full distribution of possible outcomes, from
which percentiles (or other measures) of that distribution can be obtained.
Stochastic claims reserving methods extend traditional techniques to allow
those additional measures to be estimated.

1.2 The aims of this paper are threefold: to review some of the
stochastic models which have been suggested, highlighting the connections
between them; to show how the methods can be implemented in practice; and
to discuss the characteristics of the models, interpretation of the results, and
their wider usefulness.

1.3 It is not the aim of this paper to present a panacea for claims
reserving. There will be sets of data for which it is difficult to justify any
standard model-based approach. There will also be cases where none of the
approaches set out will be appropriate. However, the models discussed
have wide applicability, and we believe that a thorough and complete
understanding of the stochastic basis is essential for the actuarial
profession.

1.4 It is important to emphasise at the outset that, for the most part,
this paper considers claims reserving techniques applied mechanically and
without judgement (once a particular technique has been selected). This does
not imply that the authors believe that judgement should not be used, nor
that judgement is not possible in the context of stochastic methods. Indeed,
using Bayesian methods, prior judgement can be incorporated quite
naturally, and this concept is explored later. Nevertheless, the practical
application is illustrated only to the extent of showing how the models can be
fitted, not how expert opinion can be incorporated to fully satisfy the
reserving practitioner. Before considering how judgement and expert
knowledge can be incorporated, it is first helpful to have a theoretical
framework which can then be extended to make the theory meet the practice.
The theoretical framework is the subject of this paper, and it is hoped that
further research in this area will be stimulated.

1.5 It is also important to emphasise that some of the methods in this
paper are better suited to modelling paid amounts or numbers of claims,
since incurred data, which may include over-estimation of case estimates,
leading to negative incremental values, may cause problems. Negative
incremental values can also arise due to timing of reinsurance or salvage
recoveries, or premiums being included as negative loss amounts. It could be
argued that the problem is more with the data than with the methods, since
different processes are being combined and therefore polluting the data. The
limitations of the various models are discussed as they are introduced, and
further discussion appears in Section 10.

1.6 It is sometimes rather na|« vely hoped that stochastic methods will
provide solutions to problems when deterministic methods fail. Indeed,
sometimes stochastic models are judged on whether they can help when
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simple deterministic models fail. This rather misses the point. The
usefulness of stochastic models is that they can, in many circumstances,
provide more information which may be useful in the reserving process and
in the overall management of the company.

1.7 There is a large and growing body of literature concerning loss
reserving, some of which is concerned with business and management
aspects. It is not the purpose of this paper to provide a detailed exposition of
those issues. It is also not the aim of this paper to provide a complete
survey of the literature, but we would direct the reader to a number of
particular references. The book by Taylor (2000) provides a useful summary
of deterministic loss reserving techniques, together with much useful material
on stochastic methods and practical issues. The Casualty Actuarial Society
web site is a useful resource. In particular, the papers from the annual loss
reserving forum are available, and can be downloaded freely. Finally, there is
the Claims Reserving Manual, published by the Institute of Actuaries.

1.8 The very nature of this paper means that a high technical content is
unavoidable. We have generally tried to avoid long derivations and proofs
intruding into the flow, since the application of the stochastic models is the
main focus, not the proofs of statements made about the models. Where
necessary, proofs and long derivations appear in appendices, or reference is
made to papers where the mathematics is provided.

1.9 Because of its pre-eminent position in claims reserving, and because
it is well-known, widely used, and easy to apply, we begin by concentrating
on the chain-ladder technique. Very often, the chain-ladder technique is the
first method to be applied, followed by manual smoothing of the resultant
development factors, then adjustment of the results in line with expert
opinion combined with additional information.

1.10 There has been a large number of papers investigating the
statistical basis of the chain-ladder technique, notably, Kremer (1982),
Taylor & Ashe (1983), Renshaw (1989), Verrall (1989, 1990, 1991a, 1991b,
1994, 1996, 2000), Mack (1993, 1994a, 1994b), Murphy (1994), Schmidt &
Schnaus (1996), Renshaw & Verrall (1998), Barnett & Zehnwirth (1998),
Mack & Venter (2000), and England & Verrall (1999, 2001). These have
made significant advances in the understanding of the chain-ladder
technique, and this paper aims to bring these together in a convenient form,
and to show how extensions to the models are possible. Attention is focused
primarily on stochastic methods based on the framework of generalised
linear models.

1.11 This paper is structured as follows. Section 2 covers models which
reproduce reserve estimates given by the chain-ladder technique. Section 3
covers models which usually provide results which are similar to chain-ladder
estimates, but, for some data sets, there could be material differences.
Extensions to the chain-ladder model using parametric curves, which reduce
the number of parameters and allow extrapolation to help estimate tail
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factors, are considered in Section 4. Smoothing models are considered in
Section 5, which allow a seamless transition between the chain-ladder type
models and the models based on parametric curves. Bayesian methods and
the Bornhuetter-Ferguson technique are outlined in Section 6, which provide
a way in which judgement can be incorporated. In Section 7, the predictions
and prediction errors from the various models are considered and illustrated
with examples. The examples provide an important part of the paper, since
the practical implementation is illustrated, and the characteristics of the
models are highlighted. Predictive distributions are considered in Section 8,
which change the focus of stochastic claims reserving from the first two
moments (the mean and prediction error), to the full distribution of predicted
reserves. Hitherto, this has received little attention, but is of vital
importance in dynamic financial analysis (DFA), which is the topic of
Section 9. A discussion of the wider issues appears in Section 10.

1.12 An initial overview of the paper, ignoring most of the
mathematical descriptions, can be obtained by reading Sections 1, 2.1, 2.2,
3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 9 and 10.

á. Chain-Ladder Models

2.1 Introduction
2.1.1 The straightforward chain-ladder technique uses cumulative data,

and derives a set of `development factors' or `link ratios'. We will show that
to a large extent, it is irrelevant whether incremental or cumulative data are
used when considering claims reserving in a stochastic context, and it is
easier for the explanations here to use incremental. In order to keep the
exposition as straightforward as possible, and without loss of generality, we
assume that the data consist of a triangle of incremental claims. This is the
simplest shape of data that can be obtained, and it is often the case that data
from early origin years are considered fully run-off or that other parts of
the triangle are missing. Using a triangle simply avoids us having to
introduce complicated notation to cope with all possible situations. Thus, we
assume that we have the following set of incremental claims data:

Cij : i � 1; . . . ; n; j � 1; . . . ; nÿ i� 1
� 	

:

The suffix i refers to the row, and could indicate accident year or
underwriting year, for example. The suffix j refers to the column, and
indicates the delay, here assumed also to be measured in years. It is
straightforward to consider data collected more frequently for all models
discussed in this paper.

2.1.2 The cumulative claims are defined by:
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Dij �
Xj

k�1
Cik

and the development factors of the chain-ladder technique are denoted by
lj : j � 2; . . . ; n
� 	

. The chain-ladder technique estimates the development
factors as:

l̂j �
Pnÿj�1

i�1
DijPnÿj�1

i�1
Di; jÿ1

:

2.1.3 These are then applied to the latest cumulative claims in each row
(Di;nÿi�1) to produce forecasts of future values of cumulative claims:

D̂i;nÿi�2 � Di;nÿi�1l̂nÿi�2

D̂i;k � D̂i;kÿ1l̂k; k � nÿ i� 3; nÿ i� 4; . . . ; n:

2.1.4 Thus, the chain-ladder technique, in its simplest form, consists of a
way of obtaining forecasts of ultimate claims only. Here `ultimate' is
interpreted as the latest delay year so far observed, and does not include any
tail factors. From a statistical viewpoint, given a point estimate, the natural
next step is to develop estimates of the likely variability in the outcome so
that assessments can be made, for example, of whether extra reserves should
be held for prudence, over and above the predicted values. In this respect, the
measure of variability commonly used is the prediction error, defined as the
standard deviation of the distribution of possible reserve outcomes. It is also
desirable to take account of other factors, such as the possibility of
unforeseen events occurring which might increase the uncertainty, but which
are difficult to model.

2.1.5 The first step to obtaining the prediction error is to formulate an
underlying statistical model making assumptions about the data. If the aim is
to provide a stochastic model which is analogous to the chain-ladder
technique, then an obvious first requirement is that the predicted values
should be the same as those of the chain-ladder technique. There are two
ways in which this has been attempted: specifying distributions for the data;
or just specifying the first two moments. We begin by considering models
which specify distributions for the data, and consider the (over-dispersed)
Poisson distribution, the negative binomial distribution, and the Normal
distribution in this context. Before describing the models in detail, a
summary is provided, which sets the scene.
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2.2 Summary of Chain-Ladder Models
2.2.1 The aim of all of the models in this section is to give the same

reserve estimates as the chain-ladder technique, and the differences between
them are mostly implementational. The negative binomial model of Section
2.4 is derived from the Poisson model of Section 2.3, and, as such, is very
closely related, but with a different parameterisation. We regard the Normal
model in Section 2.5 (and by implication Mack's model) as an
approximation to the negative binomial model, and we examine, through
examples in Sections 7.2 to 7.5, the implications for the prediction errors of
using these different assumptions (the predictions are the same in each case).
The Normal model has the advantage that it can produce estimates for a
wide range of data sets, and is less affected by the presence of negatives.

2.2.2 Murphy (1994) also considers the chain-ladder technique within a
Normal linear regression context, and various extensions are suggested by
Barnett & Zehnwirth (1998). The exposition in this paper differs in that we
derive the Normal model as an approximation to the negative binomial, and
make explicit reference to non-constant error components estimated by `joint
modelling' (see Section 7.4), which provides a link to Mack's model.

2.2.3 Renshaw & Verrall (1998) were not the first to notice the link
between the chain-ladder technique and the Poisson distribution, but were
the first to implement the model using standard methodology in statistical
modelling, and to provide a link with the analysis of contingency tables.
Wright (1990) also describes a similar model, including a term to model
claims inflation, but did not consider the model in detail. Mack (1991) also
points out that the chain-ladder estimates can be obtained by maximising a
Poisson likelihood by appealing to the so called `method of marginal totals'.

2.2.4 A discussion of the stochastic basis of chain-ladder models can be
found in Mack (1994a), Verrall (2000), Mack & Venter (2000) and Verrall &
England (2000). At the heart of the discussion is the relationship between
the various models, and whether they can justifiably be used to add value
to the deterministic chain-ladder technique. Some of the questions raised
include the issue of whether incremental or cumulative claims should be
modelled, how many parameters are estimated and what happens when there
are negative incremental claims. We hope that, by setting out the models
and providing a set of examples in later sections, we are able to clarify some
of these issues. Some of the questions raised are irrelevant. For example, it
does not matter in principle whether incremental or cumulative claims are
used; whatever data are available can be used with the corresponding model,
and the same results are obtained. Counting the number of parameters
being estimated explicitly can be misleading; the negative binomial model has
fewer parameters requiring estimation than the Poisson model, but the
predictive distributions are the same. With a sufficient number of negative
incremental claims, it is necessary to use a Normal approximation, and the
chain-ladder results can still be reproduced. We would not recommend using
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the Normal approximation in all situations, even though it is likely to be
less troublesome in practice, but would use it if features of the data required
its use (or diagnostic tests showed it to be more suitable). Our view on this,
as on many other issues, is a pragmatic one: reserving is a practical data
analysis exercise, and we should try to understand and learn from the data
rather than impose the same approach in all situations.

2.3 Over-Dispersed Poisson Model
2.3.1 The over-dispersed Poisson distribution differs from the Poisson

distribution in that the variance is not equal to the mean, but, instead, is
proportional to the mean. In claims reserving, the over-dispersed Poisson
model assumes that the incremental claims Cij are distributed as
independent over-dispersed Poisson random variables, with mean and
variance:

E Cij

� � � mij � xiyj and Var Cij

� � � fxiyj

where:

Xn

k�1
yk � 1:

Here, xi is the expected ultimate claims (where ultimate means up to the
latest development year observed in the triangle), and yj is the proportion of
ultimate claims to emerge in each development year. Over-dispersion is
introduced through the parameter f, which is unknown and estimated from
the data. Allowing for over-dispersion does not affect estimation of the
parameters, but does have the effect of increasing their standard errors. Full
details of this model can be found in Renshaw & Verrall (1998).

2.3.2 It should be noted that, since yj appears in the variance, the
restriction that yj must be positive is automatically imposed. This implies
that the sum of incremental claims in column j must also be positive, which is
a limitation of the model. Note that some negative incrementals are
allowed, as long as any column sum is not negative.

2.3.3 In this formulation, the mean has a multiplicative structure, that
is, it is the product of the row effect and the column effect. Both the row
effect and the column effect have specific interpretations (being the expected
ultimate claims in each origin year and proportion of ultimate to emerge in
each development year, respectively), and it is sometimes useful to preserve
the model in this form.

2.3.4 However, for estimation purposes, it is often better to re-
parameterise the model so that the mean has a linear form. In the
terminology of generalised linear models, we use a log link function so that:
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log mij

ÿ � � c� ai � bj:

This predictor structure is still a chain-ladder type, in the sense that there
is a parameter for each row i, and a parameter for each column j. There
are some advantages and some disadvantages to this form of the model.
As a generalised linear model, it is easy to estimate, and standard software
packages can be used; the estimates should be well behaved. However,
the parameter values themselves will be harder to interpret, making it
necessary to convert them back into more familiar quantities. Note that
constraints have to be applied to the sets of parameters, which could take
a number of different forms. For example, the corner constraints would
put a1 � b1 � 0:

2.3.5 Although the model in this section is based on the Poisson
distribution, this does not imply that it is only suitable for data consisting
exclusively of positive integers. That constraint can be overcome using a
`quasi-likelihood' approach (see McCullagh & Nelder, 1989), which can be
applied to non-integer data, positive and negative. With quasi-likelihood, in
this context, the likelihood is the same as a Poisson likelihood up to a
constant of proportionality. For data consisting entirely of positive integers,
identical parameter estimates are obtained using the full or quasi-likelihood.
Many statistical packages fit GLMs using quasi-likelihood by default, the
user being entirely unaware. In modelling terms, the crucial assumption is
that the variance is proportional to the mean, and the data are not restricted
to being positive integers.

2.4 Negative Binomial Model
2.4.1 A model which is closely related to the over-dispersed Poisson

model is the negative binomial model (Verrall, 2000). This is more intuitive
for the chain-ladder technique, since parameters appear to be more `like' the
chain-ladder development factors. The negative binomial model can be
expressed as a model for either incremental or cumulative claims; Cij has an
over-dispersed negative binomial distribution, with mean and variance:

lj ÿ 1
ÿ �

Di; jÿ1 and flj lj ÿ 1
ÿ �

Di; jÿ1; respectively,

where lj is analogous to the standard chain ladder development factor.
Again, there is an unknown dispersion parameter f in the variance, making
the distribution `over-dispersed'. Henceforth, this label is dropped when
referring to the negative binomial model, for convenience.

2.4.2 Note that Dij � Di; jÿ1 � Cij, and it is assumed in this (recursive)
approach that Di; jÿ1 is known. This means that we can also write this model
in terms of the cumulative claims; Dij has an over-dispersed negative binomial
distribution, with mean and variance:
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ljDi; jÿ1 and flj lj ÿ 1
ÿ �

Di; jÿ1; respectively.

2.4.5 Note that the variance holds only where Di; jÿ1 is known, and the
recursive procedure outlined in Section 7.3 and Appendix 1 is required where
cumulative claims are forecast.
2.4.6 The negative binomial model was first derived by Verrall (2000),

by integrating out the row parameters from the Poisson model, and full
details can be found in that paper. Since the negative binomial model is
derived from the Poisson model, the predictive distributions are essentially
the same, and give identical predicted values.

2.5 Normal Approximation to the Negative Binomial Model
2.5.1 Notice that if lj < 1, the variance of incremental claims in Section

2.4 is negative, and the negative binomial model breaks down. lj < 1 implies
that the sum of incremental claims in column j is negative. To make any
progress in this case, it is necessary to use a distribution whose support is not
restricted to the positive real line, and a suitable candidate is the Normal
distribution, for that reason. We can imagine that some refinements of this
are likely to be suggested, to allow for the fact that the distribution of the
data is unlikely to be symmetrical. However, as a first step, it is possible to
replace the negative binomial by a Normal distribution, whose mean is
unchanged, but whose variance is altered to accommodate the case when
lj < 1. Preserving as much of lj lj ÿ 1

ÿ �
Di; jÿ1 as possible, we would expect the

variance to be proportional to Di; jÿ1, with the constant of proportionality
depending on j. Using a Normal approximation for the distribution of
incremental claims Cij is approximately Normally distributed, with mean and
variance:

Di; jÿ1 lj ÿ 1
ÿ �

and fjDi; jÿ1; respectively,

or Dij is approximately Normally distributed, with mean and variance:

ljDi; jÿ1 and fjDi; jÿ1; respectively.

Again this holds where Di; jÿ1 is known, and a recursive approach to
estimating the variance is required where cumulative claims are forecast.

2.5.2 These models have unknown parameters in the variance, which
can be estimated using an iterative estimation procedure known as `joint
modelling', since it involves estimating parameters for the mean and the
variance, which deviates from the usual practice of modelling the mean
alone. Details can be found in McCullagh & Nelder (1989), and an overview
is given in Section 7.4.
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2.5.3 Both the negative binomial model, and the Normal approximation
are recursive models. This means that the likelihood is written down by
taking the data in a certain (obvious) order. Another model which takes a
similar recursive approach, and which is closely related to the Normal
approximation to the negative binomial, is Mack's model.

2.6 Mack's Model
2.6.1 One of the earliest stochastic models which reproduced chain-

ladder estimates is the model of Mack (1993), which made limited
assumptions as to the distribution of the underlying data, preferring simply
to specify the first two moments only. According to Mack (1993), the mean
and variance of Dij are:

ljDi; jÿ1 and s2
j Di; jÿ1; respectively.

2.6.2 Mack produced estimators of the unknown parameters lj and s2
j

and, making further limited assumptions, provided formulae for the
prediction errors of predicted payments and reserve estimates. Readers of
Mack's papers should be aware that we have changed notation to be
consistent within this paper and other papers by the same authors.

2.6.3 Mack considers the model to be distribution-free, since the full
distribution of the underlying data is not specified. While this has the
advantage of simplicity, it limits analysis of the distribution of outstanding
reserves to the first two moments only. Further assumptions are necessary if
the results are used in a dynamic financial analysis exercise where the
distribution of outstanding reserves might be simulated.

2.6.4 Comparison of the mean and variance of Dij shown in this section
with the mean and variance of Dij in the Normal approximation to the
negative binomial in the previous section reveals a striking similarity, with
the unknown scale parameters fj of the Normal approximation being
replaced by s2

j in Mack's model. In fact, parameter estimates, predicted
values and prediction errors provided by the two models are essentially
identical, as shown in Sections 7.4 and 7.5.

â. Other Modelling Distributions

3.1 Introduction
Stochastic reserving models are not restricted to the modelling

distributions used in Section 2. The log-Normal distribution, which was used
in early work on stochastic claims reserving, has received considerable
attention. In some ways this is a historical accident, since the methods were
first used when generalised linear modelling software was in its infancy, but
fitting Normal errors models by minimising the residual sum of squares was
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straightforward. This does not necessarily mean that the log-Normal
distribution should never be used. Indeed it remains useful, since a predictive
distribution of reserves can be obtained by simulating from the parameters,
as described in Section 8. It might also be preferable in situations where the
downside potential is very large, since it tends to result in a predictive
distribution which is heavily skewed (see Section 8). A further distribution,
which has received little attention in stochastic claims reserving, is the
Gamma distribution. Why the Gamma distribution has been largely
overlooked is not clear. The log-Normal and Gamma distributions are
considered in Sections 3.2 and 3.3 respectively.

3.2 Log-Normal Model
3.2.1 Early work on stochastic models for the chain-ladder technique

focused on the logarithm of the incremental claims amounts Yij � log�Cij� and
the log-Normal class of models Yij � mij � eij, with eij as independent Normal
random errors. That is:

eij � IN�0; s2� or Yij � IN�mij; s
2�:

3.2.2 The use of the logarithmic transform immediately imposes a
limitation on this class of models, in that incremental claim amounts must be
positive. The Normal responses Yij are assumed to decompose (additively)
into a deterministic non-random component with mean mij � Zij and
Normally distributed random error components about a zero mean. Using
the chain-ladder type structure for the mean, introduced in Section 2.3,
gives:

Zij � c� ai � bj:

3.2.3 This log-Normal model was introduced by Kremer (1982) and
used by Renshaw (1989), Verrall (1989), Zehnwirth (1989) and Christofides
(1990), amongst others. Use of this model usually produces predicted values
close to those from the simple chain-ladder technique, but it is not
guaranteed, and there can be material differences.
3.2.4 The log-Normal distribution has the advantage that it can be

implemented without the need for specialist software. For example,
Christofides (1990) showed how spreadsheets could be used to analyse the
data using log-Normal models.

3.2.5 Another advantage is that other statistical techniques can also be
used to allow different assumptions to be incorporated concerning the run-
off pattern and the connections between origin years. Since Yij is Normally
distributed, it is possible, for example, to apply the Kalman filter (Verrall,
1989). This is an example of the possibility of moving beyond the simple
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chain-ladder technique. The Kalman filter allows, for example, a way of
smoothing the row parameters, instead of treating the rows as completely
separate. In general, the Normal distribution is easier to use in this context,
and there are many possibilities for imaginative use to be made of the
existing theory. Care must be taken with the predictions from this model, as
discussed by Verrall (1991a) and Doray (1996).

3.3 Gamma Model
Mack (1991) suggested using the same linear predictor as Kremer (and

therefore the same as Renshaw & Verrall), but proposed using a Gamma
distribution for claim amounts. As Renshaw & Verrall (1998) note, the same
model can be fitted using the GLM described in Section 2.3, but replacing
Var�Cij� � fmij by Var�Cij� � fm2

ij. Standard statistical software packages can
then be used to obtain maximum likelihood parameter estimates. Again, the
predicted values provided by this model are usually close to the chain-ladder
estimates, but it is not guaranteed.

3.4 Other Modelling Distributions
In general, we could consider models where the variance is proportional

to the kth power of the mean, and assess different values for k. The choice of
the value of k could be made a priori, for example k � 0 implies a Normal
distribution, k � 1 implies a Poisson and k � 2 a Gamma, or it could be
chosen after looking at the data. In principle, we are not restricted to integer
values for k.

ã. Other Parametric Models

4.1 Introduction
One of the criticisms sometimes made of the chain-ladder technique is

that it is over-parameterised, in the sense that a separate parameter is used
for each development period. There have been various suggestions as to
how this could be remedied, usually by fitting a parametric curve to the
run-off pattern. Of the curves suggested, the most popular appears to be
the gamma curve, also known as the Hoerl curve (Wright, 1990, Renshaw,
1994a, Zehnwirth, 1985). The Hoerl curve is useful, since the general
shape of the curve is similar to the usual shape of the run-off of
incremental claims, that is, increasing rapidly to a peak, then dying off
exponentially.

4.2 The Hoerl Curve
4.2.1 For the log-Normal model of Section 3.2, or models with a log

link function (such as the over-dispersed Poisson model of Section 2.3, and
the Gamma model of Section 3.3), the Hoerl curve is provided by replacing
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the chain-ladder type linear predictor which has a parameter for each
development year with:

Zij � c� ai � bi log� j� � gi j � j > 0�: �4:1�

The parametric form of the model on the untransformed scale can be seen
by exponentiating equation 4.1, giving:

exp Zij

ÿ � � Ai j
bi egi j where: Ai � exp�c� ai�:

4.2.2 Here, development year j is considered as a continuous covariate,
and the run-off pattern follows a fixed parametric form, being linear in
development time and log development time on a log scale. The advantage of
working on a log scale is that parameters can be readily estimated. An
advantage of treating development time as a continuous covariate is that
extrapolation is possible beyond the range of development time observed.
This is beneficial, since it helps with estimating tail factors.

4.2.3 A special case is created by setting bi � b and gi � g for all i,
where the decay pattern is the same for all origin years and is represented by
only two parameters. De Jong & Zehnwirth (1983) adopted the Kalman
filter, which provides a way of passing information between origin years and
provides smoothed estimates of the parameters bi and gi:

4.2.4 It is unlikely that the Hoerl curve will fit well over the entire range
of development time. The fit can often be improved dramatically by allowing
the first few development years to have their own level, and imposing a
parametric form from that point on.

4.3 Wright's Model
4.3.1 Significant advances were made in stochastic claims reserving with

the publication of a paper by Wright (1990), in which the systematic and
random components of the underlying model were based on a risk theoretic
model of the claims generating process.

4.3.2 Wright considered the incremental paid claims Cij to be the sum of
Nij (independent) claims of amount Xij. The claim numbers Nij were assumed
to be Poisson random variables, where:

E Nij

� � � eiajki j
Ai exp�ÿbi j�

and

Var Nij

� � � E Nij

� �
where k, A and b are unknown constants to be estimated, e is a measure of
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exposure, and a is a known adjustment term needed on technical grounds.
The values a are specified in Appendix 1 of Wright for each value of j. (Note:
Wright also recommended a technical adjustment to development time j,
which has been ignored here for simplicity.) The variance of the number of
claims equals the mean as a result of using the Poisson distribution.

4.3.3 Claim amounts Xij were considered to be Gamma type random
variables where:

E Xij

� � � exp�dt�kjl

and

Var Xij

� � � u E Xij

� �� 	2
where k and l are unknown constants. The optional term exp�dt� is included
to allow for possible claims inflation, where t � i� j represents calendar time
and d is the estimated constant force of claims inflation. Wright chose not
to assume that the claim amounts are actually Gamma distributed, only that
the variance exists and is proportional to the mean squared. This is a subtle
technicality which makes no practical difference when claim amounts are all
positive.

4.3.4 This formulation is interesting, because it uses the same model
specification in the claims reserving context as in pricing, that is, claim
numbers are modelled as Poisson random variables and claim severities are
modelled as Gamma random variables.

4.3.5 Combining the models for claims frequency and severity, using
standard results for risk models, gives:

E Cij

� � � mij � eiajki j
Ai exp�ÿbi j� exp�dt�kjl

and

Var Cij

� � � �1� u�kjl exp�dt�E Cij

� �
:

4.3.6 Wright showed that with a suitable reparameterization, this
represents a generalised linear model, and went on to use the Kalman filter to
pass information between origin years to produce smoothed parameter
estimates, thus avoiding problems associated with the excessive
parameterisation.

4.3.7 The formulation of the problem as a GLM and the fitting method
adopted by Wright are not easy to follow, but a simpler derivation was given
by Renshaw (1994a), who showed that the model for incremental claims can
be written as follows:
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E Cij

� � � exp�uij � c� ai � bi log� j� � gi j� dt�
and

Var Cij

� � � fijE Cij

� � � fijmij:

This is a generalised linear model in which the response Cij is modelled with
a logarithmic link function and the variance is proportional to the mean. The
fij are unknown scale parameters to be estimated by the model, via the
process of `joint modelling' (see Section 7.4).

4.3.8 Note that we can write:

log E Cij

� �ÿ � � Zij; where : Zij � uij � c� ai � bi log� j� � gi j� dt:

Ignoring the uij terms, for the moment, and the optional term for claims
inflation (dt), this represents the familiar Hoerl curve which appeared in
Section 4.2. Wright effectively uses the same linear predictor as Zehnwirth
(1985), with the inclusion of an optional term to model possible claims
inflation. The uij terms are known, and represent small technical adjustments.
They are declared as offsets when fitting the model using standard statistical
software packages. The important differences between the model used by
Zehnwirth (1985) and the model proposed by Wright are that Zehnwirth uses
the logarithm of the incremental claims as the response, and links the linear
predictor to the expected value of the response through the identity link
function, whereas Wright treats the incremental claims themselves as the
responses, and links (essentially) the same predictor to the expected value of
the response through the logarithmic link function. This has implications for
the necessity of bias correction factors. A useful critique of the differing
assumptions concerning the distributional assumptions can be found in
Appendix 4 of Wright (1990).

ä. Non-Parametric Smoothing Models

5.1 Introduction
5.1.1 It is often the case that parametric curves are too rigid (in some

ways the opposite problem to the chain-ladder technique, which assumes no
prior shape on the run-off), and England & Verrall (2001) proposed using non-
parametric smoothing methods as an alternative. England & Verrall showed
that it is possible to use a wide range of models with a non-parametric
approach, with the chain-ladder technique at one end of the range, and the
Hoerl curve at the other. The non-parametric smoothing models move
seamlessly between these two extremes, and allow the practitioner to choose a
model somewhere between the two. It is straightforward to examine the
effect on the run-off pattern. Another example of the use of non-parametric
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smoothing was given in Verrall (1996). In that paper, the stochastic chain-
ladder model of Renshaw & Verrall (1998) was extended to incorporate
smoothing of parameter estimates over origin years, while leaving the model
describing the run-off pattern alone.

5.1.2 Reserving specialists are probably more familiar with the practice
of first fitting a chain-ladder model (or variation thereof), then smoothing
the resultant development factors using a model with a fixed parametric form
(see, for example, Sherman, 1984). Using that approach, the development
factors themselves become the focus, and a model is fitted to development
factors with equal weight (usually) being given to each development factor.
The non-parametric smoothers described in this section differ, in that the
incremental claims themselves are the focus, and smoothing is performed at
the same time as model fitting. No prior form is assumed for the shape of the
run-off, the smoothing procedure allows the model to follow the trends in
the data. The implied development factors can be calculated from the fitted
values of the model, which will automatically be smoothed.

5.2 Smoothing Models
5.2.1 The smoothing models are implemented using generalised additive

models (GAMs) (Hastie & Tibshirani, 1990). GAMs differ from GLMs in
the way in which the relationship between the response variable and the
covariates is modelled. In GLMs the relationship is parametric; in GAMs the
response is assumed to vary smoothly with the covariates through the
introduction of a smoothing procedure.

5.2.2 GAMs can be regarded as extensions of GLMs, with the linear
predictor being replaced by a non-parametric smoother:

Zij �
Xp

v�1
sv�xij�

where s�x� represents a non-parametric smoother on x, which may be
chosen from several different types of smoother, such as locally weighted
regression smoothers (loess), cubic smoothing splines and kernel smoothers.
Note that we are not restricted to using a smoother for all covariates; the
predictor may comprise a mixture of parametric and non-parametric
components.

5.2.3 We concentrate here on the cubic smoothing spline, which is well-
known in the actuarial literature for graduating mortality rates (Whittaker,
1923). When data are Normally distributed, the (univariate) cubic smoothing
spline ŷ � s�x� is found by minimising the penalised residual sum of squares:X

i

�yi ÿ s�xi��2 � y
Z
�s00�t��2dt:

The second part of this quantity defines a smoothness penalty based on
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curvature of the spline function s�x�. The level of smoothing is controlled by
the single parameter y�> 0�. When y tends to zero, there is no smoothness
penalty, and the model provides a perfect fit; the fitted values are the data
points themselves. When y is large (tends to infinity), the fit is perfectly
smooth, and the fitted values fall along a straight line, effectively forcing the
relationship to be linear in x. The parameter y is set between these extremes
to produce the desired level of smoothness, and controls the trade-off
between goodness of fit and smoothness. For other distributions, such as the
Poisson, the fitting procedure is extended using an iterative process, and has
some similarity with the procedure used for fitting GLMs (see Hastie &
Tibshirani, 1990; Green & Silverman, 1994).
5.2.4 In claims reserving, we simply generalise equation 4.1, and define

the predictor (for incremental claims) as:

Zij � syi
�i� � syj

�log� j�� � syj
� j�:

The function s�i� represents a smooth of origin year i, obtained using a
smoothing spline with smoothing parameter yi. Similarly, the functions s� j�
and s�log� j�� represent smoothing splines specifying the shape of the run-off
pattern, with smoothing parameter yj chosen to be the same for both functions
(for simplicity). In practice, it may not be necessary to include smooths in
both j and log� j�. It should be noted that both origin year i and development
year j are considered as continuous covariates. It can be seen that use of this
predictor implicitly assumes the same run-off pattern for all origin years,
although the model can be extended using carefully chosen interaction terms.

5.2.5 The extremes of the smoothing parameters are interesting, and
provide the link between the chain-ladder model and the Hoerl curve. When
yi is zero there is no smoothing, and the model is forced to pass through each
value of i, which treats origin year i as though it is a factor. The same is
true of yj; when yj is zero, the model is forced to pass through each value of j,
and development time is treated as though it is a factor. The result is that
the model collapses to the chain-ladder model, and gives the same results as
the over-dispersed Poisson model of Section 2.3. When yj tends to infinity,
the part of the model relating to development time is linear in j and log� j�,
giving the Hoerl curve (as in Section 4.2). An example where this is shown
can be found in England & Verrall (2001).
5.2.6 These models may be fitted using S-PLUS (2001) (see also

Chambers & Hastie, 1992). We believe that a key advantage of using the
non-parametric models described in this section is that it is possible to use
elegant alternatives to the straightforward deterministic or parametric
models. We believe that other methods could also be explored in order to
reproduce some of the adjustments which are at present made on an ad hoc
basis to the deterministic techniques.
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å. Bayesian Models and the Bornhuetter-Ferguson Technique

6.1 Introduction
The Bornhuetter-Ferguson technique (Bornhuetter & Ferguson, 1972) has

proved popular when there is instability in the proportion of ultimate claims
paid in the early development years, causing a method such as the chain-
ladder technique to produce unsatisfactory results when applied
mechanically. The idea is to try to stabilise the results using an external
initial estimate of ultimate claims. This is then used with the development
factors of the chain-ladder technique, or something similar, to estimate
outstanding claims. The recent paper by Mack (2000) provides an excellent
summary of the Bornhuetter-Ferguson technique, and subsequent work by
other authors, and gives details of an approach which uses credibility theory,
first suggested by Benktander (1976). Here, we continue in the spirit of
earlier sections, and look at a model within the framework of generalised
linear models. Since we use the over-dispersed Poisson model, the theory in
this section is not applicable to all sets of data, and can break down in the
presence of a sufficient number of negative incremental claims.

6.2 The Bornhuetter-Ferguson Technique
6.2.1 For the chain-ladder technique, the estimate of outstanding claims

is:

Di;nÿi�1 lnÿi�2lnÿi�3 . . . ln ÿ 1
ÿ �

:

That is, the latest cumulative claims are multiplied by the product of the
remaining development factors (giving an estimate of the ultimate claims),
and the paid to date are subtracted, giving the reserve. This could be written
as:

U
�CL �
i

1
lnÿi�2lnÿi�3 . . . ln

lnÿi�2lnÿi�3 . . . ln ÿ 1
ÿ �

where U
�CL �
i is the chain-ladder estimate of ultimate claims.

6.2.2 The Bornhuetter-Ferguson technique differs from the chain-ladder
technique in that the chain-ladder estimate of ultimate claims is replaced by
an alternative estimate, U

�BF�
i , based on external information and expert

judgement.
6.2.3 The Bornhuetter-Ferguson estimate of outstanding claims for

origin year i is therefore:

U
�BF�
i

1
lnÿi�2lnÿi�3 . . . ln

lnÿi�2lnÿi�3 . . . ln ÿ 1
ÿ �
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The use of external information to provide the initial estimate U
�BF�
i leads

naturally to a Bayesian model.

6.3 Bayesian Models
6.3.1 In the over-dispersed Poisson chain-ladder model described in

Section 2.3, no prior assumptions are made about the row parameters
xi : i � 1; . . . ; n
� 	

. The Bornhuetter-Ferguson technique assumes that there is
prior knowledge about these parameters, making the Bornhuetter-Ferguson
technique analogous to a Bayesian approach. The prior information can be
summarised using an appropriate prior distribution for the row parameter.
Several prior distributions are available for this purpose, although an
obvious candidate is the Gamma distribution, giving:

xi � independent Gamma ai; bi� �

such that:

E�xi� � U
�BF�
i � ai

bi

:

6.3.2 This Bayesian model can be implemented using a Markov chain
Monte Carlo approach (MCMC, see Section 7.11), through the software
WinBUGS (Spiegelhalter et al., 1996).

6.3.3 However, it is useful to look at the theoretical predictive
distribution for the data (see Verrall, 2001), in order to compare the
Bornhuetter-Ferguson technique with the chain-ladder technique. The
theoretical predictive distribution of Cij is an over-dispersed negative
binomial distribution, with mean:

ZijDi; jÿ1 � 1ÿ Zij

ÿ � ai

bi

1
ljlj�1 . . . ln

� �
lj ÿ 1
ÿ �

where:

Zij �
1

ljlj�1 . . . ln

bif�
1

ljlj�1 . . . ln

:

6.3.4 It can be seen that this is in the form of an actuarial `credibility
formula'. In modern statistical terms, it uses a natural trade off between two
competing estimates:
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Di; jÿ1 and
ai

bi

1
ljlj�1 . . . ln

� U
�BF�
i

1
ljlj�1 . . . ln

:

6.3.5 The Bayesian model has the chain-ladder technique as one extreme
(no prior information about the row parameters), and the Bornhuetter-
Ferguson technique as the other (perfect prior information about the row
parameters). It is interesting to note that the Bornhuetter-Ferguson technique
essentially assumes that there is perfect prior information about the row
parameters, and does not use the data at all for this part of the estimation. In
practice, we would regard this as a rather heroic assumption, and would
prefer to use something between the Bornhuetter-Ferguson technique and the
chain-ladder technique.

6.3.6 The credibility factor Zij governs the trade-off between the prior
mean and the data. Notice that the further through the development we are,

the larger
1

ljlj�1 . . . ln

becomes, and the more weight is given to the chain-

ladder estimate. The choice of bi is governed by the prior precision of the
initial estimate for ultimate claims, and this should be chosen with due regard
given to the over-dispersion parameter (an initial estimate of which could be
obtained from the over-dispersed Poisson model of Section 2.3).

æ. Predictions and Prediction Errors

7.1 Introduction
7.1.1 Claims reserving is a predictive process: given the data, we try to

predict future claims. In Sections 2 to 6 different models have been outlined,
from which future claims can be predicted. In this context, we use the
expected value as the prediction. When considering variability, attention is
focused on the root mean squared error of prediction (RMSEP), also known
as the prediction error.

7.1.2 Consider a random variable y and a predicted value ŷ. The mean
squared error of prediction (MSEP) is:

E yÿ ŷ� �2� � � E yÿ E y� �� � ÿ ŷÿ E y� �� �� �2� �
:

Plugging in ŷ instead of y in the final expectation and expanding gives:

E yÿ ŷ� �2� � � E yÿ E y� �� �2� �ÿ 2E yÿ E y� �� � ŷÿ E ŷ� �� �� � � E ŷÿ E ŷ� �� �2� �
:

Assuming future observations are independent of past observations gives:

20 Stochastic Claims Reserving in General Insurance



E yÿ ŷ� �2� � � E yÿ E y� �� �2� �� E ŷÿ E ŷ� �� �2� �
which, in words, is:

Prediction variance � Process variance� Estimation variance:

7.1.3 When trying to estimate the prediction error of future payments
and reserve estimates using classical statistical methods, the problem reduces
to estimating the two components: the process variance and the estimation
variance. Alternatively, if the full predictive distribution can be found, the
RMSEP can be obtained directly by calculating its standard deviation. It is
preferable to have the predictive distribution, and, in this respect, Bayesian
methods offer the best way forward

7.1.4 It is important to understand the difference between the prediction
error and the standard error. Strictly, the standard error is the square root of
the estimation variance. The prediction error is concerned with the
variability of a forecast, taking account of uncertainty in parameter
estimation and also of the inherent variability in the data being forecast.
Unfortunately, there is confusion in the literature over terminology, with the
RMSEP also being called the standard error of prediction, or simply the
standard error.

7.2 The Over-Dispersed Poisson Chain-Ladder Model
7.2.1 A general form for the over-dispersed Poisson chain-ladder model

can be written as follows:

E Cij

� � � mij Var Cij

� � � fmij �7:1�

with the specification being completed by specifying a structural form for
mij. Two structures have been suggested, either:

mij � xiyj �7:2�

or

log�mij� � c� ai � bj: �7:3�

7.2.2 With the first structure the model is non-linear in the parameters,
and non-linear modelling techniques are required to obtain estimates of the
parameters. If maximum likelihood estimates are required, this involves
setting up the likelihood and maximising with respect to the parameters,
which is not always straightforward.

7.2.3 The second structure defines a generalised linear model, in which
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the responses Cij are modelled as Poisson random variables with a
logarithmic link function and linear predictor Zij � c� ai � bj. Over-
dispersion is taken into account by estimating the unknown scale parameter
f as part of the fitting procedure. Use of the log link function makes the
model linear in the parameters. Standard statistical software which fits
GLMs can be used to obtain the parameter estimates by maximum
likelihood. However, use of the log link function imposes a limitation, in that
interpretation of parameter estimates is not easy. It is possible to relate
these parameters back to the chain-ladder link ratios, or the parameters of
the non-linear model (yj), as shown by Verrall (1991b). Nevertheless, the fact
that this involves further calculations can be seen as a disadvantage of using
the over-dispersed Poisson model. Also, fitted values will always be positive,
and equivalent link ratios will always, therefore, be greater than 1.
7.2.4 To illustrate the methodology, consider the claims amounts in

Table 1, shown in incremental form. The data relate to Automatic
Facultative General Liability (excluding Asbestos and Environmental) from
the Historical Loss Development Study (1991), and were used by Mack
(1994b). The data show considerable variability between origin years. Notice
the negative incremental value in cell (2, 7). Also shown are the standard
chain-ladder development factors and reserve estimates, ignoring any tail
factor.

7.2.5 Table 2 shows the parameter estimates and their standard errors
obtained by fitting the over-dispersed Poisson model. For many of the
parameters, the standard errors are large relative to the estimates themselves.
This does not provide evidence that those estimates can be set to zero, since
doing so may ignore a trend, which itself may be statistically significant. For
example, the b parameters clearly show a downward trend, even though the

Table 1. Historical loss development study (1991) Automatic Facultative
General Liability data (excluding asbestos and environmental)

Claim payments Reserves

5012 3257 2638 898 1734 2642 1828 599 54 172 0
106 4179 1111 5270 3116 1817 ÿ103 673 535 154

3410 5582 4881 2268 2594 3479 649 603 617
5655 5900 4211 5500 2159 2658 984 1,636
1092 8473 6271 6333 3786 225 2,747
1513 4932 5257 1233 2917 3,649
557 3463 6926 1368 5,435

1351 5596 6165 10,907
3133 2262 10,650
2063 16,339

Overall 52,135
Development factors

2.999 1.624 1.271 1.172 1.113 1.042 1.033 1.017 1.009
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individual estimates are less than twice their standard error for b4 to b10.
Ideally, the strength of that trend should be tested, and modelled directly,
but, in this example, we ignore that feature, since the purpose is to fit a
model which reproduces chain-ladder estimates.

7.2.6 Estimates of future payments can be obtained from the parameter
estimates by inserting them into equation 7.3 and exponentiating, giving:

Ĉij � m̂ij � exp�Ẑij�: �7:4�

Origin year and overall reserve estimates can then be found by summation.
We also require prediction errors, and we begin by considering a single
incremental payment, Cij:

7.2.7 Consider origin year i and claim payments in development year j
(yet to be observed). The mean squared error of prediction is given by:

MSEP Ĉij

� � � E �Cij ÿ Ĉij�2
� � � Var Cij

� �� Var Ĉij

� �
:

From equation 7.1, we know that:

Var Cij

� � � fmij �7:5�

then, using equation 7.4 and a Taylor series expansion:

Table 2. Over-dispersed Poisson model; parameter estimates
Parameter Standard
estimate error

Constant 7.6551 0.3193
Alpha 2 ÿ0.1108 0.3450
Alpha 3 0.2459 0.3185
Alpha 4 0.4213 0.3100
Alpha 5 0.4291 0.3130
Alpha 6 0.0348 0.3538
Alpha 7 ÿ0.0593 0.3819
Alpha 8 0.2432 0.3786
Alpha 9 ÿ0.1603 0.5143
Alpha 10 ÿ0.0232 0.7816
Beta 2 0.6928 0.2685
Beta 3 0.6260 0.2784
Beta 4 0.2769 0.3115
Beta 5 0.0606 0.3417
Beta 6 ÿ0.1958 0.3885
Beta 7 ÿ1.0831 0.6079
Beta 8 ÿ1.2737 0.7893
Beta 9 ÿ1.9159 1.3617
Beta 10 ÿ2.5076 2.4911

Dispersion 1049.8
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Var Ĉij

� � � @mij

@Zij

�����
�����
2

Var Ẑij

� �
: �7:6�

Combining equations 7.5 and 7.6 gives:

MSEP Ĉij

� � � fm̂ij � m̂2
ijVar Ẑij

� �
: �7:7�

7.2.8 The final component of equation 7.7, the variance of the linear
predictor, is usually available directly from statistical software packages,
enabling the prediction error to be calculated without difficulty.

7.2.9 The prediction errors for origin year reserve estimates and the
total reserve estimates can also be calculated, but require more effort. In
those cases, the variance of the sum of predicted values is considered, taking
account of any covariances between predicted values. Making certain
assumptions (outlined in Renshaw, 1994b), the only covariances which need
to be considered arise in the estimation variance. This makes sense
intuitively, since predicted values in each row are based on the same
parameters, and predicted values in the same column are based on the same
parameters, thus introducing dependence.

7.2.10 Denoting the triangle of predicted claims contributing to the
reserve estimates by D, then the reserve estimate in origin year i is given by
summing the predicted values in row i of D, that is:

Ĉi� �
X
j2Di

Ĉij:

From Renshaw (1994b), the squared prediction error of the origin year
reserve is given by:

MSEP Ĉi�
� � �X

j2Di

fm̂ij �
X
j2Di

m̂2
ijVar Ẑij

� �� 2
X

j1; j22Di
j2>j1

m̂ij1
m̂ij2

Cov Ẑij1
; Ẑij2

� �
: �7:8�

7.2.11 The total reserve estimate is given by:

Ĉ�� �
X
i; j2D

Ĉij

and the squared prediction error of the total reserve is given by:
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MSEP Ĉ��
� � �X

i; j2D
fm̂ij �

X
i; j2D

m̂2
ijVar Ẑij

� �
� 2

X
i1 j12D
i2 j22D
i1 j1 6�i2 j2

m̂i1 j1
m̂i2 j2

Cov Ẑi1 j1
; Ẑi2 j2

� �
: �7:9�

7.2.12 Equations 7.8 and 7.9 require considerable care when summing
the appropriate elements. The covariance terms are not readily available
from statistical software packages. However, provided the variance-
covariance matrix of the parameter estimates can be extracted from the
statistical software package used, a full matrix of the covariance terms can be
calculated by forming the design matrix of future payments and performing
a few simple matrix operations. Indeed, the variances of the linear predictors
are simply the diagonal of such a matrix.

7.2.13 Note that the first term in the origin year and overall prediction
errors is simply the appropriate sum of the process variances. The remaining
terms relate to the estimation variance.
7.2.14 The prediction errors can be calculated using equations 7.8 and

7.9, with the results shown in Table 3, which shows that there is considerable
uncertainty in the reserve estimates, particularly in the early development
years where the outstanding reserves are small. The prediction errors, as a
percentage of the mean, are large in recent years, and, in particular, for the
most recent year, due to the estimation error, since more is being predicted
and a greater number of parameters are used in the prediction. Notice that
the reserve estimates are identical to the chain-ladder results.

7.3 The Negative Binomial Chain-Ladder Model
7.3.1 The negative binomial model can be fitted using incremental or

cumulative data, and gives the same fitted values irrespective of which

Table 3. Over-dispersed Poisson model; reserve results
Reserve Prediction Prediction

error error %

Year 1 ^ ^ ^
Year 2 154 556 361%
Year 3 617 1,120 181%
Year 4 1,636 1,775 109%
Year 5 2,747 2,231 81%
Year 6 3,649 2,440 67%
Year 7 5,435 3,124 57%
Year 8 10,907 5,032 46%
Year 9 10,650 6,075 57%
Year 10 16,339 12,987 79%

Overall 52,135 18,193 35%
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method is used. Unlike the over-dispersed Poisson model, which has origin
year parameters and development year parameters, the parameters in the
negative binomial model relate to development years only. Considering the
model for incremental data:

E Cij

� � � lj ÿ 1
ÿ �

Di; jÿ1 and Var Cij

� � � flj lj ÿ 1
ÿ �

Di; jÿ1 �7:10�

where the Dij (where observed) are considered known.
Then, writing:

E Cij

� � � mij � lj ÿ 1
ÿ �

Di; jÿ1

and taking logs, gives:

log�mij� � log lj ÿ 1
ÿ �� log Di; jÿ1

ÿ �
:

Writing:

log lj ÿ 1
ÿ � � c� ajÿ1 with: a1 � 0; j � 2 �7:11�

gives:

log�mij� � c� ajÿ1 � log Di; jÿ1
ÿ �

: �7:12�

7.3.2 Equations 7.10, 7.11 and 7.12 specify a generalised linear model
with logarithmic link function and negative binomial error structure. The
log�Di; jÿ1� terms are derived from the known values Di; jÿ1, and are specified as
offsets in the model.

7.3.3 Notice that the parameters in the model relate to the standard
chain-ladder development factors. Like the over-dispersed Poisson model,
standard statistical software can be used to obtain maximum likelihood
estimates of the parameters. However, not all statistical software
packages which fit GLMs include the negative binomial distribution. The
authors used S-PLUS (2001) in the example, having recourse to the
MASS library, from Venables & Ripley (1999) available on the internet
(http://www.stats.ox.ac.uk/Pub/MASS3).

7.3.4 Continuing the example in Section 7.2, parameter estimates and
their standard errors are shown in Table 4, using the same data triangle.

7.3.5 Estimates of the development factors can be obtained from the
parameter estimates using equation 7.11, and their approximate standard
errors can be obtained using:

Var l̂j

� � � Var l̂j ÿ 1
� � � exp ĉ� âjÿ1

ÿ �2
Var ĉ� âjÿ1

� �
j � 2:
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The covariance matrix of the parameter estimates is required in the
evaluation of the final component, the variance of the predictor.

7.3.6 The development factors and their approximate standard errors
are given in Table 5. Notice that the development factors given by the model
are exactly the same as the chain-ladder development factors.

7.3.7 For the negative binomial model, and its Normal approximation
considered in Section 2.5, the parameters relate to the development factors lj,
and a similar approach can be adopted when estimating the reserve
prediction errors for both models. Again we proceed by considering
estimators for the process variance and estimation variance.

7.3.8 For the origin year reserve estimates, the ultimate claims Ui are
the cumulative claims in the last development year. That is:

Ui � Din:

The reserve estimate in origin year i, Ri, is Ui ÿ Di;nÿi�1, where Diÿn�1 is the
paid to date, which is considered known. Therefore:

Table 4. Negative binomial model; parameter estimates
Parameter Standard
estimate error

Constant 0.6928 0.2733
Alpha 2 ÿ1.1652 0.3490
Alpha 3 ÿ1.9989 0.3675
Alpha 4 ÿ2.4550 0.3909
Alpha 5 ÿ2.8698 0.4318
Alpha 6 ÿ3.8645 0.6416
Alpha 7 ÿ4.0961 0.8207
Alpha 8 ÿ4.7711 1.3945
Alpha 9 ÿ5.3796 2.5399

Dispersion 1086.76

Table 5. Negative binomial model; development factors and standard
errors
Estimate Standard

error

Lambda 2 2.999 0.546
Lambda 3 1.624 0.135
Lambda 4 1.271 0.067
Lambda 5 1.172 0.048
Lambda 6 1.113 0.038
Lambda 7 1.042 0.024
Lambda 8 1.033 0.026
Lambda 9 1.017 0.023
Lambda 10 1.009 0.023
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Var Ri� � � Var Ui� � � Var Din� � and Var R̂i

� � � Var Ûi

� � � Var D̂in

� �
:

The origin year process and estimation variances can be estimated by
considering Var�Din� and Var�D̂in� respectively.

7.3.9 First consider the process variance Var�Din�. Since the negative
binomial model and its Normal approximation, are formulated as recursive
models, the calculation of the process variance involves estimating the
variance of a k-steps ahead forecast, where k � iÿ 1. It is shown in
Appendix 1 that, for the negative binomial model:

Var Din� � � fDi;nÿi�1
Yn

k�nÿi�2
l̂k

Yn

k�nÿi�2
l̂k ÿ 1

 !
: �7:13�

7.3.10 The estimation variance is calculated from:

Var D̂in

� � � Var Di;nÿi�1
Yn

k�nÿi�2
l̂k

" #
� D2

i;nÿi�1Var
Yn

k�nÿi�2
l̂k

" #
: �7:14�

Since the parameters in the negative binomial model and its Normal
approximation relate to the development factors lj, and the covariance
matrix of the parameter estimates is readily available, the variance of the
product of development factors in equation 7.14 can be calculated. This is
straightforward when performed recursively, as described in Appendix 2.

7.3.11 The overall reserve estimation and process variances can be
estimated by considering Var�R�� and Var�R̂�� respectively, where
R� �

Pn

i�2 Ri. The overall reserve process variance is the sum of the process
variances of individual origin year reserves, assuming independence between
years. The overall reserve estimation variance is given by:

Var R̂�
� � �Xn

i�2
Var D̂in

� �� 2
Xn

i�2
j>i

Cov D̂in; D̂jn

� �
: �7:15�

That is, the estimation variance of overall reserves is the sum of the
estimation variances of individual origin year reserves, with an additional
component to take account of the covariance between years induced by
dependence on the same parameters. Appendix 2 shows how the covariance
terms can be derived.

7.3.12 The reserve estimates can be calculated from the development
factors, and the prediction error of the reserves can be calculated using
equations 7.13, 7.14 and 7.15. The results are shown in Table 6.

7.3.13 A comparison of the results of the over-dispersed Poisson and
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negative binomial models shows that the reserve estimates are identical, and
that the prediction errors are very close. The prediction errors of the negative
binomial model are 1.75% higher than those from the over-dispersed
Poisson model, that figure being the square root of the ratio of the respective
dispersion parameters.

7.3.14 Table 7 shows a comparison of the process and estimation
variances for the two models, scaled by dividing by the dispersion parameters
(to avoid the distortions mentioned above). The sum of the process variance
and estimation variance is essentially the same for the two models (the
differences being due to numerical accuracy used in the calculations),
although the estimation variance is larger for the over-dispersed Poisson
model, reflecting the higher number of parameters in that model. Essentially,
the two models only differ in the way the models are parameterised. This

Table 6. Negative binomial model; reserve results
Reserve Prediction Prediction

error error %

Year 1 ^ ^ ^
Year 2 154 566 367%
Year 3 617 1,139 185%
Year 4 1,636 1,807 110%
Year 5 2,747 2,271 83%
Year 6 3,649 2,483 68%
Year 7 5,435 3,180 59%
Year 8 10,907 5,122 47%
Year 9 10,650 6,185 58%
Year 10 16,339 13,227 81%

Overall 52,135 18,528 36%

Table 7. Scaled prediction variance comparison
Over-dispersed Poisson Negative binomial

Estimation Process Prediction Estimation Process Prediction
variance variance variance variance variance variance

Year 2 140 154 294 139 155 294
Year 3 577 617 1,195 561 634 1,195
Year 4 1,366 1,636 3,002 1,268 1,735 3,003
Year 5 1,995 2,747 4,742 1,709 3,035 4,744
Year 6 2,021 3,649 5,671 1,184 4,489 5,673
Year 7 3,863 5,435 9,298 1,470 7,834 9,304
Year 8 13,209 10,907 24,117 4,160 19,980 24,140
Year 9 24,508 10,650 35,158 3,524 31,674 35,197
Year 10 144,330 16,339 160,669 15,234 145,752 160,985

Overall 263,155 52,135 315,290 100,598 215,288 315,886
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results in a trade-off between the estimation variance and process variance.
The practical implication of this is that it does not matter which model is
fitted, the results will be the same. The negative binomial model is
interesting, however, in that, through its Normal approximation, it provides
insight into Mack's model.

7.4 The Normal Approximation to the Negative Binomial Chain-Ladder
Model

7.4.1 The Normal approximation to the negative binomial model can
also be fitted using incremental or cumulative data. To allow a comparison
with Mack's model later, we consider using cumulative data, giving:

E Dij

� � � ljDi; jÿ1 and Var Dij

� � � fjDi; jÿ1 j � 2

where the Di; jÿ1 are considered known. Writing wij � Di; jÿ1 and dividing by
wij gives:

E
Dij

wij

� �
� lj and Var

Dij

wij

� �
� fj

wij

:

7.4.2 We fit the model by focusing on the quantities fij �
Dij

wij

, which,

under the model, are Normally distributed with variance components fj and
weights wij. Notice that the fij form a triangle of individual development
factors. Notice also that the variance components fj depend on development
year j. This is a complication since, usually, in a generalised linear model
the dispersion parameter f is constant for all observations. The variance
components are modelled as part of the extended fitting procedure known as
joint modelling, for which a thorough description is given in Renshaw
(1994a).

7.4.3 The joint modelling process proceeds by providing initial arbitrary
positive values for fj, and fitting a weighted generalised linear model to the fij,

with weights Wij �
wij

fj

(that is, weights inversely proportional to the

variance). It is usual to include a constant in the linear predictor, giving:

E fij
� � � c� ajÿ1 with : a1 � 0; j � 2:

Notice that the linear predictor depends on development period j only, and
the fitted values f̂ ij are estimates of the development factors lj. Having
obtained the fitted values, the square of the residuals rij are calculated,
where:
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r2ij � wij fij ÿ f̂ ij

ÿ �2
:

7.4.4 These residuals squared are used as the response in a second
generalised linear model, in which the predictor depends on development
year j only. The fitted values r̂2ij from this second model are used to update
the values fj, and the first model is refitted after updating the weights Wij to
reflect the revised estimates of fj. This completes the joint modelling process,
from which estimates of lj and fj can be obtained. Note: since the model
for the squared residuals depends only on development year j, the fitted
values r̂2ij will simply be estimated as the average over i of the squared
residuals in development year j. The form of the residuals is dictated by the
error distribution used in the model for the mean, which, in this case, is a
Normal distribution.

7.4.5 Fitting the joint model to the data triangle in Table 1 gives the
parameters estimates and standard errors shown in Table 8. Notice that the
parameter estimates are now on the scale of the development factors
themselves since an identity link function is used. The development factors
and their associated standard errors, obtained from these estimates and the
associated covariance matrix, are shown in Table 9. The estimates of the
variance components fj are shown in Table 10. Notice that there is
insufficient information to estimate f10, since there is only one residual at
that point. The estimate of f10 has been set to the estimate of the previous
value f9 in this example.

7.4.6 The theory underlying the calculation of prediction errors for this
model is the same as for the negative binomial model in Section 7.3. The
reserve estimates and their prediction errors, calculated using equations
7.14, 7.15 and the methods shown in Appendices 1 and 2, are shown in
Table 11.

7.4.7 Compared to the results of the negative binomial model in Table 6,

Table 8. Normal approximation to negative binomial model; parameter
estimates and standard errors

Parameter Standard
estimate error

Constant 2.9994 1.1781
Alpha 2 ÿ1.3758 1.1865
Alpha 3 ÿ1.7285 1.1818
Alpha 4 ÿ1.8277 1.1784
Alpha 5 ÿ1.8860 1.1786
Alpha 6 ÿ1.9574 1.1783
Alpha 7 ÿ1.9661 1.1781
Alpha 8 ÿ1.9824 1.1782
Alpha 9 ÿ1.9901 1.1782

Dispersion 1.2222
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the reserve prediction errors in Table 11 are lower in the early years, and
higher in the later years. Since the overall prediction error is driven mostly by
the more recent years, the overall reserve prediction error is higher for the
Normal approximation than for the negative binomial model.

Table 9. Normal approximation to negative binomial model; development
factors and standard errors

Estimate Standard
error

Lambda 2 2.999 1.178
Lambda 3 1.624 0.140
Lambda 4 1.271 0.093
Lambda 5 1.172 0.026
Lambda 6 1.113 0.035
Lambda 7 1.042 0.022
Lambda 8 1.033 0.004
Lambda 9 1.017 0.012
Lambda 10 1.009 0.016

Table 10. Normal approximation to negative binomial model; variance
components

Phi 2 24785.3
Phi 3 970.0
Phi 4 592.7
Phi 5 51.0
Phi 6 95.6
Phi 7 30.6
Phi 8 0.9
Phi 9 3.9
Phi 10 3.9

Table 11. Normal approximation to negative binomial model; reserve
results

Reserve Prediction Prediction
error error %

Year 1 ^ ^ ^
Year 2 154 371 241%
Year 3 617 643 104%
Year 4 1,636 764 47%
Year 5 2,747 1,361 50%
Year 6 3,649 1,822 50%
Year 7 5,435 2,017 37%
Year 8 10,907 5,007 46%
Year 9 10,650 5,939 56%
Year 10 16,339 23,375 143%

Overall 52,135 25,706 49%
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7.5 Mack's Model
7.5.1 According to Mack's model, the mean and variance of Dij are

ljDi; jÿ1 and s2
j Di; jÿ1, respectively. Mack provides estimators for lj and s2

j

using:

l̂j �
Pnÿj�1

i�1
wij fijPnÿj�1

i�1
wij

where : wij � Di; jÿ1 and fij �
Dij

Di; jÿ1

and

ŝ2
j �

1
nÿ j

Xnÿj�1

i�1
wij fij ÿ l̂j

ÿ �2
:

7.5.2 The estimator for the development factors lj is the standard
volume weighted chain-ladder estimator. Mack shows that this provides
unbiased estimates of the development factors. Mack also shows that an
unweighted average of individual development factors also provides unbiased
estimates, but shows that the weighted average is preferable, since it has a
lower variance (it is the minimum variance unbiased estimator).

7.5.3 The variance component s2
j is estimated as an average of weighted

residuals, where the divisor is the number of residuals (used in calculating the
estimator) minus one. The one is subtracted to provide an unbiased
estimator of s2

j . These variance components are not used when estimating the
development factors, but are required when considering the prediction
errors of future payments. Like the Normal approximation to the negative
binomial model, there is insufficient information to estimate the final
variance component s2

10. In this example, we first reproduce the results of
Mack (1994b), in which the final component ŝ2

10 is set to ŝ2
8, then we fit the

model setting ŝ2
10 to the previous value ŝ2

9, which shows that the results in the
earlier years are very sensitive to this single parameter.

7.5.4 In Mack (1993), formulae are developed for prediction errors of
the origin year and overall reserves in terms of the cumulative claims Dij, the
development factors lj, and the variance components s2

j only. From Mack
(1993), the process variance of the origin year reserves is given by:

Var Ri� � � D̂2
in

Xnÿ1
k�nÿi�1

ŝ2
k�1

l̂2
k�1D̂ik

and the estimation variance is given by:
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Var R̂i

� � � D̂2
in

Xnÿ1
k�nÿi�1

ŝ2
k�1

l̂2
k�1
Pnÿk

q�1
Dqk

giving:

MSEP R̂i

� � � D̂2
in

Xnÿ1
k�nÿi�1

ŝ2
k�1

l̂2
k�1

1
D̂ik

� 1Pnÿk

q�1
Dqk

0BBB@
1CCCA:

7.5.5 For the overall reserve prediction error, a covariance adjustment is
needed for the estimation variance, giving:

MSEP R̂�
� � �Xn

i�2
MSEP R̂i

� �� D̂in

Xn

q�i�1
D̂qn

 !
�

Xnÿ1
k�nÿi�1

2ŝ2
k�1

l̂2
k�1
Pnÿk

q�1
Dqk

8>>><>>>:
9>>>=>>>;

where:

R̂� �
Xn

i�2
R̂i:

7.5.6 Although the formulae for the prediction errors seem daunting,
the calculations can be set up fairly quickly in a spreadsheet.

7.5.7 Table 12 shows the development factors l̂j and the variance
components ŝ2

j obtained by fitting Mack's model. Table 13 shows the reserve

Table 12. Mack's model; development factors and variance components
Lambda Sigma

squared

j � 2 2.999 27883.5
j � 3 1.624 1108.5
j � 4 1.271 691.4
j � 5 1.172 61.2
j � 6 1.113 119.4
j � 7 1.042 40.8
j � 8 1.033 1.3
j � 9 1.017 7.9
j � 10 1.009
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estimates and their prediction errors, first using the value of ŝ2
10 given in

Mack (1994b), and Table 14 shows the effect of using ŝ2
10 � ŝ2

9:

7.6 A Comparison of Mack's Model and the Normal Approximation to the
Negative Binomial

7.6.1 A quick glance at the results from Mack's model and the Normal
approximation to the negative binomial reveals striking similarities.
Estimates of the development factors are identical, as expected. The
estimates of fj, used in the Normal approximation to the negative binomial,
and s2

j , used in Mack's model, are close, and the prediction errors are also
close.

7.6.2 In fact, the similarities run deeper, but are obscured by differences
in the way bias corrections are incorporated. In Mack's model, unbiased
estimates of s2

j are calculated using an average of weighted residuals, where

Table 13. Mack's model; reserve results using ŝ2
10 � ŝ2

8

Reserve Prediction Prediction
error error %

Year 1 ^ ^ ^
Year 2 154 206 134%
Year 3 617 623 101%
Year 4 1,636 747 46%
Year 5 2,747 1,469 53%
Year 6 3,649 2,002 55%
Year 7 5,435 2,209 41%
Year 8 10,907 5,358 49%
Year 9 10,650 6,333 59%
Year 10 16,339 24,566 150%

Overall 52,135 26,909 52%

Table 14. Mack's model; reserve results using ŝ2
10 � ŝ2

9

Reserve Prediction Prediction
error error %

Year 1 ^ ^ ^
Year 2 154 500 324%
Year 3 617 863 140%
Year 4 1,636 1,014 62%
Year 5 2,747 1,623 59%
Year 6 3,649 2,065 57%
Year 7 5,435 2,259 42%
Year 8 10,907 5,391 49%
Year 9 10,650 6,348 60%
Year 10 16,339 24,571 150%

Overall 52,135 27,172 52%
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the divisor is the number of data points used minus one. In the Normal
approximation to the negative binomial, the estimates of fj are simply an
average of weighted residuals, ignoring the bias correction.

7.6.3 Furthermore, in Mack's model there is no adjustment for the
number of parameters used in fitting the model, although, in the Normal
approximation to the negative binomial, a bias correction for the number of
parameter estimated is incorporated naturally into the dispersion parameter
(in Table 8).

7.6.4 It is not immediately clear how bias corrections should be
incorporated, and discussion of the issues is beyond the scope of this paper.
However, the similarities of the models should be noted, and, to show this,
the respective bias corrections have been removed from both models, with
the results for the variance components s2

j and fj shown in Table 15, and the
components of the prediction errors shown in Tables 16 and 17.

Table 15. Mack's model and the normal approximation to the negative
binomial; a comparison of variance components, bias correction removed

Phi Sigma
squared

j � 2 24785.3 24785.3
j � 3 970.0 970.0
j � 4 592.7 592.7
j � 5 51.0 51.0
j � 6 95.6 95.6
j � 7 30.6 30.6
j � 8 0.9 0.9
j � 9 3.9 3.9
j � 10 3.9 3.9

Table 16. Normal approximation to the negative binomial; reserve
prediction errors, bias correction removed

Normal approximation, bias removed

Process Estimation Prediction Prediction Prediction
variance variance variance error error %

Year 2 65,841 58,933 124,773 353 229%
Year 3 188,267 183,859 372,125 610 99%
Year 4 249,915 273,427 523,342 723 44%
Year 5 1,153,186 572,498 1,725,684 1,314 48%
Year 6 2,626,609 567,599 3,194,209 1,787 49%
Year 7 3,341,553 593,708 3,935,261 1,984 36%
Year 8 20,667,184 3,600,498 24,267,682 4,926 45%
Year 9 31,366,047 3,195,596 34,561,643 5,879 55%
Year 10 488,235,825 47,596,937 535,832,762 23,148 142%

Overall 547,894,426 92,394,120 640,288,546 25,304 49%
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7.6.5 Comparison of Tables 15, 16 and 17 reveals that the models are
essentially the same, the remaining differences being due to the accuracy of
the numerical computations. To establish a proof that the models are
identical, it is only necessary to show algebraically that the estimators for the
parameters l, f, and s2 are the same. This can be shown, since the
parameters depend on development year only, and will, therefore, be a
weighted average of the respective quantities used in their estimation; the
weights are the same for both models. It is not necessary to show that the
formulae for prediction errors are algebraically the same, although they will
be if the same approximations are used (and the formulae have been derived
correctly), since both models adopt a recursive approach. For uniqueness, it
is necessary to show that the Normal distribution is the only one which will
result in the same estimates of f and s2; this can be shown, since other error
distributions will result in different estimators for the residuals in {7.4.3.
Since we do not provide a proof, the equivalence of Mack's model to the
normal approximation to the negative binomial model remains a conjecture.

7.6.6 It is clear that Mack's model was not conceived as a Normal
approximation to the negative binomial; that is our interpretation. Mack
made no specific distributional assumptions, but simply provided the first two
moments. However, it is hoped that some insight has been gained by starting
with the over-dispersed Poisson model, moving to the negative binomial and
its normal approximation, then comparing with Mack's model.

7.6.7 Although this comparison might seem irrelevant, it becomes
important when extending the chain-ladder model to incorporate other
predictor structures which allow extrapolation (and therefore the evaluation
of tail factors), and also when considering fitting models to smooth the
variance factors and impute a value for the missing estimate in the latest
development year. Such extensions can occur naturally in the joint modelling
framework of Section 7.4.

Table 17. Mack's model; reserve prediction errors, bias correction removed
Mack, bias removed

Process Estimation Prediction Prediction Prediction
variance variance variance error error %

Year 2 65,841 58,933 124,773 353 229%
Year 3 188,267 183,843 372,109 610 99%
Year 4 249,915 273,400 523,314 723 44%
Year 5 1,153,186 572,350 1,725,536 1,314 48%
Year 6 2,626,609 567,276 3,193,885 1,787 49%
Year 7 3,341,553 593,215 3,934,768 1,984 36%
Year 8 20,667,120 3,593,809 24,260,929 4,926 45%
Year 9 31,365,773 3,180,563 34,546,336 5,878 55%
Year 10 488,235,511 46,925,843 535,161,354 23,134 142%

Overall 547,893,774 91,639,423 639,533,197 25,289 49%
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7.7 Log-Normal Model
7.7.1 With the log-Normal models, the first step is to transform the

incremental claims by taking their (natural) logarithm. A model is then fitted
to the transformed values using ordinary least squares regression analysis.
Adopting the chain-ladder type predictor structure, then:

Yij � log Cij

ÿ � � Zij � eij

where:

Zij � c� ai � bj and eij � N�0; s2�: �7:16�

7.7.2 Having obtained estimates for the parameters in the linear
predictor, and the process variance s2, the fitted values on a log scale are
obtained by forming the appropriate sum of estimates. However, to obtain
estimates for the mean on the untransformed scale, we cannot simply
exponentiate the linear predictor, since that would provide an estimate of the
median. The fitted values on the untransformed scale are given by:

Ĉij � exp Ẑij � 1
2ŝ

2
ij

ÿ � �7:17�

where:

ŝ2
ij � Var Ẑij

� �� ŝ2:

7.7.3 The s2
ij terms are, in fact, the prediction variance of the linear

predictor, and are calculated as the sum of the variance of the linear predictor
and the underlying process variance. The variance of the linear predictor is
usually available from standard statistical software.

7.7.4 It is important to note that the reason why a variance component in
equation 7.17 is needed for the log-Normal model, but not for the over-
dispersed Poisson, is because the incremental claims, themselves, are used as
the response with the over-dispersed Poisson model, but, with the log-Normal
model, the logarithm of the incremental claims is used as the response.

7.7.5 Equation 7.17 is in the standard form of the expected value of a
log-Normal distribution. Note that the variance component includes the
estimation and process error. The prediction variance of future incremental
claims Cij is given by:

MSEP Ĉij

� � � Ĉ
2
ij exp ŝ2

ij

ÿ �ÿ 1
ÿ �

which is in the standard form of the variance of a log-Normal distribution.
7.7.6 Like the over-dispersed Poisson model, the prediction error of
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origin year and overall reserve estimates requires more effort. The variance
of the sum of predicted values needs to be considered, taking account of any
covariances between predicted values.
7.7.7 Denoting the triangle of predicted claims contributing to the

reserve estimates by D, then the reserve estimate in origin year i is given by
summing the predicted values in row i of D, that is:

Ĉi� �
X
j2Di

Ĉij:

The squared prediction error of the origin year reserve is given by:

MSEP Ĉi�
� � �X

j2Di

MSEP Ĉij

� �� 2
X

j1; j22Di
j2>j1

Ĉij1
Ĉij2

exp Cov Ẑij1
; Ẑij2

� �ÿ �ÿ 1
ÿ �

:

7.7.8 The total reserve estimate is given by:

Ĉ�� �
X
i; j2D

Ĉij

and the squared prediction error of the total reserve is given by:

MSEP Ĉ��
� � �X

i; j2D
MSEP Ĉij

� �� 2
X

i1 j12D
i2 j22D
i1 j1 6�i2 j2

Ĉi1 j1
Ĉi1 j2

exp Cov Ẑi1 j1
; Ẑi1 j2

� �ÿ �ÿ 1
ÿ �

:

7.7.9 The covariance terms are not readily available from statistical
software packages. Like the over-dispersed Poisson model, provided the
design matrix and variance-covariance matrix of the parameter estimates can
be extracted from the statistical software package used, a full matrix of the
covariance terms can be calculated. Christofides (1990) provides an example
of how this is achieved.

7.7.10 The data in Table 1 immediately cause a problem, due to the
negative value in cell (2, 7). Since it is not possible to take the logarithm of a
negative number, it has simply been weighted out of the analysis for the
purposes of the example. Fitting the log-Normal model with chain-ladder
type predictor gives the parameter estimates and standard errors shown in
Table 18. The associated reserve estimates and their prediction errors are
given in Table 19.

7.7.11 It is clear from Table 19 that the estimate of the expected
reserves given by the log-Normal model is far from the chain-ladder estimate,
as is the overall prediction error, which, even as a percentage of the reserve
estimate, is about twice the equivalent from the over-dispersed Poisson and
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negative binomial models. This is due to the inclusion of the variance
component in equation 7.17, which can have a significant effect when the
underlying variability is large. For comparison purposes, median reserve
results are shown in Table 20, which are now considerably closer to the
chain-ladder estimates, although the overall prediction error as a percentage
of the overall reserve estimate, is still large. With the log-Normal model,

Table 18. Log-Normal model; chain-ladder type; parameter estimates and
standard errors

Parameter Standard
estimate error

Constant 7.1820 0.4200
Alpha 2 ÿ0.1150 0.4263
Alpha 3 0.3180 0.4283
Alpha 4 0.5390 0.4489
Alpha 5 0.1510 0.4737
Alpha 6 0.0780 0.5045
Alpha 7 ÿ0.2120 0.5464
Alpha 8 0.3000 0.6086
Alpha 9 0.1520 0.7155
Alpha 10 0.4490 0.9649
Beta 2 1.1040 0.4095
Beta 3 1.0120 0.4283
Beta 4 0.5380 0.4487
Beta 5 0.5320 0.4731
Beta 6 0.0070 0.5040
Beta 7 ÿ0.5090 0.6077
Beta 8 ÿ0.8140 0.6083
Beta 9 ÿ1.9890 0.7159
Beta 10 ÿ2.0350 0.9650

Dispersion 0.7545

Table 19. Log-Normal model; chain-ladder type; mean reserve results
Reserve Prediction Prediction

error error %

Year 1 ^ ^ ^
Year 2 357 751 210%
Year 3 1,020 1,413 139%
Year 4 3,064 3,291 107%
Year 5 3,753 3,540 94%
Year 6 6,010 5,227 87%
Year 7 7,742 6,678 86%
Year 8 18,806 16,379 87%
Year 9 25,367 24,908 98%
Year 10 56,475 77,519 137%

Overall 122,595 86,312 70%
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ignoring the variance component is invalid, when focusing on the mean. The
interpretation is clarified when considering the predictive distribution of
reserves (see Section 8).

7.8 The Gamma Model
7.8.1 Obtaining predictions and prediction errors for the Gamma model

simply requires a subtle change to the over-dispersed Poisson model. The
Gamma model can be written as:

E Cij

� � � mij Var Cij

� � � fm2
ij

that is, the variance is proportional to the mean squared, rather than
proportional to the mean in the case of the over-dispersed Poisson model.

7.8.2 Adopting the chain-ladder type predictor log�mij� � c� ai � bj, it is
straightforward to obtain parameter estimates and predicted values using
generalised linear models. It is also straightforward to estimate the prediction
errors of future payments and reserves by making the appropriate change to
the process error components of equations 7.7, 7.8, and 7.9. That is:
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Table 20. Log-Normal model; chain-ladder type; median reserve results
Reserve Prediction Prediction

error error %

Year 1 ^ ^ ^
Year 2 153 323 211%
Year 3 484 652 135%
Year 4 1,604 1,743 109%
Year 5 2,008 1,916 95%
Year 6 3,300 2,911 88%
Year 7 4,284 3,746 87%
Year 8 10,195 8,963 88%
Year 9 13,004 12,860 99%
Year 10 23,717 32,690 138%

Overall 58,750 38,072 65%
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7.8.3 As before, the variances of the linear predictors can be obtained
from the software used to fit the model, and the calculation of the
covariances requires a few simple matrix operations.

7.8.4 Parameter estimates and their standard errors obtained by fitting
the Gamma model with a chain-ladder type predictor are shown in Table 21,
and the reserve results are shown in Table 22. Notice that the expected

Table 21. Gamma model; chain-ladder type; parameter estimates and
standard errors

Parameter Standard
estimate error

Constant 7.7519 0.4509
Alpha 2 ÿ0.2552 0.4401
Alpha 3 0.0743 0.4603
Alpha 4 0.3056 0.4823
Alpha 5 0.1263 0.5085
Alpha 6 ÿ0.1955 0.5417
Alpha 7 ÿ0.3828 0.5868
Alpha 8 ÿ0.0245 0.6537
Alpha 9 ÿ0.1036 0.7686
Alpha 10 ÿ0.1200 1.0369
Beta 2 0.7650 0.4401
Beta 3 0.7674 0.4603
Beta 4 0.3446 0.4823
Beta 5 0.1766 0.5085
Beta 6 ÿ0.1148 0.5417
Beta 7 ÿ1.1270 0.5868
Beta 8 ÿ1.2352 0.6537
Beta 9 ÿ1.8285 0.7686
Beta 10 ÿ2.6044 1.0369

Dispersion 0.8718

Table 22. Gamma model; chain-ladder type; reserve results
Reserve Prediction Prediction

error error %

Year 1 ^ ^ ^
Year 2 133 185 139%
Year 3 588 574 98%
Year 4 1,659 1,371 83%
Year 5 2,242 1,650 74%
Year 6 3,330 2,517 76%
Year 7 4,654 3,457 74%
Year 8 9,863 7,480 76%
Year 9 13,630 11,477 84%
Year 10 17,842 19,178 107%

Overall 53,940 25,976 48%

42 Stochastic Claims Reserving in General Insurance



reserves are close, but not identical, to the chain-ladder reserves. Also
notice that the overall prediction error is larger than for the over-dispersed
Poisson and negative binomial models. Essentially, relatively more weight is
being given to smaller incremental values, and less to larger incremental
values, giving greater weight to the tail, which is more variable.

7.8.5 Further discussion of the use of the Gamma error structure can be
found in England & Verrall (1999, 2001).

7.9 The Hoerl Curve and Wright's Model
7.9.1 Implementation of the Hoerl curve is straightforward, and simply

involves using a predictor structure with development time and log
development time treated as continuous covariates. This has been
implemented by the authors for the over-dispersed Poisson model and log-
Normal models. The authors have not attempted to use parametric curves
with the negative binomial model and its Normal approximation, although
such extensions would be straightforward. For illustration purposes we
consider the over-dispersed Poisson model only and the predictor structure
shown in equation 4.1, using the same parameters b and g for every origin
year. We also normalise the data and adopt the technical adjustments to
development time, as recommended in Appendix 1 of Wright (1990),
although the effect of these is small. For illustration purposes we extrapolate
for a further five development years.

7.9.2 For models in which the linear predictor involves continuous
covariates (for example, the Hoerl curve), reserve prediction errors can be
calculated in exactly the same way as their chain-ladder type counterparts, by
calculating the appropriate variances and covariances of the linear
predictors and including them in the relevant formula (for example, using
equations 7.7, 7.8, and 7.9 for the over-dispersed Poisson model). Using
standard software packages, and matrix manipulations, generic routines can
be set up which perform the appropriate calculations, regardless of the form
of the linear predictor.

7.9.3 Table 23 shows the parameter estimates and their standard errors
from this model, and Table 24 shows the equivalent development factors,
including extrapolation. Reserve results, without and with extrapolating into
the tail, are shown in Tables 25 and 26 respectively.

7.9.4 Although the fit is poorer overall with the Hoerl curve, the
dispersion parameter is reduced, because of the drop in number of
parameters in the model. The equivalent development factors, calculated by
simply fitting a standard chain-ladder model to the fitted values, show how
model fitting and extrapolation can occur concurrently. The rigid form of the
Hoerl curve means that the fit is a compromise. This can clearly be seen,
since the earliest development factor is high relative to the chain-ladder
model, and low later in the development.

7.9.5 In this example, the Hoerl curve has been fitted across the entire

Stochastic Claims Reserving in General Insurance 43



range of development time. In practice, it is likely that the fit would be
improved by allowing the first two or three development years to have their
own parameter, then adopting the form of the Hoerl curve from that point on.

7.9.6 There are some inherent dangers of using a fixed parametric curve
like the Hoerl curve. For some combinations of parameter estimates, the
curve can appear to be following a downward trend, but can start increasing
when extrapolating. If used in combination with log-normal models, the
overall trend can be downwards, but the bias correction can result in the
fitted values showing an increasing trend when extrapolating.

Table 23. Over-dispersed Poisson model; Hoerl curve; parameter estimates
and standard errors

Parameter Standard
estimate error

Constant 8.8769 0.2920
Alpha 2 ÿ0.1056 0.3197
Alpha 3 0.2569 0.2946
Alpha 4 0.4351 0.2865
Alpha 5 0.4576 0.2897
Alpha 6 0.0450 0.3280
Alpha 7 ÿ0.0617 0.3542
Alpha 8 0.2508 0.3505
Alpha 9 ÿ0.1654 0.4755
Alpha 10 0.0458 0.7179
Log(time) 0.5097 0.2864
Time ÿ0.4887 0.1330

Dispersion 904.5

Table 24. Over-dispersed Poisson model; Hoerl curve; equivalent
development factors

Estimate

Lambda 2 3.230
Lambda 3 1.603
Lambda 4 1.284
Lambda 5 1.157
Lambda 6 1.093
Lambda 7 1.057
Lambda 8 1.036
Lambda 9 1.023
Lambda 10 1.015
Lambda 11 1.009
Lambda 12 1.006
Lambda 13 1.004
Lambda 14 1.002
Lambda 15 1.002
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7.10 Smoothing Models
7.10.1 The smoothing models described in Section 5 are very appealing,

since the rigid form of the Hoerl curve is not imposed, yet extrapolation is still
possible. However, the availability of statistical software which implements
smoothing models is currently limited. The authors used S-PLUS for the
following example, which includes generalised additive models as standard. In
S-PLUS, it is straightforward to adopt a smoothing approach by simply
invoking the `gam' function, specifying the covariates to smooth over, the
amount of smoothing and the underlying error distribution. In this section we
consider using an over-dispersed Poisson error distribution, with a parameter
for each origin year, smoothing over development time and log development
time, with the same smoothing parameter for each component. That is:

Table 26. Over-dispersed Poisson model; Hoerl curve; reserve results with
extrapolation

Reserve Prediction Prediction
error error %

Year 1 435 702 162%
Year 2 634 864 136%
Year 3 1,447 1,406 97%
Year 4 2,704 2,043 76%
Year 5 4,269 2,656 62%
Year 6 4,304 2,582 60%
Year 7 5,801 3,109 54%
Year 8 11,650 4,971 43%
Year 9 10,936 5,750 53%
Year 10 18,109 13,101 72%

Overall 60,291 19,241 32%

Table 25. Over-dispersed Poisson model; Hoerl curve; reserve results
without extrapolation
Reserve Prediction Prediction

error error %

Year 1 ^ ^ ^
Year 2 243 486 200%
Year 3 885 984 111%
Year 4 2,033 1,589 78%
Year 5 3,582 2,216 62%
Year 6 3,849 2,301 60%
Year 7 5,393 2,873 53%
Year 8 11,091 4,686 42%
Year 9 10,568 5,563 53%
Year 10 17,654 12,801 73%

Overall 55,297 17,357 31%
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E Cij

� � � mij Var Cij

� � � fmij �7:18�
with:

log�mij� � c� ai � sy� j� � sy�log� j��: �7:19�

7.10.2 Since this is treated as a non-parametric model, column
parameter estimates are not available, because the mathematical form of the
underlying spline is hidden from the user, with all calculations being
performed behind the scenes. However, fitted values and their approximate
standard errors are readily available. It is also possible to obtain
approximate covariances of the predictors, enabling the prediction errors to
be approximated by plugging-in the appropriate quantities to the relevant
formula.

7.10.3 Table 27 shows implied development factors obtained after fitting
the model described by equations 7.18 and 7.19, using a moderate amount of
smoothing, and extrapolating for a further five years. Tables 28 and 29
show reserve results without and with extrapolation respectively.

7.10.4 It can be seen that the development factors adhere closely to the
chain-ladder development factors across the range of development time. An
alternative way of assessing the models is to view the component relating to
development time graphically. That is, draw a graph of the predictor
ignoring the parameters relating to origin year (which simply sets the level
for each origin year). Figure 1 shows the development time component for
the chain-ladder model, the Hoerl curve, and the smoothing model, and
shows the effect of extrapolation. Note that this represents the shape of the
run-off of incremental claims.

Table 27. Over-dispersed Poisson model; smoothing model; equivalent
development factors

Estimate

Lambda 2 3.006
Lambda 3 1.618
Lambda 4 1.279
Lambda 5 1.171
Lambda 6 1.100
Lambda 7 1.054
Lambda 8 1.031
Lambda 9 1.019
Lambda 10 1.013
Lambda 11 1.009
Lambda 12 1.006
Lambda 13 1.005
Lambda 14 1.003
Lambda 15 1.003
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7.10.5 Changing the amount of smoothing changes the shape of the run-
off. If there is no smoothing, the chain-ladder model is reproduced. If the
maximum level of smoothing is chosen, the model becomes linear in
development time and log development time, giving the Hoerl curve. Having
two well-known models as a result of choosing the extremes of the smoothing
parameter is a very appealing characteristic of the smoothing models.

7.10.6 Although this simple example shows some benefits of smoothing,
the benefits are more obvious in Figure 2, which shows the run-off pattern of
incremental claims from a motor portfolio in which data were collected
quarterly. The class was fairly long-tailed, and showed considerable
variability in the tail. Fitting a smoothing model shows that the run-off is
essentially bi-modal, with one peak due predominantly to property damage
claims being paid fairly quickly, and a second peak due to the longer
settlement of bodily injury claims. Smoothed development factors can be

Table 29. Over-dispersed Poisson model; smoothing model; reserve results
with extrapolation
Reserve Prediction Prediction

error error %

Year 1 435 700 161%
Year 2 634 814 128%
Year 3 1,447 1,217 84%
Year 4 2,704 1,688 62%
Year 5 4,269 2,226 52%
Year 6 4,304 2,400 56%
Year 7 5,801 3,120 54%
Year 8 11,650 5,168 44%
Year 9 10,936 6,159 56%
Year 10 18,109 12,739 70%

Overall 60,291 19,448 32%

Table 28. Over-dispersed Poisson model; smoothing model; reserve results
without extrapolation
Reserve Prediction Prediction

error error %
Year 1 ^ ^ ^
Year 2 243 453 186%
Year 3 885 873 99%
Year 4 2,033 1,370 67%
Year 5 3,582 1,943 54%
Year 6 3,849 2,201 57%
Year 7 5,393 2,936 54%
Year 8 11,091 4,928 44%
Year 9 10,568 5,945 56%
Year 10 17,654 12,378 70%

Overall 55,297 18,124 33%
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obtained from the model, with assurance that a consistent level of
smoothing has been adopted. Obtaining the equivalent results by hand would
be a tedious process.

Figure 2. Run-off pattern of incremental claims; motor example with
quarterly development
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Figure 1. Run-off pattern of incremental claims
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7.11 Bayesian Models and the Bornhuetter-Ferguson Technique
7.11.1 The implementation of Bayesian models has been simplified

enormously in recent years, due to the availability of WinBUGS (Spiegelhalter
et al., 1996, http://www.mrc-bsu.cam.ac.uk/bugs), a freely available
software package specifically designed to fit Bayesian models using Gibbs
sampling, a technique for Markov chain Monte Carlo analysis. The term
`Markov chain Monte Carlo' simply refers to the way in which simulation
techniques are implemented to obtain the simulated posterior distribution of
the parameters: `Monte Carlo' refers to sampling from a given distribution;
and `Markov chain' refers to the way in which model parameters are treated
sequentially using an iterative procedure. In fact, the main hurdle in adopting
Bayesian methods is understanding the terminology, and making the mental
shift from a purely mathematical solution to a solution based on simulation
techniques. Once that shift has been made, the techniques make available
solutions to problems which otherwise would be intractable to solve
mathematically. An excellent overview of MCMC methods with applications
in actuarial science is provided by Scollnik (2001).

7.11.2 To illustrate the techniques, we consider the over-dispersed Poisson
model of Section 3.2, parameterised as a multiplicative model. That is:

E Cij

� � � mij Var Cij

� � � fmij

and

mij � xiyj:

7.11.3 When specified in this way, xi is the expected ultimate claims and
yj is the proportion of ultimate claims to emerge in each development year.
Notice that the model is non-linear in the parameters, which would usually
cause complications, with traditional modelling techniques. Even using
Bayesian simulation techniques, convergence is not guaranteed, and the
model is less stable than using a log link and a linear predictor.

7.11.4 The model is set up by specifying the underlying distribution of
the data (over-dispersed Poisson), the structure relating the parameters of the
model to the mean, and prior distributions for the parameters. In the case
of the standard chain-ladder model, `vague' priors are used, that is,
distributions with a given mean, but with large variance. As explained in
Section 6.3, a Bornhuetter-Ferguson type methodology can be implemented
by providing a `proper' prior in which the mean of xi is specified with greater
precision.

7.11.5 Using Bayesian methods, a posterior distribution of the
parameters is obtained, conditional on the data observed. Various summary
statistics can then be obtained, if desired, such as the mean, median or mode
of the posterior distribution. The posterior mode is analogous to the
maximum likelihood estimate of classical statistics.
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7.11.6 The predictive distribution of unobserved observations can be
obtained naturally in WinBUGS by setting unobserved observations as
`missing values', which are then imputed by the software.

7.11.7 Since MCMC methods provide a predictive distribution of
unobserved values using simulation, it is straightforward to calculate the
prediction error, which is simply the standard deviation of the predictive
distribution. This highlights the power and simplicity of simulation
techniques, since the need to derive and evaluate complicated formulae
involving covariances of predictor values, or even to separate the prediction
error into its process and estimation components, is made redundant.

7.11.8 Since the focus is on the distribution of (the sum of) unobserved
future claims, we can ignore the simulated posterior distribution of
parameter estimates. Using `vague priors' for the parameters, that is, prior
distributions with very large variance, the mean and standard deviation of
the simulated predictive distribution of the reserves are shown in Table 30.
Note that the standard deviation of the predictive distribution is an estimate
of the prediction error. Note also that the results are close to the results of
the over-dispersed Poisson model obtained analytically in Table 3. It would
be desirable if the results were closer still. The differences are due to a number
of factors, including: simulation error, choice of prior for the parameters,
and choice of the form of the model linking the parameters to the mean. Using
a log link and linear predictor gives superior results with this example.

7.11.9 Suppose that we believe the predicted ultimate for year ten is too
high, due to the payment in the first development period being unusually
high. We can put an informative prior on x10. Initially, suppose the prior on
x10 has mean 16,000 and standard deviation 1, that is, we use a very precise
prior, since the standard deviation is so low. The reserve results are shown in

Table 30. Over-dispersed Poisson model; Bayesian chain-ladder model
with vague priors; mean and prediction error of reserves
Bayesian Bayesian Bayesian Analytic Analytic Analytic
mean prediction prediction mean prediction prediction
reserve error error % reserve error error %

Year 2 159 553 349% 154 556 361%
Year 3 636 1,107 174% 617 1,120 181%
Year 4 1,649 1,730 105% 1,636 1,775 109%
Year 5 2,808 2,190 78% 2,747 2,231 81%
Year 6 3,731 2,388 64% 3,649 2,440 67%
Year 7 5,539 3,104 56% 5,435 3,124 57%
Year 8 11,030 4,876 44% 10,907 5,032 46%
Year 9 10,840 5,975 55% 10,650 6,075 57%
Year 10 16,990 12,990 76% 16,339 12,987 79%

Overall 53,380 18,010 34% 52,135 18,193 35%
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Table 31, together with the standard chain-ladder estimates and the
Bornhuetter-Ferguson estimates. Notice that the reserve estimate for year ten
is similar to the result of the Bornhuetter-Ferguson technique, as might be
expected with a precise prior. Notice also that the prediction errors have
reduced substantially, reflecting the degree of precision of the prior: it could
be questioned whether use of such a strong prior is appropriate.

7.11.10 Suppose now we use an informative prior for x10, with mean
16,000 and standard deviation 5000. We are incorporating prior belief about
the ultimate claims for year ten, but allowing for uncertainty. The associated
reserve results are shown in Table 32. Notice that the reserves for year ten
are between the chain-ladder and Bornhuetter-Ferguson results. Notice, also,
that the precision of the prior has influenced the prediction errors, but to a
lesser extent.

Table 31. Over-dispersed Poisson model; Bayesian chain-ladder model
with precise priors; mean and prediction error of reserves

Bayesian Bayesian Bayesian Bornhuetter-
mean prediction prediction Ferguson
reserve error error % reserve

Year 2 155 545 352% 154
Year 3 625 1,104 177% 617
Year 4 1,659 1,766 106% 1,636
Year 5 2,811 2,214 79% 2,747
Year 6 3,717 2,399 65% 3,649
Year 7 5,511 3,065 56% 5,435
Year 8 11,000 4,918 45% 10,907
Year 9 10,900 6,016 55% 10,650
Year 10 14,440 4,924 34% 14,206

Overall 50,820 12,880 25% 50,002

Table 32. Over-dispersed Poisson model; Bayesian chain-ladder model
with informative priors; mean and prediction error of reserves

Bayesian Bayesian Bayesian
mean prediction prediction
reserve error error %

Year 2 166 566 340%
Year 3 635 1,115 176%
Year 4 1,675 1,759 105%
Year 5 2,820 2,223 79%
Year 6 3,713 2,391 64%
Year 7 5,523 3,057 55%
Year 8 11,090 4,932 44%
Year 9 10,870 5,923 54%
Year 10 14,640 6,324 43%

Overall 51,130 13,390 26%
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7.11.11 It should be noted that, in general, an informative prior on a
row parameter will affect the results in all rows, to some extent, through its
affect on the joint posterior distribution of the parameters. An exception is
when a prior is put on the row parameter in the most recent year only (as in
the example), since the observed single data point in that year does not
contribute to the fit. This can be seen intuitively by considering the chain-
ladder technique, in which the value of incremental claims in the most
recent origin year does not contribute to the calculation of development
factors.

ð. Predictive Distributions and Simulation

8.1 Introduction
8.1.1 So far in this paper the focus has been on obtaining an estimate of

the mean reserves and an estimate of the prediction error of the reserves,
given an underlying statistical model. The prediction error is useful as a
measure of precision of the reserve estimates, which might be considered
useful for setting prudent reserves. For example, Wright (1990) suggested
allowing for prudence in the reserves by adding a multiple of the prediction
error to the best estimate. Practitioners will differ in their opinions of the
merits of this suggestion, but it is eminently sensible to consider the possible
downside, as well as the best estimate.

8.1.2 Although calculating the prediction error is a good starting point,
it is still only a measure of the second moment of the full predictive
distribution of possible reserve outcomes. Other summary measures, such as
measures of skewness or extreme percentiles of the predictive distribution,
are also of interest. In fact, the `holy grail' is to obtain a full predictive
distribution from which summary measures can be calculated, if desired.
Notice that we say a predictive distribution, not the predictive distribution,
since it is possible to have more than one distribution giving the same mean
and variance, while having a different distribution overall.

8.1.3 There is little in the actuarial literature which considers the
predictive distribution of reserve outcomes; to date the primary focus has
been on estimating variability using prediction errors. That is because the
predictive distribution of reserve estimates, which are, themselves, the sum of
random variables, is difficult to obtain analytically, taking account of the
variability due to the underlying statistical process and the variability due to
the estimation of parameters. In this context, a paper which does consider a
predictive distribution is Wright (1997), which describes a way of fitting
models to individual claims data from which a predictive distribution of
reserve outcomes can be obtained. The paper also describes an interesting
way of calculating a prudential margin using the proportional hazards
principle, introduced by Wang (1995).
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8.1.4 If the distribution of the underlying data is unspecified, it is not
possible to obtain a predictive distribution without further assumptions. For
example, Mack (1994b) suggested calculating a 90% confidence interval of
reserve estimates, given the mean and prediction error of the reserves,
making the additional assumptions that the reserves are approximately
Normally or log-Normally distributed.

8.1.5 With the advent of fast computers, and an increasing acceptance
of simulation techniques, it is now possible to devise methods of obtaining a
predictive distribution of reserve estimates using simulation methods. A
description of some of the methods appears in Sections 8.2 to 8.4. Variations
on these methods, and possibly some new ones, are likely to be suggested in
the future.

8.2 Bootstrapping
8.2.1 Bootstrapping (Efron & Tibshirani, 1993) is a powerful, yet

simple, technique for obtaining information from a single sample of data,
which would usually be obtained using analytic techniques. The methodology
revolves around sampling with replacement from the observed data sample,
to create a large number of sets of pseudo-data, which are consistent with the
same underlying distribution. Statistics of interest can then be obtained for
each set of pseudo-data, and the distribution of those statistics investigated
to obtain further insight. For example, the mean of each set of pseudo-data
can be calculated, and the standard deviation of the set of means calculated
as an estimate of the standard error of the mean.

8.2.2 In England & Verrall (1999), bootstrapping was used to obtain the
estimation error of reserve estimates from the chain-ladder model. An
analytic adjustment was suggested to calculate the process error, and the two
components combined to form the prediction error. In England (2001), the
method was extended to simulate the process error, in addition to using
bootstrapping, to obtain the estimation error, thereby allowing a predictive
distribution to be obtained.

8.2.3 The advantage of this two-stage bootstrapping/simulation
approach is that it is very easy to set up in a spreadsheet, and does not
require sophisticated statistical software or the calculation of complex
formulae.

8.2.4 In a standard application of the bootstrap, where data are
assumed to be independent and identically distributed, resampling with
replacement takes place from the data themselves. With regression type
problems, the data are usually assumed to be independent, but are not
identically distributed, since the means (and possibly the variances) depend
on covariates. Therefore, with regression type problems, it is common to
bootstrap residuals, rather than the data themselves, since the residuals are
approximately independent and identically distributed, or can be made so.
However, it is important to use an appropriate residual definition for the
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problem at hand. For generalised linear models, a range of extended
definitions of residuals exists, the precise form being dictated by the
underlying modelling distribution (see McCullagh & Nelder, 1989). For the
over-dispersed Poisson chain-ladder model, we use the Pearson residuals for
bootstrapping.

8.2.5 Dropping the suffices indicating the origin and development year,
the Pearson residuals rP are defined as:

rP �
Cÿ m̂����

m̂
p �8:1�

where m̂ is the fitted incremental claims given by equation 7.2 or 7.3.
8.2.6 The bootstrap process involves resampling, with replacement, from

the residuals. A bootstrap data sample is then created by inverting equation
8.1, using the resampled residuals, together with the fitted values. Given a
resampled Pearson residual r�P, together with the fitted value m, the
associated bootstrap incremental claims amount C� is given by:

C� � r�P
����
m̂
p
� m̂:

8.2.7 Resampling the residuals (with replacement) gives rise to a new
triangle of past claims payments. Having obtained the bootstrap sample, the
model is refitted and the statistic of interest calculated. Strictly, we ought to
fit an over-dispersed Poisson GLM to the bootstrap sample to obtain a
bootstrap reserve estimate. However, we can obtain identical reserve
estimates using standard chain-ladder methodology. It is at this point that
the usefulness of the bootstrap process becomes apparent; we do not need
sophisticated software to fit the model, a spreadsheet will suffice.
8.2.8 Having fitted the chain-ladder model to the bootstrap sample, and

obtained forecast incremental claims payments, the second stage of the
procedure is invoked which replicates the process variance. This is achieved
by simulating an observed claims payment for each future cell in the run-off
triangle, using the bootstrap value as the mean, and using the process
distribution assumed in the underlying model, which, in this case, is over-
dispersed Poisson, using equation 7.1.

8.2.9 The procedure is repeated a large number of times, each time
providing a new bootstrap value and simulated forecast payment. For each
iteration, the reserves are calculated by summing the simulated forecast
payments. The set of reserves obtained in this way forms the predictive
distribution, from which summary statistics, such as the prediction error
(which is simply the standard deviation of the distribution of reserve
estimates), can be obtained.
8.2.10 A complete list of the steps required appears in Appendix 3. A
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more complete description together with a worked example and a discussion
of various practical considerations can be obtained by referring to the
original papers.

8.2.11 The bootstrap procedure, outlined in Appendix 3, was applied to
the data in Table 1. The mean and standard deviation of 1000 bootstrap
iterations is shown in Table 33, together with the chain-ladder reserve
estimates and analytic prediction errors for the over-dispersed Poisson
chain-ladder model. The mean of the bootstrap process is reassuringly close
to the chain-ladder results. The standard deviation of the bootstrap sample
is also close to the prediction error calculated analytically, providing further
comfort. An advantage of the bootstrap procedure is that it also provides
a predictive distribution of reserves. Various percentiles of that distribution
are shown in Table 34, with a histogram of the overall reserves shown in
Figure 3.

Table 33. Chain-ladder model; bootstrap results
Chain Bootstrap Bootstrap Bootstrap Analytic Analytic
ladder mean prediction prediction prediction prediction
reserve error error % error error %

Year 2 154 177 695 392% 556 361%
Year 3 617 639 1,343 210% 1,120 181%
Year 4 1,636 1,655 1,992 120% 1,775 109%
Year 5 2,747 2,770 2,377 86% 2,231 81%
Year 6 3,649 3,769 2,563 68% 2,440 67%
Year 7 5,435 5,459 3,093 57% 3,124 57%
Year 8 10,907 11,259 5,135 46% 5,032 46%
Year 9 10,650 10,902 6,018 55% 6,075 57%
Year 10 16,339 16,580 13,644 82% 12,987 79%

Overall 52,135 53,210 19,267 36% 18,193 35%

Table 34. Percentiles of predictive distributions; bootstrap chain-ladder,
log-Normal, and Bayesian over-dispersed Poisson

Bootstrap Log-normal Bayes ODP
reserve reserve reserve

1st percentile 16,258 41,375 22,290
5th percentile 25,951 55,171 29,070

10th percentile 30,694 61,810 32,950
25th percentile 39,282 77,049 40,700
50th percentile 51,059 107,295 50,390
75th percentile 64,428 148,078 62,990
90th percentile 78,491 222,397 76,550
95th percentile 87,668 278,500 87,210
99th percentile 109,445 489,267 108,500
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8.2.12 Bootstrapping is simple and quick to implement for the over-
dispersed Poisson version of the chain-ladder model, since the standard
chain-ladder model can be fitted at each iteration of the process. For other
models, such as the log-Normal models and models with a parametric
predictor structure, it is also possible to use bootstrapping, but the
implementation is less straightforward.

8.3 Simulation from the Parameters
8.3.1 An alternative to bootstrapping is to simulate the estimation error

by simulating the parameters from an appropriate joint distribution, using
information from the fitted model. The model predictor can then be formed,
giving a distribution for the linear predictor. The process error can then be
incorporated by drawing a random observation from the process
distribution, given the simulated linear predictor. As with the bootstrap
procedure, this is a two-stage process.

Figure 3. Bootstrap chain-ladder model; predictive distribution of overall
reserves
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8.3.2 The complication with this procedure is identifying an appropriate
joint distribution for the parameters from which to sample and obtaining the
appropriate parameters. For models based on GLM methodology using a
Normal error distribution and identity link function, the parameter estimates
and the covariance matrix of the parameter estimates are all that is
required, and are usually readily available from standard statistical software
packages. It is often assumed that the distribution of the linear predictor, in
this case, is approximately multivariate Normal. Therefore, given the
parameter estimates and their associated covariance matrix, a distribution of
parameters can be simulated by sampling from a multivariate Normal
distribution. Given the joint distribution of parameter estimates, the
appropriate sum of parameter estimates can be formed (incorporating
continuous covariates if necessary, as in the Hoerl curve) to create a
distribution of linear predictors. A random observation from the process
distribution can then be drawn for each simulated predictor value, whose
mean is the predictor value simulated at the first stage, and whose variance is
dictated by the form of the process distribution.

8.3.3 The result of this two-stage process is a predictive distribution for
each future payment in the run-off triangle, having the correct correlation
characteristics. The appropriate sum of simulated payments can then be
formed to give a predictive distribution of reserve estimates. The mean and
standard deviation of that distribution should be the same as the mean and
prediction error calculated analytically, if the procedure has been carried out
correctly.

8.3.4 To illustrate the methodology, consider the log-Normal model of
Section 7.7. Taking the parameter estimates in Table 18 as the means,
together with the associated covariance matrix, a set of parameter estimates
was simulated from a multivariate Normal distribution, and the predictor in
equation 7.16 formed for each future cell in the run-off triangle. For each
simulated predictor value, an observation from a Normal distribution
was simulated with the predictor value as the mean, and the dispersion
parameter in Table 18 as the variance. That simulated observation was then
exponentiated to form the forecast payment. Those forecast payments were
then summed to give origin year and overall reserves. The mean and standard
deviation of the simulated reserves were taken as the expected reserves and
prediction error, respectively. The results are shown in Table 35, together
with the equivalent results obtained analytically, and again the results are
reassuringly close. Various percentiles of the predictive distribution are
shown in Table 34, alongside the bootstrap results of the over-dispersed
Poisson model. It can be seen that the distribution for the log-Normal model
has a higher level generally, and a larger variance, reflecting the impact of
the bias correction. A histogram of the overall reserves is shown in Figure 4. It
is clear from the histogram that the predictive distribution, when using the
log-Normal model, is heavily skewed, with extreme observations influencing
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Table 35. Log-Normalmodel; chain-ladder type predictor; simulation results
Simulated Simulated Simulated Analytic Analytic Analytic
mean prediction prediction mean prediction prediction
reserve error error % reserve error error %

Year 2 378 719 190% 357 751 210%
Year 3 1,021 1,346 132% 1,020 1,413 139%
Year 4 3,334 3,528 106% 3,064 3,291 107%
Year 5 3,586 2,919 81% 3,753 3,540 94%
Year 6 6,132 5,184 85% 6,010 5,227 87%
Year 7 7,565 5,810 77% 7,742 6,678 86%
Year 8 18,526 13,987 76% 18,806 16,379 87%
Year 9 27,510 27,997 102% 25,367 24,908 98%
Year 10 60,772 77,984 128% 56,475 77,519 137%

Overall 128,823 84,842 66% 122,595 86,312 70%

Figure 4. Log-Normal model; chain-ladder type predictor; predictive
distribution of overall reserves
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the expected value. Comparison of Figures 3 and 4 shows that the modes of
the distributions (the most likely values) are similar. Inference can therefore be
very different, depending on whether the means of the predictive
distributions are being compared, or their `maximum likelihood' values.

8.3.5 Barnett & Zehnwirth (1998) also suggest simulating from a
multivariate (log) Normal distribution, but the mechanics of the process are
not described, and it is not clear whether the two-stage procedure outlined in
this section is adopted, or the estimation error alone is considered.

8.4 Bayesian Methods
8.4.1 The method of simulation from the parameters outlined in the

previous section is reasonable if the joint distribution of the parameters can
be identified. For GLMs with a non-Normal error structure and non-
identity link, this may not be straightforward. In fact, identifying such a
distribution might only be possible by working in a Bayesian world, making
assumptions about the prior distribution of the parameters, and finding
the posterior joint distribution, given the data. Even then, the distribution
may not be recognisable as a standard one. Markov chain Monte Carlo
methods obviate this problem using simulation and numerical methods, and
consider estimation and prediction at the same time within the same
framework.
8.4.2 MCMC methods do not provide parameter estimates per se, but a

simulated joint distribution of parameter estimates. In the claims reserving
context, a distribution of future payments in the run-off triangle is produced
automatically, where that distribution is the predictive distribution. The
appropriate sums of the simulated predicted values can then be formed to
provide predictive distributions of origin year and total reserves. The means
of those distributions may be used as the best estimates. Other summary
statistics can also be investigated, since the full predictive distribution is
available.

8.4.3 Unlike the methods based on GLMs (and Mack's method), which
focus on modelling the mean, then investigate predictive distributions,
MCMC methods provide the predictive distribution, from which summary
statistics, such as the mean, can be calculated. As such, there are no extra
steps to perform or approximations to be made when considering the
predictive distribution.

8.4.4 The methodology is illustrated using results from the Bayesian
version of the over-dispersed Poisson chain-ladder model described in Section
7.10. Vague priors are used to enable a comparison with the bootstrap
approach. The means and standard deviations of the predictive distributions
have already been shown in Table 30. Various percentiles of the predictive
distribution are shown in Table 34. It can be seen that the Bayesian over-
dispersed Poisson model and the bootstrap procedure give very similar
distributions, as might be expected. A histogram of the overall reserves is
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shown in Figure 5, again highlighting the similarity between the Bayesian
results and the bootstrap results.

ñ. Dynamic Financial Analysis

9.1 In a dynamic financial analysis (DFA) exercise, cash flows of an
insurance enterprise are simulated to help with business planning, pricing,
capital modelling, and risk profiling generally. One component of risk
carried by an insurance operation lies within its outstanding claims reserves,
and simulating reserve movements is an ingredient of a full DFA exercise.
Methods are therefore required for DFA which enable a predictive
distribution of future claim payments to be obtained. Clearly, it is desirable
if this can be performed in a consistent manner, such that, when the

Figure 5. Bayesian over-dispersed Poisson model; predictive distribution of
overall reserves
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simulated future claim payments are summed to give origin period
reserves, or total reserves, the mean and variance of those sums matches
their analytic equivalents. For example, it is inappropriate to simulate
future payments as independent random variables, even if the mean and
prediction error of those payments have been estimated correctly. Although
the mean of simulated reserves would be correct, the standard deviation of
the simulated reserves would be underestimated. That is because the
underlying model relies on the same parameters, so dependence is
introduced through estimation.

9.2 In this paper we have proposed various models for estimating
reserves using stochastic methods. We have also shown how measures of
variability can be calculated, and shown, for some models, alternative ways
in which predictive distributions can be simulated. It is the predictive
distributions which are of interest in a DFA exercise, and interest in
stochastic reserving models is likely to increase as DFA becomes more
popular. As simulation techniques are understood and accepted, and
computing technology continues to improve, business planning on a best
estimate basis, or including a few adverse scenarios whose probability can
only be guessed, will appear increasingly inadequate.

9.3 However, simply obtaining the predictive distribution is not
enough for a DFA exercise. Although the methods can be used to
simulate calendar year reserve movements which are consistent with a
traditional reserving model, a company would be expected to re-evaluate
its reserves on a regular basis, taking account of the reserve movements
in the intervening period. Such dynamic behaviour should be incorporated
in a DFA exercise.

9.4 Furthermore, it is likely that claims inflation would be considered in
a DFA exercise, perhaps linked to retail prices inflation, or other economic
measures. In that case, the component of the DFA model generating
outstanding reserves would need to be linked to an economic scenario
generator in a sensible way.

9.5 It is also possible that reserve movements in different classes of
business are dependent in some way. Although stochastic models could be
fitted to several run-off triangles at the same time, and dependencies
explored, the models would quickly become complex and involve numerous
interaction terms. Even so, it might be desirable to consider such
dependencies in a DFA exercise, and, again, an appropriate methodology for
incorporating that is required. It is likely that judgement would be used in
setting dependence parameters, and unlikely that sufficient data would be
available to fully justify or reject such parameters.

9.6 It is not our intention to suggest here how those features might be
incorporated, and, indeed, that could be the subject of a further paper.
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"ò. Discussion

10.1 The subject of stochastic models and claims reserving has given
rise, in recent years, to a number of controversies, most notably, discussing
which stochastic model underlies the chain-ladder technique (Mack &
Venter, 2000). Focusing on models which reproduce chain-ladder estimates
is, in many ways, a futile exercise, although considerable insight can be
gained by starting with those models, since they provide a link between
traditional deterministic methods and stochastic methods. However, the
chain-ladder technique is simply part of a spectrum of models. In this paper
other models within that spectrum have been described, and an attempt has
been made to explain the similarities and connections between them, where
such similarities exist.

10.2 Somebody new to the topic might be inclined to ask the question:
ªWhich model is best?'', to which there is no straightforward answer. It is
unlikely that an answer could be given to the same question aimed at
traditional methods, since a particular model will suit a particular problem or
data set; the data should be examined in detail in order to find an
appropriate model, rather than using the same modelling approach in all
circumstances. This is true for traditional and stochastic reserving models. In
this context, there is little to choose between the over-dispersed Poisson model
and the negative binomial model, since predictions and prediction errors are
essentially the same, and the same restrictions regarding negative incremental
claims apply, although the way in which the negative binomial model is
parameterised is more consistent with the traditional chain-ladder model.
Implementation of the negative binomial model is less straightforward, since
the availability of software to fit the model is limited. The Normal
approximation to the negative binomial offers greater flexibility in the
presence of negative incremental claims, and its similarity to Mack's model
offers greater insight.
10.3 Once within a stochastic framework, there is considerable flexibility

in the choice of predictor structures, with predictors including continuous
covariates offering the possibility of extrapolation beyond the range of data
observed. This offers an alternative to the usual practice of fitting a standard
model to cumulative claims, then fitting another model to the development
factors so derived. Smoothing models offer even greater flexibility, and
remove reliance on a predictor with a rigid parametric form. The
disadvantage of the smoothing models is that obtaining a predictive
distribution is not straightforward. Combining predictors with continuous
covariates, either in a parametric or non-parametric context, with the
Normal approximation to the negative binomial, offers extensions to Mack's
model.

10.4 Bayesian models have much to recommend them, since estimation
and prediction occur in the same model at the same time. Since model fitting
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and prediction is performed using simulation, the methods automatically
provide a predictive distribution of reserve estimates, from which the
prediction error, if required, can be estimated by calculating the standard
deviation of the simulated results; there is no need to evaluate complicated
formulae. Bayesian models also have the advantage that actuarial judgement
can be incorporated through the choice of informative prior distributions.
This is also a major disadvantage, since it leaves the methods open to abuse.
Practical difficulties associated with Bayesian models include choice of prior
distribution and assurance that the software has converged on the optimum
solution. Although such reassurance can be gained by knowing what the
results should be (using analytic methods), a pragmatic alternative is to
repeat the analysis several times, starting the simulations from very different
initial values, and checking convergence.

10.5 Recently, the concept of a best estimate of reserves, and a range of
best estimates, has received attention (see, for example, Gibson, 2000). It is far
from clear what this means. For example, the median of the predictive
distribution of reserves provides a measure of location of the underlying
distribution, but a 50% probability of outstanding liabilities being greater than
the best estimate is unlikely to be acceptable. Furthermore, the median
provides no information concerning the downside potential. The mean of the
predictive distribution is closer to the intended interpretation of a best estimate
(in the United Kingdom), although, again, outstanding liabilities set on this
basis being sufficient `on average' does not leave much room for comfort.

10.6 It could be argued that several different deterministic reserving
methods applied to different data sets provide a range of best estimates.
Although that range is unlikely to be wide, prudence dictates that setting
reserves at the lowest end of the range, without good reason, is unwise. The
standard error of reserves (estimation error) also provides a measure of
variability, but the interpretation is very different. The standard error
represents the standard deviation of the mean reserves that would be
obtained if we could repeat an experiment many times, in which we go back
in time and repeat the loss experience, each time estimating the mean
reserves. Although that may be of interest, the prediction error is of more
interest, representing, not the standard deviation of the expected reserves, but
the standard deviation of the actual outstanding liabilities. Clearly, the
prediction error will be larger than the standard error.

10.7 In fact, as has been shown in the examples, the prediction error
could be disappointingly large. This is entirely consistent with the small
sample of data usually available in run-off triangles, and the limitations of
the models available for estimation. However, the prediction error could be
exacerbated using a model with a poor fit. For example, it is possible to fit a
model with a single parameter, resulting in the estimated incremental
payments being the mean of the observed incrementals. Such a model would
provide a large prediction error, not as a result of inherent variability, but
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due to a poor choice of model. Similarly, it is possible to construct a data
set in which each origin year has a different payment pattern, but with no
variability around that pattern within a year. Fitting a model in which each
year is assumed to have the same payment pattern will result in a positive
prediction error, whereas fitting the same model used to create the data
would result in a prediction error of zero.

10.8 This is an important point; the prediction error reflects the
underlying assumptions of the model. If the underlying assumptions are
incorrect, the prediction error will also be incorrect (as will the expected
value). In particular, the models assume that variability is due to random
statistical variation, according to a particular statistical distribution. If it is
believed that the observed variability could equally occur in the future, the
assumption is acceptable. In general, the underlying assumptions will not
hold in reality, to a greater or lesser extent. Some causes of variability, such
as future changes in legislation, are not easy to predict, therefore cannot
easily be incorporated. This does not provide a reason to dismiss attempting
modelling, neither does it excuse poor modelling. Rather, it provides good
reason to understand the modelling assumptions, and to test different
models. Like traditional methods, different stochastic methods will give
different results.

10.9 Interest in the concept of a best estimate (in the U.K.) stems
primarily from actuarial sign-off of Lloyd's reserves, where an actuary is
required to sign that the reserves are: ªat least as large as those implied by a
`best estimate' basis without precautionary margins'' (Guidance Notes 20
and 33, Manual of Actuarial Practice, Institute of Actuaries). Not only does
this raise the question of the definition of a best estimate, it also raises the
issue of prudential margins held in reserves. In this context, the term `best
estimate' is intended to represent: ªthe expected value of the distribution of
possible outcomes of the unpaid liabilities''. Essentially, this is the mean of
the predictive distribution. The guidance notes, quite rightly, do not prescribe
what that distribution should be, or how it might be obtained. Nonetheless,
the wording is interesting. Even if the reserves held are at least as large as
those implied by a best estimate, it would be of considerable value to know
the estimated probability that outstanding liabilities might exceed the
reserves held, which could be obtained if the predictive distribution can be
estimated.
10.10 Concerning prudential margins, the Inland Revenue, regulators

and rating agencies are at odds. Put simply, the Inland Revenue objects to
possible profits (and hence revenue from taxes) being held back, whereas
regulators and rating agencies are concerned with protecting the
policyholder. Shareholders are torn between the desire for profits, and the
security of their shareholding. It could be argued that reserves set on an
undiscounted basis include an implicit margin for prudence, although, in the
current climate of low interest rates, that margin is very much reduced. If
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reserves are set on a discounted basis, there is a strong case for including an
explicit prudential margin. As such, a risk margin based on a risk measure
from a predictive distribution of claims reserves is a strong contender.

10.11 The reporting of variability of claims reserves also needs careful
consideration. It could be seen as desirable to display a predictive
distribution of reserves graphically in a report, as in Figures 3, 4 and 5, which
highlights the levels of uncertainty. The disadvantage of providing a full
distribution is that it highlights the potential upside, as well as the downside,
which requires careful interpretation. If the aim of the report is to inform
management for the purposes of setting reserves, highlighting the upside
might be inadvisable. However, if the reserves are being reviewed for the
purposes of a merger or acquisition, the potential upside will be of interest,
as well as the downside. In any event, the distribution may need careful
interpretation when presented to management.
10.12 Although the example data set used throughout this paper is

based on incurred data (that is, paid losses and aggregate case estimates
combined), in general, the methods are better suited to paid data. That is
because case estimates are set individually and often a little conservatively,
resulting in over-estimation when considered in aggregate, leading to
negative incremental amounts in the later stages of development. The
problem is more with the data than the methods, since, clearly, it is the
estimation of aggregate case reserves which is at fault. Ideally, methods need
to be found which help provide better estimates of aggregate case reserves.
In this respect, models based on individual claims, rather than data
aggregated into triangles, are likely to be of benefit. Aggregate triangles are
useful for management information, and have the advantage that simple
deterministic methods can be used to analyse them. However, it has to be
borne in mind that traditional techniques were developed before the advent
of desktop computers, using methods which could be evaluated using pencil
and paper. With the continuing increase in computer power, it has to be
questioned whether it would not be better to examine individual claims
rather than use aggregated data. Databases of individual claims are routinely
used for pricing purposes, so the provision of individual claims databases
for reserving is feasible. Models could be developed, investigating, for
example, the time taken to report claims, the sizes and timings of partial
payments, the delay between occurrence and reporting of claims, reinsurance
recoveries, and so on. In effect, this allows much closer modelling of the
process, including the individual case reserve amounts. This introduces
several complexities for model fitting, with a Bayesian approach offering help
in this context, which is more amenable to tackling problems of this nature.
Indeed, some progress has already been made by Haastrup & Arjas (1996),
Haastrup (1997) and Pereira (2000), using work pioneered by Norberg (1993,
1999). Those papers and theses show that claims can be treated individually,
with Bayesian inference being used to update the distributions of all
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quantities of interest. Using these techniques, it is possible to obtain
predictive distributions which are likely to be better than those obtained from
data triangles. However, the implementation is far from straightforward,
and further development is required before firm conclusions can be reached.
Even so, several of the techniques outlined in this paper can equally be used
with individual claims data, from which extensions can be developed.

10.13 In practice, it is often the case that triangles of gross, net, and
ceded data are analysed separately. Fitting stochastic models to the data sets
independently is likely to lead to difficulty in making inferences from the
results. It is not obvious how to solve this problem without recourse to
individual claims data, combined with suitable modelling of the reinsurance
process. Reinsurance programmes are often complex, and obtaining the
relevant information for older years, even if the process can be modelled, is
not easy. Even if there is the desire to improve data standards, and obtain
individual claims data, it is likely to be some time before the data sets are
large enough to reap the benefits. Companies with good data standards will
already be able to construct the required databases.

10.14 There are many areas where further research could be conducted.
Of considerable value would be an empirical study of a large number of data
triangles from various classes of business and companies, making reserve
forecasts, and following the development over time. In this way, the
performance of stochastic claims reserving models could be assessed, in
particular by monitoring the frequency with which estimated percentiles are
breached.

10.15 Principal omissions from this paper concern the use of exposure
measures, modelling of claims inflation, and model testing and comparison.
It is straightforward to extend the methods to incorporate exposure measures
as weights in the models, allowing different weightings to be attached to
different origin years. It is also straightforward to extend the models to
estimate an inflationary trend by including a calendar year covariate. In the
case of models using a logarithmic link, the coefficient of a term which is
linear in calendar time provides an estimate of the force of claims inflation.
Attempting to model claims inflation in each year individually is usually
problematical, due to the number of parameters in the model and
dependencies with the origin period and development period. If an element of
claims inflation is believed to be known, it is better to strip out its effect
before modelling.

10.16 A thorough analysis will include formal model testing using
residuals to identify systematic and isolated departures from the fitted model,
and goodness-of-fit measures to compare models and assess statistical
significance of model terms. Such model checking techniques are entirely
possible for the models outlined in this paper. Since there are many texts
which describe model checking methods in detail, the topic has been omitted,
as a complete exposition would add to the length of this paper.
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10.17 In conclusion, the assessment of the financial strength of a general
insurance enterprise includes a thorough analysis of the outstanding claims
reserves, including an assessment of the possible variability in the reserves.
Failure to do so will result in the insolvency of some insurers, as witnessed in
recent months. This inevitably puts the spotlight on advisors, including
auditors and actuaries. Including estimates of the variability of claims
reserves in actuarial reports would change the emphasis on a best estimate,
and might prove useful should litigation arise. Methods of analysis which
help with reserve estimation, as well as providing insight into the variability
of those reserves, are to be welcomed. It is important that the characteristics
of the methods are explored, and their assumptions understood, and it is
hoped that this paper contributes to that process.
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APPENDIX 1

RECURSIVE MODELS: PROCESS ERROR

A1.1 General case
A1.1.1 The negative binomial model and its Normal approximation are

formulated as recursive models, so the calculation of the process variance
involves estimating the variance of a k-steps-ahead forecast, using standard
results from the analysis of conditional distributions. First, the general case is
considered, followed by specific formulae for the negative binomial model
and its Normal approximation.

A1.1.2 The simplest way to proceed is to start with the 2-steps-ahead
moments, followed by the 3-steps-ahead, and spot a pattern from which it is
straightforward to obtain the k-steps-ahead moments. In order to simplify
the notation, we look at a single row, dropping the suffix i, and consider both
the expected value and variance.

2 steps-ahead:

E Dj�1jC1;C2; . . . ;Cjÿ1
� � � E E Dj�1jC1;C2; . . . ;Cjÿ1;Cj

� �jC1;C2; . . . ;Cjÿ1
� �

� E ljDjjC1;C2; . . . ;Cjÿ1
� �

� lj�1ljDjÿ1

Var Dj�1jC1;C2; . . . ;Cjÿ1
� � � E Var Dj�1jC1;C2; . . . ;Cjÿ1;Cj

� �jC1;C2; . . . ;Cjÿ1
� �
� Var E Dj�1jC1;C2; . . . ;Cjÿ1;Cj

� �jC1;C2; . . . ;Cjÿ1
� �

� E Var Dj�1jC1;C2; . . . ;Cj

� �jC1;C2; . . . ;Cjÿ1
� �
� Var lj�1DjjC1;C2; . . . ;Cjÿ1

� �
� E Var Dj�1jC1;C2; . . . ;Cj

� �jC1;C2; . . . ;Cjÿ1
� �
� l2

j�1Var DjjC1;C2; . . . ;Cjÿ1
� �

which is now in terms of the 1-step-ahead variance, allowing a recursive
procedure to be implemented.
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3-steps-ahead:

E Dj�2jC1;C2; . . . ;Cjÿ1
� � � E E Dj�2jC1;C2; . . . ;Cjÿ1;Cj

� �jC1;C2; . . . ;Cjÿ1
� �

� E lj�2lj�1DjjC1;C2; . . . ;Cjÿ1
� �

� lj�2lj�1ljDjÿ1

Var Dj�2jC1;C2; . . . ;Cjÿ1
� � � E Var Dj�2jC1;C2; . . . ;Cjÿ1;Cj

� �jC1;C2; . . . ;Cjÿ1
� �
�Var E Dj�2jC1;C2; . . . ;Cjÿ1;Cj

� �jC1;C2; . . . ;Cjÿ1
� �

� E Var Dj�1jC1;C2; . . . ;Cj

� �jC1;C2; . . . ;Cjÿ1
� �
� l2

j�2l
2
j�1Var DjjC1;C2; . . . ;Cjÿ1

� �
which is now in terms of the 1-step-ahead and 2-steps-ahead variances.

A1.1.3 Note that we have used the 2-steps-ahead formula for the mean
in the derivations of the 3-steps-ahead moments.

A1.1.4 It is easy to see that this process can be continued to produce the
k-steps-ahead moments.

A1.2 Negative Binomial
A1.2.1 From the negative binomial model in Section 2.4, we know that

the variance of the 1-step-ahead forecast is given by:

Var DjjC1;C2; . . . ;Cjÿ1
� � � flj lj ÿ 1

ÿ �
Djÿ1:

A1.2.2 Then the variance of the 2-steps-ahead forecast, from Section
A1.1, is given by:

Var Dj�1jC1;C2; . . . ;Cjÿ1
� � � E flj�1 lj�1 ÿ 1

ÿ �
DjjC1;C2; . . . ;Cjÿ1

� �
� l2

j�1flj lj ÿ 1
ÿ �

Djÿ1

� flj�1 lj�1 ÿ 1
ÿ �

ljDjÿ1 � l2
j�1flj lj ÿ 1

ÿ �
Djÿ1

� fljlj�1 ljlj�1 ÿ 1
ÿ �

Djÿ1

and the variance of the 3-steps-ahead forecast is given by:
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Var Dj�2jC1;C2; . . . ;Cjÿ1
� � � E flj�1lj�2 lj�1lj�2ÿ1

ÿ �
Dj

� ��l2
j�2l

2
j�1flj ljÿ1

ÿ �
Djÿ1

� flj�1lj�2 lj�1lj�2ÿ1
ÿ �

ljDjÿ1�l2
j�2l

2
j�1flj ljÿ1

ÿ �
Djÿ1

� fljlj�1lj�2 ljlj�1lj�2ÿ1
ÿ �

Djÿ1:

A1.2.3 It is straightforward to see that the variance of a k-steps-ahead
forecast is given by:

Var Dj�kÿ1jC1;C2; . . . ;Cjÿ1
� � � fljlj�1 . . . lj�kÿ1 ljlj�1 . . . lj�kÿ1 ÿ 1

ÿ �
Djÿ1:

A1.3 Normal Approximation to the Negative Binomial
A1.3.1 From the Normal approximation to the negative binomial model

in Section 2.5, we know that the variance of the 1-step-ahead forecast is given
by:

Var DjjC1;C2; . . . ;Cjÿ1
� � � fjDjÿ1:

A1.3.2 Then the variance of the 2-steps-ahead forecast, from Section
A1.1, is given by:

Var Dj�1jC1;C2; . . . ;Cjÿ1
� � � E fj�1DjjC1;C2; . . . ;Cjÿ1

� �� l2
j�1fjDjÿ1

� fj�1lj � l2
j�1fj

ÿ �
Djÿ1

and the variance of the 3-steps-ahead forecast is given by:

Var Dj�2jC1;C2; . . . ;Cjÿ1
� � � E fj�2lj�1Dj � l2

j�2fj�1DjjC1;C2; . . . ;Cjÿ1
� �
� l2

j�2l
2
j�1fjDjÿ1

� lj�1ljfj�2 � l2
j�2ljfj�1 � l2

j�2l
2
j�1fj

ÿ �
Djÿ1:

A1.3.3 It is straightforward to continue this process to consider further
steps ahead. We can recover the moments of the negative binomial model by
substituting fk � flk lk ÿ 1� �:
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APPENDIX 2

RECURSIVE MODELS: ESTIMATION ERROR

A2.1 For the negative binomial model and its Normal approximation,
the estimation error can also be calculated recursively. Again looking at
a single row, and dropping the suffix i, we require Var�D̂njDnÿi�1�, which is the
variance of the predicted row total, given the latest cumulative claims. Note
that this is the same as the variance of the sum of incremental predicted
values, which provides an alternative way of calculating the estimation error,
but arrives at the same result:

Var D̂njDnÿi�1
� � � Var l̂nÿi�2 . . . l̂nDnÿi�1jDnÿi�1

� � � D2
nÿi�1Var l̂nÿi�2 . . . l̂njDnÿi�1

� �
:

A2.2 It can be seen that we require the variance of a product of
estimates of development factors, which can be obtained recursively,
multiplied by the square of the latest cumulative claims. To simplify the
notation, the explicit conditioning notation is dropped in what follows.

A2.3 For row 2, the estimation variance is simply D2
nÿi�1Var�l̂n�:

A2.4 For row 3, we require D2
nÿi�1Var�l̂nÿ1l̂n�, where:

Var l̂nÿ1l̂n

� � � E l̂nÿ1
� �ÿ �2

Var l̂n

� �� E l̂n

� �ÿ �2
Var l̂nÿ1

� �� Var l̂n

� �
Var l̂nÿ1

� �
:

A2.5 Note that this assumes that the estimates of development factors
are independent, or at least, uncorrelated (see Mack, 1994, Appendix G). In
practice, it is straightforward to show that the development factors are
uncorrelated under the model by calculating their covariance matrix, which
has zero for all values except the leading diagonal. The variances of the
estimates of the development factors can be obtained from the results of the
model fitting, and we replace the expectations by their observed values,
giving:

Var l̂nÿ1l̂n

� � � l̂nÿ1
ÿ �2

Var l̂n

� �� l̂n

ÿ �2
Var l̂nÿ1

� �� Var l̂n

� �
Var l̂nÿ1

� �
A2.6 For the next row we use:

Var l̂nÿ2 l̂nÿ1l̂n

ÿ �� � � E l̂nÿ2
� �ÿ �2

Var l̂nÿ1l̂n

� �� E l̂nÿ1l̂n

� �ÿ �2
Var l̂nÿ2

� �
� Var l̂nÿ1l̂n

� �
Var l̂nÿ2

� �
We substitute for Var�l̂nÿ1l̂n� using the value calculated at the previous

step to obtain the required variance, and this sets up the recursive procedure.
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For any step, one additional development factor is required, and the
variance of the product of two `terms' is all that is ever required.

A2.7 Given the standard errors of the development factors, the
calculations can be performed in a single line of a spreadsheet.

A2.8 For the overall reserve, the estimation variance is given by:

Var R̂�
� � �Xn

i�2
Var D̂in

� �� 2
Xn

i�2
j>i

Cov D̂in; D̂jn

� �
and we require the calculation of the covariance terms. Again this is
straightforward, requiring the variances of the products of development
factors considered above.

Consider i � 2, then:

Cov D̂2n; D̂3n

� � � Cov D2;nÿ1l̂n;D3;nÿ2l̂nÿ1l̂n

� �
� D2;nÿ1D3;nÿ2l̂nÿ1Var l̂n

� �
under independence of development factors. Similarly:

Cov D̂2n; D̂4n

� � � Cov D2;nÿ1l̂n;D4;nÿ3l̂nÿ2l̂nÿ1l̂n

� �
� D2;nÿ1D4;nÿ3l̂nÿ2l̂nÿ1Var l̂n

� �
and so on, considering the covariance of all rows > 2 with row 2.

Consider i � 3, then:

Cov D̂3n; D̂4n

� � � Cov D3;nÿ2l̂nÿ1l̂n;D4;nÿ3l̂nÿ2l̂nÿ1l̂n

� �
� D3;nÿ2D4;nÿ3l̂nÿ2Var l̂nÿ1l̂n

� �
:

We substitute for Var�l̂nÿ1l̂n� using the value calculated above, and continue
in the same way for the covariance of all rows > 3 with row 3.

A2.9 This procedure continues up to row nÿ 1, where:

Cov D̂nÿ1;n; D̂n;n

� � � Cov Dnÿ1;2l̂3l̂4 . . . l̂n;Dn;1l̂2l̂3 . . . l̂n

� �
� Dnÿ1;2Dn;1l̂2Var l̂3l̂4 . . . l̂n

� �
each time substituting for the variance of the product of development
factors calculated earlier.
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APPENDIX 3

THE BOOTSTRAP PROCEDURE

A3.1 The bootstrap procedure is performed by completing the following
steps, which can be performed without difficulty in a spreadsheet:
ö Obtain the standard chain-ladder development factors from cumulative

data.
ö Obtain cumulative fitted values for the past triangle by backwards

recursion, starting with the observed cumulative paid to date in the latest
diagonal, using D̂i;nÿi�1 � Di;nÿi�1, and D̂i;kÿ1 � D̂i;kl

ÿ1
k .

ö Obtain incremental fitted values, m̂ij, for the past triangle by
differencing.

ö Calculate the unscaled Pearson residuals for the past triangle using:

r
�P�
ij �

Cij ÿ m̂ij������
m̂ij

p : �A3:1�

ö Calculate the Pearson scale parameter f, where:

f �

P
i; jnÿi�1

r
�P�
ij

� �2
1
2n�n� 1� ÿ 2n� 1

that is, the sum of the Pearson residuals squared divided by the degrees
of freedom, where the degrees of freedom is the number of observations
minus the number of parameters estimated.

ö Adjust the Pearson residuals using:

r
adj
ij �

�������������������������������������
n

1
2n�n� 1� ÿ 2n� 1

r
� r

�P�
ij

to replicate the bias correction using an analytic approach.
ö Begin iterative loop, to be repeated N times (N � 1000, say):

ö Resample the adjusted residuals with replacement, creating a new
past triangle of residuals.

ö For each cell in the past triangle, solve equation A3.1 for C, giving a
set of pseudo-incremental data for the past triangle.

ö Create the associated set of pseudo-cumulative data.
ö Fit the standard chain-ladder model to the pseudo-cumulative data.
ö Project to form a future triangle of cumulative payments.
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ö Obtain the corresponding future triangle of incremental payments by
differencing, to be used as the mean when simulating from the process
distribution.

ö For each cell �i; j� in the future triangle, simulate a payment from
the process distribution with mean ~mij (obtained at the previous step),
and variance f ~mij, using the value of f calculated previously.

ö Sum the simulated payments in the future triangle by origin year
and overall to give the origin year and total reserve estimates
respectively.

ö Store the results, and return to start of iterative loop.

A3.2 The set of stored results forms the predictive distribution. The
mean of the stored results should be compared to the standard chain-ladder
reserve estimates to check for errors. The standard deviation of the stored
results gives an estimate of the prediction error.
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