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Maximum Likelihood Estimation of Asymmetric Jump-Diffusion Processes:

Application to Security Prices

ABSTRACT

An asymmetric jump-diffusion model of stock price behavior is proposed. In an extension

of Merton (1976b), we posit that returns dynamics are determined by a drift component, a

Wiener process and two jump processes representing the arrival of “good” or “bad” news

that lead to jumps in security prices. We assume that good and bad news may arrive with

different intensities and the distribution of jump magnitudes representing each type is dif-

ferent. To admit and test these distinctions, we assume that news arrives according to two

Poisson processes and jump magnitudes representing good and bad news are Pareto and

Beta distributed. We develop cumulant and maximum likelihood estimators and use daily

stock prices data to estimate the proposed model. Empirical results strongly support the

posited model. Likelihood based test provides support to the hypothesis that stock prices

respond differently to the arrival of good and bad news.

Keywords: Asset Price Processes, Jump-Diffusion Models, MLE, Leptokurtic Distribu-

tions

JEL Classification: C13, C22, G12, G13
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Introduction

Portfolio choice and asset valuations models of modern finance theory critically depend upon

the form of the probability distribution describing security-price changes. The log-normal

distribution with constant parameters is the most convenient and widely adopted form. A

large body of evidence, however, shows that the log-normal model fits actual returns data

rather poorly, primarily because empirical return distributions exhibit excess kurtosis and

skewness relative to the normal distribution.1

The failure of the log-normal model has led to alternative characterization of the price

processes. The proposed alternatives can be categorized into three groups. The first class of

models posit linear price processes that lead to finite- and infinite-variance distributions. The

stable Paretian distribution proposed by Mandelbrot (1963) and Fama (1965) is the main ex-

ample of an infinite variance distribution. The finite-variance models arise from the student-t

distribution or mixture of distributions such as Poisson-normal (jump-diffusion) and the com-

pound normal.2 Second, the Auto Regressive Conditional Heteroscedastic (ARCH) model,

and its numerous extensions surveyed by Bollerslev, Chou & Kroner (1992) refute the as-

sumption that the return process is stationary. These models posit that the conditional first

and second moments of stock returns are time varying and persistent, particularly over long

horizons. The third class of models combines jump and ARCH effects, where volatility is

driven by small random shocks through an ARCH process and the occurrence of a jump

event can either break the persistence in the volatility process or directly impact the return

process.3

The model we posit belongs to the class of mixed jump-diffusion processes, first proposed

by Roberts (1959) and Press (1967) and later extended by Merton (1976b). Using daily

return data on stocks and indices, Beckers (1981), Ball & Torous (1983), Jarrow & Rosenfeld

(1984), Jorion (1988), Tucker (1992), and Das & Sundaram (1999) provide empirical evidence

in support of the jump-diffusion model.4 The existence of a jump component in security

prices is also supported by a large body of evidence from “event studies.” In particular, the

evidence presented in Ederington & Lee (1993) documents the fact that information flows

associated with firm-specific and macroeconomics factors lead to large movements in asset



prices.

In the standard jump-diffusion model (Merton 1976b), the returns process consists of

three components, a linear drift, a Brownian motion representing “normal” price vibrations,

and a compound Poisson process that accounts for “abnormal” change in prices (jumps)

due to arrival of “news”. The discrete points in time when news arrives are assumed to be

random and driven by a Poisson process. Upon the arrival of “news,” jump magnitudes are

determined by sampling from an independent and identically distributed (IID) random vari-

able. Merton further assumes that the logarithm of jump magnitude is normally distributed.

This special case makes estimation and hypothesis testing tractable and has become the

most important representation of the jump-diffusion model. Ball & Torous (1983), Jarrow

& Rosenfeld (1984), Bates (1991), Tucker (1992), and others employ this special case.5

Since there is only one jump component in the standard jump-diffusion model, news that

cause upward jump in prices –“good news”– and news that cause downward jump in prices

–“bad news”– are not distinguished by their intensity or distributional characteristics.6 This

potential limitation of the simple jump-diffusion model provides the main motivation for

our model. We conjecture that the arrival frequency and the distributional characteristics

of jumps representing “good” and “bad” news are different. We propose a jump-diffusion

model that permits this type of information arrival and use maximum likelihood procedures

to estimate its parameters.

There are several economic justifications for the proposed model. At a microeconomic

level, Milgrom (1981) has formalized the notion of “good” and “bad” news and shown that

such distinction plays an important role in rational expectation models that are the founda-

tion of information economics. In particular, Milgrom (1981) shows that the arrival of good

(bad) news about a firm’s prospects always leads to a rise (fall) in its share price. Our char-

acterization of “good” and “bad” news is consistent with his representation theorems. At

the macroeconomics level, expansionary and contractionary periods are accompanied with

unequal frequency of good and bad news arrivals. The differential in intensity of news arrival

may be in turn driven by broader economic cycles, driven by recurrent technological change

and innovation, or perhaps unexpected shifts in social, demographic, and political cycles,

such as the congressional and presidential elections.7
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In the reminder, we first present our model in detail. Maximum likelihood estimation

of the proposed model is then discussed. The model is estimated using firm specific data

from the U.S. Using the Geometric Brownian Motion (GBM) as the null, we test the single

and double jump models as alternatives and provide evidence favoring jump models. We

conclude by considering the implications of our findings and discussing directions for further

research.
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The Model

The model we propose is a generalizations of Merton’s single jump-diffusion model. The mo-

tivation is to introduce a distinction between “good” and “bad” news, defined as any surprise

information that leads to non-marginal price increases (up-jumps) or decreases (down-jumps)

respectively. That is, we have two independent Poisson processes generating good and bad

news. This separation of good from bad news implies that the range of values for the random

percentage change in price must be constrained. Because stocks represent limited liability,

percentage change in prices due to bad news must be bounded from below by minus one

hundred percent. Similarly, the percentage change in prices due to arrival of good news must

be positive.

Because of these constraints we cannot assume a log-normal distribution for either up or

down jump magnitudes. Instead we assume that jump magnitudes representing good news

are distributed according to a Pareto distribution and jump magnitudes representing bad

news are Beta distributed. Though the boundaries on percentage price change limits our

distributional choice, we show that the selected distributions lead to tractable maximum

likelihood estimation.

Let S(t) denote the price of stock at time t and assume that the price process can be

represented by the following model:

dS(t)

S(t)
= µdt + σdZ(t) +

∑
j=u,d

(Y j
Nj(λjt)

− 1)dN j(λjt) (1a)

where µ and σ are the drift and volatility terms, Z(t) is a standard Wiener process, Y j, j =

u, d, is the jump magnitude, and N j(λj) are independent Poisson processes with intensity

parameters λj (u and d represent up- and down-jumps respectively).

We assume that the up-jump magnitudes (Y u) are distributed Pareto(ru) with density

function fY u(Y u)=ru(
1

Y u )ru+1 where Y u ≥ 1, E(Y u)= ru

ru−1
and var(Y u)= ru

(ru−2)(ru−1)2
. Sim-

ilarly, the down-jump magnitudes (Y d) are distributed Beta(rd,1) with density function

fY d(Y d) = rd(Y
d)rd−1 where 0 < Y d < 1, E(Y d) = rd

(rd+1)
and var(Y d) = rd

(rd+2)(rd+1)2
. All

jump magnitudes Yjs are assumed to be independent. Henceforth we will refer to equation

(1a) as the Pareto-Beta Jump-Diffusion (PBJD) model.
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Equation (1a) is a stochastic differential equation, offering a particular description of

stock price dynamics: The total change in stock price is due to a deterministic growth

rate per unit of time (µ) plus three independent stochastic components. The first source

of randomness is “local” price variations that are due to normal clearing of imbalances in

demand and supply. The second (third) source of randomness is due to the random arrival

of good (bad) news which is driven by a Poisson process and leads to “abnormal” upward

(downward) movement in price.

The Doléans-Dade formula (Protter 1991) provides an explicit solution for (1a):

S(t) = S(0) exp{(µ− 1

2
σ2)t + σZ(t)}

∏
j=u,d

Y j(N(λjt)) (1b)

where for j = u, d,

Y j(N(λjt)) =

 1 if N(λjt) = 0∏N(λjt)
i=1 Y j

i if N(λjt) = 1, 2, 3, . . .

and N(λjt), are Poisson distributed with parameter λjt. Using equation(1b), the s period

rate of return, r(s), is:

r(s) = (µ− 1

2
σ2)s + σZ(s) +

Nu
s∑

i=1

ln(Y u
i ) +

Nd
s∑

i=1

ln(Y d
i ) (1c)

where the number of good (bad) news over the time period s, N j
s s, are independent Poisson

distributed random variables with parameters λjs.

Merton’s Jump-Diffusion (JD) model has a single jump component with magnitude Y

distributed IID log-normal (α, β2) and Poisson (λ) arrival rate. The PBJD collapses to a

single JD model when λ = λu + λd and the jump magnitude has a mixed distribution of

Pareto(ru) with probability λu

λu+λd
and Beta(rd,1) with probability λd

λu+λd
.8 It is important to

note, however, that JD and PBJD are not nested. Without the jump components, the two

models reduce to the standard Geometric Brownian Motion (GBM).

The Conditional Density

Let Nu
s = m and Nd

s = n be the number of up- and down-jumps during the time in-
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terval t = 0 to s. The conditional densities of s period returns can be derived under four

combination of m and n: m = 0 and n = 0 (no jumps occur); m = 0 and n ≥ 1 (only

down-jumps occur); m ≥ 1 and n = 0 (only up-jumps occur); and m ≥ 1 and n ≥ 1 (both

types of jumps occur). All four conditional densities can be derived using convolution tech-

niques and distributional properties. Before deriving the conditional density, we state some

useful facts about Pareto, Beta and exponential distributions (Patel, Kapadia & Owen 1976):

F1. If Y u ∼ Pareto (ru), then ln(Y u) ∼ exp(ru) = Γ(1, ru).

F2. If Y d ∼ Beta (rd, 1), then − ln(Yd) ∼ exp(rd) = Γ(1, rd).

F3. If X = Y1+Y2+· · ·+Yn, where Yi ∼ exp(θ) and they are independent, then X ∼ Γ(n, θ).

Let U =
∑Nu

s
i=1 ln(Y u

i ) > 0, D =
∑Nd

s
i=1 ln(Y d

i ) < 0 and T = U + D. Then s period return

can be written as r(s) = (µ − 0.5σ2)s + Z(s) + U + D. For Nu
s = m ≥ 1 the conditional

distribution of U (by F1 and F3) is U |m ∼ Γ(m, ru):

fU |m(U) =
rm
u

(m− 1)!
Um−1e−ruU

Similarly, for Nd
s = n ≥ 1 the conditional distribution of D is −D|n ∼ Γ(n, rd):

fD|n(D) =
rn
d

(n− 1)!
(−D)n−1erdD

Using these results the conditional density of T = U + D, given m ≥ 1 and n ≥ 1, is:

fT |m,n(t) =

∫ ∞

−∞
fD(x)fU(t− x)dx

=
rm
u rn

de−rut

(m− 1)!(n− 1)!

∫ 0∧t

−∞
(−x)n−1(t− x)m−1e(ru+rd)xdx (2)

Now, we are ready to determine all four conditional densities. For the case m = 0 and

n = 0, the conditional density is that of GBM:

fr(s)|0,0(r) =
1√

2πsσ
e−

1
2σ2s

(r−µs+0.5σ2s)2 (3a)
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When m = 0 and n ≥ 1, the conditional distribution is the independent sum of −Γ(n, rd)

and N((µ− 1
2
σ2)s, σ2s):

fr(s)|0,n(r) =
rn
d

(n− 1)!
√

2πsσ

∫ 0

−∞
(−x)n−1erdx− 1

2σ2s
(r−x−µs+0.5σ2)2sdx (3b)

Similarly, for m ≥ 1 and n = 0, the conditional distribution is the independent sum of

Γ(m, ru) and N((µ− 1
2
σ2)s, σ2s):

fr(s)|m,0(r) =
rm
u

(m− 1)!
√

2πsσ

∫ ∞

0

(x)m−1e−rux− 1
2σ2s

(r−x−µs+0.5σ2s)2dx (3c)

Finally, for m ≥ 1 and n ≥ 1, the conditional distribution is the independent sum of the

distribution for T and N((µ− 1
2
σ2)s, σ2s). Then the conditional density of r(s) is:

fr(s)|m,n(r) =
rm
u rn

d

(m− 1)!(n− 1)!
√

2πsσ∫ ∞

−∞

(∫ 0∧t

−∞
(−x)n−1(t− x)m−1e(ru+rd)xdx

)
× e−rute−

1
2σ2s

(r−t−µs+0.5σ2s)2dt (3d)

The Unconditional density

Next we derive the unconditional density of s = 1 period returns. This function plays a

critical role for estimation and hypothesis testing. Letting P (n, λ) = e−λλn

n!
, the unconditional

density for one period returns, f(r), can be written as the Poisson weighted sum of the four

conditional densities (3a-3d):

f(r) =
∞∑

m=0

∞∑
n=0

P (n, λd)P (m,λu)fn,m(r)

= e−(λu+λd)f0,0(r) + e−λu

∞∑
n=1

P (n, λd)f0,n(r)

+ e−λd

∞∑
m=1

P (m, λu)fm,0(r) +
∞∑

m=1

∞∑
n=1

P (n, λd)P (m, λu)fn,m(r) (4)

The second expression in (4) shows that the unconditional distribution of returns is a

mixture density. This fact has important implications for the maximum likelihood estimation

of the process, which will be discussed later.
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Table (1) presents the expression for the first four moments of r(s) under GBM, JD,

and PBJD models.9 Clearly, relative to GBM, both the JD and the PBJD have positive

kurtosis leading to a leptokurtic returns’ distribution. Whether JD or PBJD provides a

better description of data is addressed in the empirical section presented next.

Estimation and Hypothesis Testing

The proposed PBJD model is a first-order stochastic differential equations of generalized

Itô type. Such processes can be estimated by maximum likelihood estimation (MLE), the

method of moments and its variants including cumulant matching, generalized method of

moments (GMM), and simulated moment estimation.10 The cumulant and MLE methods

will be used in this study.

For large samples, MLE is the best method of estimation, because under mild regularity

conditions, the estimated parameter are consistent, asymptotically normal and asymptoti-

cally efficient (Basawa & Rao 1980, Brown & Hewitt 1978, Lo 1988, Sorensen 1991). However,

MLE requires a complete specification of the transition density, which for nonlinear models

may not have an explicit expression. Fortunately the PBJD is a linear process with inde-

pendent increments and explicit transition density. Moreover, the selected distributions for

the jump components have properties that make the MLE tractable.

Let S(0), S(1), S(2), . . . , S(M) denote realizations of stock price at equally-spaced times

k = 0, 1, 2, . . . ,M . The one period rate of return r(t) = ln S(t)− ln S(t− 1) is IID with the

density function (4). Hence the estimation problem at hand has the classical IID set-up.

One method for obtaining parameter estimates for our model is to “match cumulants.”

We choose this method rather than “moment matching” because the cumulants of r(s) are

easier to compute . PBJD has six unknown parameters (µ, σ2, λu, ru, λd, rd) which would

require the matching of the first six population and sample cumulants. Solving the resulting

equations for the parameters provides a set of estimates. This method was employed by

Press (1967), Beckers (1981), and Ball & Torous (1983) to obtain parameter estimate for the

JD model.

Appendix (1) contains the derivation of the cumulants for PBJD model. Estimation by
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cumulant matching yields consistent, but inefficient estimators. Moreover, because cumu-

lants are functions of the sample moments, the distributions of the cumulant estimators in

large samples will be normal (Press 1968). However, the cumulant estimates may not exist,

or have the wrong sign. This drawback has limited the usefulness of cumulant matching in

empirical work. Given these limitation, we use cumulant matching as a means to obtain

initial values for MLE.

The developments in maximum likelihood estimation of Itô processes is discussed in

Lo (1988) and Sorensen (1991). They prove the consistency, asymptotic normality and

asymptotic efficiency of MLE.11 With equally-spaced sampled data, the log-likelihood given

M returns observations is:

L(r; λu, λd, ru, rd, µ, σ2) =
M∑
i=1

ln(f(ri)) (5)

where f(ri) is given by (4). As noted, the unconditional distribution of returns is a mixture

density. Kiefer (1978) has shown that for mixture densities like (4), a global maximum of the

log-likelihood function (5) does not exist. This is because a singularity arises when for the

ith observation ri = µ and σ2
i → 0. At such point the log-likelihood function (5) becomes

infinite.12

Kiefer (1978) proved that if the parameter space is compact and large enough to include

the true parameters, then a bounded local maximum of the likelihood function exists and the

parameter estimates will be consistent and asymptotically normal. Moreover, standard errors

for the estimates can be constructed by standard procedures such as using the information

matrix. Hamilton (1994, page 689) and Kiefer (1978) have offered remedies to deal with

the singularity problem associated with the mixture density. As Hamilton (1994) shows

singularities do not pose a major problem so long as the the selected numerical maximization

procedure converges to a local maxima.

The Newton-Raphson method has been the most widely used numerical procedure for

jump-diffusion models. This optimization method requires the first and second order deriva-

tives of the log-likelihood function. Such derivatives are difficult to compute for the PBJD

model. To avoid this difficulty we use Powell’s method. The latter method uses succes-

sive line optimization in the conjugate directions and does not necessitate the use of the

10



derivatives.13

It is straight forward to show that the regularity conditions described in Kiefer (1978)

generalize to finitely many mixed distributions such as (4). This is particularly true since

we truncate the Poisson compound sums (see below). To avoid the singularity problem we

choose a range of initial values to ensure the parameter space is large enough to cover the

true parameter values. We also ensure that the likelihood function obtained by Powell’s

method converges. Hence the conditions described in Hamilton (1994) and Kiefer (1978)

are met and the consistency and asymptotic normality of the obtained maximum likelihood

estimates are guaranteed.

The likelihood function in (4) involves double infinite summations and double improper

integrals. First, piecewise Gaussian quadratures are employed to compute the integral and

the double integral (Press, Teukolsky, Vetterling & Flannery 1992). We find that for plausible

parameter values, lower bound truncation of the integrals at (-2.0) provides six digit accuracy.

Next, the infinite sums are calculated using the usual termination criterion; if Sn =
∑n

i=1 Xi,

then we stop the summation if 2|Xn+1| ≤ FTOL × (|Sn| + |Sn+1|) (Press et al. 1992).

We choose FTOL = 10−10, which will guarantees at least eight digits accuracy. Standard

error for the estimates is obtained by the outer-product method, which is based on the first

derivative of the likelihood function (see Hamilton (1994), page 143).

Within the MLE framework, the likelihood ratio test (LRT) is the standard method for

testing alternative hypothesis and under mild regularity conditions, the LRT has an asymp-

totic χ2 distribution (see Basawa & Rao (1980) and Sorensen (1991)). All empirical papers

in this area employ LRT to test the validity of JD versus the GBM model and the results

generally favors the JD model. Our null hypothesis is also GBM with alternatives being JD

or PBJD. Under the null and the alternative(s), the log-likelihoods for M observations of

daily returns are, respectively:

L0(r; θ0) =
M∑
i=1

ln(f0,0(ri))

11



L1(r; θ1) =
M∑
i=1

ln(f(ri))

where θ0 = {µ̂0, σ̂
2
0} and θ1 = {µ̂1, σ̂

2
1, λ̂u, r̂u, λ̂d, r̂d} are parameter estimates obtained from

maximum likelihood estimation of each model. Under the assumed regularity conditions,

−2 ln(Λ) = −2 [L0(r; θ0)−L1(r; θ1)] is asymptotically Chi-squared distributed with 4 degrees

of freedom.14

Data and Results

The Data are 507 daily returns for six New York Stock Exchange (NYSE) listed stocks (log-

relatives adjusted for dividend and stock splits spanning the period 1/1/1991 to 12/31/1992).15

The firms are Boeing (BA), Bethlehem Steel (BS), Delta Airlines (DAL), Ford Motors (F),

Goodyear Tires (GT), and International Business Machines (IBM).

Table (2) presents the sample statistics for the data used and figures (1) through (6)

contain time-series plots. The six series exhibit varying degree of volatility, positive and

negative trend, and cyclical patterns during the period considered. For example, visual

inspection of Figures (1), (2), and (5) indicates a downward trend common to these series but

different frequencies of large price changes (greater than 5% in absolute value). In general

all six series exhibit large negative and positive prices changes that occur with different

intensity, all of which is consistent with the skewness and excess kurtosis indicated by the

sample statistics in Table (2).

Table (3) presents the MLE estimates for the parameters of the GBM model along with

the value for the log-likelihood function. Drift and volatility estimate vary widely across

the series. As expected, MLE estimates of µ and σ are highly significant (standard error

appears below the parameter estimate). The annualized expected return estimates range

from -34.95% (IBM) to well over 100%. Similarly annualized volatility estimates range from

25% to 43%.16

The parameter estimates for the JD model are reported in Table (4). Relative to GBM

the log-likelihood values increase significantly. The LRT statistics indicates that for all series

the null hypothesis of no-jump component can be rejected at 1% significance level, which is

12



consistent with findings reported in the extant empirical literature (Das & Sundaram 1999,

Jorion 1988, Tucker 1992). However, as noted earlier, these results should be interpreted

carefully since the test is performed on the boundary of the parameter space (λj = 0, j =

u, d).

One alternative to the JD model commonly tested in the literature restricts the mean

jump magnitude (α) to equal zero, which in turn leads to a symmetric returns distribution

(zero skewness). Table (5) report MLE parameters for that model and two sets of LRT

results. The first LRT tests the null hypothesis of GBM against the alternative of JD model

with zero mean jump. This hypothesis is rejected at 1% significance level for all series,

indicating that the jump component plays an important role in determining returns dynam-

ics. The second LRT tests the hypothesis of zero versus non-zero mean jump magnitude.17

The last column of Table (5) shows that this hypothesis cannot be rejected for all stocks

considered.

Considering both JD models, it is apparent that the addition of a jump component signif-

icantly changes the estimated drift and volatility parameters associated with the continuous

part of the process. However, without restricting the mean jump magnitude to equal zero,

some of the Poisson intensity parameters (BS, F, and GT in Table 4) are too large to be

consistent with the notion that non-marginal jump in prices are “rare” events that occur

infrequently. This type of finding has been reported in most empirical examination of the

JD model.

The cumulant estimates for the PBJD model are presented in Table (6). Press (1968)

and Beckers (1981) reported non-existence or negative volatility estimates for the JD model.

For our sample, the cumulant method produces reasonable result for only three stocks.

Furthermore, our volatility estimates are consistently positive. The cumulant estimates,

when available, are used as initial values for the maximum likelihood estimation.

Table (7) contain the MLE parameter estimates for our model. Unlike the cumulant

method, MLE produces reasonable estimates for all series. The caveat regarding tests of

hypothesis on the boundary of parameter space withstanding, the null hypotheses of GBM

is rejected at 0.01 significance level for all stocks. The significant increase in the log-likelihood

values provide strong support for PBJD model.
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The parameter estimate in Table (7) in conjunction with the formulas in Table (1) can be

used to calculate the moments of the returns distribution. For example, using the estimated

parameters one can obtain the value of the first four moments while distinguishing the effect

of the jumps from the continuous components of the process.

The PBJD model offers clear improvements in characterizing the empirical distribution

of returns. This parameterization of the return process can serve as the starting point for

furthering research in a number of areas in economics and finance. In particular, asset and

option pricing models proposed by Bates (1991), Jarrow & Rosenfeld (1984), Naik & Lee

(1990), and Merton (1976b) can be extended to the PBJD process. Intertemporal portfolio

(consumption) choice models can be enhanced in similar vein. For a variety of other economic

variables, including foreign exchange, inflation, and short term interest rates, information

arrival plays a significant role in driving the dynamics of the process. Our model can be

easily adopted to these areas as well. Moreover it may be interesting to assess the significance

of the proposed distinction between good and bad news in these settings.

Conclusions

The paper presented an asymmetric jump-diffusion model for security prices. The cumulant

and maximum likelihood estimation procedures were used to estimate the parameters of this

model. The model was applied to daily data for six NYSE listed stocks. Likelihood ratio

tests for alternative hypothesis were implemented. Empirical evidence strongly supports the

proposed model.

There are a number of interesting directions for future extensions of this work. As a

starting point, optimal portfolio choice rules can be derived taking the proposed returns

process as exogenous. Such exercise will make it possible to derive asset pricing functions,

including an option pricing formula. Following Merton (1976a), the problem of errors in

option pricing due to the misspecification of the stochastic process generating the underlying

stock returns can also be addressed using our model. In related research we are currently

investigating some of these issues.
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Appendix 1: Cumulants Computation for PBJD Model

The derivation of the moments and cumulants of PBJD model presented below follows statis-

tical procedures presented in Kendall & Stuart (1977). Let φX(s) = E(eXs) be the moment

generating function (MGF) of random variable X. Then the cumulant generating function

(CGF) is defined as κX(s) = ln φX(s), and the cumulants, κ1, κ2, κ3, . . . , kr are defined by

κX(s) = ln φX(s) =
∑∞

i=1
κi

i!
ti. Cumulants and moments are related by the following rela-

tionship:

κ1t +
κ2t

2

2!
+ · · ·+ κit

i

i!
+ · · · = ln(1 + (EX)t +

(EX2)t2

2!
+ · · ·+ (EX i)ti

i!
+ · · · )

We use this relationship and the following results to derive cumulant estimators for PBJD

model.

1. Cumulants are additive: Suppose κX
i is the ith cumulant of X, and κY

i is the ith cumu-

lant of Y , and X and Y are independent. Let Z = X + Y . Then the ith cumulant of Z is

κZ
i = κX

i + κY
i .

2. Cumulants of Compound Poisson Process: Suppose Y =
∑N(λt)

i=1 Xi, where Xi’s are IID

with MGF φX(s) and N(λt) is Poisson process with intensity λ. Then MGF of Y is φY (s) =

exp{λt(φX(s) − 1)}. The CGF for this process is κY (s) = λt(φX(s) − 1) = λt
∑∞

i=1
EXi

i!
sk.

The r-th cumulant of Y is κr = λtEY r for r = 1, 2, 3, . . . .

3. Moments of the Exponential Distribution: Let X has an exponential density, fX(x) =

θe−θx. Then the r-th moment EXr = r!
θr .

The first six cumulants of PBJD can be computed from sample moments as follows:

15



K̄1 = m1,

K̄2 = m2 −m2
1,

K̄3 = m3 − 3m2m1 + 2m3
1,

K̄4 = m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1

K̄5 = m5 − 5m4m1 − 10m3m2 + 20m3m
2
1 + 30m2m13 − 60m2m

3
1 + 24m5

1

K̄6 = m6 − 6m5m1 − 15m4m2 + 30m4m
2
1 − 10m2

3 + 120m3m2m1 − 120m3m
3
1

+ 30m3
2 − 270m2

2m
2
1 + 360m2m

4
1 − 120m6

1

where K̄h, h = 1, · · · , 6, denote the sample cumulants and m̄h, h = 1, · · · , 6, denote the

sample moments. The first six population cumulants are:

K1 = s(µ− 1

2
σ2 +

λu

ru

− λd

rd

) K2 = s(σ2 + 2
λu

r2
u

+ 2
λd

r2
d

)

K3 = 6s(
λu

r3
u

− λd

r3
d

) K4 = 24s(
λu

r4
u

+
λd

r4
d

)

K5 = 120s(
λu

r5
u

− λd

r5
d

) K6 = 720s(
λu

r6
u

+
λd

r6
d

)

Setting Kh = K̄h, h = 1, . . . , 6, yields the cumulant estimates,
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0 = (
K̄2

5

5
− K̄4K̄6

6
)
r̂u

2

20
+ (

K̄4K̄5

2
+

K̄3K̄6

3
)
r̂u

10
+ (

K̄2
4

4
− K̄3K̄5

5
)

r̂d =
5K̄4r̂u − 20K̄3

−K̄5r̂d + 5K̄4

λ̂d =
r̂d

4( K̄4

24s
ru − K̄3

6s
)

r̂u + r̂d

λ̂u = r̂3
u(

K̄3

6s
+

r̂d(
K̄4

24s
r̂u − K̄3

6s
)

r̂u + r̂d

)

σ̂2 =
K̄2

s
− 2

λ̂u

r̂2
u

− 2
λ̂d

r̂2
d

µ̂ =
K1

s
+

1

2
σ̂2 − λ̂u

r̂u

+
λ̂d

r̂d

That is, the cumulant estimators are obtained by first solving a quadratic equation for

its positive root for ru and then substituting to find the remaining five estimates.
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Table 1: The First Four Moments for Alternative Models

GBM JD PBJD

Er(s) (µ− 1
2σ2)s (µ− 1

2σ2 + λα)s (µ− 1
2σ2 + λu

ru
− λd

rd
)s

Var[r(s)] σ2s (σ2 + λ(β2 + α2))s (σ2 + 2λu

r2
u

+ 2λd

r2
d
)s

Skewness 0 λα(α2+3β2)

(σ2+λ(β2+α2))
3
2
√

s

6( λu
r3

u
−λd

r3
d

)

(σ2+2 λu
r2

u
+2

λd
r2

d

)1.5
√

s

Kurtosis 0 λ(α4+6α2β2+3β4)
(σ2+λ(β2+α2))2s

24( λu
r4

u
+

λd
r4

d

)

(σ2+2 λu
r2

u
+2

λd
r2

d

)2s

Table 2: Sample Statistics for Dividend-Adjusted Daily Stock Returns (507 Obs.)

Stock Mean Std Dev Min Max Skewness Kurtosis
BA -2.402E-5 0.0161 -0.077 0.063 -0.050 2.67
BS 5.846E-4 0.0274 -0.141 0.152 0.383 3.08
DAL 8.046E-3 0.0194 -0.065 0.078 0.298 0.90
F 1.363E-3 0.0207 -0.073 0.104 0.385 1.56
GT 2.807E-3 0.0216 -0.073 0.115 0.611 2.65
IBM -1.256E-3 0.0162 -0.107 0.061 -1.182 7.37

Table 3: ML Estimates for GBM Model

Stock µ σ ln(lkhd)
BA -2.402E-5 0.0161 1215.31

(0.715E-5) (0.0005)
BS 5.846E-4 0.0274 1104.84

(0.122E-4) (0.0008)
DAL 8.046E-3 0.0194 1279.65

(8.615E-4) (0.0006)
F 1.363E-3 0.0207 1247.35

(0.919E-5) (0.0006)
GT 2.807E-3 0.0212 1235.33

(0.941E-5) (0.0006)
IBM -1.256E-3 0.0162 1372.30

(0.715E-5) (0.0005)

Standard Error in parantheses.
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Table 4: ML Estimates for JD Model (Dividend-Adjusted Daily Data)

Stock λ α β µ σ ln(lkhd) −2 ln(Λ)
BA 0.1617 3.791E-3 0.0254 -5.590E-4 0.0124 1396.79 47.42∗∗

(0.0521) (4.286E-3) (0.0031) (7.203E-4) (5.385E-4)
BS 2.139 2.640E-3 0.0172 -5.054E-3 8.629E-3 1123.51 37.34∗∗

(0.3549) (1.125E-3) (0.0008) (2.259E-3) (2.768E-3)
DAL 0.2239 7.832E-3 0.0202 -1.521E-3 0.0167 1286.33 13.36∗∗

(0.0556) (4.452E-3) (0.0034) (1.201E-3) (8.511E-4)
F 3.746 1.757E-3 0.0101 -5.382E-3 4.220E-3 1260.94 27.18∗∗

(1.7300) (8.014E-4) (0.0006) (2.987E-3) (5.988E-3)
GT 1.570 3.625E-3 0.0148 -2.823E-3 8.6603E-3 1255.18 39.70∗∗

(0.2058) (1.095E-3) (0.0008) (1.602E-3) (1.387E-5)
IBM 0.0479 -0.0189 0.0407 -2.621E-4 0.0128 1422.71 100.82∗∗

(0.0495) (1.268E-2) (0.0075) (5.460E-4) (3.483E-4)

‘**’ (‘*’) indicates significances at 1% (%5) level. Standard Error in parantheses.

Table 5: ML Estimates for JD Model with Mean Jump (α) Equal to Zero

Stock λ β µ σ ln(lkhd) −2 ln(Λ1) −2 ln(Λ2)
BA 0.1557 0.0259 -2.421E-4 0.0125 1396.35 46.54∗∗ 0.88

(0.0517) (0.0032) ( 6.419E-4) (0.0005)
BS 0.1068 0.0460 -3.662E-3 0.0228 1122.13 34.58∗∗ 2.76

(0.0493) (0.0059) ( 1.133E-3) (0.0009)
DAL 0.1624 0.0241 -2.280E-6 0.0169 1284.87 10.44∗∗ 2.92

(0.0522) (0.0040) ( 8.446E-4) (0.0007)
F 0.0975 0.0322 1.105E-3 0.0181 1256.32 17.94∗∗ 9.24∗∗

(0.0489) (0.0053) ( 8.786E-4) (0.0007)
GT 0.3942 0.0233 2.173E-3 0.0152 1252.13 33.60∗∗ 6.1∗

(0.0655) (0.0021) ( 8.783E-4) (0.0009)
IBM 0.0425 0.0473 -4.972E-4 0.0132 1420.77 96.94∗∗ 3.88∗

(0.0462) (0.0102) ( 6.273E-4) (0.0004)

‘**’ (‘*’) indicates significances at 1% (%5) level. Standard Error in parantheses.

Table 6: Cumulant Estimates for PBJD Model (Dividend-Adjusted Daily Data)

Stock Daily λu λd ru rd µ σ
BA 0.5573 0.1618 119.23 76.32 -2.516E-3 0.0112
BS 0.8662 0.3991 66.22 62.01 -5.987E-3 0.0121
IBM 2.772E-4 0.0848 19.20 46.02 6.609E-4 0.0134
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Table 7: ML Estimates for PBJD Model

Stock λu λd ru rd µ σ ln(lkhd) −2 ln(Λ)
BA 0.3714 0.04760 99.53 44.55 -2.613E-3 0.0120 1398.43 50.69∗∗

(0.2349) (0.1431) (1.462) (1.015) (1.566E4) (1.908E-6)
BS 0.5198 0.0232 61.79 27.42 -6.785E-3 0.0203 1126.88 44.08∗∗

(0.1497) (0.0386) (1.684) (0.6591) (5.101E-4) (7.530E-6)
DAL 0.3082 0.06892 86.29 73.06 -2.295E-3 0.0166 1286.36 13.42∗∗

(0.4161) ( 0.1925) (3.956) (0.2468) (5.616E-4) (1.201E-5)
F 0.4224 0.6437 82.18 142.04 8.854E-4 0.0154 1257.57 20.44∗∗

(0.4942) (0.1747) (0.9165) (0.0383) (5.576E-4) (5.556E-6)
GT 0.1076 0.0416 45.55 62.97 1.277E-3 0.0184 1253.32 35.98∗∗

(0.1604) (0.0864) (3.905) (0.2417) (8.449E-4) (1.299E-5)
IBM 0.0884 0.06307 83.53 37.78 -5.669E-4 0.0121 1422.19 99.78∗∗

(0.6434) (0.5721) (5.874) (2.344) (1.553E-4) (4.850E-6)

‘**’ (‘*’) indicates significances at 1% (%5) level. Standard Error in parantheses.
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Notes

1 There is a large body of empirical studies that document the existence of Leptokurtic returns
distribution. For summary of recent developments see Bookstaber & McDonald (1987), Madan &
Seneta (1990), and Tucker (1992) and their reference section.

2 Tucker (1992) provides comparison of these models using daily stock returns.

3 See Das (1998), Ho, Perraudin & Sorenson (1996), Jorion (1988), Pan (1997) and their refer-
ences.

4 For the existence of jumps in interest rates processes see Das (1997), and Das (1998). Jump
in foreign exchange process is documented in Jorion (1988), Bates (1995b), and Bates (1995a).

5 Oldfield, Rogalski & Jarrow (1977) further generalized Merton’s model and proposed an au-
toregressive model in which jump magnitudes are autocorrelated.

6 Note that our definition of good and bad news is specific to direction of price jump rather
than a qualitative assessment of specific news item.

7 Product cycles characterized by early market gains followed by increased competition in later
phase of a products life cycle provide an additional rationale for the proposed extension.

8 This can be proven by comparing the characteristic functions of JD and PBJD models.

9 The last two moments are defined as: skewness = E(X−EX)3

[V ar(X)]3/2 and kurtosis = E(X−EX)4

[V ar(X)]2
− 3.

10 The GMM procedure only depends on the moments rather than the transition density. Hansen
(1982) showed that under certain regularity conditions GMM estimates are consistent and asymp-
toticly normal. Hansen & Scheinkman (1995) considered the estimation problem for a more general
class of continuous-time Markov processes. These authors have shown that under certain technical
regularity conditions, GMM estimators remain consistent and asymptotically normal. The simu-
lated moment estimators were proposed by Duffie & Singleton (1993), who provided conditions for
their consistency and asymptotic normality. For recent application of the GMM methods to the
problem of estimating jump-diffusion models see Ho et al. (1996) and Perraudin & Sorensen (1996)
and references there in.

11 Other studies includes Liptser & Shiryayev (1978)( Ch17), Le Breton (1976), Brown & Hewitt
(1978), and Borkar & Bagchi (1982). Lo (1988) considered the MLE for generalized Itô processes
with discretely (equally- or unequally-spaced) sampled data. He derived a particular functional
partial differential equation which characterizes the exact likelihood function. However, he did not
establish conditions for the existence of such likelihood functions. Sorensen (1991) provides condi-
tions for the existence of likelihood function. The PBJD model satisfies the conditions presented
in Sorensen (1991).
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12 Evidently this fact has been overlooked in most studies that use the maximum likelihood
procedure to estimate jump-diffusion models of asset returns.

13 See Hamilton (1994), page 139 for a complete description of Powell’s optimization procedure.
The computation programs we use are taken from Press et al. (1992).

14 Strictly speaking LRT cannot be considered a formal test in the present setting because it
forces the Poisson parameter to fall on the boundary of the parameter space,λj = 0, j = u, d (for
details see Davies (1977) and Self & Liang (1987)). However, the use of LRT to test JD versus
GBM is wide spread and can be justified particularly if the reduction in the likelihood ratio test
statistics is less than 2*(number of free parameters), then accepting the alternative hypothesis is
equivalent to using the Akaike Information Criterion (AIC). That is LRT can only be used as an
indication of the most likely model. To see this recall the definition: AIC = -2 max (likelihood) +
2 (number of free parameters).

15 We also estimated our model using the monthly S&P-500 composite index. As expected, the
jump components were not as important for monthly data. These results are available from authors
upon request.

16 These values are obtained by plugging the parameter estimates into the formulas in Table (1)
and setting s = 252.

17 In this case LRT has the usual interpretation since this hypothesis test is not on the boundary
of the parameter space.

28



References

Ball, C. A. & Torous, W. N. (1983), ‘A simplified jump process for common stock returns’, Journal
of Financial and Quantitative Analysis 18(1), 53–65.

Basawa, I. & Rao, P. (1980), Statistical Inference for Stochastic Processes, Academic Press.

Bates, D. S. (1991), ‘The crash of ’87: was it expected? the evidence from options markets’, Journal
of Finance 46(3), 1009–1044.

Bates, D. S. (1995a), ‘Dollar jump fears, 1984-1992: distributional abnormalities implicit in cur-
rency futures options’, Journal of International Money and Finance.

Bates, D. S. (1995b), ‘Jumps and stochastic volatility: exchange rate processes implicit in
deutschemark options’, Review of Financial Studies.

Beckers, S. (1981), ‘A note on estimating the parameters of the diffusion-jump model of stock
returns’, Journal of Financial and Quantitative Analysis 36(1), 127–140.

Bollerslev, T., Chou, R. Y. & Kroner, K. F. (1992), ‘Arch modeling in finance’, Journal of Econo-
metrics 52, 5–59.

Bookstaber, R. M. & McDonald, J. B. (1987), ‘A general distribution for describing security price
returns’, Journal of Business 6(3), 401–24.

Borkar, B. & Bagchi, A. (1982), ‘Parameter estimation in continuous time stochastic processes’,
Stochastics 8, 193–212.

Brown, B. & Hewitt, J. (1978), ‘Asymptotic likelihood theory for diffusion processes’, Journal of
Applied Probability 12, 228–238.

Das, S. R. (1997), ‘Discrete-time bond and option pricing for jump-diffusion processes’, Review of
Derivatives Research 1(3), 211–44.

Das, S. R. (1998), ‘Poisson-gaussian processes and the bond markets’, Working paper, Harvard
Business School and NBER.

Das, S. R. & Sundaram, R. K. (1999), ‘Of smiles and smirks: Higher-order moments in modeling
asset price processes in finance’, Journal of Financial and Quantitative Analysis.

Davies, R. B. (1977), ‘Hypothesis testing when a nuisance parameter is present only under the
alternative’, Biometrica 64(2), 247–54.

Duffie, D. & Singleton, K. (1993), ‘Simulated moments estimation of markov models of assets
prices’, Economatrica 61, 929–952.

Ederington, L. H. & Lee, J. H. (1993), ‘How markets process information: News releases and
volatility’, Journal of Finance 48, 1161–1192.

Fama, E. (1965), ‘The behavior of stock market prices’, Journal of Business 38, 34–105.

Hamilton, J. D. (1994), Time Series Analysis, Princeton University Press.

29



Hansen, L. (1982), ‘Lange sample propreties of generalized method of moments estimations’, Econo-
metrica 50, 1029–1086.

Hansen, L. & Scheinkman, J. (1995), ‘Back to the future: Generating moment implications for
continuous-time markov processes’, Econometrica 63, 767–904.

Ho, M. S., Perraudin, W. R. & Sorenson, B. E. (1996), ‘A continous-time arbitrage-pricing model
with stochastic volatility and jumps’, Journal of Business & Economic Statistics 14(1), 31–43.

Jarrow, R. A. & Rosenfeld, E. R. (1984), ‘Jump risks and the intertemporal capital asset pricing
model’, Journal of Business 57(3), 337–351.

Jorion, P. (1988), ‘On jump processes in the foreign exchange and stock markets’, The Review of
Financial Studies 1(4), 427–445.

Kendall, M. G. & Stuart, A. (1977), The Advance Theory of Statistics, Griffin and Co., London.

Kiefer, N. M. (1978), ‘Discrete parameter variation: Efficient estimation of switching regression
model’, Econometrica 46(2), 427–34.

Le Breton, A. (1976), On continuous and discrete sampling for parameter estimation in diffusion
processes, In R.J. West (Ed.), Stochastic Systmes: Modeling, Identification and Optimization,
North-Holland Publishing Company.

Liptser, R. & Shiryayev, A. (1978), Statistics of Random Processes II: Applications, Springer-Verlag.

Lo, A. W. (1988), ‘Maximim likelihood estimation of generalized ito processes with discretely
sampled data’, Econometric Theory 4, 231–47.

Madan, D. B. & Seneta, E. (1990), ‘The variance gamma model of share market returns’, Journal
of Business 63, 511–525.

Mandelbrot, B. (1963), ‘The variations of certain speculative prices’, Journal of Business 36, 394–
419.

Merton, R. C. (1976a), ‘The impact on option pricing of specification error in the underlying stock
price returns’, The Journal of Finance 31(2), 333–350.

Merton, R. C. (1976b), ‘Option pricing when underlying stock returns are discontinuous’, Journal
of Financial Economics 3, 224–44.

Milgrom, P. R. (1981), ‘Good news and bad news: Representation theorems and applications’, Bell
Journal of Economics 12, 380–91.

Naik, V. & Lee, M. (1990), ‘General equilibrium pricing of options on the market portfolio with
discontinuous returns’, The Review of Financial Studies 3(4), 493–521.

Oldfield, G. S., Rogalski, R. J. & Jarrow, R. A. (1977), ‘An autoregressive jump process for common
stock returns’, Journal of Financial Economics 5, 389–418.

Pan, J. (1997), ‘Stochastic volatility with reset at jumps’, Working Paper, Graduate School of
Business, Stanford University.

30



Patel, J., Kapadia, C. H. & Owen, D. B. (1976), Handbook of Statistical Distributions, Marcel
Dekker Inc.

Perraudin, W. R. & Sorensen, B. (1996), ‘Modelling exchange rates in continous time: Estimation
and option pricing’, Working paper, Birkbeck College, London.

Press, S. J. (1967), ‘A compound events model for security prices’, Journal of Business 40, 317–335.

Press, S. J. (1968), ‘A modified compound poisson process with normal compounding’, Journal of
American Statistical Association pp. 607–613.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (1992), Numerical Recipes in
FORTRAN, Cambridge University Press.

Protter, P. (1991), Stochastic integration and differential equations, Springer-Verlag, New York.

Roberts, H. V. (1959), ‘Stock-market ‘patterns’ and financial analysis: methodological suggestions’,
The Journal of Finance XIV(1), 1–10.

Self, S. G. & Liang, K. (1987), ‘Asymptotic properties of maximim likelihood estimators and like-
lihood ratio test under nonstandard conditions’, Journal of American Statistical Association
82(398), 605–10.

Sorensen, M. (1991), Likelihood methods for diffusions with jumps, in N. V. Prabhu & I. V.
Basawa, eds, ‘Statistical Inference in Stochastic Processes’, Marcel Dekker, Inc., New York,
USA, chapter 3, pp. 67–105.

Tucker, A. L. (1992), ‘A reexamination of finite-variance and infinite-variance distributions as
models of daily stock returns’, Journal of Business and Economic Statistics 10(1), 73–81.

31


