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Abstract

Effective hedging strategies for variable annuities are crucial for insurance compa-

nies in preventing potentially large losses. We consider discrete hedging of options

embedded in guarantees with ratchet features, under both equity (including jump)

risk and interest rate risk. Since discrete hedging and the underlying model consid-

ered lead to an incomplete market, we compute hedging strategies using local risk

minimization. Our results suggest that risk minimization hedging, under a joint

model for the underlying and interest rate, leads to effective risk reduction. More-

over, hedging with standard options is superior to hedging with the underlying when

both equity and interest rate risks are appropriately modeled.
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1. Introduction

Annuities are contracts designed to provide payments to the holder at specified in-

tervals, usually after retirement. Traditionally, insurance companies offered fixed an-

nuities which guarantee a stream of fixed payments over the life of the contract. This

type of annuities was attractive to the policy holders in the context of high interest

rates and high cost of investment in the equity market. However, bullish markets

and low interest rate environments motivate the investors to look for higher returns

than those provided by the conventional annuities. Variable annuities, whose future

benefits are based on the performance of a portfolio of securities including equities,

have proved to be very attractive for investors, since they not only provide partici-

pation in the stock market, but they also have some protection against the downside

movements in the market. Variable annuities in the U.S. are similar to the unit-linked

annuities in the U.K. and the segregated funds in Canada.

Variable annuities are appealing to investors because they are tax-deferred and they

offer different types of benefits, such as the guaranteed minimum death benefits

(GMDB). Until the beginning of the 1990’s, the death benefits were just simple prin-

cipal guarantees (original investment) or rising floor guarantees (original investment

accrued at a minimally guaranteed interest rate, possibly capped at a predetermined

level). In the circumstances of the bullish market of the 1990’s, insurance companies

have started to offer GMDB with more attractive features, such as the ratchet, which

guarantees a death benefit based upon the highest anniversary account value. The

anniversary dates at which the guarantee is reset are typically annual.

The simultaneous occurrence of death and market downturn seemed unlikely during

the strong bullish market of 1990’s, however, in the following market crash, insurance
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companies realized that they may face extremely large losses. Devising good risk

management strategies has become of crucial importance. The traditional actuarial

methods adopt a passive strategy of holding a sufficient reserve in risk-free instruments

in order to meet the liabilities with high probability. Recent research applies methods

from finance for computing the fair price of a guaranteed minimum death benefit in

a variable annuity and meeting the contract liabilities. The typical risk management

strategies in this case consist of holding positions in stocks and bonds and dynamically

rebalance these positions in order to cover the guarantees. The financial engineering

approach is based on the fact that the guaranteed minimum death benefit can be

viewed as a put option with a stochastic maturity date. This put option has a strike

equal to the initial investment for a GMDB with principal guarantee, or a strike

increasing at the minimum guaranteed rate in the case of a rising floor feature. For

a GMDB with ratchet features, the corresponding option is a lookback put for which

the strike price is equal to a running maximum of the account value.

Brennan and Schwartz (1976), Boyle and Schwartz (1977), Aase and Persson (1992),

Persson (1993), Bacinello and Ortu (1993a) use option theory to price and hedge the

embedded options in variable annuities. With the main assumption that the market

is complete under both financial and mortality risk, the option price is equal to

the expected value of the payoff with respect to a risk-neutral probability measure.

Moreover, the option can be exactly replicated using delta hedging. The number of

shares of the underlying held in a delta hedging strategy is given by the sensitivity

(delta) of the option value to the underlying.

Typically, if the number of policyholders is large enough, it can be assumed that

the market is complete under mortality risk. By the Law of Large Numbers, the

total liability in this case will be close to its expected value. An insurance company

can diversify away its mortality risk by selling enough policies. In this context, the
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embedded put options can be assumed to have a deterministic maturity. Moller (1998,

2001a,b) investigates pricing and hedging of insurance contracts under mortality risk.

Assuming market completeness under financial risk is, however, more problematic.

One issue is that the benefits are sensitive to the tail distributions of the underlying

accounts. While empirical market data shows that the distributions of equity returns

exhibit fat tails, this behavior cannot be explained by the simple Black-Scholes model

for equity prices. Unfortunately, as soon as one allows for stochastic volatility, or if a

jump component is added to the model, the market becomes incomplete. Moreover,

liquidity constraints and the impossibility of hedging continuously in time, coupled

with the need to rebalance as little as possible due to the impact of transaction costs,

also lead to an incomplete market. Another problem with modeling the life insurance

contracts is that, because of the long maturities of these contracts, stochastic interest

rates may be more appropriate than a constant rate.

The main emphasis of the literature has been on pricing the options embedded in the

life insurance contracts; however, hedging is also very important for risk management

purposes. In this paper we investigate the computation and effectiveness of hedging

strategies under both equity and interest rate risks. We assume that the market is

complete under mortality risk, but the financial market is incomplete, due to a suitable

equity model for fat tails or to discrete hedging. We have analyzed the modeling of

implied volatility risk in Coleman, Li and Patron (2004).

We remark that Bacinello and Ortu (1993b, 1994), Nielsen and Sandmann (1995),

Miltersen and Persson (1999), Bacinello and Persson (1994) also investigate stochas-

tic interest rates; however, these authors focus on pricing and they assume a com-

plete financial market which leads to the existence of a unique equivalent martingale

measure for the equity price. In an incomplete market, however, the equivalent mar-
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tingale measure is not unique and the expected value of the discounted payoff under

any equivalent martingale measure provides a price for the option which excludes

arbitrage opportunities. There exists no best choice when trying to consider one of

these prices as the fair price of the option. Therefore, options cannot be priced by

arbitrage considerations alone. Moreover, since there exists no self-financing strategy

that replicates the option payoff, the intrinsic risk of an option cannot be eliminated

and there is much uncertainty regarding the choice of an optimal hedging strategy.

Delta hedging is often used by practitioners for hedging the options embedded in

a GMDB (Boyle and Hardy, 1997; Hardy, 2000). In theory, delta hedging assumes

continuous rebalancing of the hedging portfolio. In practice, a natural problem that

occurs is the impossibility of hedging continuously and the necessity to rebalance

as little as possible due to transaction costs. Moreover, for evaluating the hedging

performance and the riskiness of a hedging strategy, one has to work with the model

for the real world underlying price evolution. Since the delta hedging strategy is

computed in a risk neutral framework, it is typically not optimal under the real world

dynamics when the market is incomplete.

The semi-static hedging proposed by Carr (2002) and Carr and Wu (2002) uses

standard options as hedging instruments; however, the existence of a continuum of

standard options is assumed. In practice, the availability of only a finite number of

standard options leads to incompleteness. Moreover, semi-static hedging, like delta

hedging, requires the underlying price dynamics in a risk-neutral framework.

Given that, in an incomplete market, the intrinsic risk of an option cannot generally

be fully hedged, one idea for computing an optimal hedging strategy is to mini-

mize a particular measure of this intrinsic risk. Föllmer and Sondermann (1986),

Föllmer and Schweizer (1989), Schäl (1994), Schweizer (1995, 2001), Mercurio and
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Vorst (1996), Heath, Platen and Schweizer (2001a,b), Bertsimas, Kogan and Lo (2001)

study quadratic criteria for risk minimization. Alternatively, Coleman, Li and Patron

(2003, 2006) investigate piecewise linear measures. There are two main criteria: local

risk minimization and total risk minimization. Local risk minimization consists in

choosing an optimal hedging strategy that exactly matches the option by its final

value and minimizes the intermediate cashflows for rebalancing the hedging portfo-

lio. Alternatively, total risk minimization computes an optimal self-financing strategy

that best matches the option payoff by its final value. Unfortunately, total risk min-

imization is a dynamic stochastic programming problem which generally leads to

very expensive computations. However, local risk minimizing hedging strategies can

be easily computed. Coleman, Li and Patron (2004) illustrate numerically that, for

hedging variable annuities with ratchet features, local risk minimization hedging is

superior to delta hedging in an incomplete market framework.

Moller (1998, 2001a,b), Lin and Tan (2003) use risk minimization to compute the

hedging strategies under mortality risk. Lin and Tan (2003) consider, in addition,

a model with stochastic interest rates. However, in the above papers the market is

assumed complete from a financial point of view.

The main contribution of this paper is to illustrate the importance of modeling of

stochastic interest rates, in addition to the equity risk, in the computation of hedging

strategies for the options embedded in a GMDB. Specifically, we evaluate the effec-

tiveness of the discrete local risk minimizing hedging strategy under both equity risk

and interest risk with an appropriate equity model for fat tails. The discrete local

risk minimizing hedging strategy is computed under the realistic assumption of an

incomplete market due to discrete hedging and jump risk. This paper focuses on the

hedging of GMDB with a ratchet feature, since this is the most difficult death ben-

efit to hedge. We investigate hedging with the underlying, as well as hedging with
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standard options. As illustrated in Coleman, Li and Patron (2004), using standard

options as hedging instruments can be significantly more effective than using the un-

derlying, especially under jump risk. We demonstrate that the superiority of hedging

using standard options, compared with the hedging using the underlying, is greatly

compromised if the interest risk is not appropriately modeled. Moreover, by modeling

the interest rate risk explicitly, local risk minimization is able to achieve hedging ef-

fectiveness comparable to the performance obtained under no interest risk; this is true

even when correlation risk is ignored in the risk minimizing hedging computation.

The paper is structured as follows: in Section 2, we introduce the mathematical frame-

work and we review some background notions related to quadratic risk minimization

in the context of discretely hedging a lookback option embedded in a GMDB with

ratchet feature. In Section 3 we describe the computation of hedging strategies un-

der a Vasicek stochastic interest rate model. We illustrate numerically the hedging

effectiveness using the underlying and the sensitivity of the hedging performance to

the correlation between the underlying and the stochastic interest rates. The hedging

performance of strategies using standard options as hedging instruments is analyzed

in Section 4. Section 5 presents the conclusions of the paper.

2. Quadratic risk minimization

The traditional criteria for hedging in an incomplete market are quadratic risk mini-

mizing criteria. This section reviews the main definitions in the context of discretely

hedging the option embedded in a GMDB with ratchet feature. Since we assume in

this paper that mortality risk can be diversified away, we analyze the hedging of an

embedded option with fixed maturity. Moreover, we do not address the problem of

basis risk in this paper; consequently, we assume that the underlying account deter-
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mining the benefit is linked to a market index, such as S&P500.

Let T > 0 be the maturity of the embedded option, and

0 = t̃0 < t̃1 < ... < t̃M̃−1 < t̃M̃ = T (1)

denote the anniversary account step-up dates. A GMDB with ratchet feature guar-

antees a payoff of max(H, ST ), where H is the maximum anniversary account value,

H = max(St̃0 , ..., St̃M̃−1
). The GMDB payoff corresponds to the underlying account

plus an embedded lookback option with payoff given by:

ΠT = max(H − ST , 0) (2)

We suppose that there are only a finite number of hedging dates

0 = t0 < t1 < ... < tM−1 < tM = T (3)

For simplicity, the anniversary step-up dates in (1) are assumed to form a subset of

the above trading dates. The financial market is described by a filtered probability

space (Ω,F , P ), with filtration (Fk)k=0,1,...,M , where Fk corresponds to the hedging

time tk and w.l.o.g. F0 = {∅, Ω} is trivial. We suppose that the stock price follows a

stochastic process S = (Sk)k=0,1,...,M , with Sk being Fk-measurable for all 0 ≤ k ≤ M .

We assume that the stock price is normalized by the price of the bond with maturity

T and thus assume that the price of this bond B ≡ 1.

At each hedging time, the instruments available for trading are n risky assets with

values Uk ∈ �n and the bond B. The risky assets can include the underlying, liquid

options, and bonds with a shorter maturity (e.g., one year) when hedging interest risk.

The values of the risky assets at time tk+1, are given by Uk(tk+1). In the literature

on hedging in incomplete markets, the hedging instrument is usually the underlying

8



asset (n = 1, Un = Sn). However, with the expansion of option trading, it has become

attractive to use liquid standard options for hedging. Hence, we also analyze the

case when the n risky instruments available for hedging include standard options.

Because of liquidity considerations, we only use standard options with short maturity

(e.g., 1 year), thus the hedging instruments may exist for only a sub-period of the

hedging horizon. Under these conditions, the hedging portfolio constructed at time

tk is liquidated at time tk+1, when a new portfolio is formed.

A hedging strategy is a sequence of trading positions {(ξk, ηk)|k = 0, 1, ..., M}, where

ξk is a vector of positions in the risky assets at time tk and ηk is the amount invested

in the riskless bond B at tk. We assume ξM ≡ 0. This corresponds to liquidating the

hedging portfolio at time T in order to cover for the lookback option payoff.

The value of the hedging portfolio at any time tk is given by Pk = Uk · ξk + ηk. The

change in value of this portfolio due to changes in the risky asset values at time tj+1,

before any rebalancing, is given by (Uj(tj+1) − Uj) · ξj. Therefore, the accumulated

gain at time tk is given by G0 = 0 and

Gk =
k−1∑
j=0

(Uj(tj+1) − Uj) · ξj (4)

The cumulative cost at time tk, Ck, is defined as Ck = Pk − Gk. A strategy is called

self-financing if the cumulative cost (Ck)k=0,1,...,M is constant over time, i.e. C0 =

C1 = ... = CM . This is equivalent to Uk+1 · ξk+1 + ηk+1 − (Uk(tk+1) · ξk + ηk) = 0, for

all 0 ≤ k ≤ M − 1. In other words, the hedging portfolio can be rebalanced with no

inflow or outflow of capital. The value of the portfolio for a self-financing strategy is

given by Pk = P0 + Gk at any time 0 ≤ k ≤ M .

In an incomplete market there does not exist, in general, a self-financing strategy
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that matches exactly the option payoff. Under these conditions, a hedging strategy

has to be chosen based on some optimality criterion. One approach is to first impose

PM = ΠT , then choose the optimal strategy to minimize the incremental cost incurred

from adjusting the portfolio at each hedging time. This is the local risk minimization.

The traditional criterion for local risk minimization is the quadratic criterion, given

by minimizing:

E((Ck+1 − Ck)
2|Fk) =E((Pk+1 − Uk(tk+1) · ξk − ηk)

2|Fk), (5)

for all 0 ≤ k ≤ M − 1, starting from the final condition PM = ΠT . The quadratic

local risk minimizing strategy is not self-financing, but it is mean self-financing (i.e.,

the cost process is a martingale):

E(Ck+1|Fk) = Ck (6)

Alternative to local risk minimization, one could instead choose to work only with

self-financing hedging strategies. Since it is not possible to match exactly the option

payoff in this case, an optimal self-financing strategy minimizes the L2-norm:

E((ΠT − PM)2) = E((ΠT − P0 −
M−1∑
j=0

(Uj(tj+1) − Uj) · ξj)
2). (7)

The existence and uniqueness of the optimal strategies for the above criteria have

been extensively studied by Schäl (1994) and Schweizer (1995), for the case when

the hedging instruments are the underlying assets. Under certain assumptions, the

initial values of the local and total risk minimizing hedging portfolios are equal. In

the spirit of option pricing in complete markets, Schäl (1994) interprets this value

as a “fair value” for the option. However, Mercurio and Vorst (1996) show that this

interpretation may not always make sense from an economic point of view. Moreover,
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the initial value of the hedging portfolio depends, in general, on the subjective criterion

for measuring the risk. As Bertsimas, Kogan and Lo (2001) remark, in a dynamically

incomplete market an option cannot be priced by arbitrage considerations alone and

has to be the result of a market equilibrium based on supply and demand. The focus of

our paper is on computing effective hedging strategies; this computation also provides

cost information, e.g., initial hedging cost, as well as average hedging cost.

Total risk minimization is a dynamic stochastic programming problem which is, in

general, computationally challenging to solve. In this paper we use local risk mini-

mization to compute the hedging strategies. Schweizer (2001) remarks that, since local

risk minimization tries to control the riskiness of a hedging strategy as measured by

its incremental risk, it is, by its very nature, a hedging approach.

A local risk minimizing hedging strategy is not self-financing, however, we can define

a self-financing portfolio related to this strategy. If {(ξk, ηk)|k = 0, 1, ..., M} are the

optimal holdings for the local risk minimizing strategy, then the time T value of the

associated self-financing portfolio is given by:

P sf
M = P0 + GM = U0 · ξ0 + η0 +

M−1∑
j=0

(Uj(tj+1) − Uj) · ξj (8)

We investigate the hedging efectiveness of the local risk minimizing strategy in terms

of the total risk and total cost computed at the maturity T of the lookback option:

• Total risk, ΠT − P sf
M , is the amount of money the hedging portfolio is short of

meeting the liability.

• Total cost, ΠT −GM , is the total amount of money needed for setting up the hedging

portfolio and covering the option payoff.
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3. Hedging under interest rate risk, using the underlying asset

Hedging the embedded options in a GMDB is difficult due to the long maturity of

these options and to their sensitivity to the tail distributions of the underlying assets.

Bacinello and Ortu (1993b, 1994), Nielsen and Sandmann (1995), Miltersen and Pers-

son (1999), Bacinello and Persson (1994), Lin and Tan (2003) address the issue of the

long maturity of the options by jointly modeling the underlying asset price (which

follows an extended Black-Scholes SDE) and the stochastic short interest rate (given

by an extended Vasicek or CIR model) or the forward rate model (HJM). However,

the assumed underlying asset price model does not explain the fat tails exhibited by

equity returns. Moreover, the authors focus on pricing the embedded options in a

continuous trading framework using risk-neutral probability measure arguments. Al-

though Lin and Tan (2003) discuss delta hedging in a financially complete market and

risk minimization hedging under mortality risk, the paper mainly focuses on pricing

instead of hedging. The present paper focuses on hedging the embedded options in

GMDB, in an incomplete financial market due to discrete hedging and/or jump risk.

This section investigates hedging, under stochastic interest rates, using the underlying

asset as hedging instrument. Section 4 illustrates hedging with standard options.

We first analyze the performance of a risk minimizing hedging strategy when there is

no interest rate risk, that is, the strategy is computed under the assumption that the

term structure of interest rates is deterministic. We assume that the real-world price

dynamics of the underlying asset follows

dSt

St
= (µ − q − kλ)dt + σdWt + (J − 1)dπt (9)

where µ is the instantaneous asset return, q is the continuous dividend yield, and σ is

the volatility of the asset; λ is the jump intensity, while J models the jump amplitude,
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and k = E(J − 1). For simplicity, log J is assumed to be a normal random variable

with mean µJ and standard deviation σJ . We assume πt is a Poisson process.

Note that, when λ = 0, model (9) is the Black-Scholes model. Throughout the paper,

a Merton’s Jump Model (MJD) refers to a model (9) with a positive jump intensity λ.

Even if the Black-Scholes model is not suitable for calibrating the fat tails of equity

returns, it is still interesting to investigate hedging performance under this model,

since market incompleteness comes only from the assumption of discrete hedging in

this case. We will later analyze hedging under a Merton’s Jump Model for the under-

lying price. We emphasize that equation (9) describes the underlying price dynamics

in a real-world framework, which is best suited for the computation and hedging per-

formance analysis in an incomplete market. In contrast, a delta hedging strategy, or

a semi-static hedging strategy is computed using risk-neutral price dynamics.

We compute the local risk minimizing strategy using a lattice method. Since the

embedded lookback option is path dependent, the hedging positions at time tk de-

pend on both the underlying value Sk and the path dependent value Hk, where

Hk = max(St̃0 , · · · , St̃k−1
) and H0 = St̃0 . We note that the lookback payoff is lin-

early homogeneous in the underlying value and path dependent value, i.e.,

max(αH − αS, 0) = α max(H − S, 0).

Since the log of the price under a model (9) is a process with independent increments,

it is shown, in Appendix A, that the local risk minimization holding for the underlying,

ξk, is homogeneous of degree zero with respect to the current underlying value S and

path dependent value H , while the holding for the bond is linearly homogeneous in S

and H . Thus the local risk minimizing hedging positions need to be computed only

for a fixed path dependent value H .
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Consider a discretization {Si}Ns
i=0, where Si = S0e

Xi
with X i = X0 + i δX; for

simplicity, assume Ns > 0 is an even integer. Starting from k = M and iterating

backwards in time, the hedging positions (ξi0
k , ηi0

k ) are computed at each grid point

Si0 by solving a least squares problem arising from a discrete approximation to (5):

min
(ξ

i0
k

,η
i0
k

)

Ns/2∑
i=−Ns/2

qi0+i
i0

(
P i0+i

k+1 − U i0+i
k (tk+1) · ξi0

k − ηi0
k

)2
(10)

where qi
i0 , i = i0 − Ns/2, · · · , i0 + Ns/2, denotes the transitional probabilities of the

underlying prices {Si = S0e
X0+iδX} assuming Sk = Si0, P i

k+1 denotes the time tk+1

value (corresponding to Si) of the hedging portfolio formed at tk+1, and U i
k(tk+1)

denotes the time tk+1 hedging instruments values (corresponding to Si) of the hedging

instruments traded at time tk. We explicitly compute the transitional probabilities of

the underlying asset price since there exists an analytic formula for the transitional

density function under a MJD (9). Note that, if the underlying price is not a grid

point, hedging positions are interpolated or extrapolated.

The column labeled “ann” and the column “month” in Table 1 illustrates the hedging

performance of a risk minimizing strategy in the above framework. The column “ann”

corresponds to annual rebalancing, and the column “month” corresponds to monthly

rebalancing under no interest rate risk.

As discussed before, the stochastic interest rate evolution needs to be appropriately

modeled due to long maturities of options embedded in typical variable annuities.

We further assume that the real-world underlying asset value and the short rate are

governed by a joint model:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dSt

St
= (µ − q − kλ)dt + σ1 dW1,t + (J − 1)dπt

drt = a(r̄t − rt)dt + σ2 dW2,t

(11)

We remark that in (11), the short rate is governed by an extended Vasicek model,

with r̄ the long term average short rate, a the rate of the mean reversion, and σ2 the

volatility of the short rate.

Even though the real-world underlying price and interest rate are assumed to follow

(11), we first ignore the stochastic interest rate model in the computation of the

risk minimizing hedging strategy assuming that the term structure of interest rates

is deterministic and the underlying asset dynamics are given by the equation (9).

Exploring the hedging effectiveness of this risk minimizing strategy in the real-world

(11) illustrates the effect of the interest rate risk on the hedging performance. The

numerical results for the annual and monthly hedging evaluated under the stochastic

interest rate model are presented respectively under the columns labeled “ann-r” and

“month-r” in Table 1.

The hedging strategies “ann-r” and “month-r” described in the above paragraph are

computed without taking the interest rate risk into account. In fact, it is possible

to model this risk in the computation of the hedging strategy by considering the

short rate r as a state variable; we denote the corresponding strategies by “ann-ř”

and “month-ř”, respectively, for annual and monthly rebalancing. Note that when

the interest rate is stochastic, the hedging positions (ξk+1, ηk+1) depend on the values

(Sk+1, rk+1). Hence the quadratic incremental cost corresponding to a discrete local

risk minimizing hedging strategy, cannot be effectively reduced using a single bond

with maturity T . To effectively reduce the interest risk under a one factor short rate

model, we include an additional bond, with maturity of one year, among the risky
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hedging instruments Uk, when computing the hedging strategies “ann-ř” and “month-

ř”. Without loss of generality, the bond prices are computed under the assumption

that the market price of interest rate risk is zero.

When computing the risk minimizing hedging strategies under the joint model (11),

we need the joint transitional density function of the underlying and the short rate.

Since modeling the correlation between the change of the interest rate and the change

of the account value introduces significantly more complex and costly hedging strat-

egy computation, we assume that the Brownian motions W1 and W2 are independent

when computing the hedging strategies “ann-ř” and “month-ř”. We will later illus-

trate that the hedging strategies computed by appropriately modeling the interest

rate changes, but assuming no correlation, lead to effective hedging under typically

observed correlations between the changes in interest rates and the equity values.

The risk minimization strategies “ann-ř” and “month-ř” can be computed using a

lattice method as described before, except that the grid points now include an addi-

tional dimension r, accounting for different possible short rate values. As mentioned

above, due to homogeneity properties, we can compute the hedging positions only

at a fixed path dependent value. The hedging results are illustrated in the columns

“ann-ř” - annual hedging, and “month-ř” - monthly hedging, in Table 1.

Table 1 illustrates the hedging performance over 20000 simulated scenarios for the

risk minimizing strategies described above. The numerical results show the initial

cost of the hedging portfolio, the average total hedging cost, the first two moments

of the total risk, the Value-at-Risk (VaR) and the Conditional Value-at-Risk (CVaR)

for a 95% confidence interval. VaR(95%) corresponds to the maximum amount of

money the self-financing hedging portfolio, P sf
M , is short of meeting the liability with

95% probability. CVaR(95%) gives information about the right tail of the total risk,
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it is the expected amount of money the self-financing portfolio is short of meeting

the liability, conditional on the total risk being larger than VaR(95%). The column

labelled “No hedge” presents information about the unhedged liability.

We remark from Table 1 that hedging using the underlying asset can significantly

reduce risk. Moreover, the effectiveness of the hedging strategies improves as we re-

balance more frequently.

To illustrate the sensitivity to interest risk, we compare the effectiveness of the hedg-

ing strategy, computed under a model (9) without interest risk, evaluated under a

model (9) without interest risk and a model (11) with interest risk; the results cor-

respond to columns (“ann”, “month”) and (“ann-r”, “month-r”), respectively. For

annual rebalancing, we notice that hedging using the underlying leads to poor risk

reduction and its performance is relatively insensitive to interest rate risk. Hedging

with monthly rebalancing, on the other hand, leads to greater risk reduction and the

effect of interest risk becomes clearly visible in hedging effectiveness evaluation. For

example, the standard deviation of the total risk, VaR and CVaR are larger when

the risk minimization hedging strategy computed without modeling interest risk is

evaluated under the interest risk, column “month-r”, than when the strategy is eval-

uated under no interest risk, column “month”. Specifically, the standard deviation

of monthly hedging is increased from 7.97, in the absence of interest rate, to 11.65

under the prescribed interest risk. This suggests that interest risk, if not modeled

in the hedging computation, can significantly deteriorate hedging effectiveness. How-

ever, when the risk minimizing hedging strategy is computed under the joint model

(11), monthly rebalancing (“month-ř”) effectively hedges the risk introduced by the

stochastic interest rates. The standard deviation of the total risk, the VaR(95%) and

CVaR(95%) in the column “month-ř” are very close to the corresponding values under

no interest rate risk (“month”). Strategy “month-ř” achieves this reduction in risk,

17



Table 1

Hedging using the underlying asset in a Black-Scholes framework

No hedge Annually Monthly

ΠT ann ann-r ann-ř month month-r month-ř

C0 0 13.85 13.85 13.99 14.59 14.59 15.07

E(ΠT − GM ) 24.41 26.62 25.59 26.89 27.98 26.86 28.94

E(ΠT − P sf
T ) 24.41 0.04 -0.98 0.06 -0.007 -1.12 0.02

std(ΠT − P sf
T ) 36.83 23.44 24.17 23.43 7.95 11.65 7.97

VaR(95%) 96.92 39.65 39.82 39.75 12.54 17.04 12.59

CVaR(95%) 136.60 62.76 63.15 62.82 19.54 25.35 19.66

ann/month: strategy computed by modeling only the underlying risk,

effectiveness evaluated under (9) with no interest risk

ann/month-r: strategy computed by modeling only the underlying risk,

effectiveness evaluated under (11) with both equity and interest risks

ann/month-ř: strategy computed by modeling both the equity and interest risks,

effectiveness evaluated under (11) with both equity and interest risks

BS: #scenarios = 20000, σ1 = 0.2, µ = 0.1, S0 = 100

Vasicek: r0 = 0.05, r̄ = 0.08, a = 0.2, σ2 = 0.02
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for a slightly larger average hedging cost than the average hedging cost for “month”.

It is important to note that, in order to obtain this effective risk reduction when

taking into account the assumed stochastic interest rate model in the computation of

the hedging strategies, the hedging portfolio has to contain not one, but two bonds,

in addition to the underlying asset. In our computational experience, using a single

bond cannot eliminate the additional interest rate risk in the dynamic discrete hedg-

ing setting. For subsequent results of the hedging strategies computed by modeling

interest risk, we have used a bond with maturity 1 year and a bond with maturity

T . Intuitively, the amount invested in one bond at each hedging time is controlled by

equation (6) which ensures the strategy is mean self-financing, while the second bond

can be used to hedge against the fluctuations of the interest rate.

As mentioned above, in the computation of the risk minimizing strategies “ann-ř” and

“month-ř” under a stochastic interest model, we have assumed, for simplicity, that the

underlying asset and the short rate are independent. Let us now investigate the sensi-

tivity of the hedging performance to the correlation between the Brownian motions in

(11) in the same Black-Scholes setting as before. We compute the hedging strategies

“ann ř” and “month-ř” as before, assuming the independence of the underlying asset

and the interest rates, however, we evaluate the hedging performance on simulated

paths for different correlations. For annual hedging with the underlying in the frame-

work given by (11), the hedging error is mainly due to the infrequent rebalancing

rather than the interest risk; thus the hedging effectiveness is relatively insensitive to

the interest rate risk and the hedging performance is roughly unchanged for different

values of the correlation. Table 2 presents the numerical results for monthly hedging,

corresponding to the strategies “month-r” which is computed assuming a constant in-

terest rate and “month-ř” which is computed under the assumed interest rate model.

We have omitted the results for strategy “month”, since it corresponds to evaluating
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hedging performance under a deterministic term structure of interest rates.

We remark that strategy “month-ř” leads to an effective reduction in the interest

rate risk for all the correlations in Table 2. The values of the standard deviation

of the total risk, VaR(95%), CVaR(95%) for strategy “month-ř” are close to the

corresponding values under no interest rate risk, for strategy “month” (Table 1).

However, the average total risk, E(ΠT −P sf
T ), suggests that strategy “month-ř” tends

to overhedge the option as the correlation becomes negative and to underhedge the

options for positive correlations.

The results presented above have been obtained in a Black-Scholes framework. We will

further investigate risk minimization hedging with the underlying under a Merton’s

Jump Diffusion (MJD) model. This model is a better choice when trying to calibrate

the fat tails exhibited by equity returns. In this framework, market incompleteness is

due not only to discrete hedging, but also to the jump component of the underlying

asset.

Table 3 presents the numerical results under a MJD model which are obtained from

similar hedging experiments to the ones described in the Black-Scholes framework.

Similarly to the Black-Scholes framework, risk minimizing hedging is better than

no hedging and the hedging performance improves as rebalancing is more frequent.

However, because of the jump risk, this improvement is not as significant as in Table

1. Moreover, we notice that in the MJD framework, both annual and monthly hedging

results are less sensitive to the additional interest rate risk. This is because hedging

using the underlying asset is ineffective in eliminating the jump risk and thus the

presence of interest risk is relatively invisible.

The computation of the hedging strategies “ann-ř” and “month-ř” requires the joint
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Table 2

Monthly hedging using the underlying for different correlations

Correlation

-0.4 -0.2 0 0.2 0.4

Initial month-r 14.59 14.59 14.59 14.59 14.59

month-ř 15.06 15.07 15.03 15.07 15.05

E(ΠT − GM ) month-r 25.36 26.16 27.01 27.63 28.32

month-ř 27.28 28.10 19.00 29.80 30.59

E(ΠT − P sf
T ) month-r -2.62 -1.82 -0.97 -0.35 0.33

month-ř -1.61 -0.79 0.17 0.88 1.71

std(ΠT − P sf
T ) month-r 11.30 11.44 11.44 11.58 12.11

month-ř 7.75 7.95 7.79 7.95 8.23

VaR(95%) month-r 16.03 16.31 16.53 16.43 17.22

month-ř 10.40 11.40 12.59 13.10 14.42

CVaR(95%) month-r 26.57 26.06 25.62 24.31 23.94

month-ř 17.42 18.58 19.41 20.32 21.61

BS: #scenarios = 20000, σ1 = 0.2, µ = 0.1, S0 = 100

Vasicek: r0 = 0.05, r̄ = 0.08, a = 0.2, σ2 = 0.02
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Table 3

Hedging using the undelying asset in a MJD framework

No hedge Annually Monthly

ΠT ann ann-r ann-ř month month-r month-ř

C0 0 19.27 19.27 19.35 22.33 22.33 22.69

E(ΠT − GM ) 31.22 37.15 35.76 37.27 42.74 41.11 43.43

E(ΠT − P sf
T ) 31.22 0.18 -1.20 0.15 -0.08 -1.70 -0.09

std(ΠT − P sf
T ) 63.88 47.30 47.96 47.18 32.44 34.53 32.36

VaR(95%) 152.84 80.81 79.78 79.79 52.45 52.78 52.30

CVaR(95%) 242.42 136.95 136.25 136.78 96.76 97.72 96.46

ann/month: strategy omputed by modeling only the underlying risk,

effectiveness evaluated under (9) with no interest risk

ann/month-r: strategy computed by modeling only the underlying risk,

effectiveness evaluated under (11) with both equity and interest risks

ann/month-ř: strategy computed by modeling both the equity and interest risks,

effectiveness evaluated under (11) with both equity and interest risks

MJD: #scenarios = 20000, µ = 0.15, σ1 = 0.2, µJ = −0.344, σJ = 0.25, λ = 0.0916,

S0 = 100

Vasicek: r0 = 0.05, r̄ = 0.08, a = 0.2, σ2 = 0.02
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density function for the underlying asset and the short rate in equations (11). We have

assumed, for simplicity, that the underlying asset and the short rate are independent.

However, we have analyzed, as in Section 3, the hedging performance on simulated

paths for different values of the correlation between the Brownian motions W1 and W2

in (11). The numerical experiments show that, due to the dominant presence of the

jump risk, the hedging performance of all the strategies remains almost unchanged

for all the different correlations. Thus, we do not include these numerical results.

4. Hedging using standard options, under interest rate risk

Due to the expansion of the option market, hedging with options has become a vi-

able possibility. This section investigates the hedging performance of risk minimizing

hedging strategies for a lookback option embedded in a GMDB with ratchet feature,

under interest rate risk, when the hedging instruments are options. Due to liquidity

constraints, we use only near the money options as hedging instruments. To illustrate,

we consider a hedging portfolio rebalanced annually and consisting of 1-year maturity

options and risk-free bonds. At each hedging time tk, the options are: 3 calls with

strike prices Sk, 110%Sk, 120%Sk, and 3 puts with strike prices Sk, 80%Sk, 90%Sk.

The options are priced under the risk neutral measures. Moreover, in order to simplify

the computation of the option hedging strategy “opt-ř” under the joint model of the

underlying asset and the short rate, we assume once again, for both the Black-Scholes

and the MJD framework, that the underlying and the interest rate are independent.

In paper (Coleman, Li and Patron, 2004), it has been illustrated that hedging with

standard options is significantly more effective than hedging with the underlying,

especially under jump risk. While hedging with the underlying is sensitive to instan-

taneous volatility risk, hedging with options is sensitive to implied volatility risk.
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The paper proposes a joint model for the underlying real-world price dynamics and

the stochastic at-the-money implied volatility. Computed under this model, the risk

minimizing hedging strategies using standard options effectively reduce volatility risk.

In order to investigate the sensitivity to interest rate of a risk minimizing hedging

strategy using options, we perform a similar analysis to the case in Section 3, where

the hedging instruments are the underlying assets. We first compute the hedging

strategy when there is no interest rate risk, in a framework where the term structure

of interest rates is deterministic as described by (10), also see Appendix A. The

numerical results illustrating the hedging performance in this case are presented in

the tables below under the label “opt”. We then analyze the performance of the above

strategy under a joint model, (11), for the real-world underlying price dynamics and

the stochastic short rates. The results are denoted by “opt-r”. Finally, we compute

the risk minimizing hedging strategy under the joint model by considering the short

rate as a state variable. The hedging results in this framework are identified as “opt-ř.

Table 4 shows the numerical results in a Black-Scholes framework. The joint model for

the underlying asset and the short rate is given by (11) with the jump intensity λ = 0.

Comparing the results for hedging with standard options in Table 4 with the results

for monthly hedging with the underlying in Table 1, we remark that option hedging

leads to a larger reduction in terms of standard deviation of total risk, VaR and CVaR.

Even when the stochastic interest rates are not modeled in the computation of the

hedging strategy (“opt-r”), hedging with standard options is slightly better than

hedging with the underlying. The average total cost for option hedging is marginally

larger than the average total cost for hedging with the underlying.

We notice that the effectiveness of hedging with options is much more sensitive to

interest rate risk than the effectiveness of hedging with the underlying. When the
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Table 4

Hedging with standard options in a Black-Scholes framework

No hedge Option hedging

ΠT opt opt-r opt-ř

C0 0 14.68 14.68 15.10

E(ΠT − GM ) 24.41 28.15 27.73 28.98

E(ΠT − P sf
T ) 24.41 -0.007 -0.42 0.02

std(ΠT − P sf
T ) 36.83 2.33 7.94 3.17

VaR(95%) 96.92 3.09 11.68 4.76

CVaR(95%) 136.60 5.64 17.66 7.82

opt: strategy computed by modeling only the underlying risk,

effectiveness evaluated under (9) with no interest risk

opt-r: strategy computed by modeling only the underlying risk,

effectiveness evaluated under (11) with both equity and interest risks

opt-ř: strategy computed by modeling both the equity and interest risks,

effectiveness evaluated under (11) with both equity and interest risks

BS: #scenarios = 20000, σ1 = 0.2, µ = 0.1, S0 = 100

Vasicek: r0 = 0.05, r̄ = 0.08, a = 0.2, σ2 = 0.02

25



market interest rate is stochastic, but this is not accounted for in the computation of

the hedging strategy (“opt-r”), the values of the standard deviation of the total risk,

VaR and CVaR increase more than 300% compared to the corresponding values when

there is no interest rate risk (“opt”). However, when the risk minimization hedging

strategy is obtained by modeling the stochastic interest rate as a state variable (“opt-

ř”), the interest rate risk is greatly reduced. As mentioned in the previous section, an

important factor in achieving this interest risk reduction is the inclusion of 2 bonds

in the hedging portfolio, one bond being insufficient for maintaining the portfolio

self-financing and offsetting the fluctuations of the interest rate.

As in Section 3, we also investigate the sensitivity to interest rate risk in a model

with jump risk, which is a more appropriate framework for the price dynamics of the

underlying of a lookback option embedded in a GMDB with ratchet feature. Table 5

illustrates the performance of hedging with standard options in a MJD framework.

Comparing the results from Tables 3 and Table 5, we remark that hedging with

options is more effective in reducing the risk than hedging with the underlying. The

remark also applies to the Black-Scholes framework, however the differences between

the performances of hedging with options and hedging with the underlying are larger

in the MJD framework. This shows that hedging with options is superior to hedging

with the underlying in offsetting the jump risk.

As in the case of the Black-Scholes framework, option hedging effectiveness is sen-

sitive to the interest rate risk. When the stochastic interest rates are not modeled

in the computation of the hedging strategy (“opt-r”), the standard deviation of the

hedging risk, VaR and CVaR are more than double compared to the corresponding

values when there is no interest risk (“opt”). However, the hedging strategy calculated

under the joint model for the underlying price dynamics and the short rates (“opt-ř”)

substantially reduces the interest rate risk.
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Table 5

Hedging with standard options in a MJD framework

No hedge Option hedging

ΠT opt opt-r opt-ř

C0 0 19.19 19.19 19.58

E(ΠT − GM ) 31.22 36.86 36.22 37.60

E(ΠT − P sf
T ) 31.22 0.03 -0.60 0.03

std(ΠT − P sf
T ) 63.88 4.30 11.82 5.33

VaR(95%) 152.84 5.64 17.02 7.59

CVaR(95%) 242.42 11.01 26.55 13.34

opt: strategy computed by modeling only the underlying risk,

effectiveness evaluated under (9) with no interest risk

opt-r: strategy computed by modeling only the underlying risk,

effectiveness evaluated under (11) with both equity and interest risks

opt-ř: strategy computed by modeling both the equity and interest risks,

effectiveness evaluated under (11) with both equity and interest risks

MJD: #scenarios = 20000, µ = 0.15, σ1 = 0.2, µJ = −0.344, σJ = 0.25, λ = 0.0916,

S0 = 100

Vasicek: r0 = 0.05, r̄ = 0.08, a = 0.2, σ2 = 0.02
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Table 6 illustrates the sensitivity of the option hedging strategies to different cor-

relations, in the MJD framework. The results in the Black-Scholes framework show

a similar trend and have been omitted. We remark that “opt” denotes the hedging

strategy computed and evaluated under no interest risk; thus no corresponding row

appears in Table 6. Comparing the hedging results for strategy “opt-r” in Table 6

with the results in Table 2, it can be observed that hedging with options under a

MJD model is more sensitive to the correlation between the changes in the account

values and interest rates. However, by modeling the interest rate in the hedging com-

putation, strategy “opt-ř” leads to significant risk reduction for all correlations. In

addition, the hedging performance of strategy “opt-ř”, is approximately the same

for different correlations. In contrast with hedging using the underlying, the hedging

strategy using options, “opt-ř”, tends to slightly under-hedge the liability for positive

correlations and to slightly over-hedge it when the correlation is negative.

5. Conclusions

Hedging the options embedded in guaranteed minimum benefits of variable annuities

is a difficult problem due to the sensitivity of these benefits to the tail distributions

of the underlying accounts and their long maturity. The popular Black-Scholes model

is not adequate for calibrating the fat tails of equity returns. Moreover, delta hedging

assumes continuous rebalancing of the hedging portfolio. A more appropriate model

for the underlying, such as Merton’s jump diffusion model, or discretely rebalancing

the hedging portfolio, leads to incomplete markets. In an incomplete market frame-

work, a risk minimization criterion is more suited to compute a hedging strategy. A

risk minimization hedging strategy is not only optimal with respect to the particular

criterion, but it is also computed under the real-world price dynamics, in contrast to
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Table 6

Annually hedging with options for different correlations

Correlation

-0.4 -0.2 0 0.2 0.4

Initial opt-r 19.19 19.19 19.19 19.19 19.19

opt-ř 19.58 19.58 19.58 19.58 19.58

E(ΠT − GM ) opt-r 37.44 36.83 36.13 35.71 34.97

opt-ř 38.50 38.00 37.50 37.18 36.70

E(ΠT − P sf
T ) opt-r 0.62 0.009 -0.69 -1.10 -1.85

opt-ř 0.93 0.42 -0.05 -0.37 -0.86

std(ΠT − P sf
T ) opt-r 12.65 12.07 11.83 11.70 12.34

opt-ř 5.79 5.70 5.42 5.30 5.56

VaR(95%) opt-r 21.07 18.93 16.64 15.67 14.44

opt-ř 9.51 8.27 7.40 6.99 6.92

CVaR(95%) opt-r 35.04 30.48 26.61 23.82 22.20

opt-ř 15.43 14.37 13.14 13.08 13.08

MJD: #scenarios = 20000, µ = 0.15, σ1 = 0.2, µJ = −0.344, σJ = 0.25, λ = 0.0916,

S0 = 100

Vasicek: r0 = 0.05, r̄ = 0.08, a = 0.2, σ2 = 0.02
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a delta hedging strategy which is computed in a risk-neutral framework. This is im-

portant, since the performance of a hedging strategy has to be analyzed with respect

to the real-world dynamics. In addition, when hedging the embedded options, due to

their long maturities, it is crucial to model the interest rate risk.

We compute local risk minimizing hedging strategies under a joint model for the

real-world underlying price dynamics and the short rate. We analyze the hedging

performance under both equity and interest rate risks. The hedging instruments con-

sidered are either the underlying or liquid standard options.

Hedging with standard options leads to a considerably better performance than an-

nual or monthly hedging with the underlying, especially under jump risk. Since hedg-

ing with options effectively reduces equity risks, including jump risk, the sensitivity

of the hedging performance to interest rate risk becomes significant and can be more

visibly observed. Computing the hedging strategies by ignoring the stochastic interest

rate risk may lead to large hedging errors, possibly losing the advantage of hedging

with options over hedging with the underlying. It is possible to reduce the interest

rate risk by modeling the stochastic interest rates in the computation of the hedg-

ing strategies. In fact the hedging errors for the strategies computed under the joint

model of the underlying asset and the short rates are close in values to the hedging

errors under no interest risk.

For simplicity, when computing the local risk minimizing hedging strategies under the

joint model we assume the independence of the underlying and the interest rates. We

analyze, however, the sensitivity of the hedging strategies to different correlations. The

numerical results illustrate that the relative risk reduction achieved by the hedging

strategy which takes into account the stochastic interest rates is approximately the

same for different values of the correlation.
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In addition to the jump risk and interest rate risk, hedging the embedded options

in GMDB is susceptible to other risk factors such as volatility risk, mortality risk,

lapsation risk, or basis risk. We have investigated the modeling of volatility risk in

a previous paper (Coleman, Li and Patron, 2004). It will be interesting analyze the

sensitivity of the hedging performance to basis risk.

Appendix A: Dimension reduction in the risk minimization hedging of

lookback options

We consider the local risk minimizing hedging of a lookback option using bonds

and the underlying or standard options; the options traded at time tk have strikes

proportional to the underlying value Sk. We show that, under the model assumption:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dSt

St
= (µ − q − kλ)dt + σ1 dW1,t + (J − 1)dπt

drt = a(r̄t − rt)dt + σ2 dW2,t

(12)

with dW1,t and dW2,t independent, the local risk minimizing hedging holdings satisfy:

ξi
k(αS, αH) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξi
k(S, H), if U i

k is the underlying or a standard option

α · ξi
k(S, H), if U i

k is a bond

ηk(αS, αH) = α · ηk(S, H) for the bond with maturity T.

(13)

where, for notational simplicity, we have suppressed the dependence of the various

terms on the interest rate.

We note that the Black-Scholes model is a special case of (12). Under the assumption
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that dW1,t and dW2,t are independent, we have Stk+1
= Stke

δXk , where δXk = Xtk+1
−

Xtk and Xt is a Lévy process with stationary independent increments. The analysis

below assumes the hedging instruments are standard options and bonds, the proof in

the case where the hedging instruments are the underlying and bonds being similar.

In order to prove the result we use the following key facts: the log of the underlying

value is a process with independent increments, the lookback option payoff is linearly

homogeneous in the underlying value and the path dependent value, the standard

options are linearly homogeneous in the underlying value and strikes, and the changes

in the interest rate are independent of the changes in the underlying value.

Clearly (13) holds at T = tM , since ξM = 0, ηM = ΠT and the lookback payoff is

linearly homogeneous with respect to S and H . Assume (13) holds at tk+1. We show

that it also holds at tk.

The optimal local risk minimization holding (ξk(αS, αH), ηk(αS, αH)) at time tk, is

the solution of the minimization problem:

minx,y ES,r
k { [ Uk+1 (αSeδXk , tk+1) · ξk+1(αSeδXk , αH) + ηk+1(αSeδXk , αH)

− Uk (αSeδXk , tk+1) · x − y ]2 |Sk = αS, rk = r }
(14)

where ES,r
k (·) denotes the conditional expectation of the joint distribution of the

underlying value and short rate.

Using the induction hypothesis and the key facts mentioned above, (14) becomes:

minx,y ES,r
k { [ α Uk+1(SeδXk , tk+1) · ξk+1(SeδXk , H) + αηk+1(SeδXk , H)

− αUk(SeδXk , tk+1) · x − y ]2 |Sk = S, rk = r }
(15)
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On the other hand, (ξk(S, H), ηk(S, H)) is the minimizer of:

minx′,y′ ES,r
k { [ Uk+1 (SeδXk , tk+1) · ξk+1(SeδXk , H) + ηk+1(SeδXk , H)

− Uk (SeδXk , tk+1) · x′ − y′ ]2 |Sk = S, rk = r }
(16)

Comparing problems (15) and (16), we see that (13) holds at tk.
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