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Abstract

A Bayesian inference approach offers a methodical concept that combines in-
ternal data with experts’ opinions. Joining these two elements with precision is
certainly one of the challenges in operational risk. In this working paper, we are
interested in applying a Bayesian inference technique in a robust manner to be able
to estimate a capital requirement that best approaches the reality.

Keywords: Bayesian Inference, Operational Risk, MCMC.

1 Introduction

Under the new regulations of Basel II and Solvency II, to be able to estimate their ag-
gregate operational risk capital charge, many financial institutions have adopted a Loss
Distribution Approach (LDA), consisting of a frequency and a severity distribution, based
on its own internal losses. Yet, basing our models on historical losses only might not be
the perfect robust approach since no future attention is being taken into consideration
which can generate a biased capital charge, defined as the 0.01 % quantile of the loss
distribution, facing reality. On the other hand, adding scenario analysis given by the
experts assume the adoption of future losses.

The main idea in this article is the following: A Bayesian inference approach offers a
methodical concept that combines internal data with scenario analysis. We are searching
first to integrate the information generated by the experts with our internal database; by
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working with conjugate family distributions, we determine a prior estimate. This esti-
mate is then modified by integrating internal observations and experts’ opinion leading
to a posterior estimate; risk measures are then calculated from this posterior knowledge.
See Shevchenko [2011] for more on the subject.

On the second half, we use Jeffreys non-informative prior and apply Monte Carlo Markov
Chain with Metropolis Hastings algorithm, thus removing the conjugate family restric-
tions and developing, as the article shows, a generalized application to set up a capital
allocation. For a good introduction to non-informative prior distributions and MCMC
see Robert [2007].
Combining these different data sources for model estimation is certainly one of the main
challenges in operational risk. More on Bayesian Inference techniques could be found in
Berger [1985].

2 Bayesian techniques in combining two data sources:

Conjugate prior

In our study, our data related to retail banking business line and external fraud event
type is of size 279, collected in $ over 4 years. The data follows the Poisson(5.8) as a
frequency distribution, and LN (µ = 6.7, σ = 1.67) as the severity distribution.

Applying Monte Carlo simulation (cf. Frachot et al. [2001]), with λID = 5.8, µID = 6.7,
and σID = 1.67, we obtained a Value-at-Risk of V aRID = 1, 162, 215.00 at 99.9%, using
internal losses only.
On the other hand, working with the scenario analysis, our experts gave us their assump-
tions for the frequency parameter λ. As for the severity, our experts represent a histogram
reflecting the probability that a loss is in an interval of losses (see table 1 below).

Losses Interval in $ Expert Opinion
[0, 5000[ 65%

[5000, 20000[ 19%
[20000, 50000[ 10%
[50000, 100000[ 3.5%
[100000, 250000[ 1.5%
[250000, 400000[ 0.7%
≥ 400000 0.3%

Table 1: Scenario analysis

If we consider our severity distribution being Lognormal with paramters µ and σ2, the
objective is to find the parameters (µexp, σexp) that adjust our histogram in a way to
approach as much as possible the theoretical lognormal distribution. For this we can use
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chi-squared statistic that allows us to find (µ, σ) that minimize the chi-squared distance:

T̃ =
n∑
i=1

(Ei −Oi)
2

Ei
,

where Ei and Oi are respectively the empirical and theoretical probability.

Our experts provided λ = 2, and by applying chi-squared, we obtained our lognormal
parameters: (µ = 7.8, σ = 1.99) with the V aR(99.9%) = 6, 592, 086.00.

We can easily check the high spread between the two values which can cause a problem
in allocating the capital requirement. In the next sections, we will apply the Bayesian
inference techniques, thus joining our internal observations with the experts opinion.

2.1 Modelling Frequency distribution: The Poisson Model

We are going to work with the Poisson and Lognormal distributions since they are the
most used distributions in Operational Risk (cf. Shevchenko [2011]).
Consider the annual number of events N for a risk in a bank modelled as a random
variable from the Poisson distribution P(λ), where Λ is considered as a random variable

with the prior distribution Gamma(a, b). So we have: P(N = n) = e−λ
λn

n!
, and λ has a

prior density:

Π(Λ = λ) =
(λ
b
)a−1

Γ(a)b
e

−λ
b , λ > 0, a > 0, b > 0

As for the likelihood function, given the assumption that n1, n2, ..., nT are independent,
for N = n:

h(n|λ) =
T∏
i=1

e−λ
λni

ni!
,

where n is the number of historical losses and ni is the number of losses in month i.

Thus, the posterior density would be: Π(λ|N = n) =
h(n|λ)Π(λ)

h(n)
, but since h(n) plays

the role of a normalizing constant, Π(λ|N = n) could be rewritten as:

Π(λ|N = n) ∝ h(n|λ)Π(λ) ∝
(λ
b
)a−1

Γ(a)b
e

−λ
b

T∏
i=1

e−λ
λni

ni!
∝ λ

b

∑T
i=1 ni+a−1

e−λ(T+
1
b
) ∝ λaT−1e

− λ
bT .

Which is Gamma(aT , bT ), i.e. the same as the prior distribution with aT =
T∑
i=1

ni+a and

bT =
b

(1 + Tb)
So we have:

E(λ|N = n) = aT bT = ωN̄ + (1− ω)(ab) = ωN̄ + (1− ω)E(Λ), with ω =
n

n+ 1
b
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To apply this, and since the only unknown parameter is λ that is estimated by our experts
with, E(λ) = 2.

The experts may estimate the expected number of events, but cannot be certain of the
estimate. Our experts specify E[λ] and an uncertainty that the ”true” λ for next month
is within the interval [a0, b0] = [0.5, 8] with a probability p = 0.7 that P(a0 ≤ λ ≤ b0) = p,
then we obtain the below equations:

E[λ] = a× b = 2

P(a0 ≤ λ ≤ b0) =

∫ b0

a0

π(λ|a, b)dλ = F
(G)
a,b (b0)− F (G)

a,b (a0) = 0.7

Where F
(G)
a,b (.) is the Gamma(a, b) cumulative distribution function.

Solving the above equations would give us the prior distribution parameters λ ↪→ Gamma(a =
0.79, b = 2.52), and by using the formulas stated, we obtain: aT = 279.8 and bT = 0.02
as our posterior parameters distribution. At the end, we calculate a V aR(99.9%) =
1, 117, 821.00 using Monte Carlo simulation:

1- Using the estimated Posterior Gamma(aT , bT ) distribution, generate a value for λ;

2- Generate n number of monthly loss regarding the frequency of loss distribution
Poisson(λ)

3- Generate n lossesXi, (i = 1, ..., n) regarding the loss severity distribution LN (µ, σ2);

4- Repeat steps 2 and 3 for N = 12. Summing all the generated Xi to obtain S which
is the annual loss;

5- Repeat steps 1 to 4 many times (in our case 105) to obtain the annual aggregate
loss distribution.

6- The VaR is calculated taking the 99.9th percentile of the aggregate loss distribution.

We notice that our Value-at-Risk is close to the VaR generated by the internal losses
alone, since the only thing took as unknown was λ, both parameters µ and σ are equal
to (µID, σID).

4



2.2 Modelling severity distribution: Lognormal LN (µ, σ) distri-
bution with unknown µ

Assume that the loss severity for a risk is modelled as a random variable from a lognormal
distribution LN (µ, σ) and we consider µ ↪→ N (µ0, σ

2
0) as a prior distribution.

So we have, Π(µ) =
1

σ0
√

2π
exp

{
−(µ− µ0)

2

2σ2
0

}
.

Taking Y = lnX, we calculate the posterior distribution as previously by:

Π(µ|µ0, σ
2
0) ∝ Π(µ)h(Y |µ, σ) ∝ e

− (µ−µ0)
2

2σ20

σ0
√

(2π)

n∏
i=1

e−
(yi−µ)

2

2σ2

σ
√

2π

since we are using a conjugate prior distribution, we know that the posterior distribution
will follow a Normal distribution with parameters (µ1, σ

2
1), where:

Π(µ|µ0, σ
2
0) ∝ e

− (µ−µ1)
2σ21

By identification we obtain:


1

2σ2
1

=
1

2σ2
0

+
n

2σ2

µ1

σ2
1

=
µ0

σ2
0

+

∑n
i=1 yi
σ2

So, µ1 =
µ0 + ω0

∑n
i=1 yi

1 + nω0

= ωȲ + (1 − ω)µ0, σ
2
1 =

σ2
0

1 + nω0

, with ω0 =
σ2
0

σ2
, and

ω =
nω0

1 + nω0
Assuming that the loss severity for a risk is modelled as a random variable from a lognor-
mal distribution X ↪→ LN (µ, σ), Ω = E[X|µ, σ] = eµ+

1
2
σ2
↪→ LN (µ0 + 1

2
σ2, σ2

0) and we
consider µ ↪→ N (µ0, σ

2
0) as a prior distribution.

Since the only thing unknown is µ, we already have σ = 1.67 and λ = 5.8, and the experts
gave us:

E[Ω] = eµ0+
1
2
σ2+ 1

2
σ2
0 = 15, 825 $

P (1 ≤ Ω ≤ 250, 000) = Φ

(
ln 250, 000− 1

2
σ2 − µ0

σ0

)
− Φ

(
ln 1− 1

2
σ2 − µ0

σ0

)
= 99%

Where Φ is the cumulative distribution function of the standard normal distribution.

Solving these two equations, we find that the prior distribution of µ is: µ ↪→ N (µ0 =
8.15, σ2

0 = 0.25).

Hence using the formulas stated above where, µ1 =
µ0 + ω0

∑n
i=1 yi

1 + nω0

= 6.72, σ2
1 =

σ2
0

1 + nω0

= 0.0096, and ω0 =
σ2
0

σ2
= 0.0898, with n = 279 is the total number of his-

torical losses.
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We find out that the posterior distribution: µ ↪→ N (µ1 = 6.72, σ1 = 0.1).
At the end, using the posterior µ distribution and Monte Carlo method, we calculate the
99.9% Value-at-Risk: V aR(99.9%) = 1, 188, 079.00.

The same analysis goes here as well, since the only unknown parameter is µ, (λ, σ) =
(λID, σID), the VaR calculated will be closer to our Internal Data Value-at-Risk.

2.3 Modelling frequency and severity distributions: Unknown
Poisson(λ) parameter and Lognormal LN (µ, σ) distribution
with unknown µ

In the two previous subsections, we illustrated the case of modelling frequency and sever-
ity distributions with unknown λ that follows a Gamma(a, b) distribution and µ that
follows a N (µ0, σ

2
0) respectively.

Joining these two distributions is relatively simple since we have the hypothesis of inde-
pendence between frequency and severity, which allows us to estimate independently the
two posterior distributions and estimate the parameters.

As so, we have already demonstrated the fact that our posterior density Π(λ|N = n)

follows the Gamma(aT , bT ) distribution, with aT =
T∑
i=1

ni + a and bT =
b

(1 + nb)

and, Π(µ|µ0, σ
2
0) ↪→ N (µ1, σ

2
1), with µ1 =

µ0 + ω0

∑n
i=1 yi

1 + nω0

, σ2
1 =

σ2
0

1 + nω0

, with ω0 =
σ2
0

σ2

Since we have the hypothesis of independence between frequency and severity, which
allows us to estimate independently the two posterior distributions, which have been
already calculated for the parameter λ we took the gamma distribution and for the µ
parameter, the posterior distribution was normal with:

λ ↪→ Gamma(279.8, 0.02)

µ ↪→ N (6.72, 0.1)

By simulating those two laws using Monte Carlo simulation (cf. section 2.1), we ob-
tain a Value-at Risk of 1, 199, 000.00 using the estimated posterior Gamma and Normal
distributions.

This result is highly interesting, since with two unknown parameters λ and µ, the VaR
is still closer to V aRID. This states that the parameter σ is the key parameter in this
application, as we are going to see throughout this article.

The general case where all parameters are unknown will not be treated in this section
since it is more complex to tackle it with the use of conjugate prior distributions (cf.
Shevchenko [2011] pp. 129-131) for details.
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3 Bayesian techniques in combining two data sources:

MCMC-Metropolis Hastings algorithm

In this section, we will use a noninformative prior and more particularly the Jeffreys prior,
(cf. Jeffreys [1946]), that attempts to represent a near-total absence of prior knowledge
that is proportional to the square root of the determinant of the Fisher information:

π(ω) ∝
√
|I(ω)|,

where I(ω) = −E
(
∂2 lnL(X|ω)

∂ω2

)
.

Then we are going to apply an MCMC model to obtain a distribution for the parameters
and generate our capital required at 99.9%. This will allow us to compare both methods’
results and develop a generalized application to set up our capital allocation, since no
restrictions is made regarding the distributions. As for the parameter σ, it will no longer
be fixed as in the previous sections. For more details on the Jeffreys prior and MCMC-
Metropolis Hastings algorithm check Robert [2007].

3.1 MCMC with the Poisson(λ) distribution

Assuming that the parameter λ is the only thing unknown, the Jeffreys prior distribution

is: π(λ) ∝
√
λ

λ
(see Appendix A), thus finding the posterior distribution f(λ|nSA, nID)

with the use of experts Scenario Analysis and Internal Data would be:

f(λ|nSA, nID) ∝
Jeffreys prior︷︸︸︷

π(λ) L(nSA, λ)L(nID, λ)︸ ︷︷ ︸
Likelihood functions

.

So by applying Metropolis Hastings algorithm, (check appendix B.1 for full support on
detailed algorithm), with the objective density:

f(λ|nSA, nID) ∝ 1√
λ

nSA∏
k=1

e−λλk

k!

nID∏
k=1

e−λλk

k!

∝ 1√
λ

nSA∏
k=1

e−λλk
nID∏
k=1

e−λλk

∝ 1√
λ
enSAλλ

∑nSA
k kenIDλλ

∑nID
k k

and with a uniform proposal density: U(λSA, λnID), we obtain the parameter λ distribu-
tion see Figure 1.

We have removed the first 3000 iterations so that the chain is stationary (burn-in
iterations effect), (cf. Gilks et al. [1996] pp. 5-6). We obtain a 99.9 % Value-at-Risk of
1, 000, 527.00.
The result is close to the VaR considered with the use of conjugate family.
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Figure 1: MCMC for the parameter λ

3.2 MCMC with Unknown Poisson(λ) parameter and Lognor-
mal LN (µ, σ) distribution with unknown µ

Assuming that the parameters λ and µ are the only things unknown, we will treat them
independently and since the Poisson(λ) case has already been treated, the Jeffreys prior

distribution for µ is: π(µ) ∝ 1

σ
∝ 1 (see Appendix A), thus finding the posterior dis-

tribution f(µ|x, y) with the use of experts Scenario Analysis and Internal Data would
be:

f(µ|x, y) ∝
Jeffreys prior︷︸︸︷

π(µ) L(x1, x2, ..., xnSA|µ, σSA))L(y1, y2, ..., ynID |µ, σID)︸ ︷︷ ︸
Likelihood functions

.

So by applying Metropolis Hastings algorithm, (check Appendix B.2 for full support on
detailed algorithm), with the objective density:

f(µ|x, y) ∝
nSA∏
i=1

1

xi
√

2πσ2
SA

exp{−(lnxi − µ)2

2σ2
SA

}
nID∏
i=1

1

yi
√

2πσ2
ID

exp{−(ln yi − µ)2

2σ2
ID

}

∝ exp{−
∑
i

(lnxi − µ)2

2σ2
SA

} exp{−
∑
i

(ln yi − µ)2

2σ2
ID

}

and with a uniform proposal density: U(0, 12), we obtain the parameter µ distribution
see Figure 2.
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Figure 2: MCMC for the parameter µ

We obtain a Value-at-Risk of 1, 167, 060.00.
Comparing this to the same case generated with conjugate prior, we can check the close-
ness of both values.

In the next subsection, we will tackle the general case, where all parameters are un-
known, this case was not treated with conjugate prior distributions since it would be
more complicated.

3.3 General case: MCMC with Unknown Poisson(λ) parameter
and Lognormal LN (µ, σ) distribution with unknown µ and σ

We are going to assume the general case, where all the parameters are unknown λ, µ
and σ, we will treat them independently and since the Poisson(λ) case has already been

employed, the Jeffreys prior distribution for ω = (µ, σ) is: π(ω) ∝ 1

σ3
(cf. Appendix A),

thus finding the posterior distribution f(ω|x, y) with the use of experts Scenario Analysis
and Internal Data would be:

f(ω|x, y) ∝
Jeffreys prior︷︸︸︷

π(ω) L(x1, x2, ..., xnSA|µ, σ))L(y1, y2, ..., ynID |µ, σ)︸ ︷︷ ︸
Likelihood functions

.
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So by applying Metropolis Hastings algorithm, (check appendix B.3 for full support on
detailed algorithm), with the objective density:

f(ω|x, y) ∝ 1

σ3

nSA∏
i=1

1

xi
√

2πσ2
exp{−(lnxi − µ)2

2σ2
}
nID∏
i=1

1

yi
√

2πσ2
exp{−(ln yi − µ)2

2σ2
}

∝ 1

σ3

1

σnSA
exp{−

∑
i

(lnxi − µ)2

2σ2
} 1

σnID
exp{−

∑
i

(ln yi − µ)2

2σ2
}

and with a uniform proposal density: U(0, 12) and U(0, 7) for µ and σ respectively,
we obtain the parameters µ and σ distributions, illustrated in Figure 3.

Figure 3: MCMC for the parameters µ and σ

We have removed as well, the first 3000 iterations so that the chain is stationary
(burn-in iteration effect). We obtain a Value-at-Risk of 3, 061, 151.00.

The general case clearly generates a good combination between internal data and ex-
perts’ opinion with a capital requirement of 3, 061, 151 $.

3.4 Bayesian approach reviewed

To recapitulate on all the calculations, table 2 summarizes all Value-at-Risk generated.
As for the calculation of the confidence interval, since we are working with order statistics,
the interval (xl, xu) would cover our quantile xp with a 99.5% probability that depends
on the lower bound l, upper bound u, number of steps n and confidence level p.
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In our calculations, we took n = 105, p = 99.9% and our integers (l, u), were con-
structed using the normal approximation N (np, np(1 − p)) to the binomial distribution
B(n, p),(since n is large). Then a simple linear interpolation has been made to obtain
the values of (xl, xu), (cf. David & Nagaraga [2003] pp. 183-186), for more details and
demonstrations.

Case Confidence Interval VaR (99.9%) Length

Aggregate $ 1,040,697.00 $ 1,230,492.00 $ 1,162,215.00 15.42%
Scenario Analysis $ 6,094,853.00 $ 7,171,522.00 $ 6,592,086.00 15.01%

Bayesian unknowm λ $ 1,053,861.00 $ 1,184,129.00 $ 1,117,821.00 11.00%
Bayesian unknown µ $ 1,097,195.00 $ 1,268,136.00 $ 1,188,079.00 13.48%

Bayesian unknowm λ and µ $ 1,141,767.00 $ 1,318,781.00 $ 1,199,000.00 13.42%
MCMC λ $ 944,793.10 $1,101,274.00 $1,000,527.00 14.21%

MCMC λ, µ $1,098,930.00 $1,244,564.00 $1,167,060.00 11.70%
MCMC λ, µ, σ $2,839,706.00 $3,310,579.00 $3,061,151.00 14.22%

Table 2: Value at Risk and Confidence intervals for all cases treated

Table 2 clearly shows the helpful use of the Bayesian inference techniques. The results of
both methods are close and comparable; though conjugate prior is simple but the distri-
butions are restricted to the conjugate family, yet with the Jeffreys noninformative prior
and MCMC-Metropolis Hastings algorithm, we will have a wider options and generate a
good combination between internal data and experts’ opinion.

4 Conclusion

Using the information given by the experts, we were able to determine all the parameters
of our prior distribution, leading to the posterior distributions with the use of internal
data, which allowed us to compute our own capital requirement. This approach offers a
major simplicity in its application through the employment of the conjugate distributions.
Therefore, allowing us to obtain explicit formulas to calculate our posterior parameters.
Yet, the appliance of this approach could not be perfected since it’s restricted to the
conjugate family.

On the other hand, Jeffreys prior with MCMC-Metropolis Hastings algorithm provided
us with wider options and generated a satisfactory result regarding all three unknown
variables λ, µ and σ, with the only difference of using complex methods. Taking σ un-
known as well, was very essential in reflecting the credibility of estimating our capital
requirement.

In our study, we displayed a particular application of the Bayesian inference methods
showing a more robust capital allocation that better approaches the reality. The only
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thing not taken into consideration is external data, which might be interesting to elabo-
rate and apply in practice, more on this subject could be found in Lambrigger et al.
[2011].
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A Jeffreys prior distribution

Jeffreys prior attempts to represent a near-total absence of prior knowledge that is pro-
portional to the square root of the determinant of the Fisher information:

π(ω) ∝
√
|I(ω)|,

where I(ω) = −E
(
∂2 lnL(X|ω)

∂ω2

)
.

A.1 Jeffreys prior for Poisson(λ) and Lognormal(µ, σ) distribu-
tions

Let N ↪→ P(λ), the poisson density function is: f(k|λ) = P(N = k) =
e−λλk

k!
with,

∂2 ln f(k|λ)

∂λ2
= − k

λ2

and consequently, π(λ) ∝
√
λ

λ
.

Let X ↪→ LN (µ, σ2), with fX(x) =
1

x
√

2πσ2
exp{−(lnx− µ)2

2σ2
}.

Hence, by letting ω = (µ, σ) and calculating the corresponding partial derivatives to
ln fX(x) we obtain:

I(ω) =

[
σ−2 0

0 1/2σ4

]

As a consequence, π(µ) ∝ 1

σ2
∝ 1 and π(ω) =

1√
2σ6
∝ 1

σ3
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B MCMC Metropolis-Hastings algorithm

B.1 Applying MCMC with Metropolis Hastings algorithm for
λ

1- Initialize λ0 =
λID + λSA

2

2- Update from λi to λi+1 (i = 1, ..., n) by

– Generating λ ↪→ U(λSA, λID)

– Define ζ = min

(
f(λ|nSA, nID)

f(λi|nSA, nID)
, 1

)
– Generate Rnd ↪→ U(0, 1)

– If Rnd ≤ ζ, λi+1 = λ, else λi+1 = λi

3- Remove the first 3000 iterations, so that the chain is stationary (burn-in effect).

B.2 Applying MCMC with Metropolis-Hastings algorithm for
µ

1- Initialize µ0 = µID

2- Update from µi to µi+1 (i = 1, ..., n) by

– Generating µ ↪→ U(0, 12)

– Define ζ = min

(
f(µ|x, y)

f(µi|x, y)
, 1

)
– Generate Rnd ↪→ U(0, 1)

– If Rnd ≤ ζ, µi+1 = µ, else µi+1 = µi

3- Remove the first 3000 iterations, so that the chain is stationary (burn-in effect).

B.3 Applying MCMC with Metropolis-Hastings algorithm for
ω = (µ, σ)

1- Initialize µ0 = µID and σ0 = σID

2- Update from µi to µi+1 and σi to σi+1, (i = 1, ..., n) by
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– Generating µ ↪→ U(0, 12) and σ ↪→ U(0, 7)

– Define ζ = min

(
f(µ, σ|x, y)

f(µi, σi|x, y)
, 1

)
– Generate Rnd ↪→ U(0, 1)

– If Rnd ≤ ζ, µi+1 = µ and σi+1 = σ else µi+1 = µi and σi+1 = σi

3- Remove the first 3000 iterations from both distributions, so that the chains is sta-
tionary (burn-in effect).
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