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Abstract

In this paper, we empirically compare two structural models (basic Merton and Vasicek-
Kealhofer (VK)) and one reduced-form model (Hull-White (HW)) of credit risk. We propose
here that two useful purposes for credit models are default discrimination and relative value
analysis. We test the ability of the Merton and VK models to discriminate defaulters from
non-defaulters based on default probabilities generated from information in the equity market.
We test the ability of the HW model to discriminate defaulters from non-defaulters based on
default probabilities generated from information in the bond market. We find the VK and HW
models exhibit comparable accuracy ratios on both the full sample and relevant sub-samples
and substantially outperform the simple Merton model. We also test the ability of each model
to predict spreads in the credit default swap (CDS) market as an indication of each models
strength as a relative value analysis tool. We find the VK model tends to do the best across
the full sample and relative sub-samples except for cases where an issuer has many bonds in the
market. In this case, the HW model tends to do the best. The empirical evidence will assist
market participants in determining which model is most useful based on their purpose in hand.
On the structural side, a basic Merton model is not good enough; appropriate modifications to
the framework make a difference. On the reduced-form side, the quality and quantity of data
make a difference; many traded issuers will not be well modeled in this way unless they issue
more traded debt.
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Introduction

Complete realism is clearly unattainable, and the question whether a theory is realistic enough can

be settled only by seeing whether it yields predictions that are good enough for the purpose in hand

or that are better than predictions from alternative theories. (Friedman, 1953)

This insight presented decades ago applies to the current debate regarding structural and reduced-

form models. While much of the debate rages about assumptions and theory, relatively little is

written about the empirical application of these models. The research results highlighted in this

paper improve our understanding of the empirical performance of several widely known credit pricing

models. In this way, we can better evaluate whether particular models are good enough for our

collective purpose(s) in hand. Let us begin this discussion by considering some of the key theoretical

frameworks developed for modeling credit risk.

Credit pricing models changed forever with the insights of Black and Scholes (1973) and Merton

(1974). Jones, Mason and Rosenfeld (1984) punctured the promise of these ”structural” models

of default by showing how these types of models systematically underestimated observed spreads.

Their research reflected a sample of firms with simple capital structures observed during the period

1977 to 1981. Ogden (1987) confirmed this result finding that the Merton model under-predicted

spreads over U.S. treasuries by an average of 104 basis points. KMV (now Moody’s KMV or MKMV)

revived the practical applicability of structural models by implementing a modified structural model

called the Vasicek-Kealhofer (VK) model (see Crosbie and Bohn (2003), Kealhofer (2003a), Kealhofer

(2003b), and Vasicek (1984)). This VK model is combined with an empirical distribution of distance-

to-default to generate the commercially available Expected Default Frequency�or EDF�credit

measure. The VK model builds on insights gleaned from modifications to the classical structural

model suggested by other researchers. Black and Cox (1976) model the default-point as an ab-

sorbing barrier. Geske (1977) treats the liability claims as compound options. In this framework,

Geske assumes the firm has the option to issue new equity to service debt. Longstaff and Schwartz

(1995) introduce stochastic interest rates into the structural model framework to create a two-factor

specification. Leland and Toft (1996) consider the impact of bankruptcy costs and taxes on the
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structural model output. In their framework, they assume the firm issues a constant amount of debt

continuously with fixed maturity and continuous coupon payments. Collin-Dufresne and Goldstein

(2001) extend the Longstaff and Schwartz model by introducing a stationary leverage ratio, allowing

firms to deviate from their target leverage ratio in the short run, only.

While empirical evidence is still scant, a few empirical researchers have begun to test these model

extensions. Lyden and Saraniti (2000) compare the Merton and the Longstaff-Schwartz models and

find that both models under-predicted spreads; the assumption of stochastic interest rates did not

seem to change the qualitative nature of the finding. Eom, Helwege, and Huang (2003) find evidence

contradicting conventional wisdom on the bias of structural model spreads. They find structural

models that depart from the Merton framework tend to over-predict spreads for the debt of firms with

high volatility or high leverage. For safer bonds, these models, with the exception of Leland-Toft,

under-predict spreads.

On the commercial side MKMV offers a version of the VK model applied to valuing corporate

securities, which is built on a specification of the default-risk-free rate, the market risk premium,

liquidity premium, and expected recovery in the context of a structural model. The VK model

framework is used to produce default probabilities defined as EDF credit measures and then ex-

tended to produce a full characterization of the value of a credit risky security. This model appears

to produce unbiased, robust predictions of corporate bond credit spreads. (see Bohn (2000) and

Agrawal, Arora, and Bohn (2004) for more details.) Some important modifications to the typical

structural framework include estimation of an implicit corporate-risk-free reference curve instead of

using the U.S. treasury curve. Some of the under-prediction found in the standard testing of the

Merton model likely results from choosing the wrong benchmark curve in the sense that the spread

over U.S. treasuries includes more than compensation for just corporate credit-risk. The assumption

here is that the appropriate corporate default risk-free curve is closer to the U.S. swap curve (typical

estimates are 10 to 20 basis points less than the U.S. swap curve.) The MKMV implementation

of the VK model allows for a time-varying market risk premium, which materially improves the

performance of the model. Other important modifications to the framework include the specifica-

tion of a liquidity premium that may be associated with the firm’s access to capital markets and

the assumption of a time-varying expected recovery amount. All these modifications contribute to
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producing a more usable structural model.

The structural model is particularly useful for practitioners in the credit portfolio and credit

risk management fields. The intuitive economic interpretation of the model facilitates consistent

discussion regarding a variety of credit risk exposures. Corporate transaction analysis is also possible

with the structural model. If an analyst wants to understand the impact on credit quality of increased

borrowing, share repurchases, or the acquisition of another firm, the structural model naturally

lends itself to understanding the transaction’s implications. In general, the ability to diagnose

the input and output of the structural model in terms of understandable economic variables (e.g.

asset volatility as a proxy for business risk, the market’s assessment of an enterprise’s value, and

the market leverage) facilitates better communication among loan originators, credit analysts, and

credit portfolio managers.

The other major thread of credit risk modeling research focuses on “reduced-form” models of

default. This approach assumes a firms default time is inaccessible or unpredictable and driven by

a default intensity that is a function of latent state variables. Jarrow, Lando, and Turnbull (1995),

Duffie and Singleton (1999), and Hull and White (2000) present detailed explanations of several

well known reduced-form modeling approaches. Many practitioners in the credit trading arena have

tended to gravitate toward this modeling approach given its mathematical tractability. Jarrow

and Protter (2004) argue further that reduced-form models are more appropriate in an information

theoretic context given that we are unlikely to have complete information about the default point

and expected recovery. Strictly speaking, most structural models assume complete information.1

Jarrow and Protter’s claim rests on the premise that a modeler only has as much information as

the market making the reduced-form approach more realistic. In practice, however, the complete

information assumption in structural models is an approximation designed to facilitate a simpler way

of capturing the various economic nuances of how a firm operates. The strength or weakness of a

model should be evaluated on its usefulness in real world applications. A reduced-form model, while

not compromising on the theoretical issue of complete information, suffers from other weaknesses

including lack of clear economic rationale for defining the nature of the default process.

Reduced-form models are characterized by flexibility in their functional form. This flexibility is

both a strength and a weakness. Given the flexible structure in the functional form for reduced-
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form models, fitting a narrow collection of credit spreads is straightforward. Unfortunately, this

flexibility in functional form may result in a model with strong in-sample fitting properties, but

poor out-of-sample predictive ability. Since this type of model represents a generally atheoretic

(i.e. less grounded in the economics driving default than in mathematical tractability) characteri-

zation of default risk, diagnosing how to improve peformance of these models can be challenging.

Difficulties in interpretation of results are particularly acute when modeling large cross-sections of

debt instruments– particularly when there is a high degree of heterogeneity in terms of credit qual-

ity. Without empirically testing the costs and benefits of any particular modeling approach, it is

premature to draw conclusions based on purely theoretical arguments.

The empirical testing of reduced-form models is still nascent. The reason relates back to the lack

of theoretical guidance on characterizing the default intensity process. Duffee (1999) found that the

parameter estimates using a square-root process of intensity can be fairly unstable. Another reason

is the bond data, on which these models are usually calibrated, is typically indicative in nature

creating data problems as information slowly leaks into the price, which may produce misleading

results.2 Transaction bond price sources like TRACE may alleviate data problems, but these sources

are new and do not provide detailed time-series of data. Other sources of bond data continue to be

plagued by missing and mistaken data. A final reason involves the difficulty in empirically separating

the merits of the modeling framework and the quality of the underlying data given that bond data

are typically used to fit the model as well as test the model. Structural models based on equity

price data will not suffer from this difficulty when they are then tested on bond data. The recent

availability of credit default swap data provides a new opportunity to understand the power of both

the structural and reduced-form modeling frameworks.3

The crucial question for academicians and practitioners alike is which modeling approach is better

in terms of discriminating defaulters from non-defaulters and identifying relative value?

The objective of this paper is to shed empirical light on this question. We test the performance

of a classic Merton model, the VK structural model as implemented by MKMV, and a reduced-form

model based on Hull and White (2000) (HW) in separating defaulting and non-defaulting firms in

the sample (also known as power-curve testing). We also look at the three models’ performance in

explaining the levels and cross-sectional variance of credit default swap data. These three models
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are chosen because they represent three key stages of the development of the literature in credit-risk

modeling. The Merton model was the original quantitative structural approach for credit risk model-

ing. The VK model represents a more realistic and meaningful model for practitioners. (This model

was the first commercially-marketed structural model.) The HW model is a reduced-form approach

that was developed to address parameter stability problems associated with existing approaches as

described in Duffee (1999).

The choice of credit default swap data for testing ensures a neutral ground on which the success

of the different models can be evaluated. None of the models are calibrated on the data used for

testing. This testing strategy enables us to avoid the pitfalls of testing models on data similar to

the data used to fit the models. The structural models are estimated with equity data and the

reduced-form model is estimated with bond data. In this way, we conduct a fair, out-of-sample

test.4

The paper is arranged as follows: Section I describes the basic methodologies of the Merton, VK

and HW models. Section II discusses the data and the empirical methodology used in the tests.

Section III presents the results. We also elaborate on some of the robustness checks we conducted

on our results in this section. Section IV concludes.

I Merton, Vasicek-Kealhofer (VK) and Hull-White (HW)
Models

I.i Merton Model

Merton (1974) introduced the original model that led to the outpouring of research on structural

models. Merton modeled a firm’s asset value as a lognormal process and assumed that the firm

would default if the asset value, A, falls below a certain default boundary X. The default was

allowed at only one point in time, T . The equity, E, of the firm was modeled as a call option on the

underlying assets. The value of the equity was given as:

E = AΦ [d1]−XT exp [−rT ] Φ [d2] (1)
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where

d1 =
log

[
A
X

]
+

(
µ + 1

2σ2
)
T

σ
√

T

d2 = d1 − σ
√

T

and Φ represents the cumulative normal distribution function. The debt value, D, is then given by:

D = A− E (2)

The spread can be computed as:

s = − 1
T

log
[
Φ [d2] +

A

X
exp [rT ] Φ [−d1]

]
(3)

where A is the initial asset value of the firm, X is the default barrier for the firm, i.e., if the

firm’s asset value A is below X at the terminal date T, then the firm is in default. µ is the drift of

the asset return, and σ is the volatility of the asset returns.

We included this model in our analysis to start with a simple framework as an initial benchmark.

A comparison of the performance of a Merton model with the MKMV implementation of the VK

model (which reflects substantial modification to the basic Merton framework) will illuminate the

impact of relaxing many of the constraining assumptions in the Merton framework.

I.ii VK Model

MKMV provides a term-structure of physical default risk probabilities using the VK model. This

model treats equity as a perpetual down-and-out option on the underlying assets of a firm. This

model accommodates five different types of liabilities: short-term liabilities, long-term liabilities,

convertible debt, preferred equity and common equity. MKMV uses the option-pricing equations

derived in the VK framework to derive a firms market value of assets and its associated asset

volatility. The default point term-structure (i.e. the default barrier at different points in time in

the future) is determined empirically. MKMV combines market asset value, asset volatility, and

the default point term-structure to calculate a Distance-to-default (DD) term-structure. This term-

structure is translated to a physical default probability using an empirical mapping between DD and

historical default data.
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DDT =
log

[
A

XT

]
+

(
µ− 1

2σ2
)
T

σ
√

T
(4)

XT in VK model has a slightly different interpretation than in Merton model. In the analytical

stage of the model, if asset value A falls below XT at any point in time, then the firm is considered

to be in default. In the DD-to-EDF empirical mapping step, VK model estimates a term-structure

of this default barrier to come up with a DD term structure that could be mapped to a default-

probability term-structure, hence the subscript T for default barrier X. The basic methodology is

discussed in Crosbie and Bohn (2003), Kealhofer (2003a), and Vasicek (1984). The model departs

from the traditional structural model in many ways. First, it treats the firm as a perpetual entity

that is continuously borrowing and retiring debt. Second, by treating different classes of liabilities,

it is able to capture richer nuances of the capital structure. Third, it calculates its interim asset

volatility by generating asset returns through a de-levering of equity returns. This is different from

the popular approaches that compute equity volatility and then de-lever it to compute the asset

volatility. Fourth, it generates the final asset volatility by blending the interim empirical asset

volatility as computed above together with a modeled volatility estimated on comparable firms.

This step helps filter out noise generated in equity data series. The default probability generated

by the MKMV implementation of the VK model is called an Expected Default Frequency or EDF

credit measure. These modifications address many of the concerns raised by Eom, Helwege and

Huang (2003) regarding the tendency of Merton models to over-estimate spreads for riskier bonds

and under-estimate spreads for safer bonds. This estimation process also results in term structures

of default probabilities that are downward sloping for riskier firms and upward sloping for safer

firms. This pattern is consistent with the empirical credit-migration patterns found in the data.5

Once the EDF term-structure is obtained, a related cumulative EDF term structure can be

calculated up to any term T referred to as CEDFT . This is then converted to a risk-neutral

cumulative default probability CQDFT using the following equation:

CQDFT = N
[
N−1 [CEDFT ] + λ • sqrt(R2) • sqrt(T )

]
(5)

where R2 is the square of correlation between the underlying asset returns and the market index

returns, and λ is the market Sharpe ratio.6
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The spread of a zero-coupon bond is obtained as:

s = − 1
T

log [1− LGD • CQDFT ] (6)

where LGD stands for the loss given default in a risk-neutral framework. The floating leg of a

simple CDS (i.e. a single payment of LGD paid out at the end of the contract with a probability of

CQDFT ) can also be approximated with this relationship.

I.iii HW Model

Hull and White (2000) provide a methodology for valuing credit default swaps when the payoff is

contingent on default by a single reference entity and there is no counterparty default risk. Instead

of using a hazard rate for the default probability, this model incorporates a default density concept,

which is the unconditional cumulative default probability within one period no matter what happens

in other periods. By assuming an expected recovery rate, the model generates default densities

recursively based on a set of zero-coupon corporate bond prices and a set of zero-coupon treasury

bond prices. Then the default density term-structure is used to calculate the premium of a credit

default swap contract. The two sets of zero-coupon bond prices can be bootstrapped from corporate

coupon bond prices and treasury coupon bond prices.

They show the credit default swap (CDS) spread s to be:

s =

∫ T

0

[
1− R̂ (1 + A(t))

]
q(t)v(t)dt

∫ T

0
q(t) [u(t) + e(t)] dt + πu(t)

(7)

where:

T: the life of the CDS contract.

q(t): the risk-neutral default probability density at time t.

A(t): the accrued interest on the reference obligation at time t as a percent of face value.

π: the risk-neutral probability of no credit event over the life of the CDS contract.

w: the total payments per year made by the protection buyer.

e(t): the present value of the accrued payment from previous payment date to current date.

u(t): the present value of the payments at time t at rate of $1 on the payment dates.

R̂: the expected recovery rate on the reference obligation in a risk-neutral world.
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The risk-neutral default probability density is obtained from the bond data using the relationship

qj =
Gj −Bj −

∑j−1
i=1 qiαij

αjj
(8)

where αij is the present value of the loss on a defaultable bond j relative to an equivalent default-free

bond at time ti. αij can be described as:

αij = v(ti) [Fj(ti)−Rj(ti)Cj(ti)] (9)

Cj is the claim made on the jth bond in the event of default at time ti, while Rj is the recovery

rate on that claim. Fj is the risk-free value of an equivalent default-free bond at time ti, while v(ti)

is the present value of a sure payment of $1 at time ti.

In this framework, one can infer a risk-neutral default risk density from a cross-section of bonds

with various maturities. As long as the bonds measure the inherent credit risk and have the same

recovery as used in the CDS, one should be able to recover a fair price for the CDS based on the

prices of the obligors traded bonds.

II Data and Empirical Methodology

II.i Data

The data set consists of bond data for each models implementation as described in the preceding

section combined with data on actual CDS spreads used to test each models predicted prices. Cor-

porate bond data were provided by EJV, a subsidiary of Reuters. The data include prices quoted

daily from 10/02/2000 to 6/30/2004. We selected US dollar-denominated corporate bonds, only.

There are 706 firms that have at least two bonds that can be used for bootstrapping. CDS data

are from CreditTrade and GFInet, two active CDS brokers. Of the 706 firms, 542 firms have CDS

data. Therefore, we restricted our analysis to these 542 firms. The final sample tested represented

a reasonable cross-section of firms with traded debt and equity mitigating concerns about biases

arising from sample seleciton. While the EJV data are indicative and subject to the price staleness

concerns described above, the CDS data are likely to be closer to actual transacted prices. (CDS

tend to trade more often than bonds.) The lagging nature of the bond data will be somewhat of

a handicap for the HW reduced-form model calibrated on that data. Part of the objective of this



Reduced Form vs. Structural Models of Credit Risk: A Case Study of Three Models 10

study is to present model estimations as they would be done in practice so the nature of the available

data is as relevant as the estimation approach.

The Merton default-probabilities and implied spreads are generated using time-series of equity

data and financial statements on the sample of firms from COMPUSTAT. The VK daily default

probabilities are MKMV EDF credit measures.

The period of study is particularly interesting as it covers two years of recession in many in-

dustrialized countries and includes several firms with substantial credit deterioration (e.g. Ahold,

Fiat, Ford, Nortel and Sprint.) This time period also includes firms embroiled in major accounting

and corporate governance scandals such as Enron and WorldCom. We required each firm to have a

minimum of 2 bonds to be included in our data set. The highest number of bonds tracked for any

particular issuer in this data set is 24.

II.ii Methodology

For the Merton model, we used the default point as 80% of the overall liabilities of the firm. We

chose this number because it performed the best in terms of default predictive power. The concept

of default predictive power is discussed in the next section. Regardless, we tested other default point

specifications and found that the qualitative nature of the results are not sensitive to how we specify

the default point.

For the VK model, we use a market Sharpe Ratio of 0.45 and an LGD of 0.60. MKMV provides

a time-series of Sharpe ratios and sector based LGDs which are calibrated from bond data. We

specified a constant Sharpe Ratio and a constant LGD so that our test focuses on the main driver

of spreads– default probabilities– and reduces the risk of biasing the tests. Using a dynamic time-

series of these parameters would have made the results look more favorable for the VK structural

approach. The methodology is described in detail in Kealhofer (2003a).

For the reduced-form model, we first derived the corporate zero-rates7 by bootstrapping. This

procedure facilitates calculating zero-coupon yield curves from market data. For each firm, all

senior-unsecured straight bonds (i.e. bonds without embedded options, such as those deriving from

convertibility and callability) are ranked by their time to maturity from 1 to 6 years. For each

3-month interval, at most one bond is selected. To estimate the zero-rate, a firm must have at least
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two bonds coming out of the above process.

The bootstrapping procedure is done using a MATLAB financial Toolbox function that takes

bond prices, coupon rates, maturities, and coupon frequencies as inputs. The procedure is described

in detail in Hull (1999). Using this procedure, we obtain zero-rates corresponding to bond maturities.

Since many firms have 2 to 5 bonds and the zero-rates from bootstrapping are very noisy, a linear

interpolation of these zero-rates may lead to unrealistic forward prices. To mitigate this issue, we

use a two-degree polynomial function to approximate the zero-curve. We then use the fitted function

to generate the zero-rates every 3 months. Corporate zero-coupon bond prices are calculated using

the three-month interval zero-rates.

We obtain the treasury zero-rates from 1 month to 30 years from Bloomberg. Treasury zero-

coupon bond prices and forward prices are obtained from the risk-free zero curve.

Tables 1(a) through (c) show the descriptive statistics of the bond and CDS data. In Table 1(a),

we see that more than 28% of the sample have only 2 bonds usable for bootstrapping. About 4% of

the firms in sample have more than 20 bonds that were used for bootstrapping. This limited number

of bonds per issuer poses difficulties given that the accuracy of the implied default probability density

depends on the number of bonds available. Table 1(b) shows that the time-to-maturity of the bonds

is fairly uniformly distributed between 0 and 6 years with the density dropping off at the extremes.

Table 1(c) shows that the underlying issuers span a wide cross-section of financial health, as

measured by CDS spreads.

III Results

III.i Default Predictive Power of Models

We first test the ability of the three models to predict defaults. We do this by rank ordering the

firms in our sample in their probability of default from highest to lowest. We then eliminate x%

of the riskiest firms from our sample and compute the number of actual defaults that were avoided

using this simple rule. This number is expressed as a percentage of the total number of defaults,

y%. We vary x from 0 to 100 and find a corresponding y for each x.

Ideally, for a sample of size N with D defaults in it, when x = D
N then y should be 100%. This

would imply that the default predictive model is perfect, i.e. each firm eliminated would, in fact,
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be part of the group that actually defaults. The larger the area under the curve of y against x,

the better the models power to minimize both Type-I error (holding a position in a firm that later

defaults) and Type-II error (avoiding a position in a firm that does not default.) This area is defined

as the models accuracy ratio (AR) (See Stein (2002) and Stein (2003) for a more detailed discussion

of default model performance evaluation.)

For a random default-risk measure without any predictive power, the x-y graph should be a

45 degree straight line. The more area between the 45 degree line and the power curve, the more

accurate the measure.

There are two caveats in interpreting results from this test. First, it is a limited sample: data on

bonds and CDS are restricted to many fewer firms than the data available for equities. Of course,

a firm that does not issue tradeable bonds may not be as interesting to practitioners; however,

the increasing interest in trading bank loans and devising new synthetic credit instruments creates

demand for analytics to evaluate instruments for which traded bonds and CDS are not available.

Given the large potential for trading credit risk beyond bonds, the applicability of an equity-based

structural model to a much more extensive dataset is critical to expanding the coverage of firms

and developing market liquidity. The second caveat is that reduced-form models are designed to

provide risk-neutral probabilities of default. The order of these might not be the same as that

of physical probabilities. For example, a firm with a low physical probability of default but high

systematic risk in its asset process might have a higher risk-neutral probability of default compared

to a firm with a relatively higher physical probability of default but with no systematic risk in its

asset process. As credit investors move toward building portfolios with more optimal return-risk

profiles, distinguishing physical default probabilities becomes critical. In this test, we make the

strong assumption that the order stays the same.

Figure 1 shows the results of our default prediction test. In the above graph, there are three

default-risk measures: default probability from the HW reduced-form model, default probability from

a simple Merton structural model, and default probability from the VK model. All three measures

are cumulative one-year risk-neutral default probabilities. As we can see, the VK structural model

ranks the highest in its ability to predict default with an AR of 0.801. The HW model approach is

not too far behind with an accuracy ratio of 0.785. The basic Merton model, however, is far behind
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with 0.652. This demonstrates that with proper calibration of default models, both equities and

bonds can be effective sources for information about impending defaults.

Figure 2 shows the median default probabilities from the three models for every defaulted firm in

the dataset before and after default. Month 0 reflects the month in which each company defaulted.

Negative numbers reflect the number of months before default and positive numbers reflect the

number of months after default. As we can see from the graph, for the limited sample where the

defaulted companies did, in fact, have traded bonds, both the VK model and the reduced-form

model predict defaults reasonably well. The classic Merton model trails the other two models in

terms of signalling distress closer to the actual event of default.

III.ii Levels and Cross-Sectional Variation in CDS Spreads

We next test the ability of the three models to predict the CDS spread levels and explain the cross-

sectional variation in CDS spreads. As discussed above, the conventional wisdom is that structural

models, in general, underpredict actual credit spreads. If this were indeed the case, then one would

expect that the CDS spreads predicted by the Merton model would generally underestimate the

observed level of CDS spreads. For a modified structural approach, such as the VK structural

model, previous empirical evidence (see Eom, Helwege, and Huang (2003)) suggest one would expect

the model-implied CDS spreads to be underpredicted for safer firms and over-predicted for riskier

firms. Some of this tendency can be explained by the functional form used for transforming physical

default probabilities to risk-neutral default probabilities; the function in the VK framework may be

increasing the risk-neutral probabilities too much for high-risk firms. That said, the model structure

does not imply a particular bias in either direction.

There is no established pattern in the empirical literature with respect to the accuracy or bias of

the spreads predicted by reduced-form models. If bond markets are a fair reflection of the inherent

risk of a firm and the corporate bond spreads do, in fact, reflect primarily default risk, then the

reduced-form model implied CDS spreads should be an unbiased predictor of CDS spreads. To the

extent the reduced-form model is a biased predictor of CDS spreads, the likely cause is factors other

than default risk (e.g. liquidity) driving spreads in the corporate bond market.

Figure 2(a) through (c) show the performance of the three models in their ability to predict the
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CDS spreads. The graphs show

Error = CDS −Model CDS

as histograms for each model. Consistent with previously published research, we see that the Merton

model substantially underpredicts the actual CDS spread, as demonstrated by the right side skew of

the frequency chart. Both the reduced-form model and the VK structural model seem to be skewed

towards the left side, indicating that these models overpredict CDS spreads. However, the skew is

much larger for the reduced-form model, with more than 10% of the sample reflecting overestimation

of CDS spreads by more than 200 bps. This compares to 3.5% of the sample where the VK structural

model overestimates CDS spreads by more than 200 bps.

The median error in the case of the VK structural model is -33.28 bps, which seems to be

consistent with the claim of Eom, Helwege and Huang (2003) that more sophisticated structural

models overestimate credit risk. This bias is smaller than the median error of -72.71 bps found for

reduced-form models. Consistent with the existing literature, the median error in case of the Merton

model is a positive 53.99 bps, implying that the Merton model does underestimate credit-risk, even

when measured by CDS spreads. Note also that the VK model generated the smallest median

absolute error.

Finally, Figure 3 shows the time-series of the correlation of market CDS spreads with modeled

CDS spreads. This correlation reflects the ability of a model to explain the cross-sectional variation

of market CDS spreads. If the modeled CDS spreads are the same as the market CDS spreads, then

the correlation will be exactly 1. In general, a better correspondence between the levels of modeled

with realized market spreads will lead to a higher correlation. As evident from this figure, the VK

model performs the best in this regard. Surprisingly, the HW reduced-form model performs the

worst. Table 3(a) shows the median of the slope coefficients that result from regressing the market

CDS on the modeled CDS cross-sectionally on a daily basis. In general, if the model is an unbiased

estimator of the realized spread, then this slope should be 1. While both the VK and Merton models

deviate from 1 with median slopes at 0.76 and 1.26 respectively, the HW model’s median slope is at

0.07, which seems unusually low. The median R-squareds of these regressions (which should also be

the squares of the correlation between the market and modeled spreads) of the HW model, the VK
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model and the Merton model stand at 0.09, 0.48 and 0.26 respectively, once again demonstrating

the strength of the VK structural model in explaining the cross-sectional variation of CDS spreads.8

These results are particularly striking given that VK-model-based EDF credit measures rely only

on equity market input.

III.iii Robustness Tests

In this section, we subject our results to more scrutiny by analyzing various sub-sets of the data to

determine whether our results are attributable to the presence of outliers.

One possible explanation for our results may be that healthier firms behave differently than

riskier firms. We conduct our tests again on these two subsets of firms separately. Our proxy for a

relatively healthy firm is one where the CDS spread is less than 100 bps. As seen in Table 1(c), about

73% of the sample falls in the healthier category. This percentage is in line with our expectations;

most of the CDS data are concentrated among larger and less risky firms. Table 2(a) shows that the

negative bias of the VK model is typically evident for firms with CDS spreads below 100 bps. For

riskier firms, the modeled spreads are largely unbiased with the median error around -7.6 bps. This

result is inconsistent with the claim of Eom, Helwege and Huang (2003), that more sophisticated

structural models underpredict credit risk at lower levels of risk, and overpredict credit risk at higher

levels of credit risk. In comparison, the Merton model consistently underpredicts credit risk, as can

be seen by the positive errors for both classes of CDS. The HW reduced-form model overpredicts

credit risk for both classes. This overprediction is significantly high and even the 75th percentiles of

errors are fairly negative for both classes of CDS.

Table 4(a) highlights the ability of the models to explain the cross-sectional variation of CDS

spreads. We find that although on aggregate, the HW model was outperformed by the Merton and

VK models, on the subset of data with CDS < 100 bps, the HW model outperforms the Merton

model. The VK model outperforms the other two models in all other subsets of the data except the

75th percentile of firms with CDS < 100 bps.

One possible explanation for the HW models difficulties may involve the fact that most issuers

have few outstanding bonds. A larger number of bond issues will increase the efficiency of estimating

the default density. To test for this possibility, we divided our sample into firms with 2 bonds, firms
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with 3 to 4 bonds, firms with 5 to 9 bonds, firms with 10 to 15 bonds, and firms with 16 to 24

bonds.9

Table 2(b) shows that the negative bias of the VK and HW models is present in all sub-samples of

the data. This result indicates that the bias is not being caused by firms with few outstanding bonds.

The negative bias of the HW model is larger compared to that of VK model for all data subsets.

The Merton model, on the other hand, has a consistently positive bias in all categories, indicating

that the model’s underestimation of credit risk is fairly consistent across various sub-samples of the

data.

Table 4(b) examines the impact of the availability of information, as measured by the number of

bonds by an issuer, on the ability of the HW model to explain the cross-sectional variation of the CDS

spreads. Interestingly, we find that the HW model outperforms the other two models when there

are more than 10 bonds available to calibrate the default probability density. This improvement

most likely results from the greater amount of cross-sectional information, in terms of the number

of bonds, available to calibrate the default probability density. Similarly, in Table 3(b), we see that

the sensitivity of the realized CDS spread to modeled spread, as measured by the median slope of

cross-sectional regression of market spreads on model spreads, increases with the number of bonds

available.

The ability of both the VK and the Merton model to explain the cross-sectional variation declines

among firms with more than 15 bonds issued, as can be observed by the lower R-squareds. This result

is surprising given that these models do not use bond information in their calibration. The result is

most likely being driven by the fact that firms that issue such large numbers of bonds have other

variables impacting their spreads (e.g. interest-rate risk). These firms account for only 5% of the

data as can be seen from Table 1(a). That said, in terms of debt outstanding, these firms constitute

a larger percentage (but not a majority) of the dollar amount of corporate debt outstanding. For

example, on June 2004, firms that had more than 10 bonds used in bootstrapping (after applying all

the filters) represented 40% of the total amount outstanding in our sample. Similarly, firms that had

more than 15 bonds available for bootstrapping represented about 28% of the amount outstanding.

Regardless of the measure, the majority of the firms tested in this research exercise did not have a

large number of bonds outstanding.
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We have seen that the larger number of bonds available for bootstrapping (all else equal) should

improve the performance of the model. Further characterization of the sample of prolific issuers

helps us interpret the results on other drivers of model performance. Large firms tend to be the ones

that issue more bonds10. Table 5(a) shows that large firms account for relatively more of the prolific

issuers than small firms. Large issuers also tend to be less risky. Table 5(c) demonstrates this fact

by showing the distribution of CDS spreads for the entire sample compared to the distribution of

CDS spreads for the largest firms (defined by log(size) > 11). The large-firm sample does, in fact,

have a higher percentage of firms with lower CDS spreads. We also find that large issuers tend

to issue debt of a similar duration as smaller firms. This can be seen from the comparison of the

distribution of time to maturity across bonds of large firms and bonds of the overall sample in Table

5(b). Therefore, as a percentage contribution to the overall spread, interest rate risk may dwarf

default risk for these types of larger and safer issuers. Corporate bonds issued by small firms tend

not to be transacted as much making liquidity risk relatively more important in determining their

spreads. These circumstances create countervailing influences on the performance of the HW model

using bond data to fit CDS spreads. To the extent that interest rate risk or liquidity risk overpowers

default risk as the primary driver of CDS spreads, a HW model calibrated on bond data will not

perform as well. Given these circumstances, we cannot predict ex ante how firm size will impact

model performance.

We test the impact of size on model performance by further dividing the subsamples based on

the number of bonds available for bootstrapping. This procedure is designed to isolate the effect

of size from the effect of number of bonds available for bootstrapping (since the two are somewhat

positively correlated.) For each subsample, we compute the median size of the firms. We then divide

each subsample into two groups: one group where firm size exceeds the subsample median and the

other group where firm size is less than the subsample median. Table 6(a) reports the performance

of each model in explaining the cross-sectional variation in CDS spreads (as measured by the R-

squareds of the regression of CDS spreads on modeled spreads) across the two size categories for

each subsample.

The VK model performs fairly consisently across the different subsamples. The HW model per-

formance is a little more varied. As the number of bonds outstanding increase, the HW model



Reduced Form vs. Structural Models of Credit Risk: A Case Study of Three Models 18

performs progressively better. The classic Merton model consistently underperforms the other mod-

els in almost every subsample. One interesting pattern is the HW outperformance for large, profilic

issuers. We suspect these results reflect the extent to which default risk is not a primary determinant

of spreads for large, low-risk, prolific issuers of long-term debt. The performance of the structural

models relies on the sensitivity of CDS spreads to changes in the equity-based default probability

measures. The standard Merton model reflects primarily equity price movement which may not be

a primary determinant of CDS spreads for large firms. The VK model, on the other hand, includes

modifications to the specification of the default point, the estimation of asset volatility, and the

interaction of firm asset value and the default model in such a way so as to capture more of the de-

terminants of CDS spreads for all firms, regardless of size. As a result, its performance is consistent

across subsamples. For the most prolific issuers (i.e. outstanding bonds greater than 16), we should

interpret the results with care given the small number in this subsample.

Table 6(b) reports some of the characteristics of the cross-sectional distribution of the CDS

spreads in this sample, categorized by firms with different numbers of bond issues available. As

we move to firms with a larger number of bonds, the CDS spreads are less diverse, as indicated by

the standard deviation and the inter-quartile range (|p75 − p25|) of the spreads. There is also a

substantial reduction in the number of CDS obervations available on a daily basis (as can be seen

by the median number of observations each day). R-squared is not a reliable statistic when the

variation in dependent variable (in this case, the CDS spreads) is low, or the number of observations

are low. Our sample suffers from both these inadequacies. For example, upon breaking the sample of

firms with more than 15 bonds, into two halves according to size (as in Table 6(a)), the median daily

number of observations in each half is about 9. This, along with the lowest coefficient of variation
(

StandardDeviation
Mean

)
leads to an unreliable R-squared measure. The subsamples for firms with fewer

numbers of bonds outstanding do not suffer from this particular difficulty. All results should be

considered with these characteristics in mind.

In summary, the testing demonstrates that for the vast majority of firms, a structural model, such

as the VK model developed at MKMV, calibrated on a time-series of equity data works better in

measuring credit risk relative to a HW reduced-form model calibrated on a cross-section of corporate

bonds. The VK model substantially outpeforms a simple implementation of the standard Merton
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model. For practitioners looking across the broad cross-section of traded credit instruments, the

data requirements for robust reduced-form modeling and the availability of robust equity-based

measures should inform discussions of which modeling approach to use. Moreover, users of reduced-

form models to price other credit-risky securities like CDS should bear in mind the potential impact

on bond spreads by other forms of risks like interest rate risk and liquidity risk. These effects

can be different across size and spread levels, and might therefore distort the performance of these

models. A model like VK is relatively more stable in its performance across various categories

by size and spreads. The model’s strength is partially due to its structural framework that uses

equity data, which are less contaminated by other risks, and partially due to its more sophisticated

implementation.

IV Conclusion

In this paper, we empirically test the success of three models in their ability to measure credit risk.

These models are the Merton model, the Vasicek-Kealhofer (VK) model, and the Hull-White (HW)

model. These three models were chosen because they represent three key stages in the development

of the theoretical literature in credit risk. These models also represent two main approaches for

credit-risk modeling: the structural approach and the reduced-form approach.

This research is the first attempt at testing these types of models on a broad cross-section of

credit default swap data. The advantage of these data are that they are not used in the calibration

of any of the models and so constitute a true out-of-sample test. Credit default swap spreads have

also been accepted by researchers in both academia and the financial industry as efficient measures

of credit risk.

We find that, despite the advantages stated by proponents of reduced-form models, a HW

reduced-form model largely underperforms a sophisticated structural model like that of the VK

model (as implemented by MKMV). Interestingly enough, the HW model outperforms the simple

Merton model when a given firm issues a large number of bonds. In these cases of firms issuing more

than 10 bonds at any given point in time, the HW model can also outperform (in terms of explaining

the cross-sectional variation of CDS spreads) the more sophisticated VK structural model for some

subsets of low risk corporate issuers. At this time, the number of such firms is small. In our sample,
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the HW model was more effective in its ability to explain the cross-sectional variation of the CDS

spreads only for the largest 5% of the firms, in terms of the number of issues outstanding on which

data were available. Even for this sample, the error in terms of the difference between actual and

predicted levels of spreads was much larger for the HW model when compared to the VK model.

The VK model consistently outperformed the other two models in terms of default predictive power.

The performance of the VK model is more consistent across large and small firms, while the perfor-

mance of the HW and Merton models worsens considerably across larger firms. The overall results

emphasize the importance of empirical evaluation when assessing the strengths and weaknesses of

different types of credit risk models.
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Notes

1Giesecke and Goldberg (2004) show that it is possible to develop a structural model in which
the modeler also has incomplete information about the default point, making the time-to-default
inaccessible even in a structural model. Duffie and Lando (2001) propose a hybrid model that
assumes accounting information is noisy thereby making the default time inaccessible in the context
of a structural model.

2Because indicative prices do not always reflect all the information in the market, a researcher
may mistakenly conclude that a particular model predicts price changes when, in fact, an actual
trade would have reflected an immediate price change eliminating any predictive power of the model.
See Duffee (1999) for more discussion on this problem of stale bond prices.

3See, for example, Ericsson and Reneby (2004).

4The three models take different sources of data as inputs. While the Merton and VK models
rely on equity data, HW model is calibrated with bond data. Therefore, any result in this test is a
reflection on the framework as well as the quality of data available to the models as input. One of the
strengths of a model, especially from a practitioner’s point of view, is that it should yield accurate
results based on data that are easily available and accessible. A conceptually powerful framework,
while intellectually stimulating, can be fairly meaningless if any application of it relies on data that
are either unavailable, or are of bad quality.

5Note that Helwege and Turner (1999) find evidence of upward sloping term structures of spreads
for risky corporate bonds. When we look at the behavior of distance-to-default for firms, the
downward sloping term structures of default probabilities for high risk issuers appear more consistent.
More research is needed to reconcile these somewhat contradictory findings.

6The normal and normal inverse functions act as translators of the default probability estimate
without requiring that the default probability estimate,itself, be generated from a normal distribu-
tion. In this case, the CEDF was calculated from the empirical distribution estimated at MKMV.

7A zero-rate is the implicit interest on a zero-coupon bond of a given maturity.

8Median R-squareds of 0.09, 0.48, and 0.26 correspond to median correlations of approximately
30%, 70%, and 51%.

9The number of bonds represents the number available for bootstrapping after using all the filters
described above– not the actual number of bonds outstanding.

10We measure the size of a firm by its book asset value. A large firm is considered to have book
assets in excess of about $60 billion (log(60,000) is approximately 11; our data are reported in
millions of dollars).
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Figure 1(a): A comparison of predictive power across models as given by the accuracy ratio. The
accuracy ratios for the VK model, HW model, and Merton models are 0.801, 0.785, and 0.652
respectively.
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Figure 1(b): Behavior of risk-neutral default probabilities before default for different models. Date
0 represents the date of default.
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Figure 2(a): Histogram of difference between the market CDS and model CDS prices (as given by
Market CDS −Model CDS) for HW reduced-form model.
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Figure 2(b): Histogram of difference between the market CDS and model CDS prices (as given by
Market CDS −Model CDS) for the VK structural model.
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Figure 2(c): Histogram of difference between the market CDS and model CDS prices (as given by
Market CDS −Model CDS) for Merton model.
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Figure 3: Time-series of correlation between market CDS spreads and model CDS spreads. For each
day, the correlation was computed based on cross-sectional data of market and model CDS prices.
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Number of Bonds Percentage of Sample
=2 28.84%
≤ 3 45.83 %
≤ 4 57.32 %
≤ 5 65.35 %
≤ 6 70.96 %
≤ 7 75.74 %
≤ 8 79.38 %
≤ 9 83.31%
≤ 10 85.89 %
≤ 11 87.99 %
≤ 12 89.68 %
≤ 13 91.25 %
≤ 14 92.47 %
≤ 15 93.59 %
≤ 16 94.48 %
≤ 17 95.32 %
≤ 18 96.09%
≤ 19 96.78 %
≤ 20 97.34 %
≤ 21 98.01 %
≤ 22 98.56 %
≤ 23 99.22 %
≤ 24 100 %

Table 1(a): Cumulative percentage distribution of issuers by number of bonds used in bootstrapping
for zero-coupon yield curve.
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Time to Maturity Percentage of Sample
≤ 0.25 1.55 %
≤ 0.50 5.99%
≤ 0.75 10.50 %
≤ 1.00 14.93 %
≤ 1.25 19.47 %
≤ 1.50 24.03 %
≤ 1.75 28.54 %
≤ 2.00 33.10 %
≤ 2.25 37.71 %
≤ 2.50 42.16 %
≤ 2.75 46.69 %
≤ 3.00 51.25 %
≤ 3.25 55.69 %
≤ 3.50 59.94 %
≤ 3.75 64.19 %
≤ 4.00 68.43 %
≤ 4.25 72.69 %
≤ 4.50 76.87 %
≤ 4.75 81.09 %
≤ 5.00 85.30 %
≤ 5.25 89.20 %
≤ 5.50 92.35 %
≤ 5.75 95.37 %
≤ 6.00 98.33 %
≤ 6.25 100.00 %

Table 1(b): Cumulative percentage distribution of time-to-maturity of bonds used in bootstrapping
for zero-coupon yield curve.
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CDS Spread Percentage of Sample
≤ 25 26.77 %
≤ 50 48.47 %
≤ 75 64.02 %
≤ 100 73.07 %
≤ 125 78.42 %
≤ 150 82.86 %
≤ 175 86.21%
≤ 200 88.33 %
≤ 225 90.17 %
≤ 250 91.49 %
≤ 275 92.82 %
≤ 300 93.81 %
≤ 325 94.69 %
≤ 350 95.50 %
≤ 375 96.16 %
≤ 400 100.00 %

Table 1(c): Cumulative percentage distribution of CDS by range of spreads.

Percentile Model Firms with CDS Firms with CDS All Firms
Difference ≤ 100 bps > 100 bps

HW -111.70 -135.16 -118.75
p25 VK -83.62 -68.60 -80.18

Merton 21.98 107.30 27.34
HW -70.73 -77.96 -72.71

p50 VK -39.68 -7.57 -33.28
Merton 37.17 146.11 53.99

HW -39.02 -33.34 -37.63
p75 VK -10.13 62.51 2.01

Merton 58.24 238.45 102.33

Table 2(a): Difference between the market CDS and model CDS prices (as given by Market CDS−
Model CDS) for firms in different CDS buckets
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Percentile Model Firms with Firms with Firms with Firms with
Difference 2 to 4 bonds 5 to 9 bonds 10 to 15 bonds 16 to 24 bonds

HW -146.62 -120.08 -102.10 -92.29
p25 VK -88.81 -68.43 -69.12 -73.79

Merton 24.50 34.89 29.10 28.32
HW -80.63 -73.30 -66.99 -63.47

p50 VK -37.62 -27.21 -26.63 -34.86
Merton 51.64 60.40 55.14 48.74

HW -32.92 -41.15 -37.05 -39.79
p75 VK 1.80 6.68 3.47 -6.68

Merton 107.77 98.08 106.46 88.01

Table 2(b): Difference between the market CDS and model CDS prices (as given by Market CDS−
Model CDS) for firms with different number of bonds available.

Percentile Model Firms with CDS Firms with CDS All Firms
Slope Coefficient ≤ 100 bps > 100 bps

HW 0.05 0.00 0.01
p25 VK 0.46 0.14 0.58

Merton 0.43 0.25 0.78
HW 0.33 0.00 0.07

p50 VK 0.68 0.17 0.76
Merton 0.82 0.35 1.26

HW 0.50 0.01 0.19
p75 VK 0.95 0.21 0.94

Merton 1.47 0.50 1.95

Table 3(a): Slope coefficients resulting from the regression of market CDS on model CDS by firms
in different CDS spread buckets. The slope coefficients were computed daily for a three-year period.
We report the different quartiles of the time-series distribution of the slope coefficients here.

Percentile Model Firms with Firms with Firms with Firms with
Slope Coefficient 2 to 4 bonds 5 to 9 bonds 10 to 15 bonds 16 to 24 bonds

HW 0.01 0.20 0.39 0.66
p25 VK 0.57 0.55 0.34 0.16

Merton 0.77 0.79 0.56 0.16
HW 0.05 0.36 0.57 0.82

p50 VK 0.73 0.73 0.56 0.56
Merton 1.26 1.57 1.29 0.63

HW 0.13 0.53 0.84 0.96
p75 VK 0.92 1.05 0.92 0.95

Merton 2.04 2.89 3.36 2.90

Table 3(b): Slope coefficients resulting from the regression of market CDS on model CDS by firms
with numbers of bonds available. The slope-coefficients were computed daily for a three-year period.
We report the different quartiles of the time-series distribution of the slope coefficients here.
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Percentile Model Firms with CDS Firms with CDS All Firms
R-Squared ≤ 100 bps > 100 bps

HW 0.08 0.00 0.02
p25 VK 0.25 0.20 0.40

Merton 0.07 0.04 0.16
HW 0.36 0.01 0.09

p50 VK 0.40 0.25 0.48
Merton 0.18 0.08 0.26

HW 0.62 0.04 0.21
p75 VK 0.54 0.30 0.56

Merton 0.32 0.13 0.36

Table 4(a): Ability of a model to explain the cross-sectional variation of market CDS spreads, as
given by the R-squared of the regression of market CDS on model CDS by firms in different CDS
buckets. The R-squareds were computed daily for a three-year period. We report different quartiles
of the time-series distribution of R-squareds here.

Percentile Model Firms with Firms with Firms with Firms with
R-Squared 2 to 4 Bonds 5 to 9 bonds 10 to 15 bonds 16 to 24 bonds

HW 0.02 0.17 0.45 0.64
p25 VK 0.42 0.32 0.27 0.04

Merton 0.17 0.09 0.09 0.01
HW 0.07 0.38 0.72 0.77

p50 VK 0.50 0.46 0.44 0.29
Merton 0.28 0.24 0.29 0.04

HW 0.18 0.61 0.85 0.87
p75 VK 0.60 0.63 0.63 0.47

Merton 0.43 0.43 0.50 0.08

Table 4(b): Ability of a model to explain the cross-sectional variation of market CDS spreads, as
given by the R-squared of the regression of market CDS on model CDS by firms with different
number of bonds available. The R-squared was computed daily for a three-year period. We report
different quartiles of the time-series distribution of R-squareds here.
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Number of Bonds Percentage of Sample Percentage of sample
with log(size) > 11

=2 28.84% 18.37 %
≤ 3 45.83 % 30.38 %
≤ 4 57.32 % 38.33 %
≤ 5 65.35 % 44.66 %
≤ 6 70.96 % 49.12 %
≤ 7 75.74 % 52.83 %
≤ 8 79.38 % 56.11 %
≤ 9 83.31% 58.43 %
≤ 10 85.89 % 61.17 %
≤ 11 87.99 % 64.45 %
≤ 12 89.68 % 67.72 %
≤ 13 91.25 % 70.73 %
≤ 14 92.47 % 73.24 %
≤ 15 93.59 % 75.97 %
≤ 16 94.48 % 78.56 %
≤ 17 95.32 % 81.32 %
≤ 18 96.09% 84.06 %
≤ 19 96.78 % 86.32 %
≤ 20 97.34 % 88.09 %
≤ 21 98.01 % 90.29 %
≤ 22 98.56 % 93.14 %
≤ 23 99.22 % 96.49 %
≤ 24 100.00 % 100.00 %

Table 5(a): Cumulative percentage distribution of issuers by number of bonds used in bootstrapping
for zero-coupon yield curve.
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Time to Maturity Percentage of Sample Percentage of sample
with log (size) > 11

≤ 0.25 1.55 % 1.22 %
≤ 0.50 5.99% 6.26 %
≤ 0.75 10.50 % 11.38 %
≤ 1.00 14.93 % 16.39 %
≤ 1.25 19.47 % 21.46 %
≤ 1.50 24.03 % 26.35 %
≤ 1.75 28.54 % 31.14 %
≤ 2.00 33.10 % 35.91 %
≤ 2.25 37.71 % 40.73 %
≤ 2.50 42.16 % 45.26 %
≤ 2.75 46.69 % 49.77 %
≤ 3.00 51.25 % 54.33 %
≤ 3.25 55.69 % 58.81 %
≤ 3.50 59.94 % 62.99 %
≤ 3.75 64.19 % 67.10 %
≤ 4.00 68.43 % 71.16 %
≤ 4.25 72.69 % 75.23 %
≤ 4.50 76.87 % 79.18 %
≤ 4.75 81.09 % 83.16 %
≤ 5.00 85.30 % 87.14 %
≤ 5.25 89.20 % 91.12 %
≤ 5.50 92.35 % 93.74 %
≤ 5.75 95.37 % 96.23 %
≤ 6.00 98.33 % 98.59 %
≤ 6.25 100.00 % 100 %

Table 5(b): Cumulative percentage distribution of time-to-maturity of bonds used in bootstrapping
for zero-coupon yield curve.
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CDS Spread Percentage of Sample Percentage of sample
with log (size) > 11

≤ 25 26.77 % 47.72 %
≤ 50 48.47 % 69.87 %
≤ 75 64.02 % 81.53 %
≤ 100 73.07 % 87.46%
≤ 125 78.42 % 90.37 %
≤ 150 82.86 % 93.02 %
≤ 175 86.21% 94.68%
≤ 200 88.33 % 95.72 %
≤ 225 90.17 % 96.43 %
≤ 250 91.49 % 96.85 %
≤ 275 92.82 % 97.41 %
≤ 300 93.81 % 97.97 %
≤ 325 94.69 % 98.40 %
≤ 350 95.50 % 98.68 %
≤ 375 96.16 % 98.86 %
≤ 400 100.00 % 100.00 %

Table 5(c): Cumulative percentage distribution of CDS by range of spreads.

Number of bonds Model Below Median Size Above Median Size
p25 p50 p75 p25 p50 p75

2 to 4 bonds HW 0.09 0.37 0.57 0.01 0.04 0.11
VK 0.34 0.46 0.57 0.37 0.48 0.62

Merton 0.11 0.20 0.31 0.24 0.46 0.69
5 to 9 bonds HW 0.27 0.50 0.76 0.05 0.35 0.67

VK 0.32 0.52 0.71 0.27 0.42 0.62
Merton 0.10 0.32 0.63 0.08 0.18 0.42

10 to 15 bonds HW 0.27 0.64 0.85 0.40 0.73 0.89
VK 0.31 0.59 0.80 0.16 0.48 0.68

Merton 0.09 0.46 0.76 0.07 0.31 0.65
16 to 24 bonds HW 0.46 0.72 0.88 0.64 0.85 0.92

VK 0.19 0.50 0.70 0.01 0.16 0.35
Merton 0.02 0.22 0.47 0.10* 0.00 0.01

Table 6(a): Comparison of different models’ ability to explain the cross-sectional variation (as mea-
sured by the R-squared of the cross-sectional regression of market CDS on model CDS prices)
across large and small firms controlling for the number of bonds available for bootstrapping. The
R-squareds were computed daily for a three-year period. We report different quartiles of the time-
series distribution of R-squareds here. The asterisk indicates that the cross-sectional correlation
between market CDS and model CDS price is actually negative, and we see a large number because
R-squared is the square of the correlation here.
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Percentile Firms with Firms with Firms with Firms with
2 to 4 Bonds 5 to 9 bonds 10 to 15 bonds 16 to 24 bonds

std. deviation 111.29 99.83 81.20 62.63
|p75− p25| 99.77 62.14 80.00 48.71

Median 68.20 70.00 71.39 65.20
Mean 107.74 102.69 95.13 83.22

Std.deviation
Mean 1.03 0.97 0.85 0.75
NOBS 88 35 17 21

Table 6(b): Summary statistics of the CDS spreads across firms with different numbers of bond
issues. All the statistics were based on daily observations in the period 2000/10 to 2004/06, and the
numbers reported here are the medians across the daily time-series of summary statistics.


