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Abstract 

The purpose of this paper is to propose a realistic and operational model to 
quantify the systematic risk in credit risk insurance. The model presented is 
built on the basis of classical credit risk model in which the joint laws of the 
risk factors become non Gaussian. We discuss also the way to take into account 
the ability for the insurer to mitigate the risk. 
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1. Introduction 

To improve the classical model used to quantify the systematic risk in credit 
risk insurance (cf. BONTI, DECROOCQ [2008]) it is also possible on one hand to 
take into account non Gaussian joint laws of the risk factors and on the other 
hand to take into account the ability for the insurer to mitigate the risk. 

 
Note that the business of credit risk is short-term and that an important part 

of it is risk mitigation. The total loss over a certain time period is considered as 
a random variable of the model and the most basic credit information used in 
the model is an exposure. An exposure amount or limit is an estimate for the 
claim at the time of default and is mapped to a single buyer group and a single 
policyholder. Additional attributes of an exposure are: 

• A severity rate 
• A default probability 
• A business area or organizational unit 

 
A tree-like structure can be defined for business areas so that risk measures 

are aggregated and/or allocated at different levels. As default events for a set of 
buyer groups are not independent, a factor model is introduced relating the 
buyer group's ability to pay to so-called systematic and specific risk factors. It 
is a linear relationship. Each buyer group is characterized by the following 
attributes: 

• A map to one or more systematic risk factors given by weights 
(numbers between 0 and 1). 

• A number called 2r  giving the portion of a buyer group's ability to 
pay variance due to the variance resulting from systematic factors 
in combination with their weights. 

 
One of the main issues for credit insurance modeling is also the application 

of a specific and appropriate correlations structure which represents properly 
the systematic risk and the activity of credit insurance. Default correlations 
determine the likelihood of joint default of two or more companies over a given 
period.  
 

As it is done in MKMV (cf. ZHANG [2008] and al. for a presentation), the 
most current assumption about dependency is that if two firms operate similarly 
facing some factors then their assets are correlated. It means the approach is 
based on the correlation of assets.  

 
KMV uses 120 basic factors: Global Economy, Industry, Country, etc. The 

algorithm makes a regression of those indices in an orthogonal matrix built 
from asset returns. For each firm, it builds a composite factor based on Country 
and Industry defining this way a systematic risk induced by common factors. 
The part not explained by the regression is the specific risk of the company. 

 
Note that KMV processes only simple counterparts what limits its use to 

estimations on aggregated portfolios for the credit insurance. 
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2. The classical model 

2.1. Presentation 

A natural way to model the risk in a credit insurance business (for example 
to estimate the risk capital required) is to consider the default probability of the 
companies. The credit insurer claim is also mapped to a single buyer (in fact a 
single buyer group) and a single policyholder (cf. DECROOCQ, PLANCHET, 
MAGNIN [2008]). 

 

The parties and roles in credit insurance business are also: 

 
Parties Explanation 

Credit insurer The insurance company (protection seller). 

Policyholder The insured (protection buyer) paying for protection against non-
payment by its buyer. 

Buyer 
The origin of credit risk (the reference name). The policyholder
receives indemnification from credit insurer in case the company 
(the buyer) defaults. 

 

2.1.1. Indicator of default and ability to pay 

Each buyer is characterized by a default probability and given default 
probabilities the classical model uses the fact that a company is defaulting if its 
ability to pay is lower than a certain threshold.  

 
Label Explanation 

J  Set of abilities to pay (buyer groups), { }1,...,j J n∈ = . 

L  Set of buyers, { }1,...,l L m∈ = . 
D
lI  Indicator of default for the buyer l L∈ . 

πl  Default probability for the buyer l L∈ . 

jZ  Ability to pay for the buyer group j J∈ . 

ld  Default threshold (or value at risk for ability to pay) for the buyer 
l L∈ . 

The table shows sets and variables that are used to describe the model. Capital letters 
are used for sets and random variables. 

 
The buyer’s default indicator is defined for each buyer by: 

l L∀ ∈ , ( )1] , [l

D
l d jI Z−∞=  
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Given default probability π , a simulated default event is given by: 
l L∀ ∈ ,  j lZ d<  

Where ld  solves the equation: 

( ) ( )1D
l j l lP I P Z d π= = < =  

jZ
 
models the ability to pay of the buyer group j J∈  over a fixed time 

period. 

 

2.1.2. Systematic and specific risks 

As explained in the introduction, the KMV algorithm makes a regression of 
factors in an orthogonal matrix and, for each firm, it builds a composite factor 
based on Country and Industry. It defines a systematic risk induced by common 
factors and a specific risk induced by the part not explained by the regression. 

 
Two strong assumptions are underlying this approach: 

• The specific risk is individual and completely independent from 
the systematic risk. 

• There is no correlation between two specific risks. 
 

Label Explanation 

Ν  
Set of systematic risk factors (countries, industries, etc.),

{ }ν 1,..., k∈ Ν = . 

R  

Systematic risk factor common to all abilities to pay.  

( )ν νR R
∈Ν

=   is a random variable vector of size k  which is 

distributed ( )0,δN . 

δ  

Covariance matrix of R . 

( )1 2 1 2
ν ,ν ,ν

δ δ
v ∈Ν ∈Ν

= is a constant matrix of size k k×  where 

1 2ν ,νδ 0=  if 2 1ν ν> . 

w  

Weights between abilities to pay and systematic risk factors. 

( ),ν ,νj j J
w w

∈ ∈Ν
=  is a constant matrix of size n k× . 

j J∀ ∈ , ( ),ν νj jw w
∈Ν

=  is a constant vector of size k . 

ε  

Specific risk factor defined for each ability to pay. 

( )ε ε j j J∈
=   is a random variable vector (independent) of size n

which is distributed ( )0,1N . 

α  

Adjustment factors (portions) for the combination of systematic and
specific risk factors in a linear relation. 

( )α α j j J∈
=  is a constant vector of size n . 
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2r  

Portions of buyer groups’ abilities to pay variance due to the
variance resulting from systematic risk factors in combination with
their weights. 

( )2 2
j j J

r r
∈

=  is a constant vector of size n . 

The table shows sets and variables that are used to describe the model. Capital letters 
are used for sets and random variables. 
 

The vector Z  is defined as: 
( )1Z w Rα α ε= ⋅ ⋅ + − ⋅   

 
We have: 

j J∀ ∈ , ( )
1

1,

k

j j j j jZ w Rν ν
ν

α α ε
=

= ⋅ ⋅ + − ⋅∑  

Where ( )μ,δR N∼  and ( )0 1,j Nε ∼  which is corresponding with the 
original model used by the MKMV software.  

The defined number called 2r  giving the portion of a buyer group's ability 
to pay variance due to the variance resulting from systematic factors in 
combination with their weights is introduced with the relation: 

j J∀ ∈ , 

( )
( )

2
α

T
j j

j
j

Var w R
r

Var Z

⎛ ⎞⋅ ⋅⎜ ⎟
⎝ ⎠=

 

 
By correcting the covariance matrix of R  and the weights between abilities 

to pay and systematic risk factors we can transform the relation into the final 
form: 

Z w R ε= ⋅ +
 

2.1.3. Simulation of ability to pay 

As inputs of the model, we have the features 2r , w ,  δ  and π .  The 
thresholds d  can be calculated and the variables R  and ε  can be estimated to 
simulate the ability to pay, which is very simple : to simulate ( ),R N μ δ∼  (a 
Gaussian vector of size k ), it is possible to come down to the simulation of 

( )1 , , T
kε ε ε= …  with 1, ..., kν∀ = , νε  i.i.d. ( )0 1,N  random variables thanks 

to the relation : 

R Mμ ε= + ⋅  

where M  is triangular with positive coefficients on the diagonal such as 
( )TM Mδ = ⋅ (Cholesky decomposition). 
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To simulate ( ),R N μ δ∼  we also have to respect the following steps: 

• Simulation of each realization νε of ( )0 1,Nνε ∼ , 1, ..., kν∀ = .  
• Calculation of M  with 1, , kν∀ = …  : 

1
2

1
, , ,m m

ν

ν ν ν ν ν ι
ι

δ
−

=

= −∑   

And for 2 1, ..., kν =  and 1 2, ...,kν =  : 
2

1 2 1 2

1 2

2 2

1

1
, , ,

,
,

m m
m

m

ν

ν ν ν ι ν ι
ι

ν ν
ν ν

δ
−

=

−
=

∑
 

• Calculation of each realization rν  of Rν , 1, , kν∀ = …  : 

1
1

,r m
ν

ν ν ν ι
ι

μ ε
=

= + ⋅∑   

 

 Calculation of the value at risk for a normal random variable 
To solve as a function of d  the equation ( )P Z d π≤ =  where Z  is a 

Gaussian random variable ( ) ( )( ),N E Z Var Z , we use: 

( ) ( ) ( )1d E Z Var Z π−= + ⋅Φ
 
 

With 1−Φ  is the inverse of the normal distribution function and we 
approximate ( )1 π−Φ with the Moro algorithm. The main drawback of the 
Gaussian hypothesis is that it leads a priori to an underestimation of high 
level quantiles. As we show below, this hypothesis can be relaxed. 

 

2.2. Discussion 

An internal model is based in one way or another on the description of a 
certain number of risk factors, exogenous or endogenous, and of their structure 
of dependence. Since work founders of the modern portfolio theory in 1952, the 
assumption that the risk factors are jointly distributed according to a Gaussian 
distribution was largely used. This assumption brings back the analysis of the 
dependence between the factors worthy of correlations existing between them. 

Recent interest for the nonlinear dependence led to many criticisms of the 
Gaussian assumption, and this in an all the more relevant way when it is a 
question of estimating a quantile of a high nature (99,5 % for example) within 
the framework of the calculation of a SCR. Indeed, this assumption results in 
underestimating the extreme events, and it is easy to build examples showing 
the strong sensitivity of the level of the SCR to the shape of the tail of 
distribution. The specification of the tail is largely dependent on the choice of 
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law but also of a proper correlation model adapted to the business for large 
portfolios attached to the assessment. 

But is it necessary for as much giving up the Gaussian assumption? An 
attentive examination led to a more moderate appreciation on the illustrative 
examples could give rise to think. One can already observe that it makes it 
possible to integrate in modeling a high number of factors: for example, in the 
present paper, the model developed by KMV for credit insurance integrates 
thus approximately 120 factors in calculation on the part of systematic risk in 
the default probability of a buyer. To integrate as many factors with models 
using of the non Gaussian copulas seems for the moment out of reach. The 
correlation, with all the limits of this concept, remains a means accessible and 
simple to quantify the intensity and the direction of the link between the 
factors. 

To circumvent the undervaluation induced by the choice of the Gaussian 
assumption, two approaches seem possible to us: 

• To gauge the matrix of correlations to compensate for this effect by 
worsening the intensity of certain critical connections; 

• To preserve the assumption of Gaussian dependence, but to use non 
Gaussian marginal laws for the factors. 

 

This last approach, known under the name of method NORTA (“normal to 
anything”) seems to us to have to be privileged in the reflections around the 
modeling of a structure of at the same time rich and operational dependence. 
This method applied certainly at small portfolios where correlation matrix can 
be easily adjusted. In the case of credit insurance, the method is a 
complementary approach to benchmark and adjust tail distribution compared to 
parameters assumptions done with current Gaussian model and specific 
correlation estimates. 

Let’s come back to the assumptions underlying the standard modeling and 
the specific situation of credit insurance: 

 

• Asset correlations estimates  

This approach is clearly introducing additional correlations compared to 
default/non default approach of credit insurance. The measurements of return of 
assets are amplifying the volatility. If some macro economics are well 
embedded in the market prices there are also other non welcomes adds-on as 
market liquidity or dilution of capital etc. 

When situation becomes really bad, in general credit insurers have already 
written down any exposure for some times.  

Asset correlations have been mainly derived from public firms when private 
companies demonstrate different behaviors that are not reflected in these 
estimates. If this approach can be sufficient for an investment portfolio it can be 
different for other portfolio. 
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• Fixed asset correlations 

Asset correlations are supposed fixed for a given period and for all the 
distribution of the factors. This can be clearly challenged. 

 

• Assumptions 

The factors are assumed to be orthogonal with the specific risks. Depending 
of groups set up, trade and industrial operations this assumptions can be strong 
especially for credit insurance. 

No evidence has been identified so far on this point. 

 

• Completeness of factors 

Most modeling include now more factors but it still appears that more 
dimensions would be needed as size of companies, legal structure, 
dependencies, financial structure etc. 

 

3. The proposed model 

At first we propose to relax the Gaussian hypothesis for the joint 
distribution of the factors and to use the NORTA approach (CARIO and NELSON 
[1997] for the initial presentation and STANHOPE [2005] for improvements and 
comments). 

3.1. Non Gaussian distribution of the risk factors 

In the standard model we assume that ( ),R N μ δ∼ . For simplification we 

are rather interested in the vector R′ defines by ν N∀ ∈ , ν ν
ν

ν,ν

μ
δ

R
R

−
′ =  

( ( ),R N μ δ′ ′ ′∼ with 0νμ′ =  and 1,ν νδ = ). 

 

We assume now that if the dependence structure of ( )1 , .., kR R′ ′  remains 
Gaussian, that is: 

( ) ( )( ) ( )( )( )1 -1
1 1 1, .., , ..,k k kR R F Y F Yφ φ−′ ′ =  

with: 

• ( )1 , .., kY Y  a Gaussian random variable with covariance YΣ . YΣ  
is in fact a correlation matrix and is completely defined by 

( )1
2

k k −
 coefficients ; 
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• The Fν  may be non Gaussian, for example log-normal ; 

• φ  is the cumulative distribution function of a normalized Gaussian 
variable.  

 

We thus have to compute YΣ  in a way that leads to δ ′  when we compute 

the correlations of ( )1 , .., kR R′ ′ . 

We observe that if 
1 2 1 2,v v v vr E Y Y⎡ ⎤′ = ⎣ ⎦  we have ( )

1 2 1 2 1 2, , ,v v v v v vrδ ω ′=  where: 

( ) ( )( ) ( )( ) ( )
1 2 1 1 2 2 1 2 1 2

1 1
, , ,v v v v v v v v v vr F y F y h r y y dy dyω φ φ

+∞ +∞
− −

−∞ −∞

′ ′= ∫ ∫ , 

 
and:  

( ) ( ) ( )
2 21 2

2 1 2 1
, , exp x y r xyh r x y

r rπ
⎡ ⎤′+ −′ = ⎢ ⎥′ ′− −⎢ ⎥⎣ ⎦

. 

 

This leads to 
( )1

2
k k −

 equations in 
1 2,v vr′ . In practice it would be more efficient 

to work directly with the rank correlation, that is to use ( ) ( )( )1 1 , .., k kF R F R′ ′  

because we obtain in this case an explicit form for 
1 2,v vr′  : 

1 2

1 2
2

6
,

, sin v v
v vr

πδ ′⎛ ⎞
′ = ⎜ ⎟⎜ ⎟

⎝ ⎠
. 

 

Let us now focus on the application of some specific parameters of credit 
insurance and their influence over the one year horizon risk capital 
computation: 

1. Credit insurance is short term and credit risk mitigation 

2. Policies include insurance features limiting the risk (franchise, maximum 
liability) 

3. Portfolio consideration 
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3.2. Credit risk mitigation 

Credit insurance has a unique capability to smooth the risks through the 
cycle and therefore to reduce its exposure on the worst situation. The following 
illustration is built with simulated data: 

 

0%
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80%

100%

120%

140%

160%

81 83 85 87 89 91 93 95 97 99 01 03 05 07 09

Loss ratio Loss ratio without mitigation
 

Fig. 1 : The credit insurer mitigation smooth the Loss ratio over the cycle 

 

It can easily be demonstrated that the correlation with macro factors at loss 
ratio level is modified by the credit insurer capability to mitigate the risk. 
Because credit insurance is short term and exposure can be cancelled on short 
term, the modelling approach must be set up appropriately to avoid including 
double counting. The question would be how to introduce the credit insurer 
capability to mitigate the risk.  

The factor model remains the same but the ability of credit insurance to 
mitigate the risk must be introduced as an additional dimension to the Risks 
factors as shown in the figure below: 

 

Fig. 2 : Illustration of MKMV Global Correlation Factor Model 
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This additional dimension reduces the risk and therefore the weight of the 
initial risk factors. Outside the fact that the credit insurer demonstrates its 
ability to go through the cycle, he is also organized to review individually the 
buyers monitored by geographical area and industry. It means exposure is 
already restricted (or will be at short notice in case of downturn) on the buyer 
presenting and explaining the most sensitivity to sectors/industry. 

Without credit insurance the probability of default is higher and explained 
by Risk factors: 

Z w R ε= ⋅ +  

 

Then the modelling, assumed in a simplified way, that the risk explained by 
the factors and by the specific risk will be weighted according to the 2r  to 
simulate the global risk of each buyer. 2r  is defined as the share of the 
variance of the global risk by the factors model and it means that: 

j J∀ ∈ , 

( )
( )

2
α

T
j j

j
j

Var w R
r

Var Z

⎛ ⎞⋅ ⋅⎜ ⎟
⎝ ⎠=  

 

For the credit insurer, this factor is calibrated to take into account the 
specificities of risk mitigation of credit insurance. Let assume CR  the new 
dimension and includes it as a factor and then define the global risk of a buyer 
as follow: 

Z w R ε= ⋅ +� ��  

where: 

• R�  made of the previous matrix of factors and CR  factors; 

• w�  is a new set of weight according for R� ; 

• the correlations previously defined are completed with the 
correlation coefficients attached to the new dimension CR . 

  

It can easily be shown that 2
jr  decreases because: 

( ),ν ν , 1Cov , 0j j kw R w CR+⋅ ⋅ ≤�� �  

 what was already illustrated below. In addition the specific risk is only 
going to be reduced partly and to simplify CR  can be considered orthogonal to 
ε .  

The consequence is that: 
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( ) ( ),ν ν , 1 ,ν νCov , λj j k jw R w CR Var w R+⋅ ⋅ = − ⋅ ⋅� �� � �  

 which is the reduction of correlation impact due to credit insurance. The 
parameter λ  define the global ability for the insurer to mitigate the risk. 

The variance of the factor is lower with credit insurance and the 2r  is 
corrected accordingly. 

Let consider another aspect of the credit insurance ability to mitigate the 
risk through some considerations of probability of default and underwriting 
capabilities which will impact the stress situation. 

In the case of a k-factors model the composite factors of a company is 
defined as a sum of industry and country indices: 

j J∀ ∈ , 
1

,

k

j jw Rν ν
ν

ρ
=

= ×∑  (and j j jZ ρ ε= + ) 

 

Then j J∀ ∈ , the conditional probability of default C
jπ  knowing jρ  can be 

written as: 

( ) ( )
( )1

21

C
j j j j j

c
j j

j

P Z d

r

r

π ρ ρ

π ρ−

= ≤

⎛ ⎞Φ −⎜ ⎟= Φ
⎜ ⎟−⎝ ⎠

 

where 
( )

( )
j jc

j
j

Eρ ρ
ρ

σ ρ

−
=  is the renormalized version of jρ . 

Due to its underwriting capability and short term maturity, an adverse 
change in the economy will be managed before the end of a one year horizon 
conditional to this event, and the exposure will be reduced.  

 

The probability of default of the portfolio can be illustrated as follow: 

 

 

 

 

 

 

 

It is clear that ( )C
j jπ ρ  is conditional to the state of the economy and to the 

underwriting decisions of the credit insurers. 

Defaulted 
buyers

Credit insurer 
portfolio

Global 
economy

Permanent 
mitigation of 
risks
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So this decision capability can be introduced in three different ways: 

 By reducing the 2r  ; 

 By introducing new factors representing the capability of risk 
mitigation. 

 By using a multi-period modelling 

Modified the systematic factors can be easily computed on historical data 
but it still reduced the real potential impact of a non-manage crisis. 

The introduction of new factors representing the underwriting is the 
preferred solution with the following advantages: 

 Maintain the initial factors model and parameters ; 

 Introduce new dimensions to represent the initial risk profile of the 
company and its ability to manage through the cycle. We call the 
underwriting factors JFD (for Justified Factors Design). 

The factors can be introduced in an existing factors model but calibration 
requires long historical benchmark (STEIN [2002]). 

Modelling could be improved by introducing a multi-period structure within 
the one year horizon with still the necessity to introduce the conditional 
behaviour of the underwriter to mitigate the risk knowing the state of the 
economy during the previous period. As a consequence, another way to explain 
these factors is linked to the overall parameters assessments. A single buyer is 
correlated to the rest of the companies. The parameters of default and 
correlation attached to this company are defined according to a sample or a set 
of other companies. Therefore, when the underwriter modifies the portfolio of 
buyers by selected the risks, the original sample is modified in such a way that 
the parameters conditional to the state of the economy should be estimated 
again on the sample this way modified. The additional correlation factors 
introduced are an estimate of the conditional effect of underwriting over the 
time horizon.  

It has to be noticed that this situation doesn’t happen in a portfolio stable 
over the time horizon of the computation. 

 

3.3. Policy features impact 

The current KMV modelling includes a calibration of maximum liability. 
The effect is computed for the main policies and disregards for the other. It 
means the current set up is very conservative. It amplified the impact of any 
deviation in the set up of correlation instead of reducing it as losses are not 
properly capped. 

This difference can reduce the value of a loss distribution quantile up to 
more than 20 %. Therefore, it appears that the impact of this factor is much 
more relevant as it is currently set in the KMV modelling and it could be 
proposed to reduce the 2r  even further. 
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3.4. Portfolio consideration 

If part of the credit insurer exposure is on large companies, the main part is 
on small and medium size private companies. A number of analysis shows that 
default correlation on SME is very small, which is now becoming more obvious 
according to latest analysis (MKMV has analyzed the integration of this 
segment in GCor 10/07). Risk mitigation is also more efficient on small 
companies especially in case of downturn where limits can be more easily 
operated on this type of companies leading to reduce significantly the losses. 

 

Therefore the global risk of that type of buyer is more linked to its specific 
risk than explain by the risk factors which are reflected in the 2r  used by the 
credit insurer. 

 

4. Conclusion 

Credit insurance is an insurance activity with unique mitigation capability 
when managed with a clear credit underwriting organisation. The credit insurer 
has recognized this capability in its modelling in a proper and conservative 
way. 

The current modelling using KMV system is conservative and 2r  could 
even be reduced according to some calibration aspect. Modelling must catch 
the main aspect of the activity. If KMV shows that it can be adjusted to 
represent some aspects of the business, its computation can only be done with 
single counterparties limiting the possibility to represent properly the policy 
features and reinsurance. These two aspects cap the losses and one way to 
represent them better could be to reduce even further the 2r . 
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