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Abstract

Biological age (BA) offers a promising approach to encapsulate complex health
information into a single interpretable metric. This study evaluates BA meth-
ods as tools for prevention in insurance, focusing on their ability to predict
mortality and disease incidence. Using NHANES data, we compare four BA cal-
culation methods—multiple linear regression (MLR), Klemera-Doubal Method
(KDM), PhenoAge, and Random Forest (RF). We include a practical application
of estimating death counts from life tables.
Our findings reveal that PhenoAge and RF consistently outperform other meth-
ods in mortality prediction and provide a better match with observed death
counts after calibration. While MLR and KDM lag in predictive performance,
they demonstrate interpretability that may be valuable for some applications.
PhenoAge showed the greatest flexibility and adaptability for prevention-focused
applications, particularly for estiating death counts. However, a key challenge
remains in calibrating BA methods to align with absolute mortality risks, as
highlighted by their initial biases in estimating death counts.
We argue that BA’s primary value lies in its dual role: a reliable risk estimator and
an effective communication tool for promoting preventive health behaviors. By
addressing calibration issues and tailoring BA methods to specific insurance con-
texts, this research underscores BA’s potential to improve prevention programs,
aligning health incentives for both policyholders and insurers.
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1 Introduction

1.1 Prevention

Health-related risks are unique in that they can be significantly altered by medical
intervention and lifestyle choices. The ability of a potential policyholder to reduce these
risks—meaning the probability of occurrence of adverse health events—is referred to as
self-protection. Many types of insurance, such as health coverage (medical expenses),
life insurance, long-term care insurance, and disability coverage, cover just such risks.
The seminal work of Ehrlich and Becker [1] explored the impact of self-protection on
insurance demand, showing that the relationship between market insurance availability
and self-protection is complex: the two can either complement or substitute each other
depending on specific conditions. Notably, Ehrlich and Becker [1] demonstrated that
the existence of an insurance market could, under certain conditions, increase the
demand for self-protection. For this to occur, insurance premiums must be sensitive to
risk reduction resulting from self-protection; if insurance pricing ignores self-protection
efforts, it can create a moral hazard, where policyholders are less incentivized to reduce
risk.

Even outside microeconomic analysis, insurers have a vested interest in promot-
ing policyholder health. This is especially true for policies where insurers have limited
control over policyholder selection, as is often the case with group insurance contracts,
such as employer-sponsored health benefits. Here, the dynamics described by Ehrlich
and Becker [1] extend to the employer level: employers benefit from a healthier work-
force, which reduces the cost of market insurance and improves productivity. We refer
to such collective action aimed at reducing risk as prevention.

There are a few pathways to implement a prevention program. First and most
direct is by including the all information on the risk level into the calculation of the
premium, thus incentivizing more self-protection as per theory. This could segment
the market not only by biological measures but also by the willingness to participate
in these programs, leading to concerns about discrimination. However, such programs
should also result in a healthier population overall, it is therefore a balancing act from a
public health perspective. Second possible approach is by rewarding preventive action
(self-protecting action to be precise), rather than focusing solely on absolute risk levels,
monetarily or otherwise. Encouraging self-protection directly does not necessarily lead
to increased segmentation, as the willingness to participate and the ability to reduce
risk are not a priori tied to absolute risk levels. While there is currently no clear data
on whether higher-risk individuals are more likely to participate, this association could
significantly impact the design and outcomes of prevention programs. Last approach
is though partnerships with some service offering health-promoting activity, e.g., with

2



gyms, wearable manufacturers, fitness applications etc. This is essentially targeted
advertisement for the numerous applications already available.

There are many examples of prevention programs by insurance companies that
encourage a healthy lifestyle through one or a combination of the above approaches.
For instance, “Generali Vitality,” is a program targeting employer-sponsored poli-
cyholders, offers monetary rewards for consistent physical activity (e.g., walking), a
balanced diet, and preventive healthcare (e.g., vaccinations, checkups). This app-based
program provides statistics and recommendations based on user activity. Other simi-
lar programs are offered under the Vitality brand, notably in the UK and Southeast
Asia, through a joint venture with AIA. UnitedHealthcare’s UHC Rewards also targets
employer-sponsored policyholders, providing monetary rewards for daily step goals
and regular checkups. Another example is Dacadoo, a company that partners with
insurers and employers to offer personalized health tracking. AON’s Well One applica-
tion, based on Dacadoo products, focuses on employee health and happiness tracking,
albeit without direct monetary rewards. This highlights how such programs often fit
into larger “workplace wellness” initiatives, particularly popular in the United States.

In addition to these prevention-focused initiatives, tools like the QaliDays calcu-
lator exemplify how biological age can be used to communicate risk levels effectively.
QaliDays is designed to evaluate the need for long-term care contracts by synthesiz-
ing complex health information into a single metric that is accessible to both insurers
and policyholders. This use of biological age emphasizes its dual role as a means of
quantifying risk and simplifying communication.

For individual policyholders, as opposed to group or employer-sponsored policies,
there appear to be fewer reward programs. Some examples include Ambetter’s My
Health Pays, Anthem’s Smart Rewards, and Bright HealthCare Rewards. Addition-
ally, the existence of innumerable health and fitness apps providing tracking and
gamification features to encourage healthier lifestyles—without any direct ties to
insurance—shows that individuals are often self-motivated to stay healthy.

Some programs reward specific activities directly, as seen in UHC Rewards, which
attributes a dollar value to each day with at least 5000 steps. Others construct a
health score, such as Dacadoo’s “HealthScore” or the “Vitality Age” used by Vitality
programs. This “Vitality Age” is an example of a biological age (BA) a concept well
known in medical literature that seeks to quantify the aging process, or rather better
represent the expressions of aging on the body. BAs are particularly useful in this con-
text because they integrate measurable health information into a single interpretable
value that can inform risk assessment and prevention strategies.

1.2 Biological age

Aging is a biological process that concerns almost all organisms. In humans, aging
is associated with a higher incidence of disease, increased medical needs, and risk of
death. This progressive degradation is called senescence, and many attempts have been
made to measure it. Chronological age (CA), that is, the time since birth, is at best a
proxy for the actual rate of senescence, with many factors, such as genetics, behavior,
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and environment, impacting the actual rate of aging. Biological age (BA) in an alter-
native conception of age which is intended to reflect the underlying senescence process.
Measuring BA, however, is challenging, and many methods have been proposed.

Beyond the general description given earlier, BA does not have a precise, univer-
sally accepted definition. Instead, several methods have been proposed to calculate an
age that better reflects outcomes such as mortality. Following Klemera and Doubal
[2]’s characterization, we define BA as a set of biological markers coupled with a
statistical method to combine them into a quantity that can be interpreted as an age.

This characterization leads to a multitude of possible BAs. Together with the fact
that the aging process itself has many causes and consequences, it is unlikely that a
single BA could reflect all of these equally well. Thus, the whole exercise is best viewed
as a pragmatic search for a combination of markers and methods that provide useful
predictions for a quantity of interest, rather than a holistic measure of health [3]. There
have been high hopes expressed about the potential of BA. A well-constructed BA
could be used to measure the efficacy of treatment without having years of followup
[4], or even quantify the slowdown or reversal of aging [5]. We further believe that
there is great value in expressing the impact of various markers as an age due to ease
of interpretation and communication that it affords.

Various choices have been proposed for both biological markers and the methods
to combine them. The earliest attempts to construct a biological age linearly combined
biological markers using linear regression or principal component (PC) analysis, in
hopes of finding a dimension or a linear combination that best reflects aging. See, for
example, Hollingsworth et al. [6] for an early proposal to construct a BA based on
MLR, or Nakamura [7] for a PC-based analysis.

There have been efforts to provide a principled construction for BA, most notably
in the work of Klemera and Doubal [2], which gave rise to the KDM BA. But the
larger innovation came with the increased use of omics-based, i.e., genetic, markers to
construct BA. Horvath [8] was the first to introduce a biological age based on DNA
methylation. The proposed method still essentially uses a linear model but is based
on methylation data as the biomarkers.

Levine [9] first explored the link between BA and mortality and then went on to
introduce a BA based explicitly on predicting mortality [10]. This gave rise to the so-
called ‘second-generation epigenetic clocks.’ McCrory et al. [11] provides a comparison
of such epigenetic clocks.

In summary, most BA methods are based on regressing some outcome on a set of
biomarkers. The main differences between methods are the:

1. outcome they are based on (e.g., chronological age or mortality),
2. biomarkers that are used (e.g., clinical measures or epigenetic data),
3. method used (e.g., how the first two points combine to create a BA).

More recently, efforts have been made to apply various machine learning algorithms
to improve the quality of the models; see Li et al. [12] for an overview.

Considerable work has been done in cataloging various BAs as well as the biomark-
ers they are based on. Li et al. [12] provides an exhaustive list of various BAs calculated
over time, together with the methods used, country of study, sample size, and the
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number and type of biomarkers used (although epigenetic clocks are omitted). Kuiper
et al. [13] instead focuses exclusively on epigenetic clocks and includes comparisons of
associations with mortality and clinical frailty measures. McCrory et al. [11] also com-
pares epigenetic clocks, focusing on their association with other age-related markers
(e.g., chronological age, walking speed, grip strength). Bafei and Shen [14] describes
various BA methods. Hastings et al. [15] compares multiple aging measures, including
PhenoAge and KDM, in relation to multiple age-related outcomes, such as physical
and cognitive functioning, using NHANES data. Cho et al. [16] compares BA meth-
ods available at the time, such as MLR, KDM, and HocM, on the Work Ability Index
(WAI) using a small dataset. It also provides a detailed discussion of the considera-
tions involved in calculating BA. Klemera and Doubal [2], besides introducing KDM,
provides a useful discussion of BA methods in general.

This study complements prior works, particularly Bafei and Shen [14], by provid-
ing a quantitative comparison of methods for calculating BA. Unlike Hastings et al.
[15], which focuses on pre-defined BAs, our study evaluates BA calculation meth-
ods themselves by comparing how these methods perform when applied to different
biomarker sets. To ensure a fair and comprehensive assessment, we define and use four
distinct biomarker sets to examine the consistency and robustness of BA calculations
under various conditions. Our comparison is based on a range of outcomes, including
mortality and associations with CA.

1.3 Biological ages for prevention

BA is a well-developed concept with existing practical applications in insurance and
public health. However, actuarial literature provides little guidance on constructing
BAs as a risk indicator for health-related risks, and the topic remains largely absent
from discourse in the field.

In public health contexts, BA has been demonstrated as an effective tool for assess-
ing health outcomes and guiding interventions. For example, Kang et al. [17] illustrated
how BA metrics could be used to predict health outcomes and support public health
initiatives in South Korea. Similarly, Petit Sarazin [18] proposed the calculation of an
“aging score,” emphasizing BA’s ability to synthesize complex health information into
a single, interpretable metric.

On the other hand, BA is directly useful as a risk metric. It can serve as a drop-in
replacement for chronological age (CA) in premium calculations, while improving the
predictability of risk. This facilitates the transition to risk assessments grounded in
personalized health data. Beyond pricing, BA provides valuable insights into residual
life expectancy, making it particularly useful for retirement contracts, where it can
enhance the accuracy of provision estimates.

Finally, factors that influence BA, such as lifestyle and behavior, are often directly
tied to the risk levels that determine premiums. This connection allows for the design
of prevention programs that not only encourage healthier behaviors but also align
financial incentives with reduced risk. It is precisely this dual property of being both
easy to interpret for policyholders and a reliable risk estimator that makes BA a prime
candidate to serve as the basis for prevention programs.
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The key assumption underpinning these applications is that BA is easier to inter-
pret than direct measures of risk, such as incidence probabilities. This assumption
holds particularly true for risks strongly associated with age and with relatively low
incidence rates. For example, in life insurance, the difference between a 0.26% and
a 0.30% annual mortality risk might seem negligible, but presenting this difference
as “biological age 35” versus “chronological age 30” is more striking and likely to
resonate with policyholders. This framing is particularly advantageous for long-term,
low-incidence risks, as it encourages prevention early, when interventions are most
effective.

Constructing BA has unique data requirements that can, at least initially, be
addressed using NHANES. The NHANES dataset offers a comprehensive range of
biomarkers and demographic data, making it a valuable resource for constructing
biological ages tailored to various contexts. Its breadth allows for flexibility in devel-
oping BAs for specific prevention goals or health outcomes. However, NHANES also
presents certain challenges, such as incomplete joint observations and data limited to
specific survey cycles. To address these limitations, we employ multiple imputation,
ensuring data continuity and robust statistical comparisons. This approach not only
strengthens the foundation for BA research but also provides a scalable framework for
practical and actuarial applications. While NHANES is particularly useful for initial
implementation, longer-term applications of BA in insurance or prevention programs
will require more frequent and individualized data collection.

This article provides an introduction to constructing biological ages (BAs) as health
indicators and explores their potential applications in prevention programs, partic-
ularly in insurance contexts. First, we review common BA methods, including their
underlying principles and methodological differences. We then perform a quantita-
tive comparison of these methods using multiply imputed NHANES data, evaluating
their association with mortality and health outcomes. Special attention is given to the
ability of BA methods to estimate death counts using a standard life table, where cal-
ibration techniques are applied to address biases. Finally, we discuss how BA methods
can be adapted for prevention-focused applications, emphasizing the importance of
aligning methods with practical needs, such as interpretability for policyholders and
flexibility for insurers. These findings highlight the potential of BA to act as both a
reliable risk estimator and a tool for incentivizing healthier behaviors.

2 Methods

In this article, we use multiple BA methods to compute BA on multiply imputed
NHANES data. These ages are then compared using a battery of criteria that evaluate
the ages’ associations with various outcomes, including mortality, CA, diseases, and
self-rated health. To focus on the BA and gain insight into inner workings of various
methods, we calculate BAs on the same four sets of biomarkers for all methods.

2.1 Biological ages

In this article we compare four BA methods: MLR, KDM, PhenoAge, and random
forest based method (RF). These biological age calculation methods are chosen to
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represent broad approaches to calculating biological ages, namely BAs based on CA,
and mortality. In this section we formally introduce the methods for calculating BA.
Throughout this section, we use the following notation:

• X is the matrix of available markers, with Xj representing the individual columns
of this matrix;

• J is the total number of available markers,
• as before, CA is the chronological age and BA is the biological age

All BAs are fit separately for each sex.

2.1.1 Multiple Linear Regression

The earliest proposed method for calculating BA was introduced in Hollingsworth
et al. [6]. BA is calculated as the predicted value from a multiple linear regression
(MLR) model with CA as the outcome and the observed markers as covariates. The
model can be described by the following equation:

CA =

J∑
j=1

βjXj + ε

where βj are the model coefficients, and ε is the error term, assumed to be normally
distributed with constant variance. Under this model, MLR BA is defined as the age
predicted by this model,

BA :=

J∑
j=1

βjXj . (1)

By construction, this model ensures that the difference between CA and BA is zero
on average.

This model is known to have some drawbacks. The choice of biomarkers is difficult,
as the obvious criterion of being correlated with chronological age does not necessarily
result in a valid BA. Consider a set of biological markers that is able to perfectly
predict chronological age. In this case, BA is equal to CA and brings no additional
information. This is known as the “biomarker paradox” [4]. Regression to the mean
may also result in bias in observations far from the global age average [19].

2.1.2 Klemera and Doubal Method

Klemera and Doubal [2] introduced a method for calculating BA, now known as KDM.
KDM is motivated by the need for a more principled construction of BA, particularly
to avoid the “biomarker paradox.” The core idea behind KDM is to view BA as a
latent variable that determines the values of observed biological markers. The problem
is thus reversed. This method constructs a model for markers (and not CA, as in
MLR), and then defines BA as the age that most plausibly generates the observed
markers under this model. Formally, KDM-BA is defined as the age that minimizes
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the distance between observed and expected values of biological markers:

BA := argmaxtQ(t|X) = argmaxt

J∑
j=1

αj(Fj(t)−Xj).

Where:

• Q(t|X) is a measure of how plausible the biological age t is given the markers X;
• αj is the weight given to the j-th marker;
• Fj(t) = E(Xj |t) is the conditional expectation of the j-th marker given a certain

age.

Assuming that Fj(t) is linear, i.e., Fj(t) = kjt+qj , and the residual standard error
after regressing CA on Xj is sj , the BA expression has an explicit solution:

BA :=

∑J
j=1(Xj − qj)kjs2j + CA

sCA∑J
j=1

(
kj
sj

)2
+ 1

sCA

(2)

This is essentially a weighted average of the markers Xj and the CA and is the formula
most commonly associated with KDM. sCA is an estimate of a regression of CA on
the hypothetical latent BA, in practice it provides a weight for CA.

KDM is noteworthy in that it treats CA in a manner similar to other biological
markers. It is also noteworthy that if the above expression is expanded, it becomes
obvious that KDM-BA is a linear combination of biological markers and CA, just as
MLR is, albeit with different weights and with CA included:

BA =
−
∑J

j=1 qj
kj
s2j∑J

j=1

(
kj
sj

)2
+ 1

sCA︸ ︷︷ ︸
Constant

+

J∑
j=1

 kj/s
2
j∑J

i=1

(
ki
si

)2
+ 1

sCA

Xj

︸ ︷︷ ︸
Linear combination of markers

+
1/sCA∑J

j=1

(
kj
sj

)2
+ 1

sCA

CA

︸ ︷︷ ︸
CA contribution

.

(3)
As KDM assumes that markers are uncorrelated, thus all marker sets are first

centered, reduced, and then transformed to the principal component basis. This elim-
inates all correlations from the marker set and insures that the linear independence
assumption holds.

2.1.3 PhenoAge

Levine et al. [10] introduced an epigenetic clock based on genetic markers, called
DNAm PhenoAge (where DNAm stands for DNA methylation). DNA methylation
data is high-dimentional making it difficult to analyze it directly. Levine et al. [10]
simplify the problem by first constructing an intermediate BA, PhenotypicAge, and
then fit linear model with this PhenotypicAge the outcome. This intermediate BA,
PhenotypicAge, is constructed by matching 10-year survival probability as estimated
by a full Gomperz proportional hazards model to the same probability in a reference
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model. This BA is thus notable for choosing mortality as the criteria for its definition.
In this study we focus on the intermediate PhenotypicAge (not the full DNAm Phe-
noAge) as it does not require DNA methylation data. We shall refer to it simply as
PhenoAge.

To formally define PhenoAge, consider the Gompertz proportional hazards model,
which describes the hazard rate as a function of time-on-study. In this model, the
hazard rate is given by:

h(t) = α exp (t/β + γ0CA +Xγ) ,

where α is shape parameter, β is the rate parameter, γ0 is the coefficient associated
with CA at baseline, and γ is a vector of coefficients for the remaining covariates. For
the reference population, where only age at baseline is considered (i.e., no additional
covariates), the Gompertz model takes the form:

h′(t) = α′ exp (t/β′ + γ′0CA)

Here, α′, β′, and γ′0 represent the same parameters as their non-primed counterparts.
PhenoAge is then defined as the age where the 10-year survival probability predicted
by the full model is the same as the probability predicted by the reference model, that
is, PhenoAge is the solution to:

SFull model(10|age = CA) = SRef. model(10|age = PhenoAge) (4)

Finally, if the expression above is developed, we find that PhenoAge corresponds to
a linear combination of biological markers and CA. The constant term in the formula
depends on shape and rate parameters of both models and on the period chosen for
matching survival probabilities, 10 years in the original article, and denoted below by
t below. PhenoAge is thus also given by :

BA :=

log

(
αβ(et/β−1)
α′β′(et/β′−1)

)
γ′0

+
γ0
γ′0

CA +
1

γ′0

J∑
j=1

γjxj .

In Levine et al. [10] the reference model is fit on the same dataset as the full
model but without the covariates X. The covariates were selected by using a penalized
Cox proportional hazards model, only keeping markers with non-zero coefficients at a
penalty level chosen by cross-validation.

This formula changes little for a number of variants of PhenoAge. For one, changing
the matched survival time from 10 years to any other time only requires changing the
t parameter, which in turn only changes the constant term. If instead of matching
survival probabilities, one wishes to match hazard functions or indeed the cumulative
hazard functions, then it is sufficient to take the limit of t → 0, which will again
only impacts the constant term. Finally, the two final terms of PhenoAge equation
are just the linear predictor of a proportion hazard model. This suggests an arguably
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simpler algorithm of fitting a Cox proportional hazards model, and then fitting a linear
regression to CA with the linear predictor from the Cox model.

2.1.4 Random Forest BA

The fourth and last BA method considered in this article is based on ENABL Age
from Qiu et al. [20]. Qiu et al. [20] use Gradient Boosting Trees (GBM) to predict
a mortality score, in this case a hazard ratio. This score is then transformed to a
quantity interpretable as age by fitting a curve to CA, in essence, regressing CA on
the mortality score. In this article we adapt a very similar approach, but use Random
Forest as the underlying algorithm instead. Qiu et al. [20] defined the mortality score
as the hazard ratio predicted by GBM. We, instead, use the sum of the cumulative
hazard function evaluated at each distinct exit time in following Ishwaran et al. [21].
Once a valid mortality score is obtained, it is transformed to a scale interpretable as
age by applying an exponential curve :

mortality score = exp(a · CA + b) + min(mortality score)− c,

with real parameters a, b and a positive parameter c. The final BA is thus given by :

BA :=
log(mortality score−min(mortality score) + c)− b

a
.

Unlike other methods, this BA cannot be expressed as the linear combination of
biological markers and CA. In fact, random forests is a non-parametric model does
not have a simple closed form expression.

Note that the final transformation makes no explicit reference to the way mortality
score is calculated. Indeed, this transformation can be applied to any risk score what-
ever. This makes this approach easy to adapt to results of regressions on the outcome
of intrest.

2.2 Biological markers

The key choice for any BA method is the biological markers used to construct it.
Indeed, the novelty of many biological clocks is the biological marker that they are
based on. In this work, however, the focus is on the method of calculation of BA. To
keep comparison fair, the variable selection is done independently of the BA method.

We define four sets of biological markers to calculate BAs. All four sets are cho-
sen from a pool of over 100 biological markers available in the NHANES. This pool
includes a wide gamut of variables, including a variety of blood markers, and physi-
cal examinations. Various socio-economic and dietary variables are excluded from the
pool to stay comparable with existing literature on the subject. Practical applications
should consider including these variables.

The first set of variables is a set of 9 blood biomarkers that was chosen in Levine
et al. [10] though a penalized Cox model. We use this set to establish a baseline
performance from a well-known BA. We refer to this marker set as “Pheno”. The
markers included therein are listed in Table 1.
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Table 1 Biological markers from the ”Pheno” marker set.

Variable Description

LBDSALSI Albumin, refrigerated serum (g/L)
LBDSCRSI Creatinine, refrigerated serum (umol/L)
LBDSGLSI Glucose, refrigerated serum (mmol/L)
LBXCRP C-reactive protein(mg/dL)
LBXLYPCT Lymphocyte percent (%)
LBXMCVSI Mean cell volume (fL)
LBXRDW Red cell distribution width (%)
LBXSAPSI Alkaline Phosphatase (ALP) (IU/L)
LBXWBCSI White blood cell count (1000 cells/uL)

Table 2 Biological markers from the ”LASSO Cox” marker set.

Variable Description

BMX WACR Ratio between waist and arm circumferences
LBDSALSI Albumin, refrigerated serum (g/L)
LBDSCRSI Creatinine, refrigerated serum (umol/L)
LBDSGBSI Globulin (g/L)
LBDSGLSI Glucose, refrigerated serum (mmol/L)
LBXBAP Bone alkaline phosphotase (ug/L)
LBXP1 Total prostate specific antigen (ng/mL)
LBXRDW Red cell distribution width (%)
LBXSAPSI Alkaline Phosphatase (ALP) (IU/L)
LBXSCLSI Chloride (mmol/L)
LBXSGTSI Gamma Glutamyl Transferase (GGT) (IU/L)
LBXSNASI Sodium (mmol/L)
SPX FEV5h3 Forced expiratory volume in 5 seconds to height cubed ratio (N/m³)
SPX PEF5h3 Peak expiratory flow in 5 seconds to height cubed ratio (L/m³)
URXUMA Albumin, urine (ug/mL)

The second set selected using the same methodology, i.e., penalized Cox, but on
the full NHANES 1999-2018 dataset (sample size of approximately 50,000 observation
of which approximately 10,000 is reserved for testing, and with a wider gamut of
biomarkers) used in this article, rather than NHANES III (1988-1994) (sample size
approximately 10,000) as used in Levine et al. [10]. The larger sample size results in a
slightly larger set of markers being selected. Moreover, of 9 markers from the first set,
only 2 are present in this one. We call this marker set “LASSO Cox”. The markers
included in this set are listed in Table 2.

The third and fourth sets are also selected by a penalized regression, but instead
of mortality it uses CA as the outcome. This should provide an interesting comparison
for the behavior of BA methods. The “1se” rule for choosing optimal penalization level
leads to many more variables being chosen than in first or the second set. Therefore,
the third set contains the variables chosen by the penalized regression at the penalty
level that leads to approximately the same number of variables as in the second set.
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Table 3 Biological markers from the restricted ”LASSO CA” marker set.

Variable Description

BAX balance Combined failure time for all trials (seconds)
BMXTHICR Thigh Circumference (cm)
BPXPLS 60 sec. pulse (30 sec. pulse * 2)
BPXSAR SBP average reported to examinee
BPX invsyspress Inverted systolic blood pressure
DXXVFATM Visceral adipose tissue mass
LBDSBUSI Blood Urea Nitrogen (mmol/L)
LBXMC Mean Cell Hgb Conc. (g/dL)
LBXMCVSI Mean cell volume (fL)
LBXME Measles
LBXSC3SI Bicarbonate (mmol/L)
LBXSOSSI Osmolality (mmol/Kg)
LBXTT3 Triiodothyronine (T3), total (ng/dL)
SPXNF257 Baseline FEF 25-75% (mL/s)
SPXNFET Baseline Forced Expiratory Time (s)
SPXNFVC Baseline FVC (mL)
SPX FEV5h3 Forced expiratory volume in 5 seconds to height cubed ratio (N/m³)

Table 4 The four selected marker sets, with corresponding names, number of
biomarkers and the selection criterion.

Set number Set name Number of variables Selection criterion

1 Pheno 9 mortality
2 LASSO Cox 15 mortality
3 LASSO CA (restricted) 17 CA
4 LASSO CA (full) 79 CA

We call this marker set “LASSO CA (restricted)”. The markers included in this set
are listed in Table 3. The fourth set contains the variables selected with “1se” rule,
and is called “LASSO CA (full). The markers included in this set are listed in Table
6, in the supplementary material due to its size. Only one variable is present both
in”LASSO Cox” and restricted “LASSO CA” marker sets, and none reappear from
“Pheno” marker set.

Table 4 summarizes the marker sets used. The four marker sets can be naturally
ordered by their size, and the criteria used to construct them : small to large and
mortality to CA.

As data are multiply imputed, the penalized regression models were first fit each
imputation replication independently, then penalty paths were aggregated, and the
optimal penalization level was chosen from the aggregated path. The optimal penal-
ization level is chosen to be within one standard deviation of minimal error. Then,
variables that were chosen in more than half of imputation replications were chosen.
This corresponds to the “majority” strategy proposed in Brand [22].
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2.3 Comparison criteria

We chose a range of comparisons criteria to both compare BA between each other
illustrate the strengths and weaknesses of considered BAs. The primary criteria include
:

• Association with CA
• Mortality as measured by concordance index
• Association with chronic diseases

Each of these criteria are of interest on their own sake, and can be directly linked
to insurable risks, such as life insurance for mortality and long term care for chronic
disease.

We also include secondary criteria which serve to contextualize BAs and show how
that they capture various aspects of health :

• Association with self-rated health
• Association with various behaviors, such as smoking
• Association with sociological variables, such as ethnicity, income.

All metrics are calculated on the test dataset and are accompanied by 95% confi-
dence intervals constructed based on estimated standard errors and an assumption of
normality. R2 confidence intervals are based on the Fisher transformation. All standard
error estimates take into account the imputation procedures.

2.4 NHANES Data

The National Health and Nutrition Examination Survey (NHANES) collects health-
related data on the resident civilian, non-institutionalized population of the United
States. Although first conducted in 1971, this article focuses on the survey cycles
between 1999 and 2018, the period when NHANES adopted its current form, before
disruptions caused by the COVID-19 pandemic. Surveys conducted since 1999 are col-
lectively known as Continuous NHANES, though we will refer to it simply as NHANES
throughout this article.

NHANES encompasses a wide range of demographic, questionnaire, examination,
and laboratory data. Subjects are initially interviewed at home, followed by further
examination and testing at Mobile Examination Centers (MEC). NHANES provides
a wide array of data, including dietary habits, laboratory blood work, cardiovascu-
lar stress tests, dental health, grip strength, and many other health indicators. This
extensive range of indicators makes NHANES an attractive choice for studies on BA.

NHANES survey data is publicly available through a dedicated website [23]. The
public-use data excludes information that could be potentially identifiable. Data is
grouped into two-year cycles to ensure sufficient sample size for anonymity and robust-
ness of estimates. Additionally, data files are organized by subject matter. For example,
files prefixed with “SPX” contain spirometry test results, but spirometry was only
conducted during the 2007-2012 cycles, so data related to it is missing for all other
cycles.
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This pattern of missing data presents analysts with a choice: either include spirom-
etry data and restrict analysis to the 2007-2012 cycles, or exclude it entirely. This is
the fundamental problem we address through multiple imputation.

NHANES itself does not follow up with participants beyond the survey. However,
mortality data, including vital status and cause of death as of 2019, is publicly available
through the NHANES linked mortality files [24]. Not all participants are eligible for
linkage, with those under 18 excluded. Additionally, some individuals had insufficient
information for linkage, resulting in missing values. Follow-up durations and causes of
death were also perturbed in some cases to preserve anonymity.

The length of follow-up varies by cycle, with up to 20 years for the 1999 cycle.
However, we believe this extended follow-up period makes it difficult to draw valid
inferences about the impact of markers measured during examination on mortal-
ity. Mortality models like the Cox proportional hazards model implicitly assume
that the observed marker values remain constant throughout the observation period,
an assumption we consider untenable for long follow-up periods. We retain the full
followup period in this study to keep results comparable to existing works. The explo-
ration of the impact of the choice of followup period is an important area needing
further work.

To produce nationally representative and reliable estimates for targeted groups,
NHANES employs a complex survey design. The final data contains weights that
account for both the survey design and non-response rates. To address the survey
design in the context of imputation, we follow the methodology used for imputing
NHANES III (1988-1994) [25], including the variables used in sampling in our impu-
tation model. A detailed list of variables used in imputation is provided in the next
section.

In this article, we only include individuals aged 20 to 79. This age range is moti-
vated by several factors. First, linked mortality data is only available for individuals
aged 18 and older. Moreover, those aged 80 and above are all top-coded as 80 in some
cycles (some cycles top code starting from 85) to preserve anonymity. Additionally, we
consider this to be the most useful age range for the downstream task of calculating
BA with a focus on prevention. Ages under 20 should, ideally, exhibit lower variance
in BA, while ages beyond 79 may be too late for effective preventive measures. Finally,
the Gompertz hazard model, used for PhenoAge, is best suited for this age range, as
it does not fit well with ages outside the selected range.

2.5 Multiple imputation

This study introduces an innovative approach by applying multiple imputation to
NHANES data in the context of comparing BA models. Multiple imputation by
chained equations (MICE) generates several plausible versions of a dataset by replac-
ing missing values with estimates, thus addressing the uncertainty caused by missing
data. Each imputed dataset is complete, allowing for separate complete-case analyzes.
These results are then pooled, yielding robust inferences for both point estimates and
variance estimates.

First introduced by Rubin [26] and has since been applied in various contexts,
including NHANES. For example, NHANES III (1988-1994) is available as a multiply
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imputed dataset, as described by Schafer [25]. Continuous NHANES also contains
multiply imputed data, but only for specific datasets, such as accelerometer and Dual-
Energy X-ray Absorptiometry (DEXA) data. Multiple imputation has also been used
in studies using NHANES, for example, to impute Medicaid enrollment status [27].
However, no study has yet applied multiple imputation to NHANES data for the
purpose of comparing BAs.

Most analyses of NHANES data assume that data are missing at random (MAR)
and focus on complete-case analysis. This approach is reasonable because non-random
missingness—mainly non-response—is accounted for in the subject weights. However,
when applied to multiple cycles of NHANES, complete-case analysis forces analysts
to choose between breadth and depth. Many variables are only measured in some
cycles, and under complete-case analysis, analysts must choose between including more
variables but fewer cycles, or including more cycles but fewer variables. Multiple impu-
tation resolves this issue by allowing us to include all cycles and variables that would
otherwise be missing.

In this study, we applied MICE to impute missing values across NHANES cycles
and maximize available information. Each BA model was fit and evaluated on each
imputed dataset independently, with the results then combined to form an aggregate
estimate that accounts for missingness.

This approach focuses on estimating the metrics of the BA method if fit on a
hypothetical new dataset. If the goal was to construct the best BA possible based
on NHANES data, then we would instead first aggregate the BA obtained for each
individual, and only then compute the metrics. This what is done to calculate average
BA for each CA for Figure 1.

The MICE algorithm iterates over all variables in the dataset, fitting a model
and imputing missing values from the posterior distribution at each step. With each
iteration, the imputed values become more plausible. This process is analogous to a
Gibbs sampler, with conditional distributions specified by the model [28].

Table 1 details the MICE Algorithm, from Van Buuren [29], Section 4.5.2.
We apply the MICE algorithm for 30 iteration and over 10 replications. The number

of iterations had to be set somewhat high for the marginal distribution to stabilize,
this is due to large number of correlated variables included in the model.

The following categories of variables were included into set of variables to be
imputed :

• Biological markers of interest.
• Variables related to mortality (i.e., age at baseline, age at end of follow-up, vital

status).
• Variables used in survey design, as per Liu et al. [30] (i.e., age, gender, ethnicity,

and the masked variance pseudo-PSU, a proxy for the primary sampling unit not
available in public-use data).

• Questionnaire items describing general health status (as per Schafer [25]).
• Variables needed to compute all the comparison criteria.

To reduce computational load, only variables with an absolute correlation greater
than 10% are used in the imputation model for a given variable.

15



Algorithm 1 MICE Algorithm

1: Input: Dataset Y = {Y1, Y2, . . . , Yp} with missing values
2: Output: Multiple imputed datasets
3: for each variable Yj , j = 1, . . . , p do
4: Specify imputation model p(Y mis

j |Y obs
j , Y−j)

5: Initialize missing values Ẏ 0
j with random draws from Y obs

j

6: end for
7: for iteration t = 1, . . . ,m do
8: for each variable Yj where j = 1, . . . , p do

9: Define Ẏ t−j = (Ẏ t1 , . . . , Ẏ
t
j−1, Ẏ

t−1
j+1 , . . . , Ẏ

t−1
p ) . Updated complete data for

all variables up to Yj at iteration t.

10: Draw parameters φ̇tj ∼ p(φtj |Y obs
j , Ẏ t−j)

11: Draw imputations Ẏ tj ∼ p(Y mis
j |Y obs

j , Ẏ t−j , φ̇
t
j)

12: end for
13: end for
14: Repeat the process to create multiple imputed datasets

Conditional distributions depend on the type of variable: continuous variables were
imputed using Predictive Mean Matching (PMM) due to its robustness distributional
specification, binary variables via logistic regression, and categorical variables with
multinomial regression for multicategory cases.

2.6 Train and test sets

Twenty percent of the data are reserved for testing, specifically for comparing the per-
formance of various BA methods. These test data are not used either for imputations
or for fitting the BA models themselves or for choosing the marker sets. This ensures
that presented metrics estimate the performance of these BAs on a hypothetical new
data drawn from the same population.

3 Biological Age comparison

There are clear differences between BAs in concordance scores as well as in correlation
with CA. These two criteria lay the groundwork for our comparisons. Meanwhile,
association with the number of disease and secondary metrics is much weaker and
differences between BA hard to gauge. This is likely the result of neither BA explicitly
aiming to maximize these quantities. To structure the analysis we first do a post-hoc
analysis of the BA.

Among considered BA methods, RF and MLR methods both aim to estimate their
respective criteria, mortality for RF, and CA for MLR. Unsurprisingly these methods
tend to perform best with respect to their respective criteria. PhenoAge and KDM,
however, both deviate from the straightforward evaluation of their respective criteria,
mortality for PhenoAge and CA for KDM.
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3.1 BA example

We illustrate the calculation of a BA on PhenoAge BA, fitted on the LASSO Cox
marker set. As stated in the definition of PhenoAge, it can be expressed as a linear
combination of CA and various markers. Table 5 provides the coefficients for this BA
model. Coefficients are provided separately for males and females as models are fitted
separately for both sexes. Data was centered and reduced before fitting, the coefficients
therefore reflect change in BA in response to a 1 SD change in the underlying variable,
except CA which was kept as-is.

Without proceeding to an analysis of each individual effect, we remark upon some
notable points. First the intercept is positive for both males and females. The coeffi-
cient attributed to CA is in both cases slightly less than one. Let us take an example
of a 40-year-old male with average value for each marker (an unrealistic scenario, as
any individual is unlikely to have average values for all the markers). For this case
the model simply attributes a BA of 7.21 + 0.83 · 40 = 40.4. Any deviation from the
average marker values would be added to this age.

Table 5: PhenoAge BA model coefficients and corresponding stan-
dard errors, separate for each sex. Coefficients express change in
BA per change of 1 standard deviation of marker.

Variable Female Coef. Male Coef.

RIDAGEYR 0.94 0.83
(Intercept) 2.12 7.21
BMX WACR 1.25 2.45
LBDSALSI -2.97 -2.05
LBDSCRSI 0.99 0.59
LBDSGBSI 0.23 1.58
LBDSGLSI 0.76 0.99
LBXBAP 1.06 0.31
LBXP1 NA 0.59
LBXRDW 1.41 2.04
LBXSAPSI 0.36 0.91
LBXSCLSI -0.38 0.16
LBXSGTSI 0.71 0.51
LBXSNASI -0.27 -1.01
SPX FEV5h3 0.00 0.00
SPX PEF5h3 0.00 0.00
URXUMA 0.54 0.27

3.2 Chronological age

We now examine the relationship of various BAs with CA. CA is the obvious reference
for any quantity interpretable as age. As we shall see some BAs deviate too much from
CA to be useful, whereas others are too close to it to provide any new information.
Figure 1 compares the average BA for each method and for each age. Further, Figure
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2 compares correlations of BAs with chronological age, measured using R2. Most BAs
achieve an R2 of 0.6 or above.

MLR-BA is the notable exception, showing too little variation with age, especially
for smaller marker sets. This is reflected with an R2 as low as 0.21. MLR is constrained
to using markers only, and not CA itself; otherwise, MLR would ignore available
markers and coincide with CA. With this in mind, MLR’s R2 logically increases from
the lowest value on the smallest “Pheno” marker set up to an R2 ≈ 0.83 on the largest
full “LASSO CA” marker set.

KDM, on the other hand, closely follows the CA line, acheiving a higher correlation
still, with all R2 values above 0.82. Like MLR, KDM’s correlation is largest for the
largest marker set at 0.99—the largest R2 obtained. Such high association with CA is
due to KDM not being constrained to exclude CA, yet still being based on CA, though
indirectly. This high correlation brings it too close to CA, as we shall see, hurting its
performance on other criteria.

PhenoAge is also strongly correlated with CA. But its R2 decreases with marker
set size. It stars out around 0.9 and go down as low as 0.73.

A visual inspection of RF’s curves in Figure 1 shows that unlike all other BAs,
RF’s curves have a distinctive shape : RF starts with a plateau for ages under 30,
and proceeds to underestimate CA into the early 60s. This is reflected in RF’s overall
lower correlation with CA. The differences in R2 between markers sets for this method
is the simplest to interpret as RF has only one objective: predict mortality. In this
respect, RF is correlated with CA only to the extent that mortality is as well. So RF
is least correlated when the marker set is best able to predict mortality, i.e., “LASSO
Cox” and the full “LASSO CA” marker sets, and most correlated when the marker
set is least associated with mortality.

RF’s distinctive shape, combined with its respectable performance suggests, that
there the rate of aging, or the rate of increase of risk, is slower for ages under about
35. However, the systematic deviation from CA can be viewed as a drawback, as it will
assign a BAs lower than CA to a large part of the population. Indeed, the comparisons
done in the article are insensitive to shifts by a constant and would therefore not
capture such a bias. All in all, this calls for some adjustments to the method before it
can be put into practice.

3.3 Mortality

We now consider BA’s association with mortality, measured via time–on-study con-
cordance. Both all-cause mortality and cause-specific mortality is considered. The
death causes examined are those available in NHANES linked mortality data, namely
: Diseases of heart, Malignant neoplasms, Cerebrovascular diseases, Chronic lower
respiratory diseases, Diabetes, Alzheimer’s disease, Accidents, Nephritis, Influenza
and pneumonia. The choice of timescale is important as time-on-study timescale
concordance leads to much higher scores.

Figure 3 compares the concordance score of all BAs. For methods based on mor-
tality, i.e., PhenoAge and RF, concordance is closely tied to the optimization criteria
for these methods, resulting in good performance, with RF performing the best, fol-
lowed by PhenoAge. KDM and MLR follow, and either tie with or trail behind CA
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Fig. 1 Average BA with age, for each marker set.

depending on the marker set. Only RF and PhenoAge are significantly better than
CA.

MLR-BA performance primarily depends on the method for selecting markers and
is the only BA showing significant variation across marker sets. For “Pheno” marker
set, MLR-BA’s concordance is significantly below that of CA. For all other marker
sets it is close to CA’s concordance of 0.81.

KDM shows concordance scores that are slightly lagert that that of CA, but never
significantly so. Being strongly correlated with CA, it is unable to achieve a better
result.

PhenoAge, explicitly based on a survival model, should capture the impact of
biological markers on mortality well. Indeed, for all marker sets achieves better perfor-
mance than CA, MLR and KDM. Somewhat surprisingly, PhenoAge does not achieve
a concordance significantly higher than that of KDM, although it is substantially
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Fig. 3 Concordance with respect to age of death (all cause).

always higher than other BAs. Moreover, its concordance drops for the two LASSO
CA marker sets. PhenoAge achieves the highest concordance on the “LASSO Cox”
marker set, suggesting the importance the choice of variables.

RF, on the other hand, shows the best concordance for every marker set across both
concordance measures. Its best performance is 0.873 on the full “LASSO CA” marker
set, likely due to the large number of available markers. The second-best performance,
only slightly lower at 0.866, is achieved on the much smaller “LASSO Cox” marker set.
The good performance for “LASSO Cox”, again underscoring the importance of the
choice of variables. In spite of this, RF is not able to achieve concordance significantly
different from PhenoAge.

The NHANES linked mortality data also includes information on specific causes of
death. Figure 13 in the supplementary materials compares concordance scores for each
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available cause. The same trends observed in all-cause mortality concordance reappear
here for cause-specific mortality, although with considerably more uncertainty due
to lower number of observed cause-specific deaths. Concordance scores vary across
different diseases, with RF and PhenoAge generally lead in predicting survival time.
Curiously, for Alzheimer’s disease, no BA outperformed CA.

3.4 Chronic disease

In this section we examine the relationship between BA and the presence of vari-
ous chronic diseases : cardiovascular disease, COPD, chronic kidney disease, asthma,
arthritis, cancer, stroke, hypertension, hyperlipidemia, diabetes, and obesity. Chronic
is often of interest on its own, but is also strongly associated with other risks such as
disability and the need for long term care. The correlation between BA and each disease
is measured using an R2. Additionally, we compare correlation with the total number
of chronic diseases. This allows for a comparison of how well different BA methods
capture an individual’s overall health status based on chronic disease prevalence.

Figure 4 compares the correlations between BAs and the number of comorbidities.
The overall correlation between BAs and the number of diseases turned out to be a
weak metric for distinguishing between BAs, as all methods hovered just above 0.3.

There are some exceptions. MLR, like its correlation with CA, starts significantly
lower for the “Pheno” marker set but catches up with other methods by the “LASSO
CA” marker set. PhenoAge also shows noticeably, though not significantly, worse per-
formance for the “Lasso Cox” and restricted “LASSO CA” marker sets, with its dip
in performance masked by large confidence intervals. These larger intervals likely stem
from the uncertainty introduced by imputed missing values.

Only RF and PhenoAge significantly outperform CA, and only for the “Pheno”
dataset. KDM also significantly surpasses CA, but only for the full “LASSO CA”
marker set.

Overall, the differences in R2 across marker sets were minimal, suggesting that BAs
add little new information about the overall disease count that isn’t already captured
by CA.

Figure 5 compares the correlations between the presence of various diseases and
BAs. The disease-specific correlations vary considerably, ranging from near zero for
asthma and obesity to approximately 0.25 for hypertension.

Overall, the correlations for all BAs are close to those of the reference, CA. In
fact, CA slightly outperforms other BAs in its association with cancer, hyperlipidemia,
and arthritis, with CA significantly outperforming RF for hyperlipidemia. For other
diseases, BAs tend to have slightly higher correlations than CA, but these differences
are generally not significant. However, BA methods significantly outperform CA for
kidney disease and diabetes. RF, in particular, significantly outperforms CA for kidney
disease across three marker sets, while PhenoAge only achieves this with one marker
set. For diabetes, all BAs show significantly higher correlations than CA in at least
one marker set, with MLR surprisingly showing a competitive correlation for diabetes.
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3.5 Secondary metrics

We believe association with CA, mortality, and diseases to be the main criteria for
evaluating a BA. However, there are a number of other criteria that may be of interest,
but that we consider secondary. Such criteria are considered here.

3.5.1 Self-rated health

Self-rated health is an important piece of information known to be an independent
predictor of mortality, even after controlling for other factors such as functional limita-
tion. Moreover, it is strongly correlated with CA, generally worsening with age. Figure
6 compares the R2 values for the correlation between self-rated health and BAs.

All BAs are significantly associated with self-rated health, though the overall
associations are weak, with R2 ≈ 0.03± 0.02, and CA at R2 = 0.015.

MLR and KDM do not achieve an R2 significantly larger than CA for any marker
set. PhenoAge’s correlation is significantly higher than CA’s for three out of four
marker sets. However, PhenoAge itself is not significantly better than either MLR or
KDM for any marker set. RF, meanwhile, is significantly different from CA for all
marker sets, while also being significantly better than both MLR and KDM on the
largest marker set.

3.5.2 Behavior

Figure 7 compares the R2 values for the correlation between various behavioral vari-
ables and BA. The three behaviors examined are the number of alcoholic drinks
consumed per week, the presence of any physical activity, and tobacco consumption.

All BAs show significant associations with the three behaviors considered here, yet
none appear to be systematically different from the R2 achieved by CA.

For physical activity, which is coded as 1 if any activity was declared and 0 other-
wise, only PhenoAge for the full “LASSO CA” marker set achieves an R2 significantly
different from that of CA. However, this result is not statistically better than for any
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other BA. In general, the various BAs yield slightly higher R2 values than CA, but the
differences are not significant. MLR for the “Pheno” marker set performs significantly
worse in this case.

In terms of alcohol consumption, all BAs show similar associations to CA, with
most BAs having R2 values slightly lower than CA, though not significantly so.

For tobacco consumption, coded as “current,” “past,” or “never,” only MLR for
the “Pheno” marker set performs significantly worse than CA. All other BAs exhibit
R2 values slightly lower than that of CA, but again, without statistical significance.

3.5.3 Social

In this section we consider association of BAs with sociological factors that are known
to have an impact on health. Included here are education, ethnicity, income level, and
marital status. Marriage, for example, tends to prolong life. Many of these factors
depend on age. The proportion of unmarried persons, for example, drops sharply until
about 40, whereupon it stabilizes. Due to this association with age, we focus on the
difference between BA and CA. This quantity should reflect the relative health of the
individual for that age group. In fact, this quantity is often of interest on its own and
called “BA acceleration” and defined as CA − BA. Figure 7 compares the R2 values
for the regression of BA acceleration on various behavioral variables.

Education

All BA accelerations are significantly associated with at least one marker set. The
strongest association is observed for the “LASSO Cox” marker set (R2 ≈ 0.02) and
the full “LASSO CA” marker set (R2 ≈ 0.03). MLR achieves a significant but small
correlation. All other marker sets are not significantly different from each other but
perform significantly better than MLR. PhenoAge, due to its large confidence intervals,
is only significant for the smallest and the largest marker sets. KDM performs best
for the last three marker sets, although the difference between PhenoAge and RF is
not significant. RF is consistently significant and performs well across all marker sets.

Ethnicity

Almost all BA acceleration-marker set combinations are significantly associated with
ethnicity. The two exceptions are MLR for the largest marker set and PhenoAge
for the restricted “LASSO CA” marker set, where large confidence intervals hinder
significance. KDM and MLR performed relatively poorly, with R2 ≈ 0.01 for all marker
sets. PhenoAge likely performed better, but it is not significantly different from KDM.
RF performed significantly better than MLR and KDM for three out of four marker
sets. For the fourth marker set (restricted “LASSO CA”), all four BA accelerations
performed similarly.

Income

All BA accelerations are significantly associated with income level, without exception.
MLR seems to perform the worst, showing performance similar to KDM for the first
two marker sets but dropping in performance thereafter. KDM, PhenoAge, and RF
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performed similarly across all marker sets, with the only significant difference being
between KDM and RF for the smallest marker set.

Marital Status

All BA accelerations are significantly associated with marital status, without excep-
tion. MLR starts with a strong correlation, but its performance declines as the size
of the marker set increases, likely due to the strong correlation between MLR-BA
acceleration and CA. KDM performs poorly, with the smallest R2 for all marker sets,
although it is never significantly different from the second worst. PhenoAge meanders
from an R2 close to that of KDM for the smallest marker set to an R2 similar to that of
RF for the third marker set. For the fourth marker set, PhenoAge is not significantly
different from either RF or KDM. RF consistently performs well, with R2 ≈ 0.03 for
all marker sets, frequently occupying first place or being tied for it.

4 Using BA to Estimate Death Counts

The previous section evaluated BA methods based on their associations with various
outcomes using abstract measures such as linear correlation and concordance. While
useful, these metrics are insensitive to scale. As we have seen, some BAs deviate
significantly and systematically from CA. To explore the practical implications of these
deviations, we evaluate BAs on a more concrete task: estimating the number of deaths.
This analysis reveals that raw BA estimates are significantly biased. We attempt
three approaches to align BAs with mortality data more closely: linearly adjusting
ages, scaling the dispersion around the mean BA, and integrating the life table into
PhenoAge’s construction. Only the last approach provides satisfactory results.

In this section, we explore the use of BA to estimate the number of deaths. Rather
than directly estimating deaths from the NHANES data, we reference an external life
table—the 2010 period table for the U.S. Social Security population (source: Social
Security Administration). This life table serves as an approximate representation of
the observed population, with 2010 chosen as a midpoint of the NHANES observation
period. The goal is not precise death estimation but rather an assessment of what
happens when BA replaces CA for determining mortality probabilities. It is important
to note that the life table may not perfectly align with NHANES mortality data due
to NHANES being a non-random sample of the U.S. population (and the absence of
sampling weight adjustments) and the broader time span of NHANES observations.

We assume age is measured as civil age (the integer part of exact age since birth).
Assuming a uniform distribution within each age, individuals are, on average, half a
year older than their civil age. To account for this, we adjust death probabilities as
follows:

q′x = 0.5qx + 0.5qx+1

Additionally, when calculating multi-year survival probabilities (e.g., 5-year survival),
we use the formula:
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nqx = 1−
x+n−1∏
k=x

1− qk

For a population of size N with ages {xi}, i ∈ [1, N ], we estimate the number of

deaths as
∑N

i=1 qxi , with an approximate variance of
∑N

i=1 qxi(1 − qxi). Here, {xi}
represents either BA or CA, depending on the context.

For this analysis, we disregard the distinction between training and test datasets
due to the small number of one-year deaths.

4.1 Death counts

Figure 9 compares predicted and observed deaths as a percentage of observed deaths
(where 0% indicates perfect prediction). We evaluate predictions over three time hori-
zons: deaths within 1, 5, and 10 years. Notably, there are relatively few deaths within
one year of examination (around 400). Furthermore, because BA models are trained
without restrictions on the delay between examination and death, longer horizons may
better reflect long-term survival and align more closely with BA methods. For 5- and
10-year follow-ups, we exclude later NHANES cycles from the dataset to ensure com-
plete survival data. Specifically, for 5-year estimates, we exclude cycles 2013-2014 and
2015-2016, while for 10-year estimates, we further exclude 2009-2010, 2011-2012, and
2013-2014.

The results initally suggest that various BAs provide little advantage over CA in
estimating the number of deaths. In fact, deviations from CA appear counterproduc-
tive, as methods and marker combinations most correlated with CA tend to yield the
best results. For longer follow-ups, the predictions shift downward, underestimating
deaths. This shift benefits random forest (RF) and PhenoAge, which tended to over-
estimate death counts for the 1-year follow-up. However, for 10-year follow-ups, all
methods significantly underestimate the number of deaths.

Despite this, BAs have shown greater predictive power for mortality. We therefore
interpret this discrepancy between abstract concordance scores and biases in pre-
dicted death numbers as a calibration issue. Here, calibration refers to the consistency
between predicted probabilities and observed outcomes, akin to the calibration chal-
lenges in machine learning models. While BAs can discriminate relative mortality risk,
they fail to assign reasonable absolute mortality risks. This shortcoming is unsurpris-
ing, as most BA methods do not explicitly align the age scale with specific mortality
levels.

In this section we explore various approaches to realign BAs with the life table
used. Of the methods considred, exploiting PhenoAge’s ability to take into account
a reference survival distribution results in best estimates, with similar adjustments
possible for other methods.

4.2 Linear Adjustment

To explore whether scale misalignment contributes to biases in predicted death num-
bers, we re-regress the obtained BAs on CA to create the closest linear approximation
of CA. This adjustment does not affect MLR CA, as it is already the closest linear
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approximation. However, as shown in Figure 10, the results indicate that this adjust-
ment worsens overall performance. Random Forest (RF) and PhenoAge now severely
underestimate the number of deaths. The primary beneficiary of this transformation
is KDM, which, due to its high correlation with CA, becomes almost indistinguishable
from it after the linear adjustment.

These findings suggest that the issue is not merely one of BA scale. For longer
follow-up periods (5 and 10 years), the linear adjustment provides marginally better
results. However, since CA itself significantly underestimates the number of deaths over
these longer horizons, a simple linear adjustment is unlikely to resolve the underlying
issue.

4.3 Adjusting the Dispersion of BA

The linear adjustment of BA did not fundamentally improve its compatibility with
mortality tables. We therefore consider another approach: adjusting the dispersion of
BA around the average BA for each age group. Specifically, we rescale BAs within
each age group by introducing a scaling factor, α. Let x represent a given age, and α
be the scaling factor. The adjusted BA is defined as:

BAi = α ·BAi + (1− α) · 1

|{i : xi = x}|
∑
i:xi=x

BAi

For α = 1, the BA remains unchanged. For α < 1, the within-age dispersion decreases,
while for α > 1, the within-age dispersion increases.

Figure 11 illustrates how the overall results change as a function of the scaling
factor. There is a positive relationship between the scaling factor and the number of
predicted deaths. This can be explained by the fact that the predicted number of
deaths increases primarily for individuals with very large ages. As the scaling factor
increases, more individuals are pushed into this high-age bracket, thereby increasing
the predicted deaths.

By the intermediate value theorem, there exists a scaling factor that results in
a perfect fit to observed deaths. However, this should not be used as a basis for
estimation—much like scaling regression predictions to achieve desired results is not a
valid statistical practice. With these caveats in mind, the plot suggests that both RF
and PhenoAge are overdispersed and could achieve better predictions with reduced
dispersion.

In contrast, KDM is largely indistinguishable from CA, rendering the scaling factor
almost irrelevant. On the other hand, MLR is far removed from CA and benefits
from increased dispersion, which aligns with its tendency to vastly underestimate the
number of deaths.

4.4 Calibrated PhenoAge

Among the considered BAs, PhenoAge has the notable property of defining BA as the
best age that aligns with a given reference survival distribution. When the reference is
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the life table we use, this property should result in better alignment with the mortality
estimates provided by the life table.

As before, Figure 12 compares the estimated and observed number of deaths over
1-, 5-, and 10-year follow-up periods. Although the default PhenoAge uses 10-year
survival probabilities, we adjust this duration to match the follow-up period for each
analysis.

Calibrated PhenoAge provides a more accurate estimate of the number of deaths
than CA. The estimated number of deaths is closer to the observed value, and
the observed death count almost always falls within the confidence intervals of the
estimate.

In retrospect, this result is not entirely surprising. The mortality model underly-
ing PhenoAge—a Gompertz proportional hazards model—likely provides a reasonable
estimate of survival probabilities. However, the chosen mortality table does not per-
fectly align with the NHANES population for two reasons: first, NHANES is a small,
non-random sample of the general population; second, the NHANES data covers a
broader time period than the table. In this context, PhenoAge effectively serves as
an adjustment, bridging the gap between observed mortality in the NHANES sam-
ple and the mortality predicted by the life table. Nonetheless, the mortality table
appears to ground PhenoAge’s estimates, as the uncalibrated PhenoAge did not
achieve comparable accuracy.

It is also worth noting that predictions from Random Forest (RF) or any other
model capable of incorporating an arbitrary number of covariates can be adapted using
this calibration approach.

5 Discussion

In this work, we present and compare four biological age (BA) methods, exploring
their use as tools for prevention. While BAs are already used in practice to com-
municate an individual’s overall health, this study introduces them to an actuarial
audience, building upon the comprehensive overview of BA methods provided in Bafei
and Shen [14]. We present four well-known BA methods and provide some analysis on
their construction. These BA are then assess based on their performance on a number
of criteria and under diverse conditions. This comparison is done on the NHANES
data, and includes a wide range of markers for BA construction and criteria for eval-
uation, ensuring robust and comprehensive analyses. Moreover, we employ multiple
imputation to address missing data, preserving flexibility in the choice of variables. We
procede to apply these BAs to the task of estmating the number of deaths using a stan-
dard life table. Finally, we offer guidance on choosing BA methods for self-protection
and prevention-focused applications.

5.1 Summary of BA comparison

All BAs are strongly correlated with CA, with KDM achieving the highest correlation,
while MLR had low correlations for smaller marker sets. Mortality prediction results
were unsurprising, with RF and PhenoAge consistently outperforming CA, while KDM
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showed an improvement over CA that was not large enough to be statistically signif-
icant. MLR failed to show meaningful improvements. In terms of associations with
disease, BAs did not achieve much improvement over CA, with some exceptions for
various marker-disease combinations. For self-rated health, mortality-based methods
significantly outperformed CA, while MLR showed significant improvement for the
two mortality-based marker sets. Although KDM improved upon CA, it was not sig-
nificant. Similarly, for behavioral variables, BAs did not significantly improve upon
CA. Sociological factors showed associations with various BA accelerations, but with
little difference between BAs, except for MLR, which performed poorly.

RF generally emerged as the best performer or was tied for the best across most
of the criteria considered, with PhenoAge following closely. KDM generally performed
worse than RF but similarly to MLR, with a few notable exceptions: KDM showed
strong associations with some diseases, behaviors, and education. MLR, unfortunately,
consistently ranked last, especially for smaller marker sets, where its weak correlation
with CA caused it to perform worse than CA.

5.2 Discussion of BA methods

MLR’s underwhelming performance highlights that CA itself remains informative even
in the presence of many markers. KDM’s more consistent performance further sup-
ports the importance of CA. However, using CA as a criterion for defining BA comes
with significant challenges. Either one must completely renounce the use of CA, as
MLR does, or use CA indirectly, as KDM does. Mortality, as an alternative criterion
examined in this study, appears to offer a more practical target. Mortality is not only
valuable in its own right, but its unobserved nature prevents it from being used as
a marker, thereby avoiding the biomarker paradox. Additionally, mortality can easily
be substituted with another outcome.

The strong performance of PhenoAge and RF supports the case for using mortality
as a criterion. This is further supported by the fact that the two smallest marker sets,
both based on mortality, performed and better than their larger, CA-based counter-
parts. The main drawback of mortality-based BA is the longitudinal mortality data
required for it.

Although both PhenoAge and RF are based on mortality, they exhibit differ-
ent behaviors. PhenoAge generally performed slightly worse than RF, which can be
explained by the more flexible model underlying RF. PhenoAge also exhibited less
consistency, with marked drops in performance for certain marker sets, as for exam-
ple for disease associations. PhenoAge also exhibited larger confidence intervals, most
noticeably in comparisons with sociological variables. We interpret this as a sign of
overfitting in PhenoAge, where variations in the markers used for each imputation
replication result in variance in the final prediction. If overfitting is indeed the cause
of these issues, it could be addressed through penalization or other methods designed
to prevent overfitting. By contrast, RF is designed to be robust to overfitting. Further-
more, RF is conceptually simple: it calculates mortality scores and then transforms
them into an age-like scale. In contrast, PhenoAge requires multiple models and applies
an intuitive, yet ultimately arbitrary, probability-matching scheme to generate an age.
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More broadly, three out of the four methods considered are, in fact, linear com-
binations of CA and markers, though neither KDM nor PhenoAge are explicitly
formulated as such. For PhenoAge especially, an explicit reformulation using a linear
combination could greatly simplify the construction, potentially through the use of
a Cox proportional hazards model. We believe that such variants may prove useful,
as the interpretability provided by parametric or semi-parametric models like Cox is
essential for understanding the reasons behind individual BA estimations. While meth-
ods such as the Shapley-value-based approach in ExplainableAge (upon which RF is
based) can provide post-hoc explanations, these require additional computation, fur-
ther increasing RF’s already considerable computational demand. Given RF’s modest
improvement upon PhenoAge, we suspect PhenoAge’s performance can be improved
by including a few interactions and non-linearities, retaining its interpretability.

5.3 Adapting Biological Ages for Prevention

We see the exercise of calculating BA, rather than simply using the underlying markers
directly, as primarily a communication tool. The ability to quantify health in terms of
years, rather than abstract hazard ratios, is a powerful means of conveying information.

The second leg of BAs is their risk-predicting ability. However, as we have seen,
the theorical performance of BA does not necessarily reflect its ability to estimate
death counts from a life table, with death count estinations rsullting from plugging
in BA into a life table were worse than CA. Neither simple transformation or scailing
helpped the problem. Instead, a supplimental step of calibration is required, where
either the BA are adjusted to fit the life table used, or a new life table is constructed,
based on a BA.

Thus any practical application of BA must be tailored to the specific needs and
objectives of the intended use. A BA requires three critical components: (1) an outcome
they are based, (2) the variables that are used, and (3) a method. These elements must
be adapted to the context for which a BA is developed for. In this section we discuss
some considerations to be taken into account when adapting a BA for prevention.

5.3.1 Target Outcome

The target outcome defines what the BA is meant to measure. Existing litterature
focuses on a general notion of health and uses CA or mortality as the outcome for BA
construction For prevention-focused applications, however, the target outcome can be
directly substituted with a specific risk of interest, such as the incidence of a chronic
disease or functional limitation.

Mortality-based methods, such as PhenoAge and random forest (RF), offer sig-
nificant flexibility in substituting the target outcome. This flexibility makes them
particularly suited to be adapted to other context. Substituting the target outcome
is straightforward for these methods, whereas methods like MLR and KDM, which
are more closely tied to CA, may become unrecognizable when adapted to different
outcomes.
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For crosssectional, as opposed to longitudinal data, RF is the more adaptable
method. Random forest model underlying RF BA can be substituted by any other
risk measure and then transformed to an age scale.

5.3.2 Variable Selection

The choice of variables for BA construction depends on the desired application. In this
study, we used generalist variables representative of those typically collected during an
extensive health checkup. However, for prevention-focused BAs, special attention must
be paid to the relationship between variables and potential self-protective measures.
This relationship can be direct, as for example, variables such as smoking status,
which are directly modifiable through behavior changes; or indirect, such as biological
markers like blood glucose levels, which can be linked to interventions (e.g., dietary
improvements) through external knowledge.

Practical implementation may face challenges due to limited data availability,
especially for insurers who typically rely on datasets collected during policy pricing.
NHANES data, used in this study, offers significant flexibility in variable selection and
a respectable sample size. It can serve as a useful resource to guide initial variable
choices for prevention programs.

5.3.3 Choice of Method

The choice of BA method depends on the specific context and priorities of the applica-
tion. The choice of method is somewhat constrained by the outcome of interest. With
mortality-based methods being the obvious choice if mortality is the focus. Mortality-
based methods are also more flexible and can adapt to various outcomes. MLR and
KDM may still be of interest if the focus is on general health instead.

PhenoAge and RF, generally provided the most consistent and performant results,
making them strong candidates for prevention-focused applications. These two meth-
ods are also conceptually the most flexible, and it should be straightforward to adapt
these to any downstream application, as we did for death counts.

Interpretability is also an important consideration. For example, PhenoAge may
be preferred over RF due to its ease of interpretation, with each variable assigned a
linear coefficient. This transparency is particularly valuable when communicating BA
results to policyholders. There is a trade-off between a precision of a BA in predict-
ing a risk, and the ease of communication, as the impact of various covariables may
inherently be complex with non-linearities and interactions. This trade-off must be
carefully considered : simpler models, though less performant, may be more effective
in encouraging self-protective behaviors.

5.4 Concluding remarks

Our findings demonstrate that it is possible to construct biological ages (BAs) that
combine robust risk prediction with ease of interpretation. This positions BA as a
cornerstone metric for prevention programs, enabling more personalized risk assess-
ments and incentivizing healthier behaviors among policyholders. In this work, we have
presented various BA methods and addressed practical issues that may arise when
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applying these methods. By combining methodological insights with practical appli-
cations, this study provides a foundation for integrating BA into prevention-focused
initiatives and insurance contexts.

Despite their potential, examples of BAs being integrated into prevention programs
remain scarce, with limited literature exploring their application in this context. Fur-
ther research could provide valuable insights into the effectiveness of widely adopted
prevention strategies, such as regular exercise, balanced diets, and routine health
checkups. Such work is essential to determine whether existing prevention programs
fully incentivize best practices to optimize population health.

NHANES provides a robust foundation for advancing these efforts, offering data
on insurance status, healthcare access, accelerometer readings (akin to fitness appli-
cation data), and detailed dietary information. While this research may not uncover
entirely new pathways to better health, it is critical for quantifying both risks and the
potential reductions achieved through interventions—essential steps in designing ratio-
nal prevention programs. By basing these analyses on biological ages, the impact of
risk reduction can be communicated more effectively to the target population, further
enhancing the success of prevention initiatives.

6 Supplementary material

6.1 Cause-specific mortality
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6.2 Full LASSO CA marker set

Table 6: Biological markers from the full ”LASSO CA” marker
set.

Variable Description

BAX balance Combined failure time for all trials (seconds)
BIDECF Estimated extracellular fluid volume (L)
BIDPFAT Estimated percent body fat
BID ECFpct Estimated extracellular fluid volume (%)
BID WaterFFM Estimated total water body volume to fat-free mass ratio (l/kg)
BMXARMC Arm Circumference (cm)
BMXHT Standing Height (cm)
BMXLEG Upper Leg Length (cm)
BMXTHICR Thigh Circumference (cm)
BMXWAIST Waist Circumference (cm)
BMX WACR Ratio between waist and arm circumferences
BMX invBMI The inverse of BMI
BMX logLBXCRP Log transform of LBXCRP
BPXDAR DBP average reported to examinee
BPXPLS 60 sec. pulse (30 sec. pulse * 2)
BPXPULS Pulse regular or irregular?
BPXSAR SBP average reported to examinee
BPX invsyspress Inverted systolic blood pressure
CVDESVO2 Estimated VO2max (ml/kg/min)
DRXTCARB Carbohydrate (gm)
DRXTFIBE Dietary fiber (gm)
DRXTKCAL Energy (kcal)
DRXTPROT Protein (gm)
DRXTSUGR Total sugars (gm)
DRXTTFAT Total fat (gm)
DXDTOBMC Total Bone Mineral Content (g)
DXDTOFAT Total Fat (g)
DXD TOBMCpctTTotal Bone Mineral Content to weight ratio
DXXSATM Subcutaneous fat mass
DXXVFATM Visceral adipose tissue mass
LBDBANO Basophils number (1000 cells/uL)
LBDHDD Direct HDL-Cholesterol (mg/dL)
LBDLYMNO Lymphocyte number (1000 cells/uL)
LBDNENO Segmented neutrophils num (1000 cell/uL)
LBDSBUSI Blood Urea Nitrogen (mmol/L)
LBDSCASI Total Calcium (mmol/L)
LBDSCHSI Cholesterol, refrigerated serum (mmol/L)
LBDSGBSI Globulin (g/L)
LBDSGLSI Glucose, refrigerated serum (mmol/L)
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LBDSIRSI Iron, refrigerated serum (umol/L)
LBDSPHSI Phosphorus (mmol/L)
LBDSTBSI Total Bilirubin (umol/L)
LBDSUASI Uric acid (umol/L)
LBXBAP Bone alkaline phosphotase (ug/L)
LBXBAPCT Basophils percent (%)
LBXFER Ferritin (ng/mL)
LBXGH Glycohemoglobin (%)
LBXLYPCT Lymphocyte percent (%)
LBXMC Mean Cell Hgb Conc. (g/dL)
LBXMCVSI Mean cell volume (fL)
LBXME Measles
LBXMOPCT Monocyte percent (%)
LBXMPSI Mean platelet volume (fL)
LBXP1 Total prostate specific antigen (ng/mL)
LBXPLTSI Platelet count (1000 cells/uL)
LBXRDW Red cell distribution width (%)
LBXSC3SI Bicarbonate (mmol/L)
LBXSCLSI Chloride (mmol/L)
LBXSGTSI Gamma Glutamyl Transferase (GGT) (IU/L)
LBXSKSI Potassium (mmol/L)
LBXSNASI Sodium (mmol/L)
LBXSOSSI Osmolality (mmol/Kg)
LBXTSH1 Thyroid stimulating hormone (uIU/mL)
LBXTT3 Triiodothyronine (T3), total (ng/dL)
LBXTT4 Thyroxine, total (T4) (ug/mL)
LBXVIDMS 25OHD2+25OHD3 (nmol/L)
MGX PFkg model Grip peak force estimated from height, sex, and grip strength. (kg)
SPXNEV Baseline Extrapolated Volume (mL)
SPXNF257 Baseline FEF 25-75% (mL/s)
SPXNFET Baseline Forced Expiratory Time (s)
SPXNFEV5 Baseline FEV 0.5 (mL)
SPXNFVC Baseline FVC (mL)
SPXNPEF Baseline PEF (mL/s)
SPX FEV5h3 Forced expiratory volume in 5 seconds to height cubed ratio (N/m³)
SSKLOTH Klotho (pg/ml)
TELOMEAN Mean T/S ratio
TELOSTD Asso. Std. Dev. of Mean Telomere Length
URXUCR Creatinine, urine (mg/dL)
URXUMA Albumin, urine (ug/mL)
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Fig. 5 R2 vs the presence of disease.
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Fig. 6 R2 vs self-rated health.
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Fig. 7 R2 vs behavioral variables.
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Fig. 8 R2 vs sociological variables.
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Fig. 9 Percentage error in predicted deaths compared to observed deaths within 1, 5, and 10 years
of follow-up for considred BAs.
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Fig. 10 Percentage error in predicted deaths compared to observed deaths within 1, 5, and 10 years
of follow-up for linearly adjusted BAs.
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Fig. 11 Percentage error in predicted deaths within one year of examination as a function of the
within-age scaling factor.
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Fig. 12 Percentage error in predicted deaths compared to observed deaths within 1, 5, and 10 years
of follow-up for calibrated PhenoAge and CA.
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Fig. 13 Concordance with respect to age of death (cause-specific).
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