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ABSTRACT 
The report provides a specification for a stochastic model for equity returns, inflation 
and the term structures of real and nominal interest rates together with a discussion of 
the possible approaches to parameter selection. We contrast the model�s output with a 
typical calibration of the Wilkie investment model.
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1. INTRODUCTION 

What is it that makes the role of financial intermediaries so special? Surely, some part of 
the answer to this question is the financial intermediary’s objective of pooling and 
managing risks on behalf of large groups of individuals. In common with other financial 
intermediaries, life insurance companies are in the risk management business. 

The risk exposures accumulated by the shareholders and policyholders of today’s life 
companies come in many different forms. In the past, uncertainty in financial plans has 
be assessed either by expert intuition or alternatively by developing a small number of 
handcrafted “what if?” scenarios. Such scenario analysis can be extremely valuable in 
situations where there are only a small number of key sources of risk. Unfortunately, in 
a situation where there are many sources of risk or where the dimension of the problem 
is large, building the scenarios by hand becomes impractical.  

The risk manager of 25 years ago would be astonished by the range of tools available to 
his modern counterparts. It is now increasingly common practice to use a computer to 
generate the scenarios using a stochastic model. Monte-Carlo (MC) simulation 
techniques can be used to generate very large numbers of scenarios in order to 
understand the potential behaviour of financial products and other entities in a world of 
uncertainty and under various strategy options available to the planner. Instead of testing 
out a handful of possible outcomes, the planner can test out – literally – thousands of 
possible futures. 

In this note we will focus on one specific model out of many interesting possible 
candidates. We shall tackle the difficult problem of how to simulate consistent future 
paths for equity returns, dividend yields, inflation and complete real and nominal term 
structures. It is worth emphasising that there are plenty of models around that deal 
adequately with the nominal term structure. Here we shall aim to reconcile the 
behaviour of the inflation rate with both real and nominal interest rates. The model 
presented has some attractive features for the purposes of analysing certain classes of 
problem, but we do not claim that it is perfect. We will explore the issue of how to 
calibrate this model and illustrate two calibrations. The illustrations provided have been 
judged to be useful by some people. You may prefer a different calibration. 

As we shall see, as always, it is necessary to strike a balance between our ambition to 
make the model as realistic as possible and a need to keep the model simple. Where we 
strike the balance will depend upon a number of considerations: the specific application 
of the model as well as the needs and sophistication of model users.  
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This report is rather longer than we had planned. It would have been straightforward to 
write down our fancy equations and leave the reader to apply the model. Instead, we 
have set out to explain why we believe modelling is useful at all and what sort of 
problems are being analysed with stochastic models (section 2). In section 3, 
background is provided by highlighting some extraordinary changes that have taken 
place over the past two decades. In the following section we list some properties of 
‘good models’. Section 5 sets out the specification for the model and the following two 
sections provide a discussion of calibration strategies and two specific calibrations. 
Section 8 contrasts the model with the Wilkie investment model. Finally, in sections 9 
and 10, we briefly discuss possible extensions and set out some brief conclusions. 

Much of the presentation that follows is informal. Our objective is to give the reader 
insights into the general problem of stochastic model building as well as a description of 
a practical tool. We do not pretend that the model presented in this report is complete 
nor that the calibration could not be bettered in some respects. Rather this is our starting 
point for some stochastic investigations. The ideas presented have been developed over 
several years and with many mistakes and blind alleys along the way. Let us begin by 
addressing a basic question: “why build stochastic models at all?” 

 
 



 7

 
2. WHY BUILD MODELS? 

2.1 WHAT LESSONS FROM THE PAST?  
Life insurance companies are in the business of managing risk on behalf of large groups 
of individuals over very long planning horizons. Some of these risks can be diversified 
away whilst others must be carried by either policyholders or shareholders. The 
financial products sold by life assurers contain guarantees of numerous varieties. Life 
insurance is a risk management business. Life company managers have experienced a 
traumatic decade – failing to adequately understand and manage risk across a range of 
different products. The list is dismal and familiar: 

��Some with-profits ‘promises’ made to policyholders in the late 1980s and early 
1990s look hopelessly optimistic in an environment of (normal – but surprising) 
low inflation. 

��Annuity options offered in the 1970s and 1980s have proven costly as a 
consequence of unanticipated falls in nominal interest rates and surprising 
improvements in mortality. 

��The basic financial position and funding strategy of pension funds (two very 
distinct properties) remain confused amid a three-way debate among actuaries, 
accountants and regulators.  

It is probably fair to say that – for many life companies – these problems remain 
unresolved. The quality of understanding of the problems and strategies selected to 
manage them is variable. 

2.2 WHAT CURRENT PROBLEMS DO ACTUARIES & FINANCIAL PLANNERS FACE? 
Is this the end of our list? Sadly not. The industry needs to face up to a number of 
ongoing and new problems over the coming years: 

��With-profits products remain under scrutiny – most recently from regulators. Of 
course, the catch-all ‘with-profits’ covers a wide range of products with very 
different guarantees and different strategies for ‘smoothing’ returns across 
successive generations of maturing policies. Product providers have struggled 
(unsuccessfully so far as their end-customer is concerned) to communicate the 
nature of the product. There exists (at least) two important challenges: first, to 
make the product (or its replacement) more transparent; second, to manage and 
price the risks carried by policyholders and shareholders in an appropriate way. 

The recent changes to regulations mean that the capital required to support 
unitised with-profit business is now more sensitive to the pattern of delivered 
asset returns. 

��Although the move from defined benefit towards defined contribution pensions 
arrangements (including Stakeholder) shifts the burden of risk-bearing from the 
sponsor to the individual saver, the risk management challenge remains. The 
current generation of pension savers will bear far greater risk than their parents. 
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At present they are poorly equipped to negotiate the complicated trade-off between 
retirement benefits, contribution levels and the age at which they can finally 
afford to stop working. 

��Pension ‘drawdown’ products and other post-retirement products can expose 
savers to a potent mixture of investment risk and mortality risk that few are well 
equipped to understand.  

��So-called ‘income’ products come in all shapes and sizes. Many of these products 
can be expected (in a statistical sense) to reduce a saver’s capital – sometimes by a 
material amount. As in the past, it seems likely these risk exposures will only be 
properly appreciated by savers (and issuers and regulators) after a product failure. 

The common element in all of these situations is risk. Savings product providers are in 
the risk management business.  

2.3 WHAT FUTURE PROBLEMS? 
We can only guess at the risk management challenges to be faced by financial 
intermediaries in the future. In the light of past experience, it seems likely that many of 
the problems outlined above will take many years to bring under effective control. So 
long as the life industry fails to embrace fully the new risk management technologies it 
is likely that some unanticipated combination of economic, market and demographic 
change will trigger another round of product failures. As in the past, the result will be 
damage to provider and regulator reputations and losses of shareholder and policyholder 
capital.  
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3. WHERE HAVE WE COME FROM? 

3.1 BACKGROUND 
It is instructive to highlight two important trends over the past 20 years: 

i. First, extraordinary innovation in computer technology has taken place. Slide rules, 
log tables and punched computer cards have been replaced with unimaginably 
powerful desktop computers and software. These tools mean that calculations which 
were unthinkable 20 years ago are now (potentially) routine. Perhaps even more 
importantly, the means of displaying information is now really only limited by the 
analyst’s imagination.  

It is worth pointing out that some financial institutions – particularly the investment 
banks – have made substantial investments in this new technology in order to 
enhance their risk management capabilities.  

ii. Second, a huge volume of research has been generated by financial academic 
researchers and financial practitioners (including actuaries). It is important to 
understand that this research effort has been motivated by some quite different 
needs: 

��Traders looking for improved techniques for pricing, trading and hedging a range 
of new financial instruments. Although options contracts have been around for 
many centuries, the publication of the Black-Scholes model in 1973 provided a 
spur towards rapid innovation in derivative markets.  

For interest rates in particular, there now exists a vast literature of models of 
varying degrees of complexity.  

��Economists have developed models largely for the purpose of forecasting and 
policy-making. 

��Long-term financial planners (including actuaries) must combine multiple 
sources of uncertainty generally over very long horizons (compared to other 
users of financial models).  

It is probably fair to say that most academic work tends to deal only with parts of the 
problem the actuary is interested in. There is much detailed work on equity price 
behaviour, on interest rate modelling and on inflation modelling. However, there is very 
little which puts all of the components together within a consistent framework. The 
fundamental task of the long-term financial planner is to understand the joint behaviour 
of these variables (and others) on the product or business under scrutiny. 
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3.2 THE WILKIE MODEL 
The Wilkie model1 was originally developed in the late 1970s against a background of 
high and volatile inflation and the exceptional UK equity market volatility of 1974/5. It 
was extended in 1995. Unlike the work of mainstream academics, Professor Wilkie’s 
model did tackle the difficult problem of how to put together a model for inflation, real 
and nominal returns on equities and bonds and their yields. Equity yields – which 
continue to play an important part in actuarial analysis – are prominent in the model. 
They are only of passing interest to the economist who tends to focus on price and 
return (not how it happens to be packaged). The Wilkie model is relatively 
straightforward to implement. As a consequence, the model has been widely used by 
UK-based actuaries over the past two decades and has set a benchmark against which 
any other proposed approach needs to be judged.  

However, we believe that there are some serious problems with the Wilkie model. What 
is more, the huge development in thinking in mainstream academia means that there are 
now some (almost) ready-made tools available to fix the shortcomings of the Wilkie 
model. Our aim is to show how this can be achieved whilst avoiding the mind-boggling 
complexity that seems to be a characteristic of many of the models proposed in this area.  

We do aim to retain one of the primary attractions of the Wilkie model – its ease of 
implementation. To that end a working version of the model presented in this report will 
be made available on the Barrie & Hibbert web site (www.barrhibb.com). This model is 
distributed under the GNU Public licence. Extended versions of the model are available 
on a commercial basis. 

                                                      

1 �Report of the Maturity Guarantees Working Party�, (A.D. Wilkie, Journal of the Institute of Actuaries, 
107, Part II, No. 435); �A Stochastic Investment Model for Actuarial Use�, A.D. Wilkie, Transactions of 
the Faculty Of Actuaries (No. 268, Vol 39 Part 3);  �More on A Stochastic Model for Actuarial Use�,  
(A.D. Wilkie, British Actuarial Journal, 1) 
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4. SOME PROPERTIES OF GOOD MODELS 

The broad objective of the risk analyst is to provide insight across a wide range of 
problems faced by business managers, product designers, regulators, customers and their 
advisers into the impact of a range of ‘candidate’ financial strategy choices. For 
example, when the analyst reviews business written with attaching annuity options, 
business managers will want to review a range of policy options spanning bonus policy, 
investment policy as well as hedging and reinsurance solutions. In order to understand 
and communicate analysis, a model can be very valuable. The model is intended to be a 
cut-down, simplified version of reality that captures the essential features of the 
problem and aids understanding. 

It simply is not plausible to argue that there is a single model that can meet the 
requirements of the risk analyst across all possible problems. Rather the analyst should 
aim to build a library of models that enable him to tackle the different types of problem 
that he is faced with. 

So, models must be selected, but how? What criteria should the analyst use to pick a 
particular model? We have listed below some of the attributes that we think are 
important in ‘good models’. The list is not intended to be complete. Some of the criteria 
on the list probably overlap with each other. As you might have guessed, it turns out to 
be very difficult to meet all of the criteria simultaneously. We rarely find models which 
pass all of the tests. 

4.1 REPRESENTATIVENESS 
The model should aim to provide a good representation of the financial assets contained 
in the model. The model should “mimic” the behaviour of real-world financial assets by 
capturing their most important characteristics. If the model is used to generate Monte-
Carlo scenarios, we might expect that an expert who scrutinises the model output to be 
able to say: “Yes � each of your scenarios looks plausible and the frequencies assigned 
to particular outcomes look reasonable”.  

This test covers numerous characteristics of asset behaviour – the shape of distributions 
at different time horizons as well as the relationships between the variables in the 
model.  

4.2 ECONOMIC INTERPRETATION 
The behaviour of assets (within the model) should be consistent with generally-accepted 
economic principles. The most frequent demand is that a model should be “arbitrage-
free”. Since we do not expect to observe systematic opportunities for arbitrage in the 
real world, it seems sensible to exclude them from models. The “no free lunch” rule 
seems like a good one for the purposes of modelling. However, it is important to 
appreciate that implementing the rule often comes at a price. There may be times when 
the modeller will be prepared to allow some limited arbitrage into a model in exchange 
for some other benefit. 
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A further consideration relates to the joint behaviour of model variables. Again, we 
expect to see some consistency between economic principles and model behaviour. It is 
worth noting that there are some important properties of financial asset behaviour on 
which there is no clear consensus among economists. The prickly topic of equity market 
mean reversion is a good example that we will return to. 

4.3 PARSIMONY 
Keep it simple. Models should be as simple as we can make whilst retaining the most 
important features of the problem. It is clearly often difficult to judge when complexity 
is really needed (sometimes some factor can have a big impact on results whilst in other 
situations it only has a minimal effect). Complexity must be balanced. There is no sense 
in modelling one aspect of a problem in mind-boggling detail, and then making broad 
brush assumptions in other areas. The model will stand on its weakest assumption. 

There is another reason why complexity should be avoided. A complex model, which 
tries to mimic as much real-world complexity as the modeller can capture, can create the 
illusion that we really can model everything. Sometimes this illusion fools the modeller 
as well as his unlucky audience. 

4.4 TRANSPARENCY 
Unless we can explain how the basic model works in a few minutes it will be difficult to 
gain the confidence of non-experts. Success here will depend heavily on the quality of 
communication. The results produced from the model should be displayed in clear 
graphical formats wherever possible. 

4.5 EVOLUTION 
Nothing complex can be designed and built in a single “life”. Anything complicated 
must be allowed to evolve over a number of lifetimes. This applies whether you set out 
to build a Boeing 747 aeroplane or a financial model of a with-profits savings contract. 

4.6 IMPLEMENTATION TOOLS 
Financial models generally combine a set of rules for describing how some payoff or 
property of interest is determined with a description of the behaviour a set of stochastic 
variables that determine the payoffs. The models can be implemented in different ways. 
Implementation tools fall into a number of classes:  

i. Analytic calculations where it is possible to find a mathematical function to 
describe the variables of interest. This is generally only possible for a very 
limited set of problems.  

ii. Historical back-tests are performed by using past data on returns, yields etc.. 
with the model structure and implicitly assuming that the future will be like the 
past period selected. 

iii. Scenario analysis (deterministic simulation / sensitivity analysis) where the 
modeller maps out – by hand – a series of scenarios of interest.  
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iv. Tree-building techniques where the scenarios are built up in the form of a tree. 
This is generally only feasible where a very small number of stochastic factors 
influence the problem. 

v. “Monte-Carlo” (stochastic) simulation can be used to generate very large 
numbers of plausible scenarios using a computer2. In situations where there is 
path dependency, Monte Carlo techniques can be particularly valuable3. 

There are advantages and disadvantages associated with each of these approaches. 
Clearly, if a model can be implemented in different ways it provides increased flexibility 
to the modeller. In practice, models may be a mixture of Monte-Carlo, analytic and tree-
based components. 

For the real-world problems faced by actuaries, the flexibility and intuitive presentation 
offered by Monte-Carlo techniques mean that it will remain the focus of our attention in 
the remainder of this report. 

 
 

                                                      

2 �Monte-Carlo� simulation can be used in situations where we believe that we can say something 
sensible about the factors that affect a problem, but we don�t know what will happen when we put these 
factors together. Road traffic engineers have a pretty good idea of how cars and drivers behave (how 
quickly they brake and accelerate etc..). They know how roads are laid out and the sequences of traffic 
lights. But it is impossible to capture all of this in a mathematical equation that will predict how traffic 
will behave. The maths is too complicated. Does this mean that road traffic engineers can�t predict how 
traffic will behave when they fiddle with a traffic light sequence? Not at all. They use computer 
simulations. The simulations throw up most of the features of real traffic - bottlenecks, queues, sudden 
empty roads etc.. They allow the engineer to see how changes in some part of the system will affect its 
overall behaviour. 
3 Where results depend on the path taken by financial variables over the planning horizon (not simply by 
where they end up) we would say that a result is �path-dependent�. A good example is a with-profits 
savings contract where the path of equity returns can affect the final payoff.  
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5. AN ALTERNATIVE ASSET MODEL 

In this section we describe a stochastic asset model that can be used for long-term 
financial projections. We believe that the model has a number of attractive properties: 

��The model deals explicitly with the economic relationship between inflation, 
inflation expectations, real interest rates and nominal interest rates. 

��It produces a complete and consistent term structure for real and nominal interest 
rates with rich variation in both the level and shape of the yield curves generated.  

��The model for equity returns can be used to generate the negative skewness and 
kurtosis (‘fat tails’) that are a characteristic of real-world equity return 
distributions. Equity yields and dividends are generated in a natural way. The 
basic set-up of the equity model does not incorporate mean reversion. We believe 
that this is a prudent starting point for long-term financial planning purposes. 

��The model is easy to implement with analytic expressions available for discount 
bond prices. 

��It is possible to extend the model relatively easily beyond the basic application 
presented here. We briefly discuss extensions in section 9. 

The model is comprised of a number of component parts that are driven by a set of 
stochastic drivers. Let us begin by reviewing the model for the term structure of interest 
rates. 

5.1 THE TERM STRUCTURE MODEL  
The behaviour of the real-world term structure is reviewed in detail in section 6. At this 
point it is worthwhile highlighting the challenge ahead. There are many models that 
allow the analyst to directly mimic the behaviour of the nominal term structure. Here, 
we aim to deal with both real and nominal interest rates in a consistent way by explicitly 
modelling the link between inflation expectations and nominal yields.  

EXHIBIT 5.1: INFLATION & THE SHORT-TERM INTEREST RATE 
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Exhibit 5.1 illustrates the strong linkage between inflation and nominal interest rates 
observed over the past four decades. In the model we propose, the basic idea is to build 
a term structure for nominal interest rates from two separate components: 

��A term structure for real interest rates. You can think of this as the index-linked 
yield curve. In the model we deal with the yield on real (inflation-protected) 
discount bonds4. 

��A model for inflation that allows us also to model the inflation expectations of 
investors over different horizons. It is (implicitly) assumed that investors 
understand the process generating inflation and adjust their expectations for 
future inflation in a manner that is consistent with the experienced inflation 
pattern.  

The two term structures are combined to form the nominal term structure with 
allowances for any assumed correlation between inflation and real interest rate changes 
and for any risk premium associated with bond term and inflation risk. Let us now 
review each of these components in turn. 

5.1.1 REAL INTEREST RATES / 2-FACTOR HULL-WHITE 
A huge literature exists on arbitrage-free term structure models. Although much of this 
work has been motivated by a need to price interest rate derivatives, many of the 
contributions are directly applicable to long-term planning and actuarial work. Some of 
the literature is highly mathematical and far from transparent.  

We have made use of an extension to one of the first stochastic arbitrage-free term 
structure models – the Vasicek model5. The Vasicek model specifies a continuous-time 
mean-reverting stochastic process for the short-term interest rate, and then infers 
forward rates and spot rates from the expected future path of the short rate (with an 
allowance for any specified risk premium investors may demand for holding longer-
maturity bonds relative to cash). The model can be extended with the addition of a 
second stochastic factor. This factor allows the mean reversion level for the short rate 
also to follow a mean-reverting stochastic process. For those who are familiar with the 
first-order autoregressive process used by David Wilkie to model inflation, our model 
uses a similar process to model the short-term real rate, but additionally with a mean 
reversion level which is also autoregressive6. 

                                                      

4 We will use the terms �discount bond� and �zero-coupon bond� to mean the same thing. The �T-year spot 
rate of interest� will mean the annualised continuously compounded interest rate on a T-year discount 
bond (i.e. �log(P)/T, where P is the discount bond price and T the term in years).  
5 See �An Equilibrium Characterization of the Term Structure�, O.A. Vasicek, Journal of Financial 
Economics, 5 (1977)   
6 We are grateful to Andrew Cairns of Heriot Watt University who provided assistance in the 
mathematical development of the model. 
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This model we have selected can be shown to be a special case of another published 
term structure model – a 2-factor model described by Hull & White (1994)7. The 
equations governing the changes in the real short rate are shown below: 

( )
( ) (t)dZσdt(t)rµα(t)dr

(t)dZσdt(t)r(t)rα(t)dr

r2r2r2rr22

r1r112r11

+−=
+−=

 

where: 
r1(t) = the real short rate at time t. 
r2(t) = the mean reversion level for the real short rate at time t. 

α r1 = the autoregressive parameter for the real short rate process. 
α r2 = the autoregressive parameter for the real short rate mean reversion process. 
σr1 = the annualised volatility (standard deviation) of the real short rate. 
σr2 = the annualised volatility (standard deviation) of the real short rate mean 

reversion level. 
µr = the mean reversion level for r2(t). 
gr = a parameter to control the term premium in real bond prices. 
dZr1(t) = the shock to the real short rate process which is distributed N(gr dt, dt) 
dZr2(t) = the shock to the real short rate mean reversion process which is 

distributed  N(gr dt, dt) 
br1 = lower bound for the real short rate, r1(t). 
br2 = lower bound for the real short rate mean reversion level, r2(t). 

These equations can appear mathematically rather daunting, but they are really just the 
continuous-time equivalents of two first-order autoregressive time-series processes and, 
as we will see, can be implemented in a similar way. Note that they imply that real 
interest rates have a normal distribution allowing the possibility of negative real rates. 
The potential for an interest rate model to generate negative rates is normally viewed as 
an inconvenience. However, since real interest rates are the subject of the model, it is 
often argued that the model should be capable of generating some negative rates. It is 
important to understand that the entire term structure for real interest rates is implied by 
these equations. They allow us to calculate an expected path for future short rates. This 
path is naturally related to current forward rates (with an adjustment for any assumed 
risk premium). 

Exhibit 5.2 gives an approximate idea of how the model works. In the example shown in 
the chart, the initial stochastic mean-reversion level (plotted in green) begins at 10% and 
is projected to be pulled over time towards its equilibrium level. The real short rate, 
r1(t), is projected to be pulled towards the time-varying reversion level and – in this case 
– traces out a humped path with a peak of nearly 8% after 3 years. Crudely, and for the 
time being ignoring risk aversion, you can think of this path as the set of instantaneous 
forward interest rates i.e. the forward interest rate available for a very short time 

                                                      

7 See �Numerical Procedures For Implementing Term Structure Models II: Two-Factor Models�, 
Journal of Derivatives, Winter 1994, and B&H Technical Note 2000/024 �2F Vasicek as a Special Case 
of Hull & White�. 
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horizon. You can then infer spot rates (zero-coupon rates) for any maturity by combining 
together the appropriate forward rates. In the case illustrated below you arrive at a 
humped term structure with a peak at around 10 years.  

EXHIBIT 5.2: THE BASIC IDEA ~ 2-FACTOR VASICEK MODEL 
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Memo: 2FVasicek_ProjectRatePath.xls 

The exhibit gives some idea of how changes in r1 and r2 can affect the shape of the 
curve. The σr1 and σr2 parameters will influence variability of rates. The autoregressive 
parameters can be seen to have an impact on the curvature produced by the model. In 
practice things are a bit more complicated than suggested by exhibit 5.2. 

Although this is a continuous-time model, it can still be applied in discrete time without 
the need for any approximations – from the above equations it is possible to calculate 
the expected value and variance of r1(t) and r2(t) over any time increment. We can then 
sample from these distributions to increment the model in discrete time in a manner 
exactly consistent with the continuous-time model.  

An additional parameter, gr, is introduced to determine the degree to which long-term 
real bond returns exceed the short real rate i.e. it is possible to introduce a term premium 
into the model. We have to make a small adjustment to how we increment the interest 
rates when gr is non-zero. Appendix A describes the equations that are used for 
incrementing the term structure. 
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The equations set out above can be used to derive analytic expressions for the real spot 
rate and real forward rate at any term. The equations determine the entire real term 
structure. The price of a zero-coupon bond at time t that pays one unit in real terms (i.e. 
protected from inflation) at time T is given by the pricing equation: 

Preal(t,T) =  exp [ A(T - t) - B1(T - t)r1(t) - B2(T - t)r2(t)] 

where : 
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We recognise that this is quite a big formula, but you only need to type it into the 
computer once.  

Of course, once we have obtained prices for real discount bonds, it is then possible to 
price any real coupon bond which can be priced as if it were a package of discount 
bonds – each element of the package corresponding to one of the coupon or redemption 
payments of the bond. We can also calculate the continuously compounded yield at time 
t for maturity T,  R1(t,T) =- log{ Preal(t,T) } / (T-t) 
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5.1.2 THE INFLATION MODEL  
Let us now turn our attention to inflation. The idea is to use a model for the behaviour 
of the inflation rate to generate a term structure for inflation expectations, which can 
then be combined with the real interest rate term structure to build a term structure for 
nominal interest rates. Exactly the same model structure is used to model the behaviour 
of the short-term inflation rate as was used in the previous section for real short-term 
interest rates. (Of course, we may choose to use different model parameters when the 
two models are used in practice).  

So, the equations governing the path of the short-term inflation rate are: 

( )
( ) (t)dZσdt(t)qµα(t)dq

(t)dZσdt(t)q(t)qα(t)dq

q2q22qq22

q1q112q11

+−=

+−=
 

where: 
q1(t) = the instantaneous rate of inflation at time t. 
q2(t) = the mean reversion level for the instantaneous inflation rate at time t. 

αq1 = the autoregressive parameter for the inflation rate process. 
αq2 = the autoregressive parameter for the inflation rate mean reversion process. 
σq1 = the annualised volatility (standard deviation) of the instantaneous inflation rate. 
σq2 = the annualised volatility (standard deviation) of the inflation rate mean 
   reversion level. 
µ q = the mean reversion level for q2(t). 
gq = a parameter to control the inflation risk premium in nominal bonds relative to 
   index-linked bonds.  
dZq1(t) = the shock to the inflation rate process which is distributed N(gq dt, dt) 
dZq2(t) = the shock to the inflation rate mean reversion process which is distributed 

N(gq dt, dt) 
bq1 = lower bound for the inflation rate, q1(t). 
bq2 = lower bound for long-term inflation expectations, q2(t). 
 

As for the short-term real interest rate, the inflation rate is assumed to be mean-reverting 
and normally distributed. Using two factors to drive the inflation process, rather than a 
single factor (as in the Wilkie model) has some major advantages. Firstly, it means that 
changes in inflation rate expectations at different terms can have a correlation less than 
1 (so short-term inflation rates and long-run expectations do not always have to move in 
lock-step). Secondly, it allows greater control over how the volatility of inflation decays. 
In a single factor model, it may not be possible to obtain a sensible distribution for long-
term inflation without unfeasibly high short-term volatility and vice versa.   

The inflation process can be incremented in the same way as for real rates and is 
described in Appendix A. 
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5.1.3 INFLATION EXPECTATIONS 
In exactly the same way that we use an analytic expression to derive the real interest 
rate term structure at any time given the values of r1(t) and r2(t), a term structure for 
inflation expectations can be inferred from the current instantaneous inflation rate, q1(t), 
and the value of q2(t). We can therefore use the pricing equation of section 5.1.1 to 
calculate the value of a discount bond at time t that pays one unit at time T and is 
discounted only with respect to inflation expectations. We will refer to this quantity as 
Pinf(t,T). The equivalent yield is Rq(t,T) =- log{ Pinf(t,T) }/ (T-t) 

Further, in the same way that it is possible to embed a term premium into the real 
interest rate term structure, the inflation expectations term structure can also incorporate 
a risk premium reflecting the additional return which may be required by investors to 
induce them to invest in nominal, rather than index-linked bonds. This is sometimes 
called the ‘inflation risk premium’.  

5.1.4 NOMINAL TERM STRUCTURE 
Armed with the real interest rate and inflation expectations term structures, it is now 
possible to combine them together to obtain a nominal interest rate term structure. 
Where movements in instantaneous real interest rates and inflation rates are 
independent, this stage is trivial – the nominal spot rate is simply equal to the sum of the 
real spot rate and the annualised inflation expectation over the relevant period. 
Alternatively, the price of a nominal discount bond is obtained as the product of the real 
and inflation discount bond prices: 

Pnom(t,T) =  Preal(t,T) Pinf(t,T) 

where Preal(t,T) and Pinf(t,T) are as described in sections 5.1.1 and 5.1.3. 

In practice, innovations in short real rates and inflation may not be independent. For 
example, we might believe that rises in ‘spot’ inflation are typically associated with 
increases in real rates as policymakers attempt to squeeze inflationary growth. The 
model can accommodate an assumption for the correlation between short real rates and 
inflation through a (small) additional covariance term in the zero-coupon bond price 
equation: 

Pnom(t,T) =  Preal(t,T) Pinf(t,T)+ρ.sqrt[Var(exp{-R1(t,T)}).Var(exp{-Rq(t,T)})] 
where: 
ρ = the correlation between the shock to the real short rate and the 

instantaneous inflation rate, dZr1(t) and dZq1(t)8. 

dssrTt
T

t
R )(),( 11 �=    

dssrTt
T

t
qqR )(),( 1�=   

                                                      

8 Technically, this correlation must also be applied to dZr2(t) and dZq2(t). 
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Analytic expressions for the variances in the covariance term are given in Appendix B. 
Note that the nominal term structure has two separate risk premiums (either or both of 
which can be set to zero) – a term premium and an inflation risk premium. It is possible 
to set up the model so that a long-dated index-linked bond will have a higher expected 
return than a shorter-dated one, and a long-dated nominal bond will have a higher 
expected return than long real bonds and short-term nominal bonds.  

5.1.5 NEGATIVE NOMINAL INTEREST RATES 
It must be recognised that the way the model is specified does not guarantee that 
nominal interest rates will always be positive. Since inflation, inflation expectations and 
real interest rates can take negative values, negative nominal rates of some magnitude 
will feature in the model. The frequency of these negative rates will depend on the 
parameters selected.  

Faced with this potential problem, the modeller can adopt a number of alternative 
approaches: 

i. Use the negative rates. If the internal mathematical consistency of the model is 
particularly valued, this may be appropriate. 

ii. If the main purpose of the model is to generate plausible scenarios, an alternative 
approach is to discard the scenarios in which negative rates occur. This appears 
straightforward, but the discarded scenarios will have an impact on some global 
characteristics of the model that must be understood and possibly adjusted for. 

iii. A similar approach is to constrain the model in a way that guarantees positive 
rates (or ensures that negative rates appear with only a very low frequency). For 
the model specified above this might be achieved by setting lower bounds on the 
value of the stochastic factors. 

iv. Find a better model. We have not, yet. 
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5.2 THE EQUITY MODEL 
There is a huge array of models – of varying degrees of complexity – designed to 
describe the equity returns process. The model that is most widely used (by financial 
economists) is the lognormal model for equity returns. It turns out that this provides a 
reasonable, but imperfect description of the equity returns process.  

EXHIBIT 5.3: END-YEAR & MID-YEAR UK EQUITY ANNUAL EXCESS RETURNS (1900-99)  
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memo: ChartAnnualUKEquityDistributions.xls 

 
The chart above shows the distribution of log excess returns9 for UK equities since 1900 
and a normal distribution with a mean and standard deviation estimated using the data 
shown excluding 1974/5. The picture suggests that the normal distribution does a 
reasonable job most of the time, but occasionally fails badly. In common with most 
financial market variables, the distribution for equity price changes shows “fat tails” 
(statisticians measure this characteristic of the distribution with the kurtosis statistic). 

EXHIBIT 5.4:  DISTRIBUTION OF MONTHLY EXCESS RETURNS COMPARED TO NORMAL 
 (1900-99) 
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9 The rate of return in excess of the short-term interest rate. 
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Exhibit 5.4 illustrates the very marked ‘fat tails’ of the monthly excess returns 
distribution. The kurtosis of the returns distribution tends to increase as the 
measurement period for returns is shortened. This is not a new conclusion. This feature 
of financial markets is familiar to most analysts. The widely-used normal only provides 
an approximation to the real-world behaviour of equity returns. For some purposes this 
is fine, but for others (particularly when we care about the tails of the distribution) it 
simply is not up to the job. 

EXHIBIT 5.5: EXTRACT FROM DISTRIBUTION OF MONTHLY UK EQUITY PRICE CHANGES 
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Exhibit 5.5 shows the distribution of equity price changes for months when the absolute 
size of the price change exceeded 7.5%. What is interesting about this chart is that the 
same years seem to appear several times across the picture. Large absolute changes in 
price do not seem to be generated evenly over time. They appear to be bunched together 
during periods of market volatility - such as 1931-2, 1940, 1974-5 and 1987. There are 
long gaps without large absolute returns. One widely-accepted explanation for these 
results is the notion that the volatility of returns changes over time. 

The really interesting question is how we respond to the challenge posed by the extreme 
values plotted in the charts above. Should the equity model be capable of generating 
equity crashes with the same frequency as this historic data set? Alternatively, should we 
be prepared to live with an imperfect model for the sake of parsimony? As usual, the 
answer will depend on what we want to do with the model. If the problem under 
investigation is very sensitive to the presence of extreme values, it may be worthwhile 
ensuring that they are properly represented by the model (so long as we can agree on 
what “properly” means). If the analysis is not especially sensitive to outliers, the log-
normal distribution may be perfectly adequate for the job. 
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5.2.1 THE MARKOV REGIME-SWITCHING MODEL 
In order to mimic these important characteristics of equity returns, a Markov regime-
switching model will be implemented. This type of model is able to generate returns 
distributions that are consistent with the properties of the empirical data. The basic idea 
is that returns are not drawn from a single normal distribution; rather there are two 
distributions at work generating the returns observed. The equity returns distribution is 
assumed to jump between two possible states over time. These states are often referred 
to as regimes. A transition matrix controls the probability of moving between states. 

We use this regime switching approach to model log equity returns in excess of the log 
return on a riskless asset. In the current implementation, we have used a default-free 
short-dated discount bond to represent the riskless asset. For the sake of convenience, 
we set the term of this bond to equal the time increment at which the underlying 
stochastic variables are updated (for the results presented below this is one month). This 
also means that the riskless asset will behave very much like ‘cash’, and we will refer to 
the 'cash return' or 'risk-free return' synonymously. Of course, the choice of riskless 
asset is arbitrary - although we have chosen a discount bond with a term of one-month, it 
would be quite possible for us to construct the model using some other numeraire.  

Thus the total return on equities in a given period of length ∆t, E(t), is the sum of the 
return on the short term discount bond, plus the excess return on equities, X(t): 
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The excess return on equities, X(t) has a Normal distribution, where:  

X(t) has mean µΕ,1 and variance σΕ,1
2 if the regime switching model is in State 1 

X(t) has mean µΕ,2 and variance σΕ,2
2 if the regime switching model is in State 2 

The matrix of transition probabilities which determines how the equity return model 
switches between the two states can be denoted: 
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where: 

P11 = Prob{Model in State 1 in period (t, t+∆t) | Model in State 1 in period (t-∆t, t)}  

P22 = Prob{Model in State 2 in period (t, t+∆t) | Model in State 2 in period (t-∆t, t)} 
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For a typical calibration, in one regime equity returns have a positive mean and low 
variability. In the second regime equity returns are – on average – lower and exhibit 
much higher volatility. Returns tend to be generated most often in the benign state, but 
there are bouts of high variability generated by the second state. Exhibit 5.6 gives an 
idea of what the two regimes might look like if the model is calibrated to the data shown 
above in exhibit 5.4. You can see that just over half of returns will be generated from the 
narrow distribution plotted with a solid line. Negative returns of –10% (per month) and 
below will be generated from the second high-volatility regime plotted with white 
circles. One challenge for the analyst who calibrates this model is to decide how long 
the process will stick in the volatile state: does the system visit the volatile regime 
frequently (but quickly jump out again) or does it visit only occasionally (and tend to 
stick there)? The answer to this question will have implications for the distribution of 
returns at other horizons. 

EXHIBIT 5.6: REGIME SWITCHING ~ THE BASIC IDEA 
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In section 7 a calibration will be presented for a monthly model for equity returns in 
excess of short-term interest rates. It is possible to calibrate and run the regime-
switching model at any time horizon, although it must be appreciated that it is not 
possible to adjust parameters developed – for example – for monthly returns to a 12-
month 2-state model. (Over 12 months there are actually 13 possible states for the 12-
month return distribution).  
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5.2.2 EQUITY DIVIDEND YIELDS 
The log of the equity yield is assumed to follow the continuous-time equivalent to a 
first-order autoregressive process (AR1) with long term mean µy and drift parameter αy, 
so that: 

d(log {y(t)}) =  αy (µy  - log{y(t)}) dt + σy.dZy(t) 

where: 

y(t) = the equity dividend yield at time t. 
αy = the autoregressive parameter for the (log) equity dividend yield process. 
σy = the annualised volatility (standard deviation) of the (log) equity dividend 
   yield 
dZy(t)  = is a random shock distributed N(0,dt). 

The model says that if  log{y(t-∆t)} is below the long term average µy, then log{y(t)} will 
increase by (approximately) αy ∆t times the difference plus a random shock distributed 
with zero mean and standard deviation of σy ∆t. The standard deviation for the log yield, 
σy equals the equity return volatility, i.e. 

σy
2 = σΕ,1

2  if the equity return regime switching model is in State 1 
σy

2 = σΕ,2
2  if the equity return regime switching model is in State 2 

Suppose we already know the total asset return, E(t), for the time period t-∆t to t and the 
dividend yield at time t. If the equity price at time t is S(t), we can write : 

(S(t) + S(t) . y(t). ∆t ) / S(t-∆t)   =  exp{E(t)} 
S(t)  =  S(t-∆t) . exp{E(t)} / (1 + y(t). ∆t) 

So the dividend or income at time t: 

D(t)   = S(t) . y(t) . ∆t 

So long as a high negative correlation is imposed on the shocks to the yield model and 
the equity returns model, this specification produces equity yields that move – in the 
short term – with price changes. Over longer periods strong equity returns tend to be 
followed by above-average dividend growth (as the dividend yield reverts to mean) and 
equity declines will be followed by below-average dividend growth or falling dividends. 
The model is simple and has a natural economic interpretation. 
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6. SOME ALTERNATIVE APPROACHES TO CALIBRATION 

6.1 INTRODUCTION 
In section 5 a set of models was introduced for the purposes of modelling the behaviour 
of equities, bonds and inflation using Monte-Carlo methods. The models are only half 
the story. The scenarios generated by a stochastic model depend on both the model 
structure and the model parameters. In this section we explain why calibration is so 
difficult and then set out some parameter sets which we believe form a sensible starting 
point for current stochastic investigations. 

Calibration is something of a black art. The analyst who faces up to the problem of how 
to calibrate his fancy new model might consider a number of solutions. Let us consider 
three alternative approaches. 

6.2 EMPIRICAL DATA 
The most obvious approach to calibration is to look at the past behaviour of assets and 
other variables and to attempt to match this with the model. So, let us begin by 
reviewing some historic data. 

6.2.1 A LONG-TERM PERSPECTIVE 
Exhibit 6.1 plots UK long-term interest rates since 1725. It shows a profile that falls 
within a range between 2.5% and 6.5% for over 200 years before the extraordinary 
experience of the past 50 years10. Many investors and financial analysts are still coming 
to terms with the current low-inflation environment. Headline UK inflation was running 
at an annual rate of less that 2% pa at the end of 1999. This is a striking contrast to the 
peak rates of inflation of over 20% pa reached in 1975 and 1980 and the accompanying 
high levels of interest rates. But it is clear from the chart that this experience is quite 
different to any other period over the past 300 years. The picture shows us that during 
the nineteenth century, having started the century at over 6% (towards the end of the 
Napoleonic Wars) government bond yields never exceeded 4% after 1830 and were 
never above 3.5% after 1850. 

                                                      

10 For interest, note that rates peaked in the eighteenth century at just below 9% in 1712. 
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EXHIBIT 6.1:  UK LONG-TERM INTEREST RATES (1725-2000) 
 (ANNUAL RANGE OF VALUES) 
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Notes: (a) Source is  �A History of Interest Rates�, Homer & Sylla, 3rd Edition 
 (b) The annual range of yields is plotted for years after 1790. 

This sort of picture begs an obvious question: If we calibrate to history, which period 
should be used � the whole period, the low-interest rate era before 1945 or the 1945/95 
high interest rate period?  

Let us make one other point. We are not calibrating the model to plan over the next 300 
years. Even for very long-term planning problems the horizon rarely extends beyond 30 
or 40 years.  
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An alternative way of viewing the interest rate history is to plot the frequency 
distribution of rates. This provides a straightforward way of measuring the frequency 
with which rates have reached different levels over the 275-year period. You can see that 
the bulk of the distribution falls between 2% and 6%. The frequency with which long-
term rates have exceeded 6% is 12.5% (one year in every eight). Rates have fallen 
between 3% and 4% in over 40% of the past periods analysed.    

EXHIBIT 6.2:  EMPIRICAL DISTRIBUTION OF UK LONG-TERM INTEREST RATES  
 (1725-2000) 
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6.2.2 20TH CENTURY INTEREST RATES 
Someone might argue that interest rates in the eighteenth century have little relevance 
today. Indeed, the author’s calibration of the widely used Wilkie model implicitly 
suggests that the past century is an appropriate period for model calibration. Exhibit 6.3 
shows the historical distribution for end-month short rates since 1918. It suggests that 
the range of plausible rates lies between 1% (the most frequent historical observation) 
and 18% - the peak for short rates in the 1970s. The distribution looks distinctly bi-
modal suggesting that the data was generated from two quite distinct periods11. Given 
the extraordinary post-war inflation and the resulting impact on interest rates and 
economic policy-making, this should be no great surprise. 

                                                      

11 There are techniques for capturing this �regime-switching� effect, but we have not attempted to 
implement them in the interest rate model calibrations presented in this note. 
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EXHIBIT 6.3: EMPIRICAL DISTRIBUTION – SHORT RATES  
 (1918-1999) 
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Consider a long-term rate of interest that is plotted in the chart below. For reference we 
have plotted the distribution of end-month long-term bond yields from 1918 to date. 
Like the short-term interest rate, there is a suggestion that the distribution is bi-modal 
(or tri-modal) as a result of the vastly different inflation experiences before and after 
1945.  

EXHIBIT 6.4: EMPIRICAL DISTRIBUTION – LONG BOND YIELDS  (1918-1999) 
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6.2.3 HISTORIC INTEREST RATE VOLATILITY 
Aside from the unconditional distribution of rates (our estimate of the probabilities of 
rates at a long horizon), any model should produce plausible behaviour for rate changes 
over short horizons. Exhibit 6.5 tabulates the historic volatility of interest rates over the 
past century. Two volatility measures are shown. First, the annualised standard 
deviations of absolute rate changes are shown for 3-month rates and for a long-term 
bond yield. Short rates have been more variable than long-term rates over this period 
with the annual standard deviation averaging out at a little above 2% pa. The bottom of 
the table shows the standard deviation of rate changes measured in proportional terms 
(which is the conventional way traders use to express interest rate volatility for short-
term instruments).  

EXHIBIT 6.5: HISTORIC ANNUALISED INTEREST RATE VOLATILITY 

 
Time Period

 

Short Rate  
(3M) 

 

Long-Term Rate 
(Consols Yield / 

20Y Gilt) 
Absolute Volatility 1900-99 1.83% 0.95% 

 1945-99 2.20% 1.26% 
    

Proportional Volatility 1900-99 39% 11% 
 1945-99 35% 14% 
    

 
It is interesting to note that these measures (of volatility) do vary significantly when 
they are measured over different time periods. Exhibit 6.6 plots the rolling 10-year 
annualised standard deviation of rate changes for short rates and long-term bond yields. 
You can see that rate volatility itself varies markedly over time. Again, the peak levels 
of volatility occurred in the 1970s and 1980s.  

EXHIBIT 6.6: ANNUALISED 10-YEAR STANDARD DEVIATION OF RATE CHANGES 
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We need to ask whether our chosen model calibration can and should mimic these 
episodes. 
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6.2.4 HISTORIC CURVE SHAPES 
Finally, when we review past data on interest rate behaviour, it is interesting to examine 
the shape of past term structures in addition to the other properties we have reviewed. 
As exhibit 6.7 illustrates, the term structure can assume quite a wide range of shapes. 
Over the 16-year period shown (which really is not very long for our purposes) we can 
observe upward and downward-sloping curves, humped curves as well as some slightly 
saucer-shaped curves. When a calibration for the model is selected, we should ask 
whether it is capable of producing the richness we can see in the real-world data. 

EXHIBIT 6.7: HISTORIC SPOT RATE CURVES (1982-98) 
 (END-JUNE & END-DECEMBER) 
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Source: Bank of England 
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6.2.5 INFLATION 
Given the fundamental link between inflation rates and interest rates it is not surprising 
that we face some very similar issues when the inflation data is examined. Exhibit 6.8 
shows the path of inflation rates this century spanning two world wars, the great 
depression, exit from the gold standard and the post-1945 inflation. 

EXHIBIT 6.8: 20TH CENTURY ANNUAL INFLATION RATES 
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It is interesting to speculate on how much relevance this experience really has for the 
analyst who is concerned with forecasting the distribution of inflation for the next 20 
years. Exhibit 6.9 suggests that there is a wide range of values the analyst could choose 
for the average rate of inflation, depending on which historic period is selected to 
calibrate a model.  

EXHIBIT 6.9: SOME INFLATION AVERAGES 
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Current Inflation Rate

Last 10 Years

Last 20 Years

Last 30 Years

Last 50 Years

20th Century
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Last 700 Years

Annual Average Inflation Rate (% pa)Source : ONS, David Wilkie
 

WhatInflationChart.xls 
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EXHIBIT 6.10:  UK INFLATION & LONG-TERM INTEREST RATES 
 (PRE & POST 1945) 
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It is worth remembering that we do not simply want to select a long-term average for our 
model (although its structure means that this is less important than for a simple AR1 
model), it is also desirable to understand the relationship between inflation and other 
variables. In exhibit 6.10 the past relationship between long-term interest rates and 
inflation is plotted. You can see that – in the period since 1945 – high rates of inflation 
have tended to be accompanied by high long-term interest rates as bond investors’ 
inflation expectations are raised. Arguably, the high long-term bond yields of the 1970s 
and 1980s also included an embedded ‘inflation risk premium’. 

Inflation also hurts equity returns. Exhibit 6.11 tells us that equities tend to perform 
relatively poorly in high-inflation environments and when the rate of inflation is 
accelerating.  

EXHIBIT 6.11: UK EQUITY REAL RETURNS & INFLATION 
 (1919 – 1999) 

Real Equity 
Return

Real Bond 
Return

Number of 
Years

Falling Prices 13.9% 11.1% 9
Less than -1%

Price Stability 16.6% 14.5% 10
Between -1% and +1%

Low Inflation 12.4% 9.5% 28
Between 1% and 4%

Moderate Inflation 5.3% 4.1% 19
Between 4% and 8%

High Inflation -6.7% -18.4% 15
Greater than 8%

Falling Inflation Rate 12.0% 6.0% 41

Rising Inflation Rate 3.2% -1.0% 40  
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EXHIBIT 6.12: ANNUALISED QUARTERLY INFLATION RATE DIFFERENCES 
(5-YEAR PERIODS) 
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The variation in inflation from period to period will feature in the model. The chart 
above plots the annualised standard deviation of inflation rate changes. It tells us that 
the variability of the inflation rate (measured in this way) is at its lowest level for over 
50 years. It is worth pointing out that the recent average of 1% p.a. is well below the 
original or revised estimates for use with the Wilkie model for inflation volatility (the 
QSD parameter). 

6.2.6 EQUITY RETURNS 
Some important properties of equity returns are illustrated in section 6.2. Exhibit 6.13 
summarises the statistical characteristics of excess returns calculated at different 
frequencies.  

EXHIBIT 6.13: SUMMARY STATISTICS FOR EXCESS RETURNS TO UK EQUITIES AT VARIOUS 
FREQUENCIES (1901-2000)  

 Monthly Quarterly Annual Annual (excl. 
71-80) 

Basic Statistics   
Number of Observations 1200 400 100 90 
Mean 0.0038 0.0115 0.0472 0.0471 
Standard Deviation 0.0447 0.0821 0.1891 0.1430 
Standard Deviation (Annualised) 0.1550 0.1641 0.1891 0.1430 

Skewness -0.219 -0.187 -0.551 -0.231 
Relative Kurtosis 10.54 7.45 6.36 0.547 
   

Autocorrelation   
returns 0.104 0.046 -0.094 0.109 
absolute returns 0.264 0.174 0.436 0.325 
squared returns 0.187 0.065 0.537 0.240 
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The most notable features of the data are: 

♦ the mean log return is almost 5% pa in excess of short-term interest rates.  

♦ the annualised standard deviation rises from 15.5% pa at a monthly frequency to 
almost 19% pa at an annual frequency. However, if the returns from 1971 to 1980 
are dropped out of the data this annual volatility drops to a little over 14% pa. 

♦ the skewness statistic is used to assess the symmetry of the distributions. A sample 
drawn from a normal distribution would be expected to show skewness close to 
zero. All of the estimates are negative. 

♦ the years 1974/5 exert a big influence on the statistics. Notice how the annual 
autocorrelation estimates change when we drop the 1970s data.  

♦ kurtosis is shown relative to the normal distribution. All of the kurtosis estimates 
are greater than that expected from a normal distribution. It is very clear that the 
returns generating process is very different to the normal distribution. 

♦ If the UK equity market really did conform to a normal distribution with an 
annualised standard deviation of 18% p.a. what would we expect to see?  
Statistical theory tells us that, over the past 100 years, we would expect to observe 
perhaps one monthly excess returns of less than -15%.  We have actually 
experienced 7. 
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6.3 MARKET DATA 
There is a second approach that an analyst might adopt in order to calibrate a model. It 
is to use market information to help find appropriate parameters. A proponent of the 
market-based approach would argue that market asset and derivative prices contain 
information that can be used to guide the calibration choice. It turns out that market 
prices must be interpreted carefully when they are used in the calibration process. 

Let us look at some examples of how market data can be used. 

6.3.1 UNDERSTANDING THE TERM STRUCTURE 
Before we discuss market-implied data for interest rates, it is worthwhile reviewing 
some of the theories that have been proposed to explain the shape of the term structure. 
Your view of these theories will bear on how you choose to interpret some of the mixed 
signals produced by this approach to calibration. 

There are a number of “classical” theories of the yield curve. These theories aim to tell 
us about the determinants of the level and shape of the term structure. The theories earn 
the “classical” label because they have been around for a long time. The economist’s 
classical approach provides three broad explanations (and lots of variations), as follows: 

��The expectations theory can be interpreted in a number of ways that are not quite 
equivalent. One interpretation says that forward interest rates measure market 
participants’ aggregate expectation for the corresponding future short-term rate of 
interest. The theory suggests that an upward-sloping curve means that short-term 
interest rates are expected to rise. Conversely a downward-sloping curve implies 
an expectation of falling short-term rates. 

��The basic idea behind the expectations theory is that investors select bonds purely 
on the basis of their expected returns – they don’t demand a premium for 
accepting risk. Alternatively, the liquidity premium theory suggests that, if 
investors have a preference for stable portfolios compared to volatile portfolios, 
they will also exhibit a preference for short-dated bonds compared to volatile 
long-dated bonds. In order to induce investors to hold bonds with long maturities, 
investors must expect to receive a higher rate of return than on short maturity 
instruments. This increased expected return is called a “liquidity premium” – the 
extra expected return for bearing the interest rate risk of long-dated instruments. 
The theory tells us that long-term bonds should, on average, offer higher returns 
than cash investments. As a result, the “natural” shape of the yield curve should be 
upward sloping. 

Notice that, if the liquidity premium theory really does hold true, we should 
expect long-term forward rates to be a biased expectation for future short rates. In 
other words, if we use forward rates to forecast the short rate we would over-
estimate the short rate (on average) by the liquidity premium. 

��The liquidity premium theory suggests that investors are averse to variability in 
portfolio values. But suppose that investors do not just look at the value of their 
assets, but at the total value of assets and liabilities. A pension fund may have 
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long-term liabilities for which the closest match is a long-term bond. The asset 
that produces the lowest variability in assets plus liabilities may turn out to be a 
long-term bond rather than cash. You can see that the “preferred” or “natural” 
maturity of any investor who is averse to total portfolio variability will match the 
maturity of the investor’s liabilities (where the total portfolio includes assets and 
liabilities). Now, in just the same way that the liquidity premium theory rewards 
long-term instruments with a risk premium that rises in line with term, the 
preferred habitat theory rewards bonds which fall outside the preferred habitat of 
investors with a premium. Investors must be compensated for moving away from 
their preferred maturity. Notice that this could mean that the risk premium actually 
decreases (or becomes negative) with the term of bonds, if bond issuance (of long-
dated) paper fails to match a natural appetite among investors.  

The three theories outlined above should not be viewed as mutually exclusive. Most 
commentators (and researchers) believe that all of the factors behind the different 
theories play a part in the determination of interest rates from time to time.  

Now consider exhibit 6.14. It shows a term structure for Sterling government bond 
yields. The rates plotted with white circles are continuously compounded (log) zero-
coupon yields consistent with observed gilt prices. The short rate is a little over 6.5%. 
The 20-year spot rate is around 4.5% with the 30-year rate at 4%. Note that, although 
these rates are expressed in terms of notional discount bonds, they are the most 
convenient way of measuring the term structure. We can think of any coupon 
government bond as a package of discount bonds. The notional schedule shown below 
can be used (with the coupon and principal bond cash flows) to replicate fairly closely 
the observed prices of gilts last October.  

The solid line above the zero-coupon curve shows the par yield curve. This is the 
schedule of yields for notional coupon bonds trading at par. Our analysis shows that a 
4.7% 20-year gilt would trade at par under the zero-coupon term structure.  

EXHIBIT 6.14: GOVERNMENT BOND INTEREST RATES (END-OCTOBER 2000) 
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The chart also plots forward rates of interest for the government yield curve (6-month 
rates). You can see that, for very short-term rates these are close to spot rates, but for 
longer maturities they are lower than spot rates. The forward rate at 10 years was 4.5% 
and at 25 years the forward rate is only a little above 3%. A believer in the expectations 
hypothesis would say that short rates were anticipated (on average) to fall to 3% in 25 
years time. Notice that – because the term structure of spot rates is downward sloping – 
forward rates fall more rapidly with term than spot rates. 

Finally, forward 15-year bond yields have been plotted. This is the notional yield on a 
15-year bond that we could buy forward at various terms. Again, a believer in the 
expectations hypothesis would view these as unbiased expectations of 15-year bond 
yields at the terms shown. For example, he might say: “the expected yield on a 15-year 
gilt at the end of 10 years is 4%. The equivalent figure for 20 years is 3%”. We should 
add that a believer in the liquidity premium theory would view these as over-estimates 
for future gilt yields – biased upwards by an impossible-to-measure risk premium. On 
the other hand, the proponent of the preferred habitat theory would tell us that the 
forward 15-year bond yields do not tell us anything useful about the expected level of 
long-term yields. Rather they simply reflect supply and demand for gilts. The low levels 
of forward rates might only reflect an imbalance between the demand for long-dated 
fixed income instruments and supply from the British government and other high-quality 
bond issuers. Anyone looking to the market for clues to how they should calibrate a 
model of interest rates should not necessarily aim to match these forward rates in a 
simulation exercise. 

Another reason why you might be suspicious of long-term forward rates as a measure of 
long-term forward rate expectations is the marked difference across different currencies. 
Long-term forward rates have been consistently lower in the Sterling bond sector than 
for Euro- or dollar-denominated assets. It is difficult to explain away these differences 
with rationale economic arguments. Rather they support the view that Sterling rates are 
currently biased (as a measure of expected future short rates) by strong demand for long-
dated paper. 

EXHIBIT 6.15:  ALTERNATIVE ASSUMPTIONS FOR THE FUTURE AVERAGE LONG-TERM 
INTEREST RATES 
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6.3.2 SWAPTION IMPLIED VOLATILITY 
The analyst seeking information to calibrate a model looks to the yield curve for 
investors’ expectations for interest rates. By contrast, the options markets offer the 
enticing prospect of information on the distribution of future interest rates. Some 
analysts believe that it is possible to back out the probability distribution of the 
underlying asset implied by options by considering how the implied volatility of options 
varies with the options’ strike prices. For example, by considering swaption prices on 
the 15-year swap rate with a range of strike rates and a common expiry date, it is 
possible to calculate a probability distribution of 15-year swap rates implied for the 
expiry date.  

This approach can provide insight into market expectations, but we also need to be wary 
of the assumptions implicit in using option prices in this way – in particular, the 
approach assumes that options can be delta-hedged without cost or risk, and so option 
prices are assumed to be solely a function of the market’s (risk-neutral) expectations of 
the future behaviour of the underlying asset.  

Exhibit 6.16 below shows the distribution of 15-year swap rates on the 28th February 
2002 as implied by swaption prices on 7th November 200012.  

EXHIBIT 6.16:  OPTION-IMPLIED PROBABILITY DISTRIBUTION FOR 15-YEAR SWAP RATES 
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Source: SwapRatesNov_2000_1Yr 

The forward swap rate was 5.79% and, by construction, this is equal to the mean of the 
implied-distribution. However, the chart suggests that swaption prices imply significant 
potential deviation from this expected swap rate – the standard deviation of the 
distribution is 1.75%.  

                                                      

12 Swaptions are not exchange-traded, and so OTC prices have to be used. We are grateful to GenRe 
Financial Products for supplying us with representative swaption prices. 
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6.3.3 EQUITY IMPLIED VOLATILITY 
We can also apply this methodology to equity prices, by using traded option prices. 
Below is an option-implied probability density for the 21st March 2002 as implied by 
LIFFE traded option prices on the 20th March 2001. Strictly speaking, this is the risk-
neutral probability density – it assumes the expected return on equities is equal to the 
risk-free rate. However, we can transform this density into a real-world distribution with 
a given equity risk premium by making some assumptions regarding investors’ utility 
functions. Such a transform would shift the distribution to the right, and would change 
the shape of the distribution, though not usually very significantly.  

EXHIBIT 6.17:  OPTION-IMPLIED PROBABILITY DISTRIBUTION FOR FTSE 100 
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Source: UKEquities0301_0302 

Note that, like historical equity market data, the option-implied distribution exhibits 
negative skew (unlike the lognormal distribution). The left-hand tail is significantly 
fatter than would be implied by a lognormal distribution, and suggests (to the proponent 
of this approach) that there is a probability of around 10% that of the FTSE 100 index 
will fall below 4000 at 21st March 2002. 
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6.4 EXPERT OPINION 
A final potential source of information that can be used to judge the reasonableness of 
the distributions generated by a model is the judgement of experts. This information can 
be accessed in different ways: 

��Published independent forecasts. This information comes in the form of expected 
asset returns and, on occasion, distributional information. A good example of this 
type of data is the inflation forecast distributions published by the Bank of 
England. The bank estimates a 90% confidence range of for the inflation rate in 2 
years time between 0.9% and 3.7% with a median value (in line with the bank’s 
target) of 2.5%. Crudely, this range implies an annual standard deviation for the 
inflation rate of 0.6% for the next 2 years. 

��In-house experts. Most large financial institutions employ economists and 
forecasters. They are capable of commenting on the location and shape of 
distributions produced by models.  

Although there are no clear rules for how expert opinion is incorporated into the 
calibration process, it is important to understand that it is a potentially hugely valuable 
source of insight. As we have already seen, naïve calibration to historic data or market 
information is likely to produce poor model output. The expert’s opinion provides a 
useful check against this risk.  

Let us now focus on two specific calibrations for the model. 
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7. A CALIBRATION 

7.1 A PLAUSIBLE PARAMETER CHOICE 
There is a wide range of possible parameter choices for the model specified in Section 5. 
Here we review two possible choices that we judge to be a reasonable starting point in 
the light of the analysis presented above. The set-up of the model is shown in exhibits 
7.1A and 7.1B below. Exhibit 7.1A sets out parameter values for a ‘base case’ and a 
modified set-up for the model where positive interest rates are produced at all times.  

EXHIBIT 7.1A: BASE CASE CALIBRATION & WITH REFLECTION 

Parameter A. Base Case               
(Yield Curve Reflection OFF)

B. Positive Interest           
(Yield Curve Reflection ON)

αr1 0.25 0.25
αr2 0.05 0.05
σr1 0.005 0.005
σr2 0.01 0.01
µr 0.025 0.0525
γr 0 -0.125

r 1 (0) 0.025 0.025
r 2 (0) 0.025 0.0275
b r1 No -0.05
b r2 No 0

TP(ret) 0 0.0275
TP(y) -0.0202 0.0073

αq1 0.3 0.3
αq2 0.1 0.1
σq1 0.008 0.008
σq2 0.012 0.012
µq 0.025 0.0433
γq 0 -0.125

q 1 (0) 0.025 0.025
q 2 (0) 0.025 0.0283
b q1 No -0.05
b q2 No 0

TP(ret) 0 0.0183
TP(y) -0.0076 0.0108

µE,1 0.118 0.118
σE,1 0.098 0.098
µE,2 -0.136 -0.136
σE,2 0.244 0.244

p(1,1) 0.929 0.929
p(2,2) 0.879 0.879
π(1) 0.63 0.63
π(2) 0.37 0.37
αy 0.25 0.25
σy,1 0.098 0.098
σy,2 0.244 0.244
µy log (.035) log (.035)

y(0) log (.025) log (.025)

Force +ve Rates No Yes

Correlation A A
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Exhibit 7.1B provides one example of a set of correlation coefficients which will control 
the relationships between the stochastic innovations (the dZ's): 

EXHIBIT 7.1B : CORRELATION MATRIX 
Z1 Z2 Zq Zµ ZE ZY

Z1 1 0 0.25 0 -0.25 0.25
Z2 1 0 0.25 -0.25 0.25
Zq 1 0 -0.25 0.25
Zµ 1 -0.25 0.25
ZE 1 -0.95
ZY 1  

Calibration A represents a very simple base case. We have set both gr and gq to zero, 
implying a zero term premium on index-linked bonds and a zero inflation risk premium. 
In other words, this first calibration should generate scenarios where expected returns on 
both nominal and index-linked bonds of all terms are the same. Importantly, this first 
calibration will also produce some negative nominal interest rates. The advantage of 
starting with this simplistic calibration is that much of the complexity within the model 
relating to the implementation of risk premia falls away. Using this simple calibration 
allows us to ensure that the model is producing the results expected. 

In calibration B, we have incorporated risk premia for both interest rates and inflation, 
by setting gr and gq to equal -0.125. These risk premia have the effect of introducing a 
term premium to the term-structures for both real interest rates and inflation 
expectations. In Exhibit 7.1A, we express these term premia in terms of the continuously 
compounded (log) rate of return, TP(ret), and the zero-coupon yield, TP(y). 
Furthermore, within calibration B we have used separate devices to control the value of 
real interest rates and inflation expectations, and to force nominal yields to remain 
positive: 

��We have imposed minimum barriers on the stochastic variables describing the 
term-structures of real rates and inflation expectations: r1(t) ≥ br1, r2(t) ≥ br2, q1(t) 
≥ bq1, q2(t) ≥ bq2.  In this calibration, we have used br1 and bq1 to ensure that our 
model scenarios exclude both very large negative real rates, and very large 
negative inflation rates. br2 and bq2 ensure that the very long-term real interest rate 
and inflation expectation do not fall below zero. 

��We have also 'reflected' the nominal yield curve off zero:  

if  r1(t) + q1(t) < 0, then set  q1(t) = -r1(t) + 0.0001 

if  r2(t) + q2(t) < 0, then set  q2(t) = -r2(t) + 0.0001 

We have touched on the limitations of these adjustments in section 5.1.5. They have the 
obvious benefit of removing implausible outcomes from the model output. The 
disadvantage of this approach is the introduction of inconsistency into the model 
(between its solid theoretical foundation) and the practical implementation. We believe 
that - for many stochastic simulation applications - these limitations are outweighed by 
the benefits in terms of generating plausible individual scenarios. 
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We have used the model to simulate 1000 scenarios over a horizon of 30 years. The 
simulation trials were built up in time increments of 1 month (i.e. dt = 1/12), although 
the results were recorded on an annual basis. The choice of time increment and output 
frequency is entirely flexible. The entire simulation exercise took a few minutes to run 
on a desktop PC, and produced simulated results for every asset, in every output time 
period, for each of the simulation trials. As we have already mentioned, generating 
output in this format means there is huge flexibility in the way the results can be 
presented. 

7.2 SUMMARY STATISTICS : SAMPLE MEAN RETURNS & STANDARD DEVIATIONS 
First, it is worthwhile considering some summary statistics that describe the 
distributions of asset returns generated from the model. These summary statistics are 
provided for the two alternative calibrations: 

EXHIBIT 7.2A: SAMPLE MEANS & STANDARD DEVIATIONS (REFLECTION OFF) 

Asset 
Log 

Return 
(% pa.) 

Real 
Log 

Return 
(% pa.) 

Ordinary 
Expected 

Return 
(% pa.) 

Std. Dev. 
(% pa.) 

10Y 
Historic 
Std. Dev.

Equities 7.5 5.0 9.2 18.9 18 
Cash 5.0 2.5 5.0 3.5 1 
Constant Maturity Coupon Bond 4.2 1.7 5.0 10.6 9 
Constant Maturity Coupon IL Bond 4.5 2.0 5.0 8.9 7 
Underlying Inflation 2.5 - 2.5 2.3 na 

EXHIBIT 7.2B: SAMPLE MEANS & STANDARD DEVIATIONS (REFLECTION ON) 
Asset Log 

Return 
(% pa.) 

Real 
Log 

Return 
(% pa.) 

Ordinary 
Expected 

Return 
(% pa.) 

Standard 
Deviation 

10Y 
Historic 
Std. Dev.

Equities 8.4 5.5 10.1 18.8 18 
Cash 5.9 3.0 5.9 2.8 1 
Constant Maturity Coupon Bond 6.5 3.6 7.0 9.5 9 
Constant Maturity Coupon IL Bond 6.3 3.4 6.6 8.3 7 
Underlying Inflation 2.9 - 3 1.9 na 

Firstly note that in calibration A, the expected ordinary returns on all the fixed interest 
assets is equal to 5%, the expected rate of return on cash. Calibration B produces a term 
premium on 20-year bonds of about 1%, and on 20-year index-linked bonds of about 60 
basis points (i.e. for 20-year bonds there is an inflation risk premium of 40 basis points). 
These results show that the effect of excluding negative nominal rates, as described 
above, is to increase the expected returns on the various assets whilst producing similar 
standard deviations. It is quite possible to offset this effect by reducing the µr and µq 
parameters.   
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7.3 EQUITIES 
Exhibit 7.3 shows one way of plotting results for log (continuously compounded) annual 
equity returns and comparing them to the historic and market-implied distributions. Note 
that the solid red band in the centre of the chart shows the spread from 25th to 75th 
percentile for annual log returns. The outer pink bands plot the 5th/25th and 75th/95th 
ranges. Notice that the alternative model calibrations (A & B) produce very similar 
distributions for equity returns, and this distribution appears to lie somewhere between 
historic experience and the distribution implied by current market prices (as of  end-
March 2001). 

EXHIBIT 7.3: DISTRIBUTION OF 1-YEAR EQUITY RETURNS 
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Note: Historic period=1900/2000; Market-implied data for FTSE options @ 31/03/2001 

EXHIBIT 7.4: UNCONDITIONAL DISTRIBUTION OF UK EQUITY RETURNS 
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Exhibit 7.4 illustrates the entire cumulative probability distribution, rather than just five 
selected percentile points. Again, you can see that the distributions produced by the 
model appear to fall somewhere between the historic distribution and the current market 
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implied distribution. An important feature highlighted by this chart, which was not 
evident in exhibit 7.3, is the very heavy downside tail in the current market implied 
distribution of equity returns for the period 31/3/2001 to 31/3/2002. According to option 
prices at end-March, the market appeared to be assigning a probability of roughly 5% to 
a return of -40% over the following 12 months. Although, the current calibration of the 
regime-switching model for equity returns does not capture the size of this tail, it does 
very much better than a simple lognormal assumption. Furthermore, you might get much 
closer to the market implied distribution by adjusting the parameters of the regime-
switching model if judged appropriate. 

7.4 SHORT-TERM INTEREST RATES & CASH RETURNS 
In exhibit 7.5 we consider the distribution of short-term nominal interest rates simulated 
by the model, and compare this distribution with the distribution of interest rates over 
two historic periods. The yellow distribution is positioned well to the right of the green 
distribution, reflecting the fact that post-war interest rates have been very high relative 
to pre-war rates (and the rates that have been observed more recently). The distributions 
of short rates produced by both calibrations generally fall between the two historic 
distributions, with the exception that calibration A produces short rates below zero in 
just under 10% of the simulations. These negative rates are removed in calibration B, 
where we force nominal rates to be positive. 

EXHIBIT 7.5: UNCONDITIONAL DISTRIBUTION FOR SHORT RATES 
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Exhibits 7.6A and 7.6B illustrate the distribution of the path of short rates over the 
course of the 30-year simulation horizon. These charts illustrate the percentiles of a 
distribution in a manner similar to the bar charts in exhibit 7.3, the only difference being 
that we are now interested in the change in the distribution as we progress through the 
30-year simulation horizon, rather than a single distribution across all time periods (an 
unconditional distribution).  

In calibration A, we have initialised the model for real and nominal interest rates in its 
equilibrium position, meaning that r1(0) and r2(0) equal µr, and q1(0) and q2(0) equal µq. 
One consequence of this is that the centre of the short rate distribution (the median) 
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remains at 5% throughout the course of the 30-year horizon. In the two charts, we can 
see how uncertainty in movements in the short rate creates a distribution around this 
central value - a ‘funnel of doubt’. The spread of the distribution around its median 
increases over the first few years, but the effect of mean reversion is such that the 
distribution stabilizes after about 20 years or so. Importantly, in this basic first 
calibration, short rates become negative in approximately 10% of the 1000 simulations. 
This feature is likely to be viewed as an undesirable property of this calibration.  

EXHIBIT 7.6A: DISTRIBUTION OF PATH OF SHORT RATE OVER 30-YEAR HORIZON 
(REFLECTION OFF) 
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In exhibit 7.6B, you can see that forcing nominal interest rates to be positive means that 
the lower percentiles of the distribution remain positive. An awkward consequence of the 
trick used to ensure positive rates is that the expected short rate tends to drift up over 
time. This effect can be partly offset by reducing the value of the µr and µq parameters. 

EXHIBIT 7.6B: DISTRIBUTION OF PATH OF SHORT RATE OVER 30-YEAR HORIZON 
(REFLECTION ON) 
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In Exhibit 7.7 we illustrate the distribution of returns on cash, and compare the 
distributions produced by the two calibrations with the historic distribution from the last 
century. Our second calibration produces a distribution which looks similar to the 
historic distribution, although the upper percentiles of the cash returns generated by the 
model are somewhat less the historic values. This is a direct consequence of this 
particular calibration, which assigns lower likelihood to the very high interest rates that 
have been observed historically. It is sensible to ask what we believe the chances are of 
observing a short-term interest rate of 15% over the course of the next 30 years. Our 
second calibration assigns a probability of just less than 1%.  

EXHIBIT 7.7: DISTRIBUTION OF ANNUAL CASH RETURNS 

-5%

0%

5%

10%

15%

20%

Reflect OFF Reflect ON Historic

A
nn

ua
l C

as
h 

R
et

ur
n 

(L
og

)

 



 50 

7.5 15-YEAR CONVENTIONAL BOND YIELDS 
Exhibit 7.8 shows the resulting cumulative frequency plot for long-term bond yields. For 
comparison, we have also plotted cumulative plots for historic long-term yields and 
market-implied rates. The chart tells us what we already know – that there is a range of 
plausible distributions. Expert opinion suggests that the immediate inflation and interest 
rate future will look nothing like the last 50 years and that we should assign much lower 
probability to 10% bond yields than the 30% frequency over the past 50 years. The two 
distributions generated by the model look reasonable, although a refinement would be to 
extend the left-hand to tail to assign greater probability to Japanese-style bond yields. 

EXHIBIT 7.8: UNCONDITIONAL DISTRIBUTION OF 20-YEAR COUPON BOND YIELDS 
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Exhibits 7.9A and 7.9B are analogous to the funnels of doubt for cash returns illustrated 
in exhibits 7.6A and 7.6B. Again, we can see a funnel that grows over the first 10-15 
years of the simulation, and then flattens out as mean reversion takes effect. Another 
obvious effect of mean reversion is that the spread of the distribution of long-term yields 
is less than that for the short rate. The central 98% of the distribution for the 15-year 
coupon bond yield in exhibit 7.9A covers the range -2.5% to 12.5%, compared to -5% to 
15% for the short rate in exhibit 7.6A. 

Exhibit 7.9B shows that the second calibration ensures that no negative bond yields are 
generated. In fact, bond yields never appear to fall below about 2.5%. Again, this is a 
feature of a particular calibration. There are many other calibrations we could use to 
reduce (or remove) this implicit lower bound on bond yields. There are also other 
devices we could use which would ensure nominal rates remained positive, but which 
did not preclude very low bond yields. 
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EXHIBIT 7.9A: DISTRIBUTION OF PATH OF 15-YEAR COUPON BOND YIELDS OVER 30 YEAR 
HORIZON (REFLECTION OFF) 
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In exhibit 7.10, we show the distribution for yields on 15-year coupon bonds, and 
compare the distributions from the two model calibrations with both the historic and 
market implied distributions. Notice that the distribution produced by the second 
calibration is somewhat narrower than the historic experience. As for short rates, in 
using this particular set of parameters, we have assigned lower probabilities to very high 
long-term nominal interest rates than the frequencies been experienced over the last 
century. Notice that the second calibration produces a distribution that is rather similar 
to the distribution for long-term bond yields implied by current market prices for long-
dated swap contracts. 

EXHIBIT 7.9B: DISTRIBUTION OF PATH OF 15-YEAR COUPON BOND YIELDS OVER 30 YEAR 
HORIZON (REFLECTION ON) 
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EXHIBIT 7.10: DISTRIBUTION OF COUPON BOND YIELDS 
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7.6 INDEX-LINKED BOND YIELDS 
Now let us consider yields on index-linked bonds. In the first calibration, we can see 
from exhibit 7.11 that negative index-linked bond yields are generated with a probability 
of just over 10% of the simulation trials. When the minimum barriers are applied to the 
values of r1(t), r2(t), q1(t), q2(t), and the nominal yield curve reflection is activated in the 
second calibration, the lowest simulated index-linked bond yield is just over 1%. The 
median of the distribution for index-linked yields also increases from 2.5% to over 3%. 
This effect is evident when we compare the distribution of the path for index-linked 
yields under the two calibrations in exhibits 7.12A and 7.12B. In the second calibration, 
the term premium in real interest rates will mean that the expected return on index-
linked bonds will increase with term. 

EXHIBIT 7.11: UNCONDITIONAL DISTRIBUTION OF 20-YEAR INDEX-LINKED BOND YIELDS 
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EXHIBIT 7.12A: DISTRIBUTION OF PATH OF 20-YEAR INDEX-LINKED 
YIELDS (REFLECTION OFF) 
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EXHIBIT 7.12B: DISTRIBUTION OF PATH OF 20-YEAR INDEX-LINKED 
YIELDS (REFLECTION ON) 
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7.7 NOMINAL INTEREST RATE TERM-STRUCTURE 
Rather than considering the distribution of nominal and index-linked yields on bonds of 
particular maturities, it is important that the model captures movements in the entire 
term-structure in a realistic way. The value of a portfolio of assets is affected by 
movements in the level and shape of the yield curve, and so it can be useful if the model 
can produce a representative range of yield curve shapes (and changes in shape). The 
following two charts illustrate a couple of rather different scenarios for changes in the 
yield curve over the course of individual 30-year simulation trials, from its 'flat' starting 
position of 5%. Exhibit 7.13A illustrates a scenario where, for much of the 30 years, the 
nominal yield curve lies below its starting position, including two or three years where 
zero coupon yields for many maturities fall below 1%. Exhibit 7.13B illustrates a 
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scenario where yields have generally increased over the course of the 30-year 
simulation.   

EXHIBIT 7.13A: SIMULATED PATH OF NOMINAL YIELD CURVE (SIMULATION #5) 
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EXHIBIT 7.13B: SIMULATED PATH OF NOMINAL YIELD CURVE (SIMULATION #47) 
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As well as looking at the behaviour of the yield curve within individual simulation 
trials, it is useful to understand the way in which zero-coupon yields are distributed as 
the model is run out over longer terms (the unconditional distribution of the nominal 
term structure). Needless to say, the distributions illustrated in exhibits 7.14A  and 
7.14B look rather different. For the first calibration, the distribution of nominal zero-
coupon yields across all terms are centred at slightly below 5%13. This chart certainly 

                                                      

13 Although the expected instantaneous rate of return at all terms is exactly equal to 5%, the expected 
yields fall slightly with increasing term due to Jensen's inequality [Bulletin of the Australian 
Mathematical Society, 1997, 55, 185-189.] 
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highlights the problem of negative nominal interest rates inherent in the first calibration: 
over 5% of nominal zero-coupon yields fall below zero. When we use the reflection 
adjustment to the model to force positive nominal rates in the second calibration (exhibit 
7.14B), the entire distribution is shifted up, and we experience no very low long-term 
nominal rates. These issues have been mentioned previously and it is important to re-
iterate that such features are a consequence of this particular calibration. Users who 
believe that such a distribution for long-term nominal rates was implausible should 
investigate other parameter choices. 

EXHIBIT 7.14A: UNCONDITIONAL DISTRIBUTION OF TERM-STRUCTURE OF NOMINAL 
INTEREST RATES (REFLECTION OFF) 
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EXHIBIT 7.14B: UNCONDITIONAL DISTRIBUTION OF TERM-STRUCTURE OF NOMINAL 
INTEREST RATES (REFLECTION ON) 
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7.8 INFLATION 
In this section we will illustrate the behaviour of inflation rates and the term-structure 
for inflation expectations as we have done for bond yields and the nominal yield curve. 
Exhibit 7.15 shows the entire cumulative probability distribution for the instantaneous 
rate of inflation under the two calibrations, and compares these distributions with 
historic inflation rates from the last 100 years. The median value generated by both 
model calibrations is approximately 2.5% per annum. The most striking feature of this 
chart is that the historic distribution has much greater spread than the distribution 
generated by the model. We can look back to exhibit 6.8 to confirm that the UK inflation 
rate has indeed exceeded 15% for roughly 10 of the last 100 years. We have chosen the 
model parameters to reflect a view that the likelihood of the inflation rate reaching 15% 
at some point over the next 30 years is very much smaller than observed over the course 
of the 20th century. Exhibit 7.15 shows that our both calibrations assign a 10% 
probability to the inflation rate exceeding about 6%, rather than 15%! 

EXHIBIT 7.15: UNCONDITIONAL DISTRIBUTION OF INFLATION RATE 
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Exhibits 7.16A and 7.16B show the distribution of the path of inflation over the course 
of the 30-year simulation horizon. Very like the distributions for bond yields and interest 
rates, the mean reversion within the inflation model means that these ‘funnels of doubt’ 
spread out over the first few years of the simulation before stabilising after about 15 
years. Notice that, even when we apply the minimum barriers to q1(t) and q2(t), and force 
nominal rates to be positive, deflationary scenarios are still generated in about 5% of the 
simulations. 
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EXHIBIT 7.16A:DISTRIBUTION FOR PATH OF INFLATION RATE OVER 30 YEARS 
(REFLECTION OFF) 
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EXHIBIT 7.16B:DISTRIBUTION FOR PATH OF INFLATION RATE OVER 30 YEARS 
(REFLECTION ON) 
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7.9 INTER-RELATIONSHIPS BETWEEN INFLATION, BOND YIELDS & EQUITY RETURNS 
Although our model may produce individual asset scenarios and distributions that 
appear quite sensible when compared with empirical data, when we are considering 
entire portfolios consisting of a range of assets and liabilities, it is important to ensure 
that the model generates plausible inter-relationships between different asset classes. 
For instance, generating a significant number of scenarios where high interest rates 
coincide with stable, low inflation rates would seem rather unreasonable. 

Firstly we look at the relationship between the simulated inflation rate and 15-year 
coupon bond yield at a particular point in time (year 25), in each of the 1000 simulation 
trials. Exhibits 7.17A and 7.17B demonstrate that the model generates quite strong 
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correlation between the simulated inflation experience and nominal bond yields. Lower 
inflation scenarios tend to coincide with lower bond yields, and vice-versa.  

EXHIBIT 7.17A : INFLATION VS BOND YIELD (REFLECTION OFF) 
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EXHIBIT 7.17B : INFLATION VS BOND YIELD (REFLECTION ON) 
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In exhibits 7.18A and 7.18B we look at the relationship between simulated scenarios for 
rolled-up equity returns and the corresponding level of the inflation index. Generally 
speaking, high inflation has tended to hinder equity performance, particularly in real 
terms. This effect can be seen (moderately) within the scenarios generated by this 
model. High inflation scenarios are often associated with lower rolled-up equity returns. 
This is particularly true when we consider equity returns in real, rather than nominal, 
terms. 

EXHIBIT 7.17A:EQUITY ROLL-UP VS INFLATION (REFLECTION OFF) 
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EXHIBIT 7.17B: EQUITY ROLL-UP VS INFLATION (REFLECTION ON) 
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8. A COMPARISON WITH THE WILKIE MODEL  

Someone might – quite reasonably – ask: “Who needs another model? Surely the Wilkie 
model is good enough for my purposes?” As we have already observed, any model will 
be fit for some purpose but not others. It would be difficult to argue that the Wilkie 
model is not fit to analyse certain problems (providing the modeller holds a particular 
set of beliefs about equity market behaviour). On the other hand, our experience 
suggests some serious failings.  

We now compare our proposed model and calibration (which we will refer to as the 
B&H model) with the Wilkie model. Of course, there could be as many calibrations of 
the Wilkie model as there are model users. Professor Wilkie has certainly encouraged 
users to try out different parameters. We will present a Wilkie calibration that we believe 
is fairly representative of current parameter selections (see Appendix C for the 
parameters used in this section). The comparison between the two models is undertaken 
both in terms of comparing model outputs and making some general observations with 
regard to differences between the two models. 

8.1 SOME GENERAL OBSERVATIONS 
The two models adopt very different approaches to the challenge of modelling the long-
term behaviour of financial variables. In the Wilkie model, statistical time-series 
relationships are developed for a number of observable variables – inflation, short-term 
interest rates, consol yields, dividend income and the dividend yield. Market prices are 
then derived from these processes. For example, in the Wilkie model, equity prices are 
inferred from the ratio of dividend income to dividend yield, whereas in the B&H model, 
the total return on equities is modelled separately from the dividend yield, and the 
process for the equity price is therefore transparent and parsimonious.  

Whilst the structure used by Wilkie may seem simpler to those with an aversion to 
maths, it has some major drawbacks. The structure of the model is rather convoluted and 
lacks transparency. In a statistical analysis of the properties of the Wilkie model, Huber14 
found that the model did not provide a good representation of historical data and was 
over-parameterised, with a number of parameters being effectively redundant: he argued 
that the complexity of the model structure does not add to the effectiveness of the 
model. Whilst calibration is a challenging problem in almost any financial modelling, 
the poor statistical fit may seem slightly more surprising in the case of the Wilkie model 
given the complex structure of the model seems to have been driven more by 
consideration of fitting observed patterns in the data rather than by any reference to 
building structures consistent with economic theory. 

We believe that the structure of the model presented in section 5 is simpler and more 
economically logical. We model real interest rates, inflation rates and the equity return 
in excess of the nominal interest rate. This structure ensures a consistency in the joint 
asset behaviour generated at any given time that is lacking in the Wilkie model. 

                                                      

14 �A Review of Wilkie�s Stochastic Investment Model�, P. Huber (1995). 
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The following sections review some output of the Wilkie model. We highlight some of 
the potential problems with the output and make comparisons with output generated by 
the B&H model. 

8.2 REPRESENTATION 
 As has been mentioned above, the Wilkie model does a poor job of representing certain 
features of the real world. For example: 

��The relationship between simulated inflation outturns and long-term bond yields 
simply is not plausible. The model (using a typical parameter set) generates 
frequent scenarios of very low average inflation accompanied by high bond yields 
(and high inflation coupled with low bond yields). Two examples of typical - but 
rather surprising - joint paths for inflation and bond yields are plotted below. 

EXHIBIT 8.1A: A WILKIE SCENARIO 
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EXHIBIT 8.1B: ANOTHER WILKIE SCENARIO 
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EXHIBIT 8.2: WILKIE INFLATION RATES & CONSOLS YIELD (10-YEAR HORIZON) 
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Exhibit 8.2 illustrates the relationship between the inflation rate at a 10-year 
horizon and the resulting Consols yield. There is no apparent correlation between 
these two quantities. For an analyst who uses the model to investigate the 
properties of conventional bonds in different sorts of inflation environment, the 
model fails to capture the fundamental link between inflation and nominal yields. 

��The model (using a typical parameter set) generates plausible variability in equity 
returns over short horizons, but very narrow distributions at long-term horizons. 
The probabilities assigned to equity market declines over long-term horizons look 
implausibly low given 20th century experience. Since one of the primary purposes 
of the model is often to show users the potential impact of low-probability 
outcomes, this is particularly surprising. Exhibit 8.3 illustrates three 20th century 
episodes of 10-year year equity index declines – one for each of the UK, US & 
Japanese markets. There are other examples for these markets. Indeed, equity 
claims were wiped out altogether in Japan in 1945. Note that the scale of the UK 
decline is increased dramatically if the illusory impact of inflation is removed by 
plotting the real price of equities. 

EXHIBIT 8.3: 20TH CENTURY BEAR MARKETS  
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So, very crudely, you might guess that since each of these markets has experienced 
a 10-year 50% price decline (somewhat less in terms of total return and 
approximately the same in terms of excess returns) at least once in the past 100 
years, the probability assigned to this sort of scenario would be something like 
10%. The mean reversion which is an important part of the Wilkie model means 
that the probability assigned to long-term declines of this magnitude is much 
lower. The jury is still out in the (complicated) mean reversion debate. Whatever 
you might think, it seems reasonable that the modeller should begin by excluding 
mean reversion from models (a prudent assumption?) unless there is compelling 
evidence to support its existence15. 

It is possible to increase long-term variation in Wilkie equity returns by raising 
short-term variability. Unfortunately, this has the effect of producing implausible 
variability in short-term equity returns. 

��The mean reversion feature means that short-term returns generated from the 
model can be sensitive to the way the model is initialised. This requires extreme 
care from the model user. 

��Even with a fairly dramatic reduction in the parameter describing the variability of 
inflation (QSD), short-term inflation variation looks too high (by comparison with 
almost any economic forecast) and the distribution at long horizons looks too 
narrow. 

8.3 MEAN REVERSION 
The structure of the Wilkie model means that – with typical parameter choices – the 
model generates mean-reversion in equity returns. Whilst the extent to which equity 
markets actually mean-revert is the subject of much debate, we would argue that 
assuming mean-reversion to the extent generated by the Wilkie model is perhaps unwise.  
Such mean-reversion means that simple re-balancing rules can increase returns whilst at 
the same time reducing risk. It could be argued that taking credit for the on-going 
existence of this supposed free lunch going forward is a rather imprudent starting point 
for making long-term equity projections. Though there is some statistical evidence for 
mean-reversion in equity markets, its statistical significance is dubious, particularly 
when we consider the excess return (i.e. the return in excess of the prevailing cash rate).    

Given the structure of the Wilkie model, whereby a stochastic process for the dividend 
yield is used to derive equity prices, mean-reversion seems difficult to remove from the 
model. It could be argued that deriving prices from dividend yields is really a case of the 
tail wagging the dog. In the B&H model, equity prices and dividend yields are modelled 
as two separate (but highly negatively correlated) processes. As in the Wilkie model, the 
dividend yield is modelled as a mean-reverting process. However, the B&H model has 

                                                      

15 There is large literature on mean reversion. For a recent example see �Mean Reversion in Stock 
Returns: Evidence & Implications�, L Summers & J Poterba (Financial Markets Group discussion paper, 
LSE (1998)) 
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quite different implications for the behaviour of dividend income. For example, the B&H 
model implies that when markets crash, yields will immediately rise and then gradually 
fall back to their long-term mean, without any systematic mean-reversion in equity 
returns. This implies that following a market crash, the rate of expected dividend growth 
is lower – that is, the market has fallen due to a reduction in expected dividend growth. 
Put simply, the expected return in excess of cash is assumed to be constant, so any 
change in dividend yield implies a corresponding change (in the opposite direction) for 
dividend growth. Note that we are considering the excess return here – the expected 
nominal return on equities in the B&H model will be higher when short-term interest 
rates are higher. 

This is fundamentally different from the Wilkie model – here the expected return on 
equities depends on the level of the dividend yield relative to its assumed mean, as 
expected future dividend growth is not a function of the current dividend yield (except 
insofar as they both are a function of inflation). So when yields are high, expected 
returns are high – that is, expected dividend growth has not fallen to the extent that it 
offsets the higher yield. In this case, the model is implying that equities have fallen by 
more than is implied by the reduction in expected dividend income, so equities then 
mean-revert back to their ‘fair’ value.  

So the B&H model is consistent with a world where equity prices are based on rational 
expectations of future dividend growth, whilst the Wilkie model assumes that dividend 
income is far more stable than would be suggested by the volatility of the dividend 
yield, and equity markets go through periods where the expected return on equities can 
vary very significantly (and note that a change in inflation or interest rates is not 
necessary for such a change in expected return to occur). 

We now turn our attention to how these differences in the model affect the distributions 
of equity returns generated. 

8.4 EQUITY MODEL 
The differences in the structure of the two models perhaps have the greatest impact on 
the simulated distributions of equities, particularly at longer horizons. The mean-
reversion inherent in the Wilkie model implies far lower equity risk at longer time 
horizons than the B&H model – the mean-reversion results in annualised equity 
volatility decaying much faster than it otherwise would. In a model with no mean 
reversion, we would expect the annualised volatility to decay at rate of 1/sqrt(t). Let us 
call the annualised volatility multiplied by the square root of time the standardised 
annualised volatility. Exhibit 8.2 plots this statistic as simulated for the two models over 
a ten-year horizon. 
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EXHIBIT 8.2: STANDARDISED ANNUALISED VOLATILITY 
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Exhibit 8.2 suggests some striking differences in the simulated long-term equity 
behaviour of the two models. Note that the one-year volatilities are very similar. But as 
the time horizon is extended, the Wilkie model suggests that volatility falls very 
significantly, whereas in the B&H model the volatility remains constant (ignoring 
sampling error). What does this imply for the distributions of equity returns? Exhibit 8.3 
plots the simulated cumulative distributions for the annualised equity returns generated 
by the two models over ten years. 

EXHIBIT 8.3: CUMULATIVE DISTRIBUTIONS OF 10-YEAR ANNUALISED EQUITY RETURN 
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You can see that the Wilkie model attributes a very low probability to equities generating 
a negative return over a 10-year period: the 99th percentile is -0.7% p.a., whilst the 
corresponding B&H value is –6.0 %p.a. The rolled-up equity values over the ten-year 
period are 88 % and 53%. Whilst you might think the B&H value is very bearish, as was 
mentioned above there is plenty of evidence of such poor returns in equity markets.  
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8.5 TERM STRUCTURE MODEL 
The Wilkie model does not generate a full term structure of interest rates. This means 
that the analyst who wishes to model the returns on a bond which is not a consol or cash 
will need to make some difficult assumptions, e.g. some form of interpolation of yields. 
The lack of a full term structure makes analysis of some forms of interest rate risk very 
difficult.  

The two models can be configured to generate similar distributions for short and long-
term interest rates. But this, to an extent, misses the point – the B&H model generates an 
economically consistent relationship between the short and long-term rates (the long-
term spot rate can be regarded as the expected path of the short-term rate plus any 
specified risk premium), whereas the Wilkie model has no such economically meaningful 
relationship between the rates as there is no model for the term structure. This feature, 
and indeed the way the model is built from a series of statistical relationships rather 
than being based on any notion of rational economic expectations, can lead to some very 
odd joint paths for interest rates and inflation easily occurring, as we saw above. 

8.6 INFLATION 
The structure of the inflation models used in Wilkie and B&H are actually quite similar – 
in both models, the rate of inflation is normally distributed and is modelled as a mean-
reverting process. Whilst the B&H model works in continuous time and the Wilkie model 
works in discrete time, there is no reason why this should have a significant impact on 
simulated inflation rates.  However, there is one very important difference: the Wilkie 
model is a single factor model, where as the B&H model has two stochastic variables – 
as well as the rate of inflation being able to vary, so too can the rate to which it is pulled 
at any moment in time. This allows more varied shapes of implied future inflation 
expectations to be generated (which can be important in generating nominal yield curves 
in the B&H models). Further, as we shall see below, it also permits greater flexibility in 
the pattern of short-term and long-term distributions of the inflation rate. Exhibit 8.4 
illustrates the distributions of the inflation rate simulated for a 10-year horizon by the 
two models. 

EXHIBIT 8.4: UNCONDITIONAL DISTRIBUTION OF THE INFLATION RATE 
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It can be seen that the two models produce broadly similar shapes of unconditional 
distributions for inflation (with our selection of parameters for the Wilkie model). 
Although the mean parameters of the two models are assumed to be equal (at 2.5%), the 
B&H simulated mean is actually higher at 3.2%. This is because we the simulations have 
been run with ‘reflection’ turned on when generating the nominal term structure. This 
has the effect of producing a higher mean than when the model is run without reflection. 
Clearly we can quantify this effect and adjust the parameters of the model to offset the 
increase in the simulated mean if we wish.   

Now take a look at exhibit 8.5 below, which shows the distributions of next year’s 
inflation rate. 

 EXHIBIT 8.5: DISTRIBUTION OF NEXT YEAR’S INFLATION RATE 
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Interestingly, the differences between these distributions are far more significant – the 
Wilkie model generates unfeasibly high short-term inflation volatility. In the Wilkie 
model, the structure of the model makes such high short-term volatility necessary in 
order to generate longer-horizon distributions with sufficiently high volatility. The use 
of a second stochastic factor in the B&H model means realistic distributions can be 
generated for both short and long-term distributions of the inflation rate.  

Advocates of the Wilkie model might argue that the short-term distribution of inflation is 
not really important – the model is designed for analysing long-term outcomes. 
However, the direct dependence of asset returns on prevailing and past inflation rates 
suggests the path taken by inflation could be very important to the model output. 
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8.7 DERIVATIVE PRICING 
The indirect approach to modelling equity prices and the lack of an arbitrage-free term 
structure for interest rates makes both equity option and interest option pricing and 
modelling very difficult within the Wilkie model. In pricing equity options, finding a 
closed-form equity option pricing formula as implied by the equity model is very 
difficult. We could of course simulate option pay-offs (under a risk-neutral set of 
assumptions for equity returns). We would find that option prices implied by the Wilkie 
model are lower than market prices as market participants anticipate higher long-term 
equity volatility than that implied by the mean-reverting equity return behaviour of the 
Wilkie model. 

The lack of a full term structure puts the task of pricing/modelling almost any interest 
rate derivative beyond the scope of the Wilkie model. Generally, the analysis of 
derivatives both in terms of pricing and in terms of their behaviour within a portfolio 
will require a more sophisticated stochastic asset model, and one which is more 
consistent with the economic principles of efficient, rational markets.   
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9. EXTENSIONS TO THE BASIC MODEL 

We believe that the model described above is useful in situations where we seek 
plausible joint paths for equities, inflation and both real and conventional bonds. As 
always, new problems will arise which require extensions to the basic model. We have 
set out below some very brief comments on potential extensions to the model – some of 
which are relatively straightforward and some for which further research is required. 

9.1 FOREIGN EQUITY & PROPERTY 
The addition of equity-type assets and yields is fairly straightforward if – as for the 
domestic equity asset class – returns are specified in excess of short rates and the 
modeller is prepared to make all equity-type assets switch regimes at the same time. 
Correlation among equity excess returns is imposed through the correlation structure 
specified between the impulses to the various components of the model. 

9.2 CREDIT RISK & CORPORATE BONDS 
This is another area in which academic models can be used to extend the basic model to 
mimic the behaviour of credit spreads in general and the credit behaviour of individual 
assets. The Jarrow-Lando-Turnbull credit model16 can be used to extend our model (or 
any other model of the default-free term structure) to allow the analysis of credit-risky 
bonds within a Monte-Carlo framework. 

9.3 FOREIGN EXCHANGE & FOREIGN TERM STRUCTURES 
The extension of the basic model to foreign currency and foreign inflation adds 
considerable complexity to the model to ensure: 

��Exchange rates respect purchasing power parity relationships at long horizons. 

��Inflation patterns can accommodate a global component (given the apparent 
synchronisation of past inflation patterns). 

Whilst these features can be added to the model, we have come across few situations (to 
date) where they add significantly to the insights gained from modelling a reduced set of 
asset types.  

9.4 EQUITY MEAN REVERSION 
Our starting point has been to ignore mean reversion because the statistical evidence – 
whilst suggestive – does not compel us to include it in the model. Of course, it is 
possible to impose mean reversion on the model if we choose to. Certainly, there are 
plenty of people who do believe that mean reversion is a strong feature of equity 
markets and expect to see it represented in models. 

                                                      

16 Jarrow RA, Lando D, Turnbull SM, "A Markov Model for the Term Structure of Credit Risk Spreads", 
The Review of Financial Studies 1997, Vol 10, No 2, pp. 481-523. 
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9.5 MORTALITY 
Errors (in the statistical sense) in forecasting mortality improvement rates over the past 
20 years have caused problems to life assurers, contributing to the magnitude of annuity 
option losses. Again, it is possible to incorporate a stochastic mortality feature into the 
model to mimic future mortality uncertainty.  

9.6 DERIVATIVE PRICING / CONTINGENT CLAIMS VALUATION 
Our model can be used to estimate the value of certain types of derivative or contingent 
claim using the risk-neutral pricing methodology routinely used by investment banks and 
academics. Mean returns on all assets are set equal to the risk-free rate of interest and 
then a mean estimate for the expected cash flow from the derivative is calculated using 
Monte-Carlo methods. This cash flow is discounted at the risk-free rate to obtain the 
economic value of the derivative or contingent claim.  

The risk-neutral pricing methodology makes many assumptions that are violated in the 
real world (and in part by our model if implemented as described above). As a 
consequence, these estimated values must be interpreted carefully. Nevertheless, they do 
give a meaningful benchmark and are often markedly different to estimates for 
contingent claims made using conventional actuarial techniques. For that reason alone, 
they deserve the attention of the actuary. 
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10. CONCLUSION 

Life companies are in the risk management business. The risks carried by them come 
from many different sources. Some risks can be diversified and others must be borne by 
shareholders and policyholders. Over the past 20 years there has been an enormous 
increase in the computing power available to the financial planner who sets out to build 
financial models. In parallel with this technological innovation there has also been rapid 
development of models by academics and practitioners. The new technology and 
technical know-how offers the opportunity to address old problems in new ways.  

Our report presents our ideas on what constitutes a good model and then sets out a 
single example of a stochastic model (out of many interesting potential candidates). We 
give some background information to the messy task of calibrating the model and 
provide some sample calibrations. Again, there are many interesting alternatives. The 
output of the model is illustrated with the specific calibrations presented. Finally, we 
contrast the model with the Wilkie model and very briefly discuss extensions. 

The model we have presented is far from perfect – no model ever is. However, we do 
believe that its relative parsimony, ready economic interpretation and its ability to 
mimic some important features of financial markets means that it deserves the attention 
of analysts seeking to model jointly the behaviour of inflation, interest rates and equity 
markets. 
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APPENDIX A – INCREMENTING THE TERM STRUCTURE 

Given the current values r1(t) and r2(t), we can calculate the expected values and 
variances of r1(T) and r2(T). They are as follows: 
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As we know r1(t) and r2(t) are normally distributed, so all we need are the above 
moments in order to sample from the distributions and increment the term structure. 
That is: 

( ) ( ) )()(),()()(),()()( 12112111 TZtrtrTrVartrtrTrETr +=  

and 

( ) ( ) )()()()()()( 222222 TZtrTrVartrTrETr +=  

where Z1(T) and Z2(T) are independent standard normal deviates.  

However, if we have a non-zero term premium parameter, gr, these equations are 
adjusted as follows: 

 ( ) ( )( )tTgTZtrtrTrVartrtrTrETr r −++= )()(),()()(),()()( 12112111  

and 
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The term premium parameter has the effect of adjusting the evolution of the short-term 
interest rate path, so that the shape of the yield curve is not an un-biased estimate of the 
path of future short-term interest rates, but instead has a ‘loading’ which reflects 
investors’ risk preferences. For example, if investors require an additional return to 
invest in longer-term bonds, then gr is negative, and the expected value of a rolled-up 
cash account will be lower than the expected value of an account invested (and 
continuously-rebalanced) in, say, 10-year bonds. The term premium can be expressed in 
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terms of expected zero-coupon bond yields, or expected returns. The term premiums are 
as follows (where the term premium is defined as the difference between the expected 
yield/return on an infinite-maturity zero-coupon bond and the expected yield/return on a 
instantaneously-maturing zero-coupon bond): 

��
�

�
��
�

�
+−=

�
�

�

�

�
�

�

�
+−��

�

�
��
�

�
+−=

2

2

1

1

2
2

2
2

2
1

2
1

2

2

1

1

)(RePr

2
1)(Pr

r

r

r

r
r

r

r

r

r
r

gturnsemiumTerm

gYieldsemiumTerm

α
σ

α
σ

α
σ

α
σ

α
σ

α
σ

 

Note that a positive return term premium requires a negative gr. 

In the inflation model, the risk premium parameter reflects the additional return 
available on a nominal bond relative to index-linked bond, and works in exactly the 
same way as in the real interest rate model. 
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APPENDIX B – CALCULATING COVARIANCE TERM IN NOMINAL TERM STRUCTURE 

To calculate the covariance term, we need to evaluate the following variance: 
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An analogous expression exists for this variance with regard to the inflation term 
structure. By taking the product of these variances and the correlation, we find the 
covariance term that applies to the zero-coupon nominal bond price. 

 

APPENDIX C – WILKIE PARAMETERS USED IN SECTION 8 

EXHIBIT C.1: WILKIE MODEL PARAMETERS  
    

Inflation Dividend Yields  
qmu 2.5% yw 1.35 

qa 0.58 ya 0.6 
qsd 1.7% ymu 0.025 

i0 2.5% ysd 0.155 
 yn0 Ln(0.025) 
  

Dividends Consols  
dw 0.58 cw 1 
dd 0.13 cd 0.045 

dmu 0.0316 cmu 0.039 
dy -0.175 ca1 1.2 

dsd 0.07 ca2 -0.48 
dx 0.42 ca3 0.2 

 cy 0.06 
 csd 0.14 

Short-term interest rates  
bmu 0.198  

ba 0.74  
bsd 0.18  
bd0 0.198  
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