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Abstract

Pitfalls in Estimating Jump-Di®usion Models

In this paper we show that it is invalid to use standard maximum likelihood procedures

in estimating jump-di®usion models. The reason is that in jump-di®usion models the

log-return is equivalent to a discrete mixture of N normally distributed variables, where

N goes to in¯nity. Thus, from the mixture-of-distributions literature we know that the

likelihood function can be unbounded which causes inconsistency. In the paper we derive

a method which provides consistent and asymptotically normally distributed estimator.

The method is applied to some of the most actively traded New York Stock Exchange

(NYSE) stocks and several stock indices. The implication of the estimated jump-di®usion

models for option prices is examined.

Keywords: Jump-Di®usion Model, Pro¯le Log-Likelihood Function, Option Pricing.
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1 Introduction

Jump-di®usion models arise frequently in ¯nance. One well-known example is Merton's

(1976) option pricing model. In the empirical jump-di®usion literature, such models are

usually estimated with standard Maximum Likelihood (ML). In the present paper we

show that this approach is invalid, and we derive a more suitable procedure which gives

consistent estimates of the model parameters. The standard ML procedure is invalid

because in jump-di®usion models the log-return is equivalent to a discrete mixture of

N normally distributed variables, where N goes to in¯nity. Thus, from the mixture-of-

distributions literature [Kiefer (1978) and Hamilton (1994)] we know that the likelihood

function for some parametric speci¯cations is unbounded which causes inconsistency of

standard ML.

The ¯nance literature has considered di®erent models for asset-price dynamics in order

to account for various empirical regularities, while at the same time attaining a simple

procedure for pricing contingent claims. The work can be categorised into continuous-

time models and discrete-time models. Examples of the former include Black and Scholes

(1973), Merton (1976), Hull and White (1987) and Bates (1996a, 1996b), and of the

latter the ARCH models of Engle (1982), Bollerslev (1986) and Duan (1995). Black

and Scholes assume that log-returns are normally distributed with constant volatility,

resulting in a closed-form pricing formula for the plain-vanilla options. However, this

model does not capture the often documented excess kurtosis that characterises log-

returns. This excess kurtosis is accounted for by a jump-di®usion model like Merton's,

where the Black-Scholes model is extended with a jump component. In Hull and White

(1987) the Black-Scholes volatility is stochastic. Thus, their model exposes volatility

clustering. Bates (1996a, 1996b) combines the Merton and Hull and White models.

Unfortunately, the implication of building a more realistic model is increased complexity

of option pricing and estimation. The Black-Scholes model is straightforward to estimate,

as the log-returns are assumed to be normally distributed. Estimation of jump-di®usion

model, [e.g., the Merton model], is not as easy as it appears in the literature [see, for

example, Beckers (1982) and Ball and Torous (1983,1985)], since the likelihood function

is unbounded. We propose a solution to the problem, where the pro¯le of the likelihood

function with respect to the relative variances between the di®usion and jump part is used

to obtain a consistent estimator. The stochastic volatility models cannot be estimated

directly as the volatility is unobserved.

The paper is organized as follows. The general jump-di®usion model is presented in

section 2. In section 3 we formulate a discrete-time version of the Merton model. The

estimation problem in the jump-di®usion models and the empirical results of the discrete-

time model are described in section 4. The empirical results are based on some of the
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most traded NYSE stocks and several indices. Section 5 is concerned with estimation

of di®erent parametric speci¯cations of the jump-di®usion models. The outcome of a

jump-di®usion model for options is examined in section 6. Finally, section 7 concludes.

2 The Jump-Di®usion Model

The stock price, St, is described by a continuous di®usion part and a discontinuous jump

part, where the continuous part is responsible for the usual °uctuation in St and the jump

part accounts for the extreme events. This can be formulated by the following stochastic

di®erential equation (SDE):

dSt

St

= ®dt+ ¾dWt + dIt (1)

where ® is the drift term, ¾ is the volatility of the di®usion part, Wt is a Wiener process

and It is the jump component. t denotes the nearest point of time preceding t. The

dynamics of It is described by J Poisson processes, Nj;t, and J stochastic or deterministic

jump amplitudes, Yj;t. Nj;t has a constant intensity, ¸j , for j = 1; : : : ; J . Further, we

assume that Yj;t > ¡1 for all j, which ensures non-negative stock prices. Thus, It is

described by the SDE:

dIt =
JX

j=1

Yj;tdNj;t:

Hence, there is an instantaneous jump in the relative stock price of size Yj;t conditional

on an increment in Nj;t. Furthermore, all processes are assumed to be independent. The

solution to (1) is:1

St = S0e
(®¡ 1

2
¾2)t+¾Wt

Y
0<s·t

JY
j=1

(1 + Yj;sdNj;s) :

In order to estimate the jump-di®usion model, it is necessary to make restrictions on the

jump amplitudes. The approach that we follow is to make a distributional assumption

for the Y s, such that likelihood estimation is attainable. In the next section we look at

the Merton model, where the jump amplitude is log-normally distributed. An alternative

estimation approach is the Generalized Method of Moments [Hansen (1982)].

3 The Bernoulli Di®usion Model

In this section we present a discretized version of the Merton model. The Merton

model has J = 1, dNt » Po(¸dt) and the jump amplitude is log-normally distributed,

1This solution is obtained by use of Itô's formula for semi-martingales [Rogers (1987)] combined with

the fact that P (
PJ

j=1 dNj;s > 1) = O(dt2), and hence may be ignored.
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log(1 + Yt) » N(¹; ±2). Thus, log(St) has the form

log(St) = log(S0) + (®¡ 1

2
¾2)t+ ¾Wt +

X
0<s·t

log(1 + YsdNs): (2)

We use MLE to estimate the parameters ª = (®; ¾; ¸; ¹; ±). St is observed at the discrete-

time points ti = i¢ for i = 0; : : : ; T where ¢ is the sampling frequency. To simplify the

notation, let Si denote an observation of S at time ti. The density function for the

log-return, xi+1 = log
³
Si+1

Si

´
, is

p(x; ª) =
1X
j=0

e¡¸¢(¸¢)j

j!
Á(x; (®¡ 1

2
¾2)¢ + j¹; ¾2¢+ j±2) (3)

where Á(x;m; v) is a density function for a normally distributed stochastic variable with

mean m and variance v. This is obtained by noting that the log-return is normally

distributed conditional on the number of increments of the Poisson process. Thus, the

density function is evaluated by an in¯nite sum as in the density function for a Poisson

process.

It is natural to use the approach of Ball and Torous (1983,1985), where the solution

(2) is discretized. Thereby, the density function consists of a ¯nite number of terms,

instead of (3) where the sum has to be truncated after the ¯rst N terms for a su±ciently

large N . The discretization of the solution (2) takes the form

log(Si) = log(Si¡1) + (®¡ 1

2
¾2)¢ + ¾¢Wi + log(1 + Yi¢qi)

where ¢Wi » N(0;¢), log(1 + Yi) » N(¹; ±2), ¢qi » b(1; ¸¢) and ¸¢ < 1. The density

function for the log-return can be found in equation (4) in the next section. This discrete-

time model is referred to as the Bernoulli di®usion model (BDM). The approximation

is based on the assumption that ¸¢ is close to 0. This is explained by the fact that

the approximation is only appropriate if P (N(i+1)¢ ¡ Ni¢ > 1) ' 0; otherwise ¸ fails

to approximate the intensity in the Poisson process.2 The BDM can also be seen as the

Merton model in the limit, since a Poisson process with intensity ¸t can be constructed

as the sum of n identically independent Bernoulli distributed variables with intensity ¸ t
n

where n ! 1. For further details see Ball and Torous (1983).

4 The Estimation Problem

The density function for the ¢ period log-return, x, in the BDM has the form:

p(x; ª) = (1¡ ¸¢)Á(x; (®¡ 1

2
¾2)¢; ¾2¢)

2P (N(i+1)¢ ¡ Ni¢ > 1) ' 0 is equivalent to P (N(i+1)¢ ¡ Ni¢ · 1) ' 1 which can be restated as

1 + ¸¢ ' e¸¢. This last expression is only true for ¸¢ ' 0.
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+ ¸¢Á(x; (®¡ 1

2
¾2)¢ + ¹; ¾2¢+ ±2): (4)

The log-likelihood function can now be written as:

l(x1; : : : ; xT ; ª) =
TX
i=1

log p(xi; ª): (5)

Thus, normally we ¯nd the maximum likelihood estimates (MLE) by maximising (5) with

respect to ª 2 £, where £ = IR £ IR+ £ (0; 1
¢
) £ IR £ IR+. It is, however, invalid to

use standard ML estimation in the Bernoulli model. This is clari¯ed by the argument

in Kiefer (1978). To simplify the point the parameters in the density function (4) have

been changed.3

p(xi) = wÁ(xi;m1; s
2
1) + (1¡ w)Á(xi;m2; s

2
2): (6)

[Kiefer (1978) p.428] If m̂1 is choosen so that xi is exactly equal to m1 for

any i then as ŝ1 goes to zero p(xi) increases without bound. Since the second

term in p shields p away from zero at the other observations (the ¯rst term

in p is zero whenever xi = m2), l is unbounded.

An interpretation of this could be that we think of the log-return in the BDM as a

mixture of two normal distributions with di®erent means and variances. Furthermore,

as the weight, w, of the distributions is unknown, it is impossible to identify from which

of the two normal distributions each observation originates. Hence, combined with the

fact that the variances of the two normal distributions are di®erent, the MLE does not

exist. This is in contrast to the situations where the variances are known or equal, or it

is known from which normal distribution each observation descends. This has apparently

not been fully recognized in the empirical jump-di®usion literature. In Ball and Torous

(1983,1985), Beckers (1981), Frost (1993), Jorion (1989) and Trautmann and Beinert

(1995), the empirical results are based on standard ML. Thus, it is not surprising that

they, in some situations, get negative variance estimates or other estimates which are

outside the feasible parameter region. If MLE is based on maximising (5) without any

further restrictions on £, the result can be that for a ¯xed ŝ21 = ¾̂2 À 0, ŝ22 = ¾̂2¢+ ±̂2

goes to zero. This causes ±̂2 to be negative. Finally, from the above argument it is veri¯ed

that the MLE of ¸ can be any possible value without e®ecting the likelihood function

(5). Thus, some of the ¸-estimates in the literature may be unreliable. However, it is

still possible to obtain consistent and asymptotically normally distributed estimates by

using the following procedure [see Hamilton (1994) chapter 22 for alternative estimation

approaches]. The idea is to restrict the volatility parameters ¾ and ± to be in a compact

3The original parameters can be found by solving the equations: m1 = (®¡ 1
2
¾2)¢; s21 = ¾2¢; m2 =

(®¡ 1
2¾

2)¢ + ¹; s22 = ¾2¢+ ±2 and w = (1¡ ¸¢).
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set, [vl; vu]
2, which must include the true values. In the original situation we just had

(¾; ±) 2 IR2
+. Hence, £ is reduced to ¹£ = IR£ [vl; vu]£ (0; 1

¢
)£ IR£ [vl; vu]. Kiefer (1978)

and Ho®mann-J¿rgensen (1992) con¯rm that the estimates obtained from maximising

(5) with respect to ª 2 ¹£ are consistent and asymptotically normally distributed. For

practical implementation we make a reparametrisation which makes it possible to obtain

the estimates in ¹£. Therefore, for a ¯xed positivem 2 M let ±2 = m¾2 be the relative size

of the volatilities is ¯xed, where M is a compact set on IR+. De¯ne a new log-likelihood

function

lm(x1; : : : ; xT ; ª
¤) = l(x1; : : : ; xT ; (®; ¾; ¸; ¹;

p
m¾)) (7)

where the right hand side is from (5). ª is reduced to ª¤ = (®; ¾; ¸; ¹) 2 £¤ = IR £
[vl; vu] £ (0; 1

¢
) £ IR compared to what we have in the original log-likelihood, since the

relative size of the volatilities is known. For a ¯xed m the true MLE of ª¤ is found by

maximising (7) with respect to ª¤ 2 £¤, since lm(¢; ª¤) is bounded in contrast to l(¢; ª).

This can be veri¯ed by keeping the Kiefer (1978) discussion in mind. If ¾ goes to zero, ±

goes to zero, or equivalently, if s1 goes to zero, s2 goes to zero. Thus, both terms in (6)

tend to zero unless one of the means, m1 or m2, equals xi, and in this latter situation

p(xi) goes to in¯nity. Nevertheless, as the p(xi)'s tend to zero or in¯nity the likelihood

function reaches zero, because the unbounded p(xi)'s are dominated by the other p(xi)s,

which tend to zero.4 Remember that the likelihood function is the product of all the

p(xi)s. Let ª̂
¤
m denote the MLE obtained from (7). Then, the consistent estimator of ª

is obtained by choosing the m which maximises lm(¢; ª̂¤
m).

5 In practice, the optimum is

found by drawing the pro¯le log-likelihood, lm(¢; ª̂¤
m), for m 2 M . The last step is to

¯nd the standard errors based on the Hessian matrix of l(¢; ª̂). An example of the pro¯le

log-likelihood is drawn in Figure 1 to illustrate how to select m̂.

4.1 Estimation of the Bernoulli Di®usion Model

In this section we estimate the BDM for a wide range of stocks and indices. The method

used to get the MLE is the one presented in the previous section. It is examined if the

BDM is a good empirical approximation for the Merton model i.e., the empirical ¯ndings

must support ¸¢ being small.

We look at 18 very liquid NYSE stocks, each with daily observations in the period

January 2, 1973 - July 8, 1997. The indices are DAX 100, FTSE 100, S&P 100, S&P

500 and KFX, each with daily observations in the periods January 1, 1973 - July 8,

1997, January 2, 1973 - July 8, 1997, Marts 5, 1984 - July 8, 1997, January 3, 1928 -

4We de¯ne that Y1 dominates Y2 if Y1(n) ! 0, Y2(n) ! 1 and Y1(n)Y2(n) ! 0 for n ! 1.
5We use m̂ to ¯nd ±̂2 = m̂¾̂2.
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®̂ ¾̂ ^̧ ¹̂ ±̂

AXP 0.0138 0.2367 51.3085 0.0015 0.0332
(0.0584) (0.0033) (0.0980) (0.0013) (0.0009)

CHV 0.0244 0.1740 71.8063 0.0010 0.0231
(0.0375) (0.0028) (0.0453) (0.0007) (0.0005)

DD -0.0337 0.1826 57.2233 0.0022 0.0216
(0.0481) (0.0026) (0.0859) (0.0009) (0.0006)

DOW 0.0320 0.1944 54.2434 0.0010 0.0265
(0.0323) (0.0028) (0.0387) (0.0009) (0.0007)

EK -0.0501 0.2172 16.8542 0.0053 0.0421
(0.0363) (0.0024) (0.0453) (0.0024) (0.0018)

GE 0.0423 0.1772 42.6189 0.0020 0.0237
(0.0399) (0.0023) (0.0433) (0.0010) (0.0007)

GM -0.1371 0.1902 59.9269 0.0028 0.0237
(0.0725) (0.0028) (0.1084) (0.0010) (0.0006)

IBM -0.0247 0.1942 21.5887 0.0036 0.0329
(0.0358) (0.0022) (0.0680) (0.0018) (0.0013)

IP -0.0045 0.2216 20.3257 0.0048 0.0347
(0.0926) (0.0025) (0.0744) (0.0023) (0.0014)

KO 0.0947 0.1973 24.3613 0.0022 0.0337
(0.0341) (0.0023) (0.0449) (0.0017) (0.0012)

MMM -0.0272 0.1616 45.2876 0.0023 0.0239
(0.0315) (0.0022) (0.0358) (0.0009) (0.0007)

MOB -0.0219 0.1875 40.2220 0.0031 0.0291
(0.0286) (0.0024) (0.0366) (0.0012) (0.0008)

MO 0.1362 0.1907 43.8275 0.0006 0.0277
(0.0298) (0.0025) (0.0344) (0.0011) (0.0008)

MRK -0.0454 0.1629 86.6403 0.0021 0.0191
(0.0362) (0.0028) (0.0391) (0.0006) (0.0004)

PG 0.0661 0.1824 13.9918 0.0034 0.0346
(0.0361) (0.0020) (0.0462) (0.0023) (0.0016)

S -0.1171 0.2045 46.8044 0.0038 0.0276
(0.0342) (0.0028) (0.0762) (0.0011) (0.0008)

T -0.0181 0.1473 47.3143 0.0018 0.0223
(0.0316) (0.0021) (0.0406) (0.0008) (0.0006)

XON 0.1343 0.1782 15.0312 -0.0012 0.0312
(0.0388) (0.0020) (0.0517) (0.0020) (0.0014)

DAX 0.1583 0.1179 20.9262 -0.0038 0.0223
(0.0256) (0.0013) (0.0583) (0.0012) (0.0009)

FTSE100 0.1565 0.1242 4.8844 -0.0068 0.0341
(0.0355) (0.0016) (0.1580) (0.0046) (0.0035)

SP100 0.1762 0.1175 15.6630 -0.0024 0.0286
(0.0356) (0.0019) (0.0871) (0.0022) (0.0017)

SP500 0.1213 0.1074 40.7286 -0.0018 0.0240
(0.0163) (0.0009) (0.0506) (0.0005) (0.0004)

KFX 0.1840 0.0913 52.1461 -0.0022 0.0137
(0.0453) (0.0023) (0.1830) (0.0009) (0.0006)

The estimation results are based on daily log-return and the estimates are in annualised sizes. The

numbers in parentheses are standard errors.

Table 1: The Bernoulli di®usion model.
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Figure 2: Estimated density functions.

process induces extra variance to the log-return from ¾2¢ to ¾2¢+±2, and on average, it

is expected that the index decreases when a jump occurs. The variance of the jump part,
^̧±̂2, is estimated to be between 26.91% and 67.00% of the total variance, ^̧±̂2+¾̂2, and with

an average of 45.54%. There is no signi¯cant di®erence between this result for the stocks

and indices. ^̧ is between 4.88 and 86.64 and with an average of 38.86. For the stocks and

indices the averages are 42.19 and 26.87, respectively. As mentioned earlier, it is necessary

that ¸¢ is small for the BDM to be a valid approximation of the Merton model. This

is only attained for the FTSE 100 index where ^̧ = 4:88. Thus, we have to return to

the Merton model, as the goal of the paper is to estimate a continuous-time model for

the stock dynamics and not a discrete-time version like the BDM, since the estimates

from the discrete-time BDM can not be converted into the corresponding parameters

from a continuous-time jump-di®usion model. Consequently, the next section looks at

estimating the Merton model and other parametric and distributional speci¯cations of

the jump-di®usion model.
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5 Estimation of Jump-Di®usion Models

In the following 3 subsections we consider estimation of di®erent parametric speci¯cations

of the jump-di®usion model. First, the Merton model is estimated after it is observed

that the likelihood function is unbounded like the BDM likelihood function. Thus, the

problem is solved in the same fashion as for the BDM. Second, a simpli¯ed version of

the Merton model, where the jump amplitude is non-stochastic, is examined. Finally, we

look at a jump-di®usion model which nests the previous two models.

5.1 The Merton Model

For estimation of the Merton model we have to approximate the density function (3) by

the ¯rst N terms of the sum. The same problem arises, as in the BDM, namely that the

likelihood function is unbounded. The reason for this is that the approximation of (3) by

the ¯rst N terms corresponds to a discrete mixture of N normally distributed variables.6

The j'th stochastic variable has meanmj = (®¡ 1
2
¾2)¢+j¹, variance s2j = ¾2¢+j±2 and

with a weight of wj = e¡¸¢ (¸¢)j

j!
in the mixture. The same procedure as in the BDM is

used to obtain consistent and asymptotically normally distributed estimates. The pro¯le

log-likelihood only has to be calculated in one dimension, because all variances sj 's are

described by the two parameters ¾ and ±. Finally, we have to use a su±ciently large N ,

such that the error imposed by the approximation is negligible. Note that the selected

N depends on ¢ and ¸. Furthermore, recall that the BDM corresponds to N = 1, if ¸¢

is close to zero. Numerical studies have shown that from N = 20 there is no signi¯cant

di®erence in the estimates when using daily observations, (Appendix D). For the practical

implementation the truncation of (3) has been done with N = 100.

The empirical results in the Merton model are as follows. The expected jump ampli-

tude is estimated to be between -0.60% and 0.41% with an average of 0.06%. For the

stocks and indices the estimated expected jump amplitudes are in the range of -0.01%

to 0.41% and -0.60% to -0.02% with an average of 0.14% and -0.23%, respectively. The

variance of the jump part is estimated to be between 26.71% and 77.93% of the total es-

timated variance with an average of 60.04%. For the stocks and indices the averages are

62.12% and 52.53%, respectively. ^̧ is between 5.18 and 309.21 with an average of 128.19.

For the stocks and indices, the averages ^̧ are equal to 149.06 and 53.07, respectively.

From the BDM to the Merton model the average ^̧ has increased by 230% and does not

decline for any of the series. This veri¯es that the BDM is a poor approximation to the

Merton model. As we go from the BDM to the Merton model the estimates are only

unchanged for FTSE 100.

6Note that the problem is present even if the density function can be calculated without any kind of

approximation.
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®̂ ¾̂ ^̧ ¹̂ ±̂

AXP -0.0318 0.1940 143.2738 0.0008 0.0222
(0.0338) (0.0039) (0.0380) (0.0005) (0.0005)

CHV -0.0228 0.1272 228.2221 0.0005 0.0149
(0.0352) (0.0035) (0.0336) (0.0003) (0.0003)

DD -0.1249 0.1523 164.9792 0.0013 0.0147
(0.0516) (0.0033) (0.0620) (0.0004) (0.0003)

DOW 0.0082 0.1627 141.8529 0.0005 0.0182
(0.0458) (0.0032) (0.0472) (0.0004) (0.0004)

EK -0.0848 0.2049 34.1198 0.0036 0.0299
(0.0345) (0.0025) (0.0524) (0.0013) (0.0010)

GE -0.0011 0.1623 86.1428 0.0015 0.0180
(0.0351) (0.0025) (0.0410) (0.0006) (0.0005)

GM -0.2402 0.1445 208.6694 0.0013 0.0150
(0.0343) (0.0037) (0.0411) (0.0003) (0.0003)

IBM -0.0502 0.1819 43.9948 0.0023 0.0241
(0.0840) (0.0023) (0.1703) (0.0012) (0.0008)

IP -0.1185 0.1855 92.7363 0.0022 0.0196
(0.0381) (0.0030) (0.0676) (0.0006) (0.0005)

KO 0.0491 0.1815 53.1598 0.0018 0.0239
(0.0306) (0.0024) (0.0393) (0.0009) (0.0007)

MMM -0.1203 0.1118 200.1991 0.0010 0.0134
(0.0328) (0.0028) (0.0366) (0.0003) (0.0002)

MO 0.1392 0.1666 105.5755 0.0002 0.0193
(0.0391) (0.0028) (0.0439) (0.0005) (0.0004)

MOB -0.0456 0.1613 101.1400 0.0014 0.0199
(0.0331) (0.0027) (0.0416) (0.0005) (0.0005)

MRK -0.1239 0.1123 309.2098 0.0008 0.0120
(0.0377) (0.0041) (0.0503) (0.0002) (0.0002)

PG -0.0556 0.1150 198.2615 0.0008 0.0128
(0.0298) (0.0029) (0.0312) (0.0002) (0.0002)

S -0.2942 0.1389 228.0275 0.0015 0.0155
(0.0507) (0.0038) (0.0628) (0.0003) (0.0003)

T -0.1179 0.0825 269.3887 0.0007 0.0114
(0.0232) (0.0027) (0.0303) (0.0002) (0.0002)

XON 0.1083 0.1516 74.0497 0.0000 0.0167
(0.0479) (0.0022) (0.0833) (0.0006) (0.0005)

DAX 0.1640 0.1153 28.1393 -0.0031 0.0192
(0.0264) (0.0013) (0.0535) (0.0009) (0.0007)

FTSE100 0.1572 0.1240 5.1761 -0.0066 0.0329
(0.0315) (0.0016) (0.0868) (0.0043) (0.0035)

SP100 0.1634 0.0905 87.6427 -0.0003 0.0128
(0.0359) (0.0020) (0.0926) (0.0005) (0.0004)

SP500 0.1294 0.1004 62.1524 -0.0013 0.0191
(0.0142) (0.0009) (0.0257) (0.0004) (0.0003)

KFX 0.1882 0.0858 82.2169 -0.0014 0.0114
(0.0495) (0.0024) (0.1414) (0.0006) (0.0005)

The estimation results are based on daily log-return and the estimates are in annualised sizes. The

numbers in parentheses are standard errors.

Table 2: The Merton model.
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A desired feature of the Merton model is that ¸ should be low to describe extreme

events, but this is not supported by the empirical ¯ndings. Instead, the jump component

appears to approximate a second di®usion process. Thus, we want to investigate the

improvement of including a jump component in the Black-Scholes model. For this purpose

we estimate the Black-Scholes model

dSt

St

= ®dt+ ¾dWt

where ® is the drift term, ¾ is the volatility, and Wt is a Wiener process. Hence, the

likelihood ratio test statistic (LR) can be calculated for the hypothesis of the standard

di®usion model against the Merton model. Standard theory assumes that LR is asymp-

totically Â2(3) distributed, since the dimension of £ is reduced by 3. However, this is not

the case, because the test is performed with ¸ on the border of £ and ¹ and ±2 uniden-

ti¯ed. Hence, the LR is not a formal test. Nevertheless it is used as an indicator for

which model is the more likely.7 In Table 3 the estimates of the Black-Scholes model are

displayed. Due to ¾̂ being lowest for the indices, it is seen again that the indices behave

di®erently compared to the stocks. The LR is reported in Table 6 for testing the standard

di®usion model against the Merton model and the large LR's indicate that the standard

model is strongly rejected. This is not surprising, since as earlier shown, the Merton

model (BDM) ¯ts the empirical distribution much better than the Black-Scholes model,

cf. Figure 2. Note that this is not a test to ¯gure out whether St follows a continuous

process or a discontinuous process like the Merton model. AÄ³t-Sahalia (1997) presents a

general test to examine whether a process follows a continuous-time Markov di®usion or

not.

5.2 The Constant Merton Model

As mentioned earlier, the Merton model is a way of modelling extreme events. This is,

however, not supported by the high ^̧-estimates in Table 2. Thus, instead of including a

stochastic jump amplitude we look at a model with constant jump amplitude, log(Y +1) =

¹. This model will be referred to as the Constant Merton model (CMM). The density

function of the log-return in this model is of the following form

p(x; ª) =
1X
j=0

e¡¸¢(¸¢)j

j!
Á(x; (®¡ 1

2
¾2)¢ + j¹; ¾2¢):

The likelihood function for the CMM is bounded, since the volatility is solely described

by ¾. Thus, the MLE always exists.

7Note, if LR is less than two times the reduction of the dimension of £, accepting the hypothesis is

equivalent to use an applicable criteria like the Akaike Information Criterion (AIC).
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®̂ ¾̂

AXP 0.1201 0.3354
(0.0350) (0.0030)

CHV 0.1168 0.2618
(0.0303) (0.0023)

DD 0.1061 0.2455
(0.0310) (0.0022)

DOW 0.1059 0.2755
(0.0351) (0.0024)

EK 0.0547 0.2785
(0.0325) (0.0025)

GE 0.1384 0.2357
(0.0296) (0.0021)

GM 0.0483 0.2651
(0.0531) (0.0023)

IBM 0.0654 0.2477
(0.0325) (0.0022)

IP 0.1059 0.2721
(0.0334) (0.0024)

KO 0.1616 0.2583
(0.0425) (0.0023)

MMM 0.0902 0.2284
(0.0291) (0.0020)

MO 0.1804 0.2647
(0.0308) (0.0023)

MOB 0.1185 0.2639
(0.0314) (0.0023)

MRK 0.1527 0.2413
(0.0361) (0.0021)

PG 0.1220 0.2241
(0.0336) (0.0020)

S 0.0778 0.2793
(0.0371) (0.0025)

T 0.0790 0.2131
(0.0273) (0.0019)

XON 0.1231 0.2155
(0.0302) (0.0019)

DAX 0.0834 0.1568
(0.0317) (0.0014)

FTSE100 0.1261 0.1460
(0.0397) (0.0017)

SP100 0.1451 0.1634
(0.0448) (0.0020)

SP500 0.0615 0.1874
(0.0211) (0.0010)

KFX 0.0767 0.1356
(0.0492) (0.0022)

The estimation results are based on daily log-return and the estimates are in annualised sizes. The

numbers in parentheses are standard errors.

Table 3: The Black-Scholes model.
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The empirical results are reported in Table 4. ^̧ has decreased dramatically to be in the

range of 0.30 to 6.52 with an average of 2.08. The average ^̧ is lower for the stocks, 1.64,

than the indices, 3.67. The jump amplitude, e¹̂ ¡ 1, is in the range of -9.00% to -2.44%

with an average of -5.74% and for the stocks and indices -6.09% and -4.49%, respectively.

Thus, the empirical ¯ndings support the idea that the jump component in the CMM can

be used to describe the extreme events. Finally, the LR statistics for the hypothesis of

the CMM against the Merton model is calculated. This is a test for ± = 0, which is on the

border of £. Thus, LR is asymptotically distributed as 1
2
Â2(0) + 1

2
Â2(1) [Harvey(1989)].

The hypothesis of the CMM against the Merton model can not be accepted on the basis

of the LR reported in Table 6.

5.3 The Extended Merton Model

We have seen that the CMM captures the extreme events but at the same time it cannot

be statistically accepted compared to the Merton model. Hence, in this section we propose

a model that nests the Merton model and the CMM. The jump component consists of

two Poisson processes (J = 2) with intensities ¸1 and ¸2 and a stochastic jump amplitude

and a deterministic jump amplitude, respectively. Thus, log(Y1;t + 1) » N(¹1; ±
2
1) and

log(Y2;t +1) = ¹2. The model is referred to as the Extended Merton model (EMM). The

density function for the log-return in the EMM is

p(x; ª) =
1X

j1=0

1X
j2=0

e¡¸1¢(¸1¢)j1

j1!

e¡¸2¢(¸2¢)j2

j2!

£ Á(x; (®¡ 1

2
¾2)¢ + j1¹1 + j2¹2; ¾

2¢+ j1±
2
1):

This function has the same characteristics as the density function for the Merton model.

This means that the likelihood function is unbounded, and the estimation method is the

same as for the Merton model.

The empirical outcome of the EMM can be summarized as follows. The stochastic

jump amplitude Y1 is estimated to have an expected value between -0.42% and 0.06%

with an average of -0.12%. For the stocks and indices it is in the range of -0.32% to

0.06% and -0.42% to -0.13% with an average of -0.07% and -0.27%, respectively. The

corresponding intensity ^̧
1 is between 3.80 and 257.16 with an average of 98.19. For

the stocks and indices the averages are 103.18 and 80.26, respectively. Compared to the

Merton model E[Y1] is numerically smaller on average, and ^̧ has decreased on average

with the exception that ^̧ has increased for the indices from 53.07 to 80.26. The constant

jump amplitude Y2 is estimated to be between -1.16% and 3.07% with an average of 1.67%.

For the stocks and indices the estimated constant jump amplitudes are in the range of

1.18% to 3.07% and -1.16% to -1.42% with an average of 1.96% and 0.60%, respectively.
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®̂ ¾̂ ^̧ ¹̂

AXP 0.2887 0.3118 2.4754 -0.0712
(0.0397) (0.0029) (0.0465) (0.0028)

CHV 0.2497 0.2463 2.6653 -0.0513
(0.0329) (0.0023) (0.0415) (0.0024)

DD 0.1779 0.2348 1.2878 -0.0577
(0.0499) (0.0022) (0.0688) (0.0033)

DOW 0.2044 0.2610 1.6259 -0.0630
(0.0458) (0.0024) (0.0412) (0.0035)

EK 0.1254 0.2595 0.8759 -0.0866
(0.0576) (0.0023) (0.0446) (0.0033)

GE 0.2389 0.2219 1.9257 -0.0538
(0.0314) (0.0021) (0.0379) (0.0026)

GM 0.1460 0.2515 1.8357 -0.0551
(0.0327) (0.0023) (0.0704) (0.0027)

IBM 0.1214 0.2351 0.7544 -0.0783
(0.0331) (0.0021) (0.0456) (0.0038)

IP 0.1488 0.2598 0.4890 -0.0943
(0.0360) (0.0023) (0.0393) (0.0048)

KO 0.2669 0.2392 1.6916 -0.0651
(0.0364) (0.0022) (0.0537) (0.0027)

MMM 0.1549 0.2135 1.0352 -0.0657
(0.0375) (0.0019) (0.0541) (0.0030)

MO 0.3067 0.2449 2.2174 -0.0592
(0.0339) (0.0023) (0.0463) (0.0024)

MOB 0.2388 0.2458 2.0809 -0.0600
(0.0307) (0.0023) (0.0458) (0.0025)

MRK 0.2656 0.2296 2.6653 -0.0434
(0.0452) (0.0022) (0.0609) (0.0023)

PG 0.1782 0.2087 0.9792 -0.0608
(0.0692) (0.0019) (0.1391) (0.0022)

S 0.1540 0.2656 1.2014 -0.0665
(0.1486) (0.0024) (0.2455) (0.0032)

T 0.1676 0.1977 1.7907 -0.0512
(0.0284) (0.0019) (0.2345) (0.0030)

XON 0.2135 0.1998 1.9356 -0.0484
(0.0296) (0.0019) (0.0372) (0.0020)

DAX 0.2243 0.1377 4.6180 -0.0311
(0.0264) (0.0013) (0.0638) (0.0010)

FTSE100 0.1522 0.1371 0.2963 -0.0924
(0.0341) (0.0016) (0.0632) (0.0043)

SP100 0.2340 0.1396 2.1543 -0.0430
(0.0406) (0.0017) (0.1333) (0.0015)

SP500 0.2464 0.1617 4.7382 -0.0400
(0.0176) (0.0010) (0.0299) (0.0009)

KFX 0.2359 0.1195 6.5222 -0.0247
(0.0429) (0.0021) (0.1588) (0.0015)

The estimation results are based on daily log-return and the estimates are in annualised sizes. The

numbers in parentheses are standard errors.

Table 4: The Constant Merton model.
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®̂ ¾̂ ^̧
1 ¹̂1 ±̂ ^̧

2 ¹̂2

AXP -0.2479 0.1904 115.8832 -0.0008 0.0234 20.5337 0.0205
(0.0467) (0.0047) (0.0374) (0.0009) (0.0006) (0.0508) (0.0031)

CHV -0.1192 0.1299 186.8181 -0.0002 0.0157 16.0923 0.0155
(0.0345) (0.0038) (0.0432) (0.0004) (0.0004) (0.0417) (0.0032)

DD -0.3069 0.1562 88.8663 -0.0014 0.0168 29.2341 0.0179
(0.0869) (0.0034) (0.1246) (0.0013) (0.0008) (0.1269) (0.0020)

DOW -0.1929 0.1540 134.5514 -0.0003 0.0183 22.2525 0.0142
(0.0352) (0.0048) (0.0439) (0.0007) (0.0004) (0.0420) (0.0031)

EK -0.2129 0.2072 13.9242 -0.0027 0.0398 9.5139 0.0302
(0.0459) (0.0025) (0.0404) (0.0029) (0.0021) (0.0397) (0.0019)

GE -0.1786 0.1625 46.2382 -0.0019 0.0210 20.3432 0.0192
(0.0439) (0.0027) (0.0672) (0.0013) (0.0009) (0.0669) (0.0017)

GM -0.3876 0.1458 159.4666 0.0003 0.0160 22.8690 0.0162
(0.0812) (0.0047) (0.0506) (0.0009) (0.0005) (0.0878) (0.0034)

IBM -0.1970 0.1814 25.3271 -0.0004 0.0288 12.1062 0.0214
(0.1620) (0.0025) (0.2538) (0.0026) (0.0012) (0.3609) (0.0020)

IP -0.2174 0.2051 21.7205 -0.0027 0.0297 13.4279 0.0272
(0.0311) (0.0027) (0.0425) (0.0022) (0.0015) (0.0370) (0.0018)

KO -0.1866 0.1770 29.2927 -0.0029 0.0284 19.6179 0.0211
(0.0346) (0.0027) (0.0423) (0.0016) (0.0012) (0.0479) (0.0014)

MMM -0.1973 0.1172 140.9188 -0.0003 0.0146 19.1106 0.0159
(0.0413) (0.0027) (0.0259) (0.0005) (0.0004) (0.0670) (0.0019)

MO 0.1094 0.1705 81.9168 -0.0013 0.0204 6.0938 0.0252
(0.0365) (0.0027) (0.0416) (0.0009) (0.0007) (0.0418) (0.0052)

MOB -0.0851 0.1684 70.2610 0.0003 0.0221 6.558 0.0243
(0.0342) (0.0026) (0.0525) (0.0009) (0.0007) (0.0491) (0.0039)

MRK -0.1606 0.1365 165.0237 -0.0002 0.0141 18.0358 0.0183
(0.1139) (0.0034) (0.1301) (0.0010) (0.0006) (0.0855) (0.0037)

PG -0.1441 0.1171 155.2489 0.0000 0.0135 17.7345 0.0140
(0.0413) (0.0031) (0.0350) (0.0005) (0.0003) (0.0455) (0.0023)

S -0.3979 0.1452 165.2492 0.0005 0.0168 20.3159 0.0178
(0.0276) (0.0039) (0.0342) (0.0005) (0.0004) (0.0330) (0.0027)

T -0.1891 0.0857 218.4134 0.0001 0.0121 19.7028 0.0117
(0.02882) (0.0026) (0.0415) (0.0003) (0.0002) (0.0544) (0.0017)

XON -0.0043 0.1551 38.0480 -0.0034 0.0196 12.8285 0.0191
(0.0384) (0.0023) (0.1078) (0.0012) (0.0009) (0.1110) (0.0018)

DAX 0.0281 0.1091 27.1981 -0.0044 0.0190 17.0240 0.0098
(0.0260) (0.0018) (0.0529) (0.0010) (0.0007) (0.0483) (0.0012)

FTSE100 0.3261 0.1167 3.8024 -0.0039 0.0376 16.2071 -0.0117
(0.0331) (0.0020) (0.0801) (0.0058) (0.0044) (0.0892) (0.0011)

SP100 0.0123 0.0860 59.3845 -0.0027 0.0140 26.0608 0.0110
(0.0349) (0.0022) (0.0798) (0.0008) (0.0006) (0.1011) (0.0009)

SP500 0.0821 0.0993 53.7418 -0.0024 0.0200 6.8216 0.0141
(0.0162) (0.0009) (0.0334) (0.0004) (0.0003) (0.0270) (0.0010)

KFX -0.0297 0.0349 257.1591 -0.0013 0.0071 64.8075 0.0066
(0.0438) (0.0023) (0.1375) (0.0003) (0.0003) (0.1301) (0.0005)

The estimation results are based on daily log-return and the estimates are in annualised sizes. The

numbers in parentheses are standard errors.

Table 5: The Extended Merton model.
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^̧
2 is between 6.09 and 64.81, with an average of 19.01. For individual stocks and indices

the averages are 17.02 and 26.18, respectively. Compared to the CMM, Y2 has gone from

negative to positive, except for FTSE 100, and ¸2 has on average increased dramatically

from 2.08 to 19.01. The variance of the jump component is estimated to be between

28.30% and 91.41% with an average of 56.55%. For the stocks and indices the averages

are 55.89% and 58.92%, respectively. This is more or less the same as for the Merton

model. Finally, the LR statistics for the hypothesis of the Merton model against the

EMM is calculated. Again the LR can only be used as an indication of the most likely

model, because the test is performed with ¸ on the border of £ and with ±2 unidenti¯ed.

However, for some of the stocks the LR is of such a size that it seems reasonable to accept

the hypothesis of the Merton model against the EMM.

6 Option Pricing

The option prices from the jump-di®usion models and the Black-Scholes prices are com-

pared in this section. The aim is to show that the empirically supported high ¸-values

do not lead to the wanted di®erence in the prices. This point is illustrated by calculating

prices for a high intensity stock and a low intensity index.

The jump-di®usion model like Merton's gives rise to an incomplete market in contrast

to the Black-Scholes model. This means that a portfolio which exactly replicates an option

cannot be constructed. Hence, the risk neutral world is not uniquely determined, since a

set of equivalent martingale measures, Q, exists, which precludes arbitrage.8 It is beyond

the scope of this paper to look at how to select the correct equivalent martingale measure.

Thus, it is assumed that the risk-neutral measure exists and that we chose the correct

one in pricing put options in the jump-di®usion models. We assume that the riskless

interest rate, r, is constant for the selected time horizon. Furthermore, the stock/index

pays a continuous dividend stream q.

In a risk-neutral world the partial integro di®erential equation (PIDE) for the price,

C, of an option depending on x = log(S) is given as [Andreasen and Gruenewald (1996)]9

rC =
@C

@t
+ (r ¡ q ¡ k¸Q ¡ 1

2
¾2)

@C

@x
+

1

2
¾2@

2C

@x2

+ ¸Q
Z
IR

(C(t; x+ y)¡ C(t ; x))Á(y;¹+
1

2
±2; ±2)dy (8)

where ¸Q = (1 ¡ µ)¸ is the risk adjusted jump intensity and µ · 1 is the risk adjusted

function of the jump components. Finally, k = logEQ(Yt) = ¹ + 1
2
±2. The PIDE looks

like the partial di®erential equation that we obtain in the Black-Scholes model, except for

8The Q-measure denotes the state variables in a risk-neutral world.
9Consequently, the jump amplitude is transformed to y = log(1 + Y ).
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BS - Merton CMM - Merton Merton - EMM

AXP 856.3877 468.5825 5.2646

CHV 737.5097 488.1717 2.4995

DD 526.9195 278.5661 9.3537

DOW 797.1449 491.2153 2.8874

EK 1254.3835 624.5579 23.2626

GE 688.0375 376.4906 14.8918

GM 644.5855 381.8080 3.4635

IBM 996.4858 563.6644 10.5974

IP 808.6205 385.4643 12.3159

KO 1095.6925 560.6751 26.4577

MMM 1074.7505 513.2556 5.4845

MO 917.7122 438.3309 1.5553

MOB 1085.7785 677.8284 1.4443

MRK 495.4647 346.6874 1.2756

PG 1135.1342 523.7390 3.5413

S 817.3667 491.5173 3.6528

T 1166.9780 658.9977 4.1436

XON 899.1684 398.5019 10.7124

DAX 1310.2088 771.9623 9.0629

FTSE100 651.8265 269.2482 15.3145

SP100 1172.8505 388.0618 20.9218

SP500 6321.6343 4085.0554 20.1583

KFX 317.4211 171.3849 22.8716

The likelihood ratio test statistics calculated for the three hypothesis; i) the Black-Scholes model against

the Merton model, ii) the constant Merton model against the Merton model, and iii) The Merton

model against the extended Merton model. At the 5% level of signi¯cance the critical LR value for the

hypothesis of the CMM against the Merton model is 2.7055. Note the di®erence between i) and ii) is

the likelihood ratio test statistics for then Black-Scholes model against the constant Merton model.

Table 6: The likelihood ratio test statistics.
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the last term, caused by the jump component. This term is the instantaneous expected

change in the option price due to the discontinuous stock price. Note that (8) is derived

under the assumption that the Merton model is true.10 The closed form solution for the

European vanilla option is in Merton (1976).

The ¯nite-di®erence method presented by Andreasen and Gruenewald (1996) is used

to obtain prices for the American put options in the Merton model and the CMM. Hence,

the Crank-Nicolson method is applied to the normal terms of the PIDE and the last

term is approximated by the explicit ¯nite-di®erence method. Finally, the Richardson

extrapolation is used to speed up the convergence.11
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The graph displays the relative price bias to the European Black-Scholes put option as a function of

moneyness, Ste
r(T¡t)

X
. Merton E/A denotes the European/American put option in the Merton model.

CMM E/A denotes the European/American put option in the CMM. BS A denotes the American put

option in the Black-Scholes model. The put option expires in 6 months and with exercise price, X = 100.

r = 5%, q = 2% and no risk premia on the jump component, µ = 0.

Figure 3: FTSE, low intensity index.

The numerical results for the put options are based on the assumption that r = 5%,

q = 2% and no risk premia on the jump component, µ = 0. The put option expires in

10For the CMM the last term is replaced by ¸Q (C(t; x+ ¹)¡ C(t ; x)). Hence, the PIDE is reduced

to a partial di®erential di®erence equation (PDDE).
11The Richardson extrapolation is based on the fact that the applied ¯nite-di®erence method has a

convergence error of order one in the time dimension. Hence, let C(h) denote the value obtained by

dividing the time interval into h pieces. Then the extrapolated value is ¹C = 2C(2h)¡ C(h).

18



-5.00%

-4.00%

-3.00%

-2.00%

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

0.80 1.00
Moneyness

R
el

at
iv

e 
pr

ic
e 

bi
as

Merton E

CMM E

BS A

Merton A

CMM A

The graph displays the relative price bias to the European Black-Scholes put option as a function of
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X
. Merton E/A denotes the European/American put option in the Merton model.

CMM E/A denotes the European/American put option in the CMM. BS A denotes the American put

option in the Black-Scholes model. The put option expires in 6 months and with exercise price, X = 100.

r = 5%, q = 2% and no risk premia on the jump component, µ = 0.

Figure 4: MOB, high intensity stock.

6 months and with exercise price, X = 100. The European and American put options

are evaluated in the Black-Scholes model, Merton model and CMM. The relative price

bias to the European Black-Scholes put is calculated to ease the comparison. First of all,

the analysis is done with the estimates obtained from the FTSE 100 index, since the ^̧

is low in the Merton model. This comparison is valid since the estimated variance is of

the same size for the di®erent models combined with the assumption that µ = 0, since

the variance is unchanged under the Q-measure. The results are illustrated in Figure 3

where the x-axis is moneyness, which is de¯ned as Ste
r(T¡t)

X
. Thus, in-the-money options

correspond to values less than one and out-of-the money options correspond to values

greater than one.

For the European put options, the outcome is; i) prices of in-the-money options are

more or less the same for all three models; ii) an out-of-the money option is much cheaper

in the Black-Scholes model; and iii) the price obtained in the Merton model is smaller

than in the CMM. The same features are found for the American put options. They only

di®er in their higher price level, but this is a result of the early exercise opportunity. To

explain the much higher out-of-the money options in the Merton model and the CMM,
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we have to look at the estimated jump amplitude which is estimated to be negative on

average. Hence, even though the option is far out of the money, it is likely to become

in the money instantaneously, if a negative jump in the underlying process occurs. This

is of course not the case for the Black-Scholes model, as the underlying process moves

continuously over time. The Black-Scholes volatility smile can also be mimicked from

the jump-di®usion models. Thus, the conclusion could be that a Merton model/CMM

captures what is observed on the market. However, for realistic values of ¸ we establish

that the conclusion is less signi¯cant. This is based on redoing the exercise for estimates

obtained from MOB which is close to an average stock. The ^̧ from the Merton model

is about 20 times bigger than before. Figure 4 reports the results. Note that the scaling

on the y-axis is di®erent from before as the relative price biases are smaller. The Black-

Scholes price is the highest for all kinds of moneyness, but as before the prices obtained

in the Merton model are smaller than in the CMM. The interesting point is that the

relative price biases obtained in the jump-di®usion models are numerically smaller than

before. Hence, this indicates that these models can only partly explain the Black-Scholes

volatility smile.

7 Conclusion

In this paper we have shown that in a jump-di®usion model the log-return is equivalent to

a discrete mixture of N normally distributed variables, where N goes to in¯nity. Thus,

we know from the mixture-of-distribution literature [Kiefer (1978)] that the likelihood

function for some parametric speci¯cations is unbounded. Hence, the estimation of jump-

di®usion models must be carried out carefully, since the standard maximum likelihood

estimates are invalid. A method has been proposed, where the pro¯le of the likelihood

function with respect to the relative variances between the di®usion and jump part is

used to obtain a consistent estimator.

The empirical results, based on the presented method, indicate that the stocks/indices

are insu±ciently described by the Merton model, as the estimated arrival intensity of the

jumps is of such a size that adding a jump component more looks like inserting a Wiener

process. However, there is empirical evidence that adding a second jump component with

a constant jump amplitude improves the results.

Finally, the implication of moving from the Black-Scholes model to the jump-di®usion

model is examined for put option prices. The di®erence to the Black-Scholes price is a

decreasing function in the intensity of the jump component. Hence, the jump-di®usion

model gives less price di®erence than often expected, since the literature mostly assumes a

very low jump intensity or even does the estimation using an invalid estimation method.
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Appendix A

Sample of Securities/Indices

Symbol Name Sample Period

AXP American Express Jan 2, 1973 - July 8, 1997

CHV Chevron Jan 2, 1973 - July 8, 1997

DD Du Pont Jan 2, 1973 - July 8, 1997

DOW Dow Chemicals Jan 2, 1973 - July 8, 1997

EK Eastman Kodak Jan 2, 1973 - July 8, 1997

GE General Electric Jan 2, 1973 - July 8, 1997

GM General Motors Jan 2, 1973 - July 8, 1997

IBM IBM Jan 2, 1973 - July 8, 1997

IP International Paper Jan 2, 1973 - July 8, 1997

KO Coca Cola Jan 2, 1973 - July 8, 1997

MMM 3M Jan 2, 1973 - July 8, 1997

MO Philip Morris Jan 2, 1973 - July 8, 1997

MOB Mobil Jan 2, 1973 - July 8, 1997

MRK Merck Jan 2, 1973 - July 8, 1997

PG Procter & Gamble Jan 2, 1973 - July 8, 1997

S Sears Roebuck Jan 2, 1973 - July 8, 1997

T AT&T Jan 2, 1973 - July 8, 1997

XON Exxon Jan 2, 1973 - July 8, 1997

DAX DAX 100 Jan 1, 1973 - July 8, 1997

FTSE100 FTSE 100 Jan 2, 1984 - July 8, 1997

SP100 S&P 100 Marts 5, 1984 - July 8, 1997

SP500 S&P 500 Jan 3, 1928 - Oct 19, 1988

KFX KFX Dec 4, 1989 - July 8, 1997

Table 7: Symbol list.
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Appendix B

Time-Series Plot
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Figure 5: Plots of the daily levels and log-returns.
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Appendix C

Descriptive Statistics

Mean Median Max Min Std.Dev. Skewness Kurtosis Obs

AXP 21.59 20.69 83.00 4.44 12.82 1.13 4.67 6396

CHV 24.81 19.62 76.88 5.09 15.50 0.98 3.32 6396

DD 15.52 9.69 65.06 4.79 11.20 1.55 5.27 6396

DOW 39.66 30.25 91.88 13.25 21.55 0.50 1.83 6396

EK 36.40 33.61 94.25 15.03 14.75 1.43 5.07 6396

GE 12.39 7.45 69.88 1.88 11.98 1.81 6.42 6396

GM 35.89 35.38 64.75 14.56 9.59 0.37 2.86 6396

IBM 45.23 42.47 95.75 19.00 16.06 0.50 2.30 6396

IP 20.52 14.87 56.13 7.78 10.89 0.71 2.12 6396

KO 10.05 2.98 71.88 0.96 13.66 2.12 7.34 6396

MMM 30.56 21.25 103.06 10.81 18.87 1.11 3.65 6396

MO 9.58 3.36 47.50 0.73 10.62 1.22 3.53 6396

MOB 22.06 15.94 72.63 3.87 15.32 1.09 3.51 6396

MRK 19.41 5.71 105.19 2.67 21.18 1.51 4.83 6396

PG 28.74 14.47 149.38 7.88 26.41 1.79 6.03 6396

S 16.39 13.77 56.63 5.46 10.15 2.04 7.08 6396

T 19.14 14.54 47.42 6.91 11.32 0.83 2.29 6396

XON 17.57 12.46 64.63 3.43 12.61 0.92 3.15 6396

DAX 199.45 168.25 571.38 70.61 107.66 0.60 2.38 6397

FTSE100 2428.24 2348.80 4831.70 978.70 875.29 0.41 2.48 3527

SP100 363.04 332.74 897.24 146.46 155.74 1.04 3.79 3482

SP500 63.02 43.04 336.77 4.40 62.07 1.63 5.92 16331

KFX 104.53 102.25 179.01 70.59 18.50 1.49 6.19 1982

Where skewness=E[X¡E[X]]3

[V ar[X]]1:5
and kurtosis=E[X¡E[X]]4

[V ar[X]]2
.

Table 8: Descriptive statistics of the daily levels.
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Mean Median Max Min Std.Dev. Skewness Kurtosis Obs

DLOGAXP 0.00 0.00 0.17 -0.30 0.0208 -0.45 13.58 6395

DLOGCHV 0.00 0.00 0.10 -0.18 0.0162 -0.15 8.36 6395

DLOGDD 0.00 0.00 0.08 -0.20 0.0152 -0.29 9.73 6395

DLOGDOW 0.00 0.00 0.14 -0.21 0.0171 -0.28 11.34 6395

DLOGEK 0.00 0.00 0.22 -0.36 0.0172 -1.06 39.85 6395

DLOGGE 0.00 0.00 0.11 -0.19 0.0146 -0.27 10.46 6395

DLOGGM 0.00 0.00 0.14 -0.24 0.0164 -0.26 12.04 6395

DLOGIBM 0.00 0.00 0.12 -0.26 0.0153 -0.49 20.68 6395

DLOGIP 0.00 0.00 0.11 -0.31 0.0168 -0.83 24.84 6395

DLOGKO 0.00 0.00 0.18 -0.28 0.0160 -0.65 24.46 6395

DLOGMMM 0.00 0.00 0.11 -0.30 0.0141 -1.42 38.02 6395

DLOGMO 0.00 0.00 0.10 -0.26 0.0164 -0.79 17.69 6395

DLOGMOB 0.00 0.00 0.13 -0.28 0.0163 -0.43 20.34 6395

DLOGMRK 0.00 0.00 0.09 -0.14 0.0149 0.01 6.33 6395

DLOGPG 0.00 0.00 0.20 -0.33 0.0139 -1.47 58.74 6395

DLOGS 0.00 0.00 0.17 -0.29 0.0173 -0.40 18.89 6395

DLOGT 0.00 0.00 0.14 -0.24 0.0132 -0.72 25.27 6395

DLOGXON 0.00 0.00 0.16 -0.27 0.0133 -0.99 33.61 6395

DLOGDAX 0.00 0.00 0.07 -0.13 0.0097 -0.80 16.56 6396

DLOGFTSE100 0.00 0.00 0.08 -0.13 0.0090 -1.52 26.37 3526

DLOGSP100 0.00 0.00 0.09 -0.25 0.0101 -3.85 95.96 3481

DLOGSP500 0.00 0.00 0.15 -0.23 0.0116 -0.49 25.75 16330

DLOGKFX 0.00 0.00 0.05 -0.06 0.0084 -0.32 7.85 1981

Where skewness=E[X¡E[X]]3

[V ar[X]]1:5
and kurtosis=E[X¡E[X]]4

[V ar[X]]2
.

Table 9: Descriptive statistics of the daily log-returns.
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Appendix D

Convergence of the Poisson Log-likelihood Function

In this section it is shown how the estimates in the Merton Model converges as a function

of N , i.e. as the number of terms in the density function (3) increases. The numerical

study has been carried out for two situations of ^̧ in the BDM. First for a large value

of ^̧ which implies that the BDM is a bad proxy for the Merton model. Second, for the

opposite situation where the BDM is a good approximation for the Merton model. This

is veri¯ed by Tables 10 and 11.

® ¾ ¸ ¹ ± ¡2 logL

Bernoulli -0.0247373 0.1941625 21.5886572 0.0036270 0.0329370 -36246.7613461
Poisson

N

1 -0.0120694 0.2013206 13.8913734 0.0048266 0.0384560 -36219.7593565

2 -0.0315926 0.1907254 27.7450255 0.0030455 0.0290412 -36266.9592174

3 -0.0429981 0.1852112 37.3907245 0.0025371 0.0257222 -36276.8552560

4 -0.0479416 0.1829339 41.8877242 0.0023728 0.0245664 -36279.1464381

5 -0.0497343 0.1821183 43.5728596 0.0023187 0.0241799 -36279.6460999

6 -0.0501326 0.1819373 43.9519413 0.0023070 0.0240965 -36279.7164502

7 -0.0501854 0.1819169 43.9947336 0.0023058 0.0240872 -36279.7221930

8 -0.0501804 0.1819171 43.9947924 0.0023058 0.0240871 -36279.7224948

9 -0.0501804 0.1819171 43.9947924 0.0023058 0.0240871 -36279.7225063

10 -0.0501802 0.1819169 43.9947960 0.0023058 0.0240871 -36279.7225066

15 -0.0501802 0.1819169 43.9947960 0.0023058 0.0240871 -36279.7225066

20 -0.0501802 0.1819169 43.9947960 0.0023058 0.0240871 -36279.7225066

25 -0.0501802 0.1819169 43.9947960 0.0023058 0.0240871 -36279.7225066

35 -0.0501802 0.1819169 43.9947960 0.0023058 0.0240871 -36279.7225066

50 -0.0501802 0.1819169 43.9947960 0.0023058 0.0240871 -36279.7225066

75 -0.0501802 0.1819169 43.9947960 0.0023058 0.0240871 -36279.7225066

100 -0.0501802 0.1819169 43.9947960 0.0023058 0.0240871 -36279.7225066

Table 10: IBM daily observations.
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® ¾ ¸ ¹ ± ¡2 logL

Bernoulli 0.156470 0.124165 4.884408 -0.006816 0.034095 -23834.379902
Poisson

N

1 0.155859 0.124359 4.644752 -0.007031 0.034806 -23833.199876

2 0.157160 0.124006 5.163110 -0.006586 0.032897 -23834.774664

3 0.157160 0.124006 5.163112 -0.006584 0.032897 -23834.792295

4 0.157166 0.124004 5.164929 -0.006582 0.032871 -23834.792452

5 0.157166 0.124004 5.164937 -0.006583 0.032871 -23834.792452

6 0.157166 0.124004 5.164943 -0.006582 0.032871 -23834.792452

7 0.157167 0.124004 5.164951 -0.006583 0.032871 -23834.792453

8 0.157167 0.124004 5.164957 -0.006582 0.032871 -23834.792453

9 0.157167 0.124004 5.164965 -0.006583 0.032871 -23834.792453

10 0.157167 0.124004 5.164971 -0.006582 0.032871 -23834.792453

11 0.157167 0.124004 5.164979 -0.006583 0.032871 -23834.792453

12 0.157167 0.124004 5.164986 -0.006582 0.032871 -23834.792453

13 0.157168 0.124004 5.164993 -0.006583 0.032871 -23834.792453

14 0.157168 0.124004 5.164999 -0.006582 0.032871 -23834.792453

15 0.157168 0.124004 5.165007 -0.006583 0.032871 -23834.792453

16 0.157168 0.124004 5.165013 -0.006582 0.032871 -23834.792454

17 0.157168 0.124004 5.165020 -0.006583 0.032871 -23834.792454

18 0.157168 0.124004 5.165027 -0.006582 0.032871 -23834.792454

19 0.157169 0.124004 5.165034 -0.006583 0.032871 -23834.792454

20 0.157169 0.124004 5.165040 -0.006582 0.032871 -23834.792454

25 0.157169 0.124004 5.165048 -0.006583 0.032871 -23834.792454

35 0.157169 0.124004 5.165054 -0.006582 0.032871 -23834.792454

50 0.157169 0.124004 5.165062 -0.006583 0.032871 -23834.792454

75 0.157169 0.124004 5.165068 -0.006582 0.032871 -23834.792454

100 0.157169 0.124004 5.165069 -0.006582 0.032871 -23834.792454

Table 11: FTSE 100 daily observations.
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