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Abstract

The MortalitySmooth package provides a framework for smoothing count data in both
one- and two-dimensional settings. Although general in its purposes, the package is specif-
ically tailored to demographers, actuaries, epidemiologists, and geneticists who may be
interested in using a practical tool for smoothing mortality data over ages and/or years.
The total number of deaths over a specified age- and year-interval is assumed to be
Poisson-distributed, and P-splines and generalized linear array models are employed as a
suitable regression methodology. Extra-Poisson variation can also be accommodated.

Structured in an S3 object orientation system, MortalitySmooth has two main func-
tions which fit the data and define two classes of objects: Mort1Dsmooth and Mort2Dsmooth.
The methods for these classes (print, summary, plot, predict, and residuals) are also
included. These features make it easy for users to extract and manipulate the outputs.
In addition, a collection of mortality data is provided.

This paper provides an overview of the design, aims, and principles of MortalityS-
mooth, as well as strategies for applying it and extending its use.
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1. Introduction

In recent decades, advanced smoothing methods have been developed for analyzing and mod-
eling data when parametric forms for describing functions are unreasonably rigid. Developers
of statistical software have since implemented most of these methodologies, thereby broaden-
ing the user-base beyond the statistical circle.

These smoothing methods can be applied to demography in general, and to mortality anal-
ysis in particular. Mortality changes are crucial issues in various fields, and understanding
mortality development is a key factor in actuarial studies, as well as in epidemiology and
genetics.

http://www.jstatsoft.org/
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Because demography studies often use data on whole populations, mortality studies are com-
monly performed at an aggregate level of analysis. Moreover, mortality dynamics essentially
develop over both age and period in an eventual two-dimensional frame. Over the last two
centuries, researchers have sought to reduce the dimensionality of the mortality data using
both simple parametric functions and overparameterized models. See Forfar, McCutcheon,
and Wilkie (1988) and Girosi and King (2008) and the references given there.

Because mortality developments generally display regular patterns, using smoothing ap-
proaches is a more natural choice for analyzing mortality changes than imposing a model
structure. In this paper, we present a specific smoothing approach, P-splines, and an R pack-
age, which is tailored to model aggregate mortality data in both one- and two-dimensional
settings: MortalitySmooth (Camarda 2012).

Several methodologies have been proposed for smoothing both one- and two-dimensional data
structures. Smoothing methods for two-dimensional problems have, for example, been pro-
posed by Cleveland and Devlin (1988), who used a generalization of the “loess” methodology;
and by Dierckx (1993) and De Boor (2001), who employed a two-dimensional regression basis
as the Kronecker product of B-splines. Gu and Wahba (1993) and Wood (2003) fitted sur-
faces with thin plate splines. Other researchers have demonstrated that two-dimensional data
structures can be embedded in the framework of generalized additive models (GAMs, Hastie
and Tibshirani 1990).

Packages and functions for fitting such approaches are already available in R (R Development
Core Team 2012). The function loess in the stats package can fit locally polynomial surfaces,
while the locfit package (Loader 2010) can fit local regression and likelihood models. Multi-
variate functions for estimating splines are provided by the gss package (Gu 2012). Finally,
GAMs can be fitted using the mgcv package developed by Wood (2006).

An appealing methodology for smoothing data was developed using two-dimensional regres-
sion splines; specifically, B-splines with penalties, known as P-splines. Eilers and Marx (1996)
have dealt with unidimensional regression, while extensions for bivariate regression have been
presented in Eilers and Marx (2002b), Currie, Durban, and Eilers (2004, 2006) and Eilers, Cur-
rie, and Durban (2006). This approach can deal with aggregate data, which may be assumed
to be Poisson-distributed, although overdispersion can also be accommodated. Specifically,
an important property of P-splines is that they are based on linear regression and generalized
linear models (GLMs). This property makes it possible to avoid backfitting and knot selection
schemes, as described in Friedman and Silverman (1989) and Kooperberg and Stone (1991,
1992), and also allows for the easy computation of diagnostics. In addition, this approach
provides compact results useful for prediction, the computation of standard errors, and fast
cross-validation. Without going into details, in the following we will outline the reasons why
P-splines are suitable for use in mortality research. P-splines can be also fitted within the
R package mgcv, but in this paper we introduce a user-friendly tool for employing them in
the context of mortality analysis. In addition, we incorporated the generalized linear array
models (GLAMs) regression methodology, which can speed up the estimation procedure by
orders of magnitude relative to a direct evaluation (Currie et al. 2006).

The paper is structured as follows. A description of one- and two-dimensional P-splines is
provided in Section 2. Here we give a brief but thorough introduction to the method, and
provide key references for additional information. Information about the selection of the
smoothing parameters and about the case of overdispersed counts is also provided. From
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Section 3 onwards, we present the package itself. First, we demonstrate how users can select
the data that are included in the package. Examples that show the potential of the package
for smoothing counts over one- and two-dimensions are given in Section 4. Although most of
the package’s features can be used in either setting, we describe how to extrapolate, construct
confidence intervals, and account for overdispersion in the unidimensional case. In Section 4.2,
we illustrate interpolation and residuals in the 2D setting. The paper concludes with a critical
discussion of the methodology, its performance in the package, and its possible extensions.

2. Introduction to P-splines

While we can easily generalize this approach for any given Poisson-distributed data, here we
will formulate the model for mortality data. For a given population, at age i during year j,
the total number of deaths, Yij , follows a Poisson distribution, Yij ∼ P(Eij · µij) (Keiding
1990). The expected values are thus the product of exposures Eij and the hazard (or force of
mortality) µij . In large populations, the size of the exposure population is typically estimated
by averaging the population sizes at the beginning and at the end of the year. A fully non-
parametric estimate of this hazard can be obtained by computing the actual death rates at
the respective age and year: m̂ij = Yij/Eij .

For ease of manipulation and presentation, mortality data are commonly prepared as rectan-
gular arrays. For each age and calendar year, we have the number of deaths and the number
of exposures arranged in m×n matrices Y and E, respectively. The rows are indexed by age,
and the columns are indexed by year. Mortality data can be also viewed in one dimension,
such as age (year), by fixing a specific column-year (row-age). In this case, we will have a
vector of death counts, y, and exposures, e.

MortalitySmooth employs P-splines for smoothing this type of data. Eilers and Marx (1996)
developed a method which combines (fixed-knot) B-splines with a roughness penalty. Currie
et al. (2004) extended the initial idea to modeling and forecasting mortality, and a compre-
hensive study of the methodology was presented in Currie et al. (2006).

B-splines are bell-shaped curves composed of smoothly joined polynomial pieces of degree q.
The points on the horizontal axis at which the pieces merge together are called “knots.” We
will use equally spaced knots. For details on B-splines and related algorithms, see De Boor
(1978) and Dierckx (1993).

In the MortalitySmooth package, the function MortSmooth_bbase creates internally an equally-
spaced B-splines basis over the abscissa of the data. The function reproduces an algorithm
presented by Eilers and Marx (2010) using differences of truncated power functions. In the
section “Splines and knots,” Eilers and Marx (2010) considered the possibility that small er-
rors might be made when using this algorithm, and produced small negative entries in the
basis. However, these mistakes are typically very small as a result of computational advances
in present-day computers, and, in their example, the largest negative entry was of the order
of 10−10 which is practically irrelevant in a mortality analysis.

A B-splines basis of degree q = 3 with 10 internal knots evaluated over 100 random points in
[0, 1] is given by

R> library("MortalitySmooth")

R> x <- runif(100)
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R> B3 <- MortSmooth_bbase(x = x, xl = min(x), xr = max(x),

+ ndx = 10, deg = 3)

The number of columns of a B-splines basis, k, is the sum of the the number of internal knots
and the associated polynomial degree q. In our example: k = 10 + 3 = 13.

2.1. P-splines in one dimension for Poisson data

In the one-dimensional case, equally-spaced B-splines can be used as a regression basis: B ∈
Rm×k. The coefficients, a, will be associated with each B-spline. We then model our Poisson
data as follows:

η = ln(E(y)) = ln(e) + ln(µ) = ln(e) +Ba , (1)

where η is the linear predictor, and, when dealing with Poisson data, a logarithm is used as
a link-function. The logarithm of the exposures, ln(e), is commonly called an offset.

Following the approach outlined by Eilers and Marx (1996), we can choose a relatively large
number of B-splines with an additional penalty, P , on the regression coefficients. Whereas
the large basis would result in over-fitting, the penalty forces the coefficients to vary more
smoothly.

A penalized version of the iteratively reweighted least squares (IRWLS) algorithm yields
estimates of the coefficients a:

(B>W̃B + P )ã = B>W̃ z̃ , (2)

where z̃ = (y−eµ̃)/(eµ̃)+Bã, which is defined as a working dependent variable. B is again
the regression matrix, µ̃ and ã denote current approximations to the solution, and W̃ is a
diagonal matrix of weights. In the case of Poisson errors, as in Equation 3.7 in Currie et al.
(2004), W̃ = diag(eµ̃).

The only departure from the standard procedure for fitting GLM with B-splines as regressors
is the modification of B>W̃B by P . This penalty is weighted by a positive regularization
parameter λ, and is given by

P = λD>d Dd . (3)

The matrix Dd constructs dth order differences of the coefficients: Dd a = ∆da .

MortalitySmooth computes Dd as the (repeated) differencing of the identity matrix. For
example, D1 and D2 are constructed as follows, when k = 5:

R> D1 <- diff(diag(5), diff = 1)

R> D2 <- diff(diag(5), diff = 2)

By changing λ, the smoothness can be tuned. Hence, the parameter λ controls the trade-off
between smoothness and model fidelity. A higher λ will lead to a higher penalty term, and,
consequently, to smoother fitted values. Conversely, with a small λ, the unpenalized term
gains importance and the smooth curve will be closer to the data.

It is noteworthy that, as pointed by Eilers and Marx (2002a), (i) the number of equally spaced
knots does not matter much, provided enough of them are chosen to ensure greater flexibility
than is needed, and that (ii) the choice of the degree of the polynomials q for constructing
the B-splines is almost irrelevant in the case of P-spline models.
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2.2. P-spline models for two-dimension mortality data

In order to model mortality data in arrays, we will seek to construct a basis for a two-
dimensional regression with local support analogous to B in Equation 2. A detailed descrip-
tion of this generalization can be found in Eilers and Marx (2002b); Currie et al. (2004, 2006);
Eilers et al. (2006).

For the purposes of regression, we assume that the data are arranged as a column vector; that
is, y = vec(Y ). Accordingly, we arrange the matrices of exposures E so that e = vec(E).
Let Ba, m× ka be the regression matrix of B-splines based on age xa, and, similarly, let By,
n×ky be the regression matrix of the explanatory variable for year xy. The regression matrix
for our two-dimensional model is the Kronecker product

B = By ⊗Ba . (4)

As in the unidimensional case, the number of columns in Ba and By is related to the number
of knots chosen for the B-splines. Following the same concept as in the unidimensional case,
we will use a relatively large number of equally spaced B-splines over both domains.

In a regression setting, the matrix B has an associated vector of regression coefficients a of
length kaky. Therefore, the model can be written as

η = ln(E(y)) = ln(e) + ln(µ) = ln(e) + (By ⊗Ba)a = ln(e) +Ba. (5)

If we arrange the elements of a in a ka × ky matrix A, where a = vec(A), Equation 5 can be
written as

ln(E(Y )) = ln(E) + ln(M) = ln(E) +BaAB
>
y . (6)

From the definition of the Kronecker product, we can independently penalize the coefficients
over the rows and columns of A. Let the difference matrices, Da and Dy, act on the columns
and rows of A, respectively. The penalized IRWLS in Equation 2 can still be used with the
following two-dimensional penalty:

P = λa(Iky ⊗D>aDa) + λy(D
>
y Dy ⊗ Ika) , (7)

where λa and λy are the smoothing parameters used for age and year, respectively. Ika and
Iky are identity matrices of dimension ka and ky, respectively. More details can be found in
Currie et al. (2004).

As in the unidimensional setting, B-splines provide enough flexibility to capture surface trends.
The additional penalty reduces the effective dimension, leading to a rather parsimonious model
with a smoothed, fitted surface. Another advantage of using two-dimensional P-splines is that
doing so allows us to choose different smoothing parameters over ages and years, which makes
the model very flexible.

2.3. A generalized linear array model approach

In theory, we can use Equation 2 to estimate a in a two-dimensional setting as well. This is
possible when the problems are of moderate size. But with mortality data, the problems can
be relatively large. For instance, with 90 ages and 70 years, and assuming Ba has 90/5 = 18
and By has 70/5 = 14 columns, the regression matrix would be (m ·n)×(ka ·ky) = 6300×252.
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Even the computation of B>W̃B is challenging in the context of two dimensional smoothing
and, in general, the penalized IRWLS algorithm quickly runs into storage and computational
difficulties.

In order to overcome these issues, Eilers et al. (2006) and Currie et al. (2006) propose an
algorithm that takes advantage of the special structure of both the data as an rectangular
array, and the model matrix as a tensor product. They call their model the generalized linear
array model, or GLAM.

This concept can be illustrated in the computation of µ = vec(M) in two dimensions, as in
Equation 6, in which the matrix of force of mortality is constructed without using the large
Kronecker product basis. In this manner, we save both space and time.

In a similar fashion, the inner product for the two-dimensional setting in Equation 2 can be
obtained efficiently.

We define the function G(X) as the row tensor function for a n× c matrix X:

G(X) = [X ⊗ 1>] · [1> ⊗X], n× c2 ,

where 1 is a vector of 1s of length c.

Following Equation 2.6 in Currie et al. (2006), the inner products in Equation 2 for a two-
dimensional setting can then be written as

(By ⊗Ba)
>W (By ⊗Ba) ≡ G(Ba)

> W̆ G(By) , (8)

where W̆ is the m× n matrix of weights, i.e., vec(W̆ ) = diag(W ).

Equation 8 has two important computational properties. On the right-hand side, we avoid
the computation of the potentially large matrix B = By ⊗ Ba. Moreover, the number of
multiplications on the right-hand side is much smaller than the number on the left-hand side.

Section 4 in Currie et al. (2006) provides details of the rearranging and the re-dimensioning
of the right-hand side that are required to give the left-hand side exactly. This procedure is
done internally in MortalitySmooth. In the following, we present a small example in which the
computing times and the object sizes are compared for the direct and the GLAM algorithms:
the left-hand and the right-hand sides of Equation 8.

First we create artificial axes and associated B-spline bases:

R> a <- 1:50

R> m <- length(a)

R> y <- 1:100

R> n <- length(y)

R> Ba <- MortSmooth_bbase(x = a, xl = min(x), xr = max(x), ndx = 7, deg = 3)

R> ka <- ncol(Ba)

R> By <- MortSmooth_bbase(x = y, xl = min(y), xr = max(y), ndx =17, deg = 3)

R> ky <- ncol(By)

R> w <- runif(m * n)

The last line creates a vector of pseudo-weights. The direct computation of the inner product
in Equation 2 could be as follows, with the related computing time:

R> system.time(tBWB1 <- t(B) %*% (w * B))
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user system elapsed

0.184 0.012 0.195

The GLAM algorithm requires the construction of each tensor product of the right-hand side
of Equation 8, as well as the arrangement of the weights in W̆ . Moreover, in MortalitySmooth
the function MortSmooth_BWB recovers the left-hand side by re-dimensioning these elements,
which is a very efficient operation.

R> Ba1 <- kronecker(matrix(1, ncol = ka, nrow = 1), Ba)

R> Ba2 <- kronecker(Ba, matrix(1, ncol = ka, nrow = 1))

R> Ga <- Ba1 * Ba2

R> By1 <- kronecker(matrix(1, ncol = ky, nrow = 1), By)

R> By2 <- kronecker(By, matrix(1, ncol = ky, nrow = 1))

R> Gy <- By1 * By2

R> Wbreve <- matrix(w, m, n)

R> system.time(tBWB2 <- MortSmooth_BWB(Ga, Gy, ka, ky, Wbreve))

user system elapsed

0.004 0.000 0.005

The CPU times reported were estimated on a 2.0 GHz portable PC with an Intel Core 2
Duo T6400 processor and 4 GB of RAM. The GLAM algorithm clearly outperforms the plain
procedure in terms of computing speed. Furthermore, we extracted and compared the sizes
of the objects used in each approach, and found that the GLAM approach greatly reduces
memory requirements by orders of magnitude:

R> size1 <- object.size(list(B, w))

R> size2 <- object.size(list(Ga, Gy, ka, ky, Wbreve))

R> size1/size2

20.0775316139601 bytes

2.4. Smoothing parameter selection

In a P-spline approach, the trade-off between parsimony and accuracy is clearly driven by the
choice of the smoothing parameter(s). We need to balance the ability to reproduce observed
data and to achieve small effective dimensions.

In a GLM framework, a common measure of discrepancy is the deviance. For Poisson counts,
it takes the following form:

Dev = 2
∑{

y · ln
(
y

ŷ

)}
(9)

On the other side, we define the effective dimension, or the degrees of freedom of the model
to be

ED = tr(H) . (10)
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We refer the reader to Hastie and Tibshirani (1990, p. 52) for a fuller treatment of this problem.
The hat-matrix H can be computed from the estimated linearized smoothing problem in
Equation 2:

H = B(B>ŴB + P )−1B>Ŵ , (11)

where Ŵ contains the weights of the last iteration after convergence. By fixing a value of
λ or a combination (λa, λy), both deviance and the effective dimension can be computed in
both a one-dimensional and in a two-dimensional setting.

In a P-spline framework, we need some way of choosing an“optimal”value(s) for the smoothing
parameter(s) which can balance bias and variance in the model construction. Eilers and Marx
(1996, 2002a) have suggested using the Akaike information criterion (AIC, Akaike 1973). The
expression for AIC is given by

AIC(λ) = Dev + 2 · ED . (12)

Alternatively, one can use the Bayesian information criterion (BIC, Schwarz 1978), which
penalizes model complexity more heavily than AIC. In a two-dimensional setting,

BIC(λa, λy) = Dev + ln(m · n) · ED . (13)

Once the smoothing parameter(s) has been selected, the system of equations described in
(2) has a unique solution. As has already been pointed out by Currie et al. (2004, p. 285), a
stiffer fit, which is given by the BIC, is preferred when modeling mortality data with P-splines.
Therefore, MortalitySmooth will have this criterion as the default option.

In practice, based on a given information criterion, two functions are employed for search-
ing for the optimal smoothing parameter in the one-dimensional setting, and the (λa, λy)
combination used in the two dimensional setting: Mort1Dsmooth_optimize and
Mort2Dsmooth_optimize.

Instead of conducting a plain grid-search over a wide range(s) of possible smoothing param-
eter(s), these functions make use of cleversearch from the R package svcm (Heim 2009).
This approach efficiently explores a one(two)-dimensional space of the smoothing parame-
ter(s), optimizing each smoothing parameter in turn, moving at most one grid step up or
down.

The smoothing parameter selection is made in two separate steps, and, in a unidimensional
setting, two arguments control this optimization procedure: TOL2 and RANGE. The former
argument controls the difference between the two adjacent smoothing parameters in the grid
search, and by default is set to 0.5 on a logarithmic scale. RANGE contains the range of
smoothing parameters in which the grid search is applied, and is set by default to (10−4, 106),
taken on the log-scale.

First, we search over the complete RANGE using a rough grid (four times TOL2) and the median
of RANGE as an initial value of λ. Next, the procedure searches in the restricted range around
the sub-optimal smoothing parameter, using a finer grid defined by TOL2. This procedure
allows us to find a precise smoothing parameter in an efficient manner: we do not explore
the full range of possible λ values, moving at most one grid step up or down. Furthermore,
the two-step routine reduces the risk of finding a sub-optimal smoothing parameter. In two-
dimensional cases, the controlling arguments are defined over both domains.
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The default ranges and tolerance levels have been proven to be adequate for many applica-
tions in mortality research. Nevertheless, two issues could arise when working with objective
information criteria: (1) the information criterion may not present a clear minimum, and (2)
the information criterion may not provide reasonable outcomes. The optimization procedure
in MortalitySmooth attempts to reduce the risk associated with this first problem by eval-
uating the selected criterion over many values of the smoothing parameter(s). In the latter
case, neither BIC nor AIC might be suitable, mainly because the data present features that
do not fit with the assumptions of these information criteria, such as strong seasonal effects.
As a valid alternative, the user could design a personal grid search, or compute a specific
information criterion that is more in accordance with the data in hand.

2.5. Overdispersed Poisson data

We frequently find that the Poisson assumption, which was mentioned above, can be relatively
strong in demographic and actuarial data, and that, in particular situations, the presence
of overdispersion cannot be neglected. Breslow (1984) and Cameron and Trivedi (1986)
are among those who have recognized that counts may display extra-Poisson variation, or
overdispersion, relative to a Poisson model.

However, the P-spline methods can be modified and adapted to this new situation. Replacing
the classic Poisson assumption, we allow the variance to be adjusted as a function of the
mean. Specifically, we have the variance proportional to the mean. The additional dispersion
parameter will then be the constant of proportionality. In the formula, we have for the
unidimensional case

Var(y) = ψ2 v(eµ) .

where v(·) is the variance function and ψ2 is the dispersion parameter. For the simple Poisson
case, we would have v(eµ) = eµ and ψ2 = 1.

Using this generalization, the penalized IRWLS algorithm is modified and a quasi-likelihood
estimation is performed. The classic works in this area are by McCullagh and Nelder (1989)
and Cameron and Trivedi (1998). For a recent treatment from a P-splines perspective, we
refer the reader to Djeundje and Currie (2011).

It is worth pointing out here that, regardless of whether maximizing the penalized likelihood
with B-splines basis leads to the system of equations in (2), the penalized quasi-likelihood
version is given by

(B>W̃ψ2B + P )ã = B>W̃ψ2 z̃ (14)

where the diagonal weight matrix is scaled by the dispersion parameter ψ2

W̃ψ2 = W̃ /ψ2 .

Since the working variable z̃ is not modified by ψ2, the overdispersion parameter will have
an effect on the estimated coefficients a. For instance, with overdispered data, i.e., ψ2 > 1,
the resulting fitted values will be smoother.

In a one-dimensional setting and for a fixed smoothing parameter, the dispersion parameter
can be computed as follows:

ψ2 =
Dev

m− ED
, (15)
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but an information criterion is needed for estimating the smoothing parameter. Replacing
the log-likelihood in both AIC and BIC with the quasi-likelihood, we obtain:

AIC =
Dev

ψ2
+ 2 · ED BIC =

Dev

ψ2
+ ln(m) · ED . (16)

For a two-dimensional setting, m is substituted with m · n in both Equation 15 and Equa-
tion 16. It is easy to see that, the larger the ψ2, the smaller the first term in both AIC and
BIC is. Such a result clearly leads to smoother outcomes.

In MortalitySmooth, overdispersion can be accommodated. In this case, the smoothing pa-
rameter(s) is first optimized with ψ2 = 1, and then the dispersion parameter is computed by
Equation 15. Given the updated ψ2, a criterion from Equation 16 is used for re-optimizing
the smoothing parameter(s). This sequence of steps continues until convergence. Details of
this iterative procedure are given in Section 3 of Djeundje and Currie (2011).

3. Data selection

As was mentioned above, P-splines are suitable for smoothing any kind of Poisson-distributed
data. However, MortalitySmooth is specifically tailored to demographers and actuaries con-
ducting mortality research. The package therefore provides examples and some data from
this area. The user can supply external data, as well, provided they are conformable.

Data from four countries (Denmark, Japan, Sweden, and Switzerland) are contained in the
object HMDdata. The data are taken from the Human Mortality Database (2011). Matrices
of age-specific population, deaths, exposures, and death rates are provided.

For a given country, type of data, and sex, the data have the same number of rows (ages 0
to 110), whereas the ranges of years are subject to availability. HMDdata are accessible either
manually or simply through using the function selectHMDdata. In the following, we present
the latter approach to selecting the death rates of Danish females from ages 50 to 100, and
from 1950 to 2009:

R> x <- 50:100

R> y <- 1950:2009

R> mydata <- selectHMDdata(country = "Denmark", data = "Rates",

+ sex = "Females", ages = x, years = y)

We create an HMDdata object: an indexed matrix with its own attributes. Within the package,
these object mydata can be directly plotted as follow:

R> mydata

1950 1951 1952

50 0.005733326 0.005169963 0.005274262 [...]

51 0.005738661 0.005425875 0.004788330 [...]

[...]

attr(,"country-data-sex")

[1] "Denmark-Rates-Females"

attr(,"class")

[1] "HMDdata"
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Figure 1: Actual death rates, logarithmic scale. Denmark, females, ages 50–100, 1950 to 2009.

R> plot(mydata, cut = 10, col.regions = terrain.colors(11))

The function plot will recognize the dimension(s) of the data and reproduce either a simple
plot or a shaded contour map for one- and two-dimensional data, respectively. By default,
while death counts are plotted on the original scale, death rates are presented on a log-scale.
Figure 1 presents the outcome for the Danish data previously extracted.

4. Smoothing with MortalitySmooth

The main functions for smoothing in MortalitySmooth are Mort1Dsmooth and Mort2Dsmooth;
they are designed to smooth one- and two-dimensional Poisson counts, respectively. They are
both implemented in an object-oriented design using the standard S3 paradigm.

Internally, these functions use rich B-splines bases for ensuring flexibility (one knot every five
data-points). By default, polynomials with q = 3 are chosen for constructing B-splines and
the penalty matrix has d = 2. However, the number and the degree of the B-splines, as well
as the order of differences, can be adjusted by the user.
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4.1. Smoothing counts in one dimension

The function Mort1Dsmooth returns an object of class Mort1Dsmooth, which is a P-splines
smoothing of the input data of a degree and order (eventually) fixed by the user.

The main arguments are an abscissa of the data (x), a set of count response variable values
series (y), and the offset term (offset). In a mortality context, the first argument would be
either the ages or the years under study. Death counts would be the response, y. As shown
in Section 2.1, the offset is the logarithm of the exposure population.

To provide an example, we smooth mortality data from Danish males at age 60 from 1945 to
2000:

R> x <- 1945:2000

R> y <- selectHMDdata("Denmark", "Deaths", "Males", ages = 60, years = x)

R> e <- selectHMDdata("Denmark", "Exposures", "Males", ages = 60, years = x)

R> fit1D <- Mort1Dsmooth(x = x, y = y, offset = log(e))

R> fit1D

Call:

Mort1Dsmooth(x = x, y = y, offset = log(e))

Number of Observations : 56

Effective dimension : 6.358

(Selected) smoothing parameter : 316.23

Bayesian Information Criterion (BIC): 98.671

The object fit1D contains several attributes, and little information can be printed directly;
e.g., the optimal λ is equal to 316.23, and we model the 56 observations using a smooth-
ing function with an effective dimension of 6.358. Internally, the object contains additional
information which could be directly extracted, such as the following deviance:

R> fit1D$deviance

[1] 73.0779

Given such figures, the user could manually compute the overdispersion parameter ψ2 from
Equation 15: 73.0779/(56− 6.358) = 1.472098. However, this value, along with others, could
be read directly from the resulting summary of the model:

R> summary(fit1D)

Call:

Mort1Dsmooth(x = x, y = y, offset = log(e))

Number of Observations : 56

Effective dimension : 6.358

(Selected) smoothing parameter : 316.23

Bayesian Information Criterion (BIC) : 98.671
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Akaike's Information Criterion (AIC) : 85.794

(Estimated) dispersion parameter (psi^2): 1.47

Residuals:

Min 1Q Median 3Q Max

-2.07555 -0.97930 -0.08075 0.75848 2.75227

Settings and control:

number of B-splines : 14

degree of the B-splines: 3

order of differences : 2

convergence tolerance : 1.6507e-09

As noted above, Mort1Dsmooth uses BIC as the default information criterion for selecting
the smoothing parameter. The user can adopt alternative approaches using the argument
method:

R> fit1Daic <- Mort1Dsmooth(x = x, y = y, offset = log(e), method = 2)

R> fit1Dsub <- Mort1Dsmooth(x = x, y = y, offset = log(e), method = 3,

+ lambda = 10000)

R> fit1Dfix <- Mort1Dsmooth(x = x, y = y, offset = log(e), method = 4,

+ df = 8)

The model fit1Daic optimizes λ by AIC (method = 2). For the object fit1Dsub, λ = 10000
is subjectively provided by the user (method = 3). Additionally, Mort1Dsmooth can select an
optimal smoothing parameter for a given value of ED: this is the case for fit1Dfix, in which
we opt for a smooth function with ED equal to eight.

The MortalitySmooth package provides several support functions for a Mort1Dsmooth object.
For instance, we can directly plot fit1D, obtaining the actual death rates on a log-scale along
with the fitted rates1:

R> plot(fit1D)

We can add to this plot log-rates from fit1Daic, fit1Dsub, and fit1Dfix, which can be
extracted directly (see Figure 2):

R> lines(x, fit1Daic$logmortality, col = 3, lwd = 2)

R> lines(x, fit1Dsub$logmortality, col = 4, lwd = 2)

R> lines(x, fit1Dfix$logmortality, col = 5, lwd = 2)

R> legend("bottom", c("Actual", "BIC", "AIC", "Subjective", "Fix df=8"),

+ col = 1:5, pch = c(1, -1, -1, -1, -1), lwd = c(1, 2, 2, 2, 2),

+ lty=c(0, 1, 1, 1, 1), bty = "n")

Figure 2 shows how well P-splines are able to capture the development of mortality over time.
Moreover, the degree of smoothness selected by the BIC certainly makes it possible to be

1Mortality development is commonly described by log-rates. An alternative option is given in
plot.Mort1Dsmooth.
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Figure 2: Actual and fitted death rates from a P-spline approach, logarithmic scale. Different
criteria for selecting λ. Denmark, males, age 60, 1945 to 2000. The outcomes from mgcv are
also plotted.

reasonable faithful to the data (see how well the slight increase in mortality in the 1960s and
1970s is portrayed), without leading to an overestimation of small fluctuations, which are
likely due to randomness.

In Figure 2, we also plot the log-mortality from analogous models fitted with mgcv (Wood
2006). Given the same number of B-splines, we use the default GCV/UBRE criterion and the
REML algorithm to select the degree of smoothness. The code for fitting such models is given
by

R> library("mgcv")

R> kk <- fit1D$ndx + fit1D$deg

R> mgam <- gam(y ~ offset(log(e)) + s(x, bs = "ps", k = kk),

+ family = "poisson")

R> mgam2 <- gam(y ~ offset(log(e)) + s(x, bs = "ps", k = kk),

+ family = "poisson", method = "REML")

Whereas the default criterion in mgcv leads to estimates similar to P-splines with AIC, the
log-mortality fitted by the REML optimization is rather similar to the P-splines with BIC. To
plot these outcomes in R:

R> lines(x, log(fitted(mgam)/e), lwd = 2, lty = 2, col = "green4")

R> lines(x, log(fitted(mgam2)/e), lty = 2, lwd = 2, col = "red4")

R> legend("bottomleft", c("GCV/UBRE", "REML"), col = c("green4", "red4"),

+ title = "library(\"mgcv\")", lwd = c(2, 2), lty = c(2, 2), bty = "n")
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rithmic scale. λ selected by BIC based on the actual data. Different values of d. The 95%
confidence intervals are included for d = 2. Denmark, males, age 60, 1945 to 2000. The actual
death rates from 2001 to 2009 are depicted with dark black dots.

Extrapolation

The function predict.Mort1Dsmooth can be used to compute standard errors for response
and log-rates from Mort1Dsmooth objects. Furthermore, this function allows us to forecast
mortality (see Currie et al. 2004). The following example takes the model previously fitted
to Danish males at age 60 and uses it to produce forecasts to 2020, as well as to compute
standard errors for the whole period.

R> x.new <- x[1]:2020

R> fit1Dfor <- predict(fit1D, newdata = x.new, se.fit = TRUE)

Alternatively, the user could employ the argument w and an augmented dataset to manually
forecasting mortality. It should be emphasized that the order of difference for the penalty
term is crucial when P-splines are employed for extrapolating past trends. Specifically, the
B-spline coefficients form a polynomial sequence of degree d−1 in the future trend; i.e., using
the default order of difference d = 2, we get a linear extrapolation of the last two B-spline
coefficients. This induces an approximate log-linear extrapolation of the death rates. We
note that extrapolation depends on the spacing of the knots, with smaller spacing leading to
a more volatile extrapolation.

To acknowledge differences when forecasting using a diverse order of difference, we estimate
and extrapolate the same data using d = 1 and d = 3; i.e., constant and quadratic polynomials
for the future log-rates, respectively.
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R> fit1D3d <- Mort1Dsmooth(x = x, y = y, offset = log(e), pord = 3)

R> fit1D1d <- Mort1Dsmooth(x = x, y = y, offset = log(e), pord = 1)

R> fit1Dfor3d <- predict(fit1D3d, newdata = x.new)

R> fit1Dfor1d <- predict(fit1D1d, newdata = x.new)

The outcomes are presented in Figure 3. See the following paragraph on confidence intervals.

Confidence intervals

In a P-splines approach, standard errors can be obtained using the hat-matrix, and a predict

function can be used for extracting them from a Mort1Dsmooth object. In the following, we
extract the standard errors from the object fit1Dfor, and we plot actual death rates along
with the fitted and forecasted ones and a 95% confidence interval. The outcomes are presented
in Figure 3, along with the forecasted death rates from P-splines with d = 1 and d = 3. We
use the 1945–2000 data and predict the 2001–2020 rates. As validation, we also plot the
actual rates from 2001 to 2009.

R> plot(x, log(y/e), xlim = range(x.new),

+ ylim = range(fit1Dfor$fit, log(y/e)))

R> lines(x.new, fit1Dfor$fit, lwd = 2, col = 2)

R> lines(x.new, fit1Dfor$fit + 2 * fit1Dfor$se.fit, lty = 2, col = 2)

R> lines(x.new, fit1Dfor$fit - 2 * fit1Dfor$se.fit, lty = 2, col = 2)

R> lines(x.new, fit1Dfor3d, lwd = 2, col = 3)

R> lines(x.new, fit1Dfor1d, lwd = 2, col = 4)

R> legend("bottom", c("Actual", "d=2", "d=3", "d=1"), lty = c(0, 1, 1, 1),

+ col = 1:4, pch = c(1, -1, -1, -1), lwd = c(1, 2, 2, 2), bty = "n")

Overdispersion

The level of overdispersion in the data for an optimal smoothing parameter is given by the
value of ψ2, Equation 15. From a Mort1Dsmooth object we already know the value: 1.47.

A value of ψ2 larger than one is a sign of the presence of overdispersion. We can account for
such a phenomenon simply by setting the argument overdispersion equal to TRUE:

R> fit1Dover <- Mort1Dsmooth(x = x, y = y, offset = log(e),

+ overdispersion = TRUE)

As was pointed out in Section 2.5, smoother results are obtained when we account for overdis-
persion. In other words, a ψ2 > 1 within a quasi-likelihood approach for fitting P-splines leads
to a larger smoothing parameter. In the case of the Danish data, we more than triple the
parameter λ, and, consequently, decrease the effective dimension:

R> c(fit1D$lambda, fit1D$df)

[1] 316.227766 6.357878

R> c(fit1Dover$lambda, fit1Dover$df)

[1] 1000.000000 4.819838
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4.2. Smoothing counts in two dimensions

In order to smooth mortality over both ages and years, another function needs to be employed:
Mort2Dsmooth. As with the uni-dimensional approach, this function returns an object of class,
Mort2Dsmooth, which can be used by support functions. In this generalization, the user needs
to provide a series of ages and years, as well as two matrices with deaths and exposures. The
arguments are named x for the abscissa (commonly, the ages), y for the ordinate (here, the
years), and Z for the matrix of death counts over age and years. In this case as well, the log
of the matrix of the exposure population is needed as an offset in the model.

In the following example, we extract deaths and exposures for Swedish females, and smooth
these data over age and time. The optimal combination of the two smoothing parameters
(see Section 2.4) is by default obtained by minimizing the BIC.

R> x <- 10:100

R> y <- 1930:2010

R> Y <- selectHMDdata("Sweden", "Deaths", "Females", ages = x, years = y)

R> E <- selectHMDdata("Sweden", "Exposures", "Females", ages = x, years = y)

R> fit2D <- Mort2Dsmooth(x = x, y = y, Z = Y, offset = log(E))

R> fit2D

Call:

Mort2Dsmooth(x = x, y = y, Z = Y, offset = log(E))

Number of Observations : 7371

of which x-axis : 91

y-axis : 81

Effective dimension : 131.0869

(Selected) smoothing parameters

over x-axis: 316.23

over y-axis: 31.623

Bayesian Information Criterion (BIC): 11475

Additional information on the fitted object can be found in the summary. Also, in the two-
dimensional setting, the function predict could be used for computing the confidence interval,
as well as for predicting values. A shaded contour map of both the actual and the smooth
death rates is automatically produced by plotting the Mort2Dsmooth object:

R> plot(fit2D, palette = "terrain.colors")

Figure 4 presents the outcome using the color palette terrain.colors. Other color options
are available in ?plot.Mort2Dsmooth . Again, P-splines demonstrate their ability to retain
the signals coming from important mortality changes, and, at the same time, to leave out
random noise. This feature is particularly useful in a two-dimensional setting: the option to
borrow information from neighboring years allows the model to capture the actual trends in
the presence of large random fluctuations. Smoothing small populations and cause-specific
mortality is easier when this feature is used.

Residuals
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Figure 4: Actual and fitted death rates from a P-spline approach, logarithmic scale. λa and
λy selected by BIC. Sweden, females, ages 10–100, 1930 to 2010.

The function residuals can be applied to a Mort2Dsmooth object as well as in the uni-
dimensional setting. Deviance, Pearson, Anscombe and working residuals can be extracted:

R> res2D <- residuals(fit2D, type = "pearson")

Residuals can be plotted over the predictors of the model. This is done in Figure 5, in which
residuals from a two-dimensional P-splines fit for the Swedish example are plotted over age
and time. This two-dimensional representation makes it possible to discern where the model
cannot capture the actual data. When applied to mortality data, this type of plot may reveal
peculiar period shocks and cohort effects. For instance, in Figure 5 most residuals are around
the value of zero, without showing any particular systematic features. The only exceptions
are the high values during World War II, during which the model overestimates the actual
death rates (the negative residuals are represented by dark-pink). In R, this figure is produced
by:

R> res.grid <- expand.grid(list(x = x, y = y))

R> res.grid$res <- c(res2D)

R> levelplot(res ~ y * x, data = res.grid,

+ at = c(min(res2D), -2, -1, 1, 2, max(res2D)))
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Figure 5: Pearson residuals over ages and years for death rates modeled with 2D smoothing
with P-splines. λa and λy selected by BIC. Sweden, females, ages 10–100, 1930 to 2010.

Interpolation

The weights within the estimation procedure are by default all equal to one. A modification
of this argument is allowed, and can be used for extrapolation as well as interpolation. Here,
we present an example in which we randomly assign zero-weights to about 80% of the data;
i.e., we interpolate the complete surface using only one-fifth of the available information.

R> m <- length(x)

R> n <- length(y)

R> set.seed(1)

R> whi0 <- sample(x = 1:(m * n), size = 5900)

R> W <- matrix(1, m, n)

R> W[whi0] <- 0

R> fit2Dint <- Mort2Dsmooth(x = x, y = y, Z = Y, offset = log(E), W = W)

Warning message:

Interpolation and/or extrapolation is taking place

The warning message informs the user that part of the weights is set equal to zero; i.e.,
interpolation and/or extrapolation are taking place with the estimation procedure. The func-
tion predict.Mort2Dsmooth can also be used for interpolating mortality over ages and/or
years when a fitted object is already available. Likewise, in the extrapolation example, the
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Figure 6: Actual and fitted death rates from a 2D smoothing with P-splines over ages for
selected years, logarithmic scale. λa and λy selected by BIC computed on less than 20% of
actual data (randomly chosen). Sweden, females, ages 10–100, 1930 to 2010.

power of penalties becomes clearly visible when interpolating: the B-spline coefficients lead to
polynomial sequences of degree 2d−1, which means cubic interpolation for the default d = 2.

Instead of a shaded contour map, we present the outcomes by plotting a series of (actual and
fitted) death rates over age for selected years. We replace the actual rates with zero-weights
with NA, since the estimation procedure did not take into account this piece of information:

R> lmx.hat <- fit2Dint$logmortality[, c(1, 27, 54, 81)]

R> lmx.act0 <- log(Y/E)

R> lmx.act0[whi0] <- NA

R> lmx.act <- lmx.act0[,c(1,27,54,81)]

R> matplot(x, lmx.hat, type = "l", lty = 1, ylab = "log-mortality")

R> matpoints(x, lmx.act, pch = 1)

R> legend("topleft", legend = y[c(1, 27, 54, 81)], col = 1:4,

+ pch = 1, lty = 1)

Figure 6 clearly shows that P-splines are capable of reconstructing mortality developments
fairly well using less than 20% of the information from the original data.

5. Conclusions and outlook

In this paper, we present an R package for smoothing mortality using a P-spline approach:
MortalitySmooth. While the routines can be applied to any Poisson-distributed data, the
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emphasis is on mortality data, and the package is structured as a user-friendly tool for de-
mographers, actuaries, epidemiologists, and geneticists who deal with mortality research.

Smoothing death counts is crucial in many demographic analyses, and the outcomes of
smoothing methods can be exploited for studies that involve changes in mortality rates, age-
structure decompositions, and the construction of continuous life-tables.

We have outlined several reasons for choosing P-splines in this setting. In general, greater
flexibility is provided when there are a relatively large number of B-splines in the basis, while
a reduction of the effective dimension is neatly produced by an additional penalty on the
coefficients of the B-splines. In our mortality analysis, we modeled directly the death counts
which are distributed as Poisson in a single age-year interval. Because P-splines can be seen
as a generalization of linear regression, this method is useful for smoothing mortality trends.
We have also demonstrated that this methodology allows for a comprehensive analysis of the
mortality developments over both ages and time with the construction of a two-dimensional
basis.

The MortalitySmooth package offers two main functions: Mort1Dsmooth and Mort2Dsmooth

for fitting data over one- and two-dimensional settings. A user needs to provide only a few
arguments for a default outcome: the death counts, the eventual exposure population, and the
domain(s) over which the data are collected. Additional arguments can be used for setting
features of the B-spline bases and the penalty term. Nevertheless, it is known that, for a
P-spline approach, such choices make little difference. The only exception is the order of
difference in cases of interpolation and extrapolation (see Eilers and Marx 2010).

Different criteria for selecting the degree of smoothness in the model are available. Additional
support functions help the user to extract and plot outputs, as well as to compute confidence
intervals and residuals from fitted objects. Extrapolation and interpolation are also allowed
using predict functions. In addition, although not shown here, weights can be used to analyze
mortality over an age-cohort grid. The user would first need to re-arrange both the deaths
and the exposures into suitable matrices, and to construct weights of zero for uncompleted
cohorts. Then the package would smooth this structure, assuming smoothness over ages and
cohorts. Richards, Kirkby, and Currie (2006) have shown that this structure may lead to a
better fit than models based on age and period. Future work will be done that includes the
age-cohort approach directly as an argument in the main functions.

In a relational model framework, different populations can be modeled in terms of their
distances from a reference population. Biatat and Currie (2010) present a new approach
for jointly modeling several populations, allowing for the comparison and classification of
mortality in different countries. This model is embedded in the GLAM structure, and we are
currently developing an extension of the presented package to incorporate this methodology.

Human mortality generally increases quite smoothly after about age 10, but it shows a steep
decline between birth and this age due to infant and child mortality. This pattern is also
observed in many other species, and global smoothers over the whole age range do not produce
satisfactory outcomes. Camarda, Eilers, and Gampe (2010) present an alternative solution
starting from a P-spline approach. Moreover, Kirkby and Currie (2010) have proposed a
smoothing model that successfully deals with another specific feature of mortality: period
shocks, such as wars, flu epidemics, hot summers, or cold winters. We plan to incorporate
into the package these approaches for infant mortality and period shocks.

On the computational side, the last two model extensions can benefit from the implementa-
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tion of sparse matrix methods within the GLAM algorithm. We plan to accommodate such
methodology within MortalitySmooth. We also intend to include additional support func-
tions, and, to provide a more general perspective, other distributions from the exponential
family; e.g., binomial and gamma. This revised package will thus be seen as a tool that can
be used for estimating generalized linear array models in a comprehensive framework.
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