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Université Paris VII

e-mail: tankov@math.jussieu.fr

(corresponding author)

Columbia University Center for Financial Engineering
Financial Engineering Report No. 2007-10

http://www.cfe.columbia.edu/

Abstract

Constant proportion portfolio insurance (CPPI) allows an investor to
limit downside risk while retaining some upside potential by maintaining
an exposure to risky assets equal to a constant multiple of the cushion, the
difference between the current portfolio value and the guaranteed amount.
Whereas in diffusion models with continuous trading, this strategy has no
downside risk, in real markets this risk is non-negligible and grows with
the multiplier value. We study the behavior of CPPI strategies in models
where the price of the underlying portfolio may experience downward
jumps. Our framework leads to analytically tractable expressions for the
probability of hitting the floor, the expected loss and the distribution of
losses. This allows to measure the gap risk but also leads to a criterion
for adjusting the multiplier based on the investor’s risk aversion. Finally,
we study the problem of hedging the downside risk of a CPPI strategy
using options. The results are applied to a jump-diffusion model with
parameters estimated from returns series of various assets and indices.

Key words: Portfolio insurance, CPPI, Lévy process, time-changed Lévy
models, hedging, CPPI option, Value at Risk, expected loss.
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1 Introduction

Portfolio insurance refers to portfolio management techniques designed to guar-
antee that the portfolio value at maturity or up to maturity will be greater or
equal to a given lower bound (floor), typically fixed as a percentage of the initial
investment [18]. These techniques allow the investor to limit downside risk while
retaining some potential in case of an upside market move which is however re-
duced in comparison with the unprotected portfolio (see [14] for a comparison
of cost of different portfolio insurance strategies).

Option based portfolio insurance [13, 18] combines a position in the risky
asset with a put option on this asset. In many cases options on a given fund
or portfolio may not be available in the market: an alternative approach is to
use constant proportion portfolio insurance (CPPI), popularized by Black and
Jones [5] and Perold [6, 19]. This strategy is based on the notion of cushion,
defined as the difference between the fund value and the floor. An amount of
wealth proportional to the cushion is invested into the risky asset —typically an
index or a portfolio of stocks— and the remainder is used to buy riskless bonds.
The exposure to the risky asset is thus gradually reduced when the markets
move down and the portfolio value approaches the floor.

1.1 Constant Proportion Portfolio Insurance

The CPPI strategy is a self-financing strategy whose goal is to leverage the
returns of a risky asset (typically a traded fund or index) through dynamic
trading, while guaranteeing a fixed amount N of capital at maturity T . To
achieve this, the portfolio manager shifts his/her position between the risky
asset, whose price we denote by St and a reserve asset, typically a bond, whose
price we denote by Bt. For simplification we will model the reserve asset as a
zero-coupon bond with maturity T and nominal N . The exposure to the risky
asset is a function of the cushion Ct, defined as

Ct = Vt −Bt

At any date t,

• if Vt > Bt, the exposure to the risky asset (wealth invested into the risky
asset) is given by mCt ≡ m(Vt−Bt), where m > 1 is a constant multiplier.

• if Vt ≤ Bt, the entire portfolio is invested into the zero-coupon.

Assume first that the interest rate r is constant and that the underlying asset
follows a Black-Scholes model

dSt
St

= μdt+ σdWt.

Then it is easy to see from the definition of the strategy that the cushion also
satisfies the Black-Scholes stochastic differential equation

dCt
Ct

= (mμ+ (1 −m)r)dt +mσdWt,

3



which is solved explicitly by

CT = C0 exp
(
rT +m(μ− r)T +mσWT − m2σ2T

2

)
.

and hence

VT = N + (V0 −Ne−rT ) exp
(
rT +m(μ− r)T +mσWT − m2σ2T

2

)
(1)

This means that in the Black-Scholes model with continuous trading, the CPPI
strategy is equivalent to taking a long position in a zero-coupon bond with
nominal N to guarantee the capital at maturity and investing the remaining
sum into a (fictitious) risky asset which has m times the excess return and m
times the volatility of S and is perfectly correlated with S.

1.2 Price jumps and “gap risk”

Formula (1) shows that in the Black-Scholes model with continuous trading
there is no risk of going below the floor, regardless of the multiplier value. On
the other hand the expected return of a CPPI-insured portfolio is

E[VT ] = N + (V0 −Ne−rT ) exp(rT +m(μ− r)T ).

We then arrive to the paradoxical conclusion that in the Black-Scholes model,
whenever μ > r, the expected return of a CPPI portfolio can be increased
indefinitely and without risk, by taking a high enough multiplier.

Yet the possibility of going below the floor, known as “gap risk”, is widely
recognized by CPPI managers: there is a nonzero probability that, during a
sudden downside move, the fund manager will not have time to readjust the
portfolio, which then crashes through the floor. In this case the issuer has to
refund the difference, at maturity, between the actual portfolio value and the
guaranteed amount N . It is therefore important for the issuer of the CPPI note
to quantify and manage this “gap risk”.

Beyond the (widely documented) econometric issue of whether jumps occur
or not in a given asset’s price, a fundamental point is one of liquidity of the
underlying: many CPPI strategies are written on funds which may be thinly
traded, leading to jumps in the market price due to liquidity effects. Since the
volatility of Vt is proportional to m, the risk of such loss increases with m,
and in practice, the value of m should be fixed by relating it to an acceptance
threshold for the probability of loss or some other risk measure.

1.3 Outline

We study the behavior of CPPI strategies in models where the price of the
underlying portfolio may experience downward jumps. This allows to quantify
in a meaningful manner the “gap risk” of the portfolio while maintaining the
analytical tractability of continuous–time models. We establish a direct relation
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between the value of the multiplier m and the risk of the insured portfolio, which
allows to choose the multiplier based on the risk tolerance of the investor, and
provide a Fourier transform method for computing the distribution of losses
and various risk measures (VaR, expected loss, probability of loss) over a given
time horizon, first in an exponential Lévy model and then in a more general
framework with stochastic volatility.

Once jumps are introduced in the model, a natural question is the hedging
of the gap risk. We deal with these questions in section 5 and show that the
embedded option component of a CPPI fund can be hedged using out of the
money put options.

The article is structured as follows. Section 2 defines the model setup and
describes the dynamics of the CPPI strategy. In section 3, we present analytical
formulae for computing various risk measures –VaR, expected loss, probability
of loss– for the CPPI strategy when the log price follows a Lévy process. Section
4 extends this analysis to include the effect of stochastic volatility, in the frame-
work of time-changed Lévy processes. In section 5, we study the hedging of the
gap risk for a CPPI strategy using vanilla options written on the underlying
fund or index. We conclude by a discussion of our results and their relevance to
applications.

1.4 Relation to previous research

CPPI strategies in presence of jumps in stock prices were considered by Prigent
and Tahar [20] in a diffusion model with (finite intensity) jumps. While the
approach of [20] is to consider variants of the CPPI strategy which incorporate
extra guarantees, our approach is to quantify the gap risk of classical CPPI
strategies. Also, our study considers a more general modeling framework for
the dynamics of the underlying asset, allowing for infinite activity jumps and
stochastic volatility.

A related literature considers the risk resulting from relaxing the continuous
trading assumption: in this case the manager also faces gap risk, but for different
reasons. This possibility was already considered in Black & Perold [6] and has
been revisited in [4] using large deviations methods to estimate the possible
losses between two consecutive trading dates. However the frequency of trading
interventions during a downside market move is hard to predict, making this
parameter difficult to determine. On the other hand, the gap risk due to price
jumps, which are a market reality, is qualitatively different from that generated
by discrete trading in a Black-Scholes model. In particular, attributing gap risk
to discrete trading gives the wrong impression that this risk can be eliminated by
more frequent rebalancing, while our analysis points to a non-negligible residual
risk even in presence of continuous trading.
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2 Model setup

We assume that the price processes for the risky asset S and for the zero-coupon
B may be written as

dSt
St−

= dZt and
dBt
Bt−

= dRt,

where Z and R are possibly discontinous driving processes, modeled as semi-
martingales. As a simple example, one can take Z a Lévy process and Rt = rT
for some constant interest rate r. A less trivial example of (Bt) is provided by
the Vasicek model.

Example 1. The Vasicek model is a one-factor interest rate model where the
short rate rt follows (under the risk-neutral probability) an Ornstein-Uhlenbeck
process:

drt = (α− βrt)dt+ σdWt.

The zero coupon is given by

Bt = B(t, T ) = E[e−
∫ T

t
rsds].

It follows that in the Vasicek model the zero-coupon satisfies the stochastic
differential equation

dBt
Bt

= rtdt− σ
1 − e−β(T−t)

β
dWt.

We make the following assumption:

• ΔZt > −1 almost surely.

• The zero-coupon price process B is continuous.

While the first hypothesis guarantees the positivity of the risky asset price,
the second one allows to focus on the impact of jumps in the underlying asset.
This assumption implies in particular

Bt = B0 exp
(
Rt − 1

2
[R]t

)
> 0 a.s.

Let τ = inf{t : Vt ≤ Bt}. Since the CPPI strategy is self-financing, up to time
τ the portfolio value satisfies

dVt = m(Vt− −Bt)
dSt
St−

+ {Vt− −m(Vt− −Bt)}dBt
Bt

,

which can be rewritten as

dCt
Ct−

= mdZt + (1 −m)dRt,

where Ct = Vt −Bt denotes the cushion.
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Change of numeraire Introducing the discounted cushion C∗
t = Ct

Bt
and

applying Itô formula to this process, we find

dC∗
t

C∗
t−

= m(dZt − d[Z,R]t − dRt + d[R]t), (2)

Define

Lt ≡ Zt − [Z,R]t −Rt + [R]t. (3)

Equation (2) can then be rewritten in a more compact form as

C∗
t = C∗

0E(mL)t,

where E denotes the stochastic (Doléans-Dade) exponential defined by

dE(mL)t
E(mL)t−

= mdLt

(see Appendix A). After time τ , according to our definition of the CPPI strategy,
the process C∗ remains constant. Therefore, the discounted cushion value for
this strategy can be written explicitly as

C∗
t = C∗

0E(mL)t∧τ ,

or alternatively

Vt
Bt

= 1 +
(
V0

B0
− 1
)
E(mL)t∧τ . (4)

Since the stochastic exponential can become negative, in presence of negative
jumps of sufficient size in the stock price, the capital N at maturity is no longer
guaranteed by this strategy.

3 Measuring gap risk for CPPI strategies

3.1 Probability of loss

A CPPI-insured portfolio incurs a loss (breaks through the floor) if, for some
t ∈ [0, T ], Vt ≤ Bt. The event Vt ≤ Bt is equivalent to C∗

t ≤ 0 and since R is
continuous and E(X)t = E(X)t−(1 + ΔXt), C∗

t ≤ 0 for some t ∈ [0, T ] if and
only if mΔLt ≤ −1 for some t ∈ [0, T ]. This leads us to the following result:

Proposition 1. Let L be of the form L = Lc + Lj, where Lc is a continuous
process and Lj is an independent Lévy process with Lévy measure ν. Then the
probability of going below the floor is given by

P [∃t ∈ [0, T ] : Vt ≤ Bt] = 1 − exp

(
−T

∫ −1/m

−∞
ν(dx)

)
.
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Proof. This result follows from the fact that the number of jumps of the Lévy
process Lj in the interval [0, T ], whose sizes fall in (−∞,−1/m] is a Poisson
random variable with intensity Tν((−∞,−1/m]).

Corollary 1. Assume that S follows an exponential Lévy model of the form

St = S0e
Nt ,

where N is a Lévy process with Lévy measure ν. Then the probability of going
below the floor is given by

P [∃t ∈ [0, T ] : Vt ≤ Bt] = 1 − exp

(
−T

∫ log(1−1/m)

−∞
ν(dx)

)
. (5)

Proof. It follows from proposition 4 that there exists another Lévy process L
satisfying

dSt
St−

= dLt.

The Lévy measure of L is given by

ν̃L(A) =
∫

1A(ex − 1)ν(dx).

Applying proposition 1 concludes the proof.

3.2 Expected loss

We now study the distribution of loss of a CPPI-managed portfolio given that
a loss occurs, with the aim of computing its expectation and other functionals
(risk measures).

To obtain some explicit formulae, we assume that the process L appearing
in the stochastic exponential in (4) is a Lévy process, and we denote its Lévy
measure by ν. We can always write L = L1 + L2 where L2 is a process with
piecewise constant trajectories and jumps satisfying ΔL2

t ≤ −1/m and L1 is
a process with jumps satisfying ΔL1

t > −1/m. In other words, L1 has Lévy
measure ν(dx)1x>−1/m and L2 has Lévy measure ν(dx)1x≤−1/m, no diffusion
component and no drift. Denote by λ∗ := ν((−∞,−1/m]) the jump intensity of
L2, by τ the time of the first jump of L2 (it is an exponential random variable
with intensity λ∗) and by L̃2 = ΔL2

τ the size of the first jump of L2. Let
φt be the characteristic function of the Lévy process log E(mL1)t and ψ(u) =
1
t logφt(u). Finally, we suppose without loss of generality that the discounted
cushion satisfies C∗

0 = 1.
First we compute the expectation of loss.

Proposition 2. Assume ∫ ∞

1

xν(dx) <∞.
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Then the expectation of loss conditional on the fact that a loss occurs is

E[C∗
T |τ ≤ T ] =

λ∗ +m
∫ −1/m

−1
xν(dx)

(1 − e−λ∗T )(ψ(−i) − λ∗)
(e−λ

∗TφT (−i) − 1).

and the unconditional expected loss satisfies

E[C∗
T 1τ≤T ] =

λ∗ +m
∫ −1/m

−1 xν(dx)
(ψ(−i) − λ∗)

(e−λ
∗TφT (−i) − 1). (6)

Proof. The discounted cushion satisfies

C∗
T = E(mL1)τ∧T (1 +mL̃21τ≤T ) = E(mL1)T 1τ>T + E(mL1)τ (1 +mL̃2)1τ≤T .

(7)

Since L1 and L2 are Lévy processes, τ , L̃2 and L1 are independent. Since by
[21, Theorem 25.17], and by definition of φt,

E[E(mL1)t] = φt(−i),
we have

E[C∗
T |τ ≤ T ] =

E[1 +mL̃2]
1 − e−λ∗T

∫ T

0

λ∗e−λ
∗tE[E(mL1)t]dt

= (λ∗ +m

∫ −1/m

−1

xν(dx))
1

1 − e−λ∗T

∫ T

0

e−λ
∗tφt(−i)dt.

and the result follows.

Remark 1. Suppose that
∫

R
|x|ν(dx) <∞ and let (σ2, ν, γ) be the characteristic

triplet of L with respect to zero truncation function (general Lévy measures may
be treated along the same lines with a slightly heavier notation). Proposition
4 and the Lévy-Khintchine representation then give the characteristic exponent
of log E(mL)t:

ψ(u) = −m
2σ2u2

2
+ iu

(
mγ − σ2m2

2

)
+
∫
z>−1/m

(eiu log(1+mz) − 1)ν(dz)

ψ(−i) = mγ +m

∫
z>−1/m

zν(dz). (8)

From equation (7) it follows that the expected gain conditional on the fact
that the floor is not broken satisfies

E[C∗
T |τ > T ] = E[E(mL1)T ] = φT (−i) = exp

{
Tmγ + Tm

∫
z>−1/m

zν(dz)

}
.

Therefore, similarly to the Black-Scholes case, conditional expected gain in an
exponential Lévy model is increasing with the multiplier, provided the underly-
ing Lévy process has a positive expected return.
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3.3 Loss distribution

For computing risk measures, we need the distribution function of the loss given
that a loss occurred, that is, we want to compute, for x < 0, the quantity

P [C∗
T < x|τ ≤ T ].

Our approach for computing this conditional distribution function is to express
its characteristic function explicitly in terms of the characteristic exponents of
the Lévy processes involved and recover the distribution function by numerical
Fourier inversion. A similar strategy was used in [8, 17] for pricing European
options. In the theorem below,

φ̃ :=
1
λ∗

∫ −1/m

−∞
eiu log(−1−mx)ν(dx)

denotes the characteristic function of log(−1 −mL̃2).

Theorem 1. Choose a random variable X∗ with characteristic function φ∗,
such that E[|X∗|] <∞ and |φ∗(u)|

1+|u| ∈ L1. If

|φ̃(u)|
(1 + |u|)|λ∗ − ψ(u)| ∈ L1 (9)∫

R\[−ε,ε]
| log |1 +mx||ν(dx) <∞ (10)

for sufficiently small ε, then for every x < 0,

P [C∗
T < x|τ ≤ T ] = P [−eX∗

< x]

+
1
2π

∫
R

e−iu log(−x)
(

λ∗φ̃(u)
iu(λ∗ − ψ(u))

1 − e−λ
∗T+ψ(u)T

1 − e−λ∗T − φ∗(u)
iu

)
du. (11)

Remark 2. The random variable X∗ is needed only for the purpose of Fourier
inversion: the cumulative distribution function of the loss distribution is not
integrable and its Fourier transform cannot be computed, but the difference of
two distribution functions has a well-defined Fourier transform. In practice, X∗

can always be taken equal to a standard normal random variable.

Proof. From equation (7) it follows that the characteristic function of log(−C∗
T )

conditionally on the fact that a loss occurs, satisfies

E[eiu log(−C∗
T )|τ ≤ T ] =

1
1 − e−λ∗T

∫ T

0

λ∗e−λ
∗tE

[
eiu log(−E(mL1)t(1+mL̃

2))
]
dt

=
1

1 − e−λ∗T

∫ T

0

λ∗e−λ
∗tetψ(u)φ̃(u)dt

=
φ̃(u)(1 − e−λ

∗T+ψ(u)T )
(λ∗ − ψ(u)(1 − e−λ∗T )

.
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The integral in (11) converges at u → ∞ due to the theorem’s conditions and
the fact that ∣∣∣∣1 − e−λ

∗T+ψ(u)T

1 − e−λ∗T

∣∣∣∣ < 1 + e−λ
∗T

1 − e−λ∗T ,

On the other hand, condition (10) is equivalent to

E[| log(−1 −mL̃2)|] <∞
E[| log E(mL1)T |] <∞,

and together with the assumption E[|X∗|] < ∞, this proves that φ(u) = 1 +
O(u), φ̃(u) = 1 + O(u) and φ∗(u) = 1 + O(u) as u → 0, and therefore the
integrand in (11) is bounded and therefore integrable in the neighborhood of
zero. The proof is completed by applying Lemma 1.

4 Stochastic volatility

Empirical evidence suggests that independence of increments is not a property
observed in historical return time series: stylized facts such as volatility cluster-
ing show that the amplitude of returns is positively correlated over time. This
and other deviations from the case of IID returns can be accounted for intro-
ducing a “stochastic volatility” model for the underlying asset. It is well known
that the stochastic volatility process with continuous paths

dSt
St

= σtdWt

has the same law as a time-changed Geometric Brownian motion

St = e−
vt
2 +Wvt = E(W )vt , where vt =

∫ t

0

σ2
sds,

where the time change is given by the integrated volatility process vt, provided
that volatility is independent from the Brownian motion W governing the stock
price.

In the same spirit, Carr et al. [7] have proposed to construct “stochastic
volatility” models with jumps by time-changing an exponential Lévy model for
the discounted stock price:

S∗
t = E(L)vt , vt =

∫ t

0

σ2
sds

where L is a Lévy process and σt is a positive process. The stochastic volatility
thus appears as a random time change governing the intensity of jumps, and
can be seen as reflecting an intrinsic market time scale (“business time”). The
volatility process most commonly used in the literature (and by practitioners)
is the process

dσ2
t = k(θ − σ2

t )dt+ δσtdW. (12)
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introduced in [12] which has the merit of being positive, stationary and ana-
lytically tractable. Other specifications such as positive Lévy-driven Ornstein-
Uhlenbeck process [1] can also be used. The Brownian motion W driving the
volatility is assumed to be independent from the Lévy process L. For the spec-
ification (12) Laplace transform of integrated variance v is known in explicit
form [12]:

L(σ, t, u) := E[e−uvt |σ0 = σ] =
exp

(
k2θt
δ2

)
(
cosh γt

2 + k
γ sinh γt

2

) 2kθ
δ2

exp

(
− 2σ2

0u

k + γ coth γt
2

)

with γ :=
√
k2 + 2δ2u.

Since the formulas for loss probability, unconditional expected loss and un-
conditional loss distribution have an exponential dependence on time remaining
to maturity, these formulas can be generalized to the case of stochastic volatility
in a straightforward way, by first conditioning on the trajectory of the volatility
process. We only give the final results leaving the details of the computation to
the reader. In all computations below, we place ourselves at date t and suppose
that no losses have occurred yet.

Probability of loss Recall the notation λ∗ =
∫ −1/m

−∞ ν(dx) for the intensity
of large negative jumps that break the floor. Then, in presence of stochastic
volatility, the probability of going below the floor is given by

P [∃s ∈ [t, T ] : Vs ≤ Bs|Ft] = 1 − L(σt, T − t, λ∗)

The gap risk is thus very sensitive to the volatility of the underlying, especially
given that a CPPI fund is usually a long-term investment. For instance, if the
initial loss probability was 5%, and the volatility increases by a factor of 2, the
loss probability changes to about 19%, leading to a much bigger cost for the
bank in terms of regulatory capital.

If the underlying is sufficiently liquid, this extra cost can be offset by buying
an asset with a positive sensitivity to volatility such as a variance swap, however
a simpler and more popular approach is to control the volatility exposure by
adjusting the multiplier.

Suppose that the multiplier (mt) is a continuous stochastic process adapted
to the filtration generated by the volatility process (σt). The discounted cushion
is given by

C∗
t = E

(∫ ·

0

msdLvs

)
τ∧T

, τ = inf{t ≥ 0 : mtΔLvt ≤ −1},

and the probability of loss, once again by conditioning on the trajectory of the
volatility process, is given by

P [τ ≤ T ] = 1 − E

[
exp

(
−
∫ T

0

dt σ2
t

∫ 1/mt

−∞
ν(dx)

)]
.
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This means that the random time τ is characterized by a hazard rate λt, inter-
preted as the probability of loss “per unit time”, given by

λt = σ2
t

∫ 1/mt

−∞
ν(dx) (13)

In the situation where the portfolio manager must monitor not only potential
losses at maturity but also the short term Value at Risk during the life of the
contract, one can hedge this volatility exposure by choosing the multiplier mt

keeping the hazard rate constant:

σ2
t

∫ 1/mt

−∞
ν(dx) = σ2

0

∫ 1/m0

−∞
ν(dx),

where m0 is the initial multiplier value fixed according to the desired loss proba-
bility level. If the jump size distribution is α-stable, the above formula amounts

to mt = m0

(
σt

σ0

)−2/α

.

Expected loss When volatility is stochastic, the unconditional expected loss
can be computed using

E[C∗
T 1τ≤T |Ft] =

λ∗ +m
∫ −1/m

−1
xν(dx)

ψ(−i) − λ∗
(L(σt, T − t, λ∗ − ψ(−i)) − 1). (14)

Over a short period of time [t, t+ dt], the expected loss is equal to

σ2
t dt

(
λ∗ +m

∫ −1/m

−1

xν(dx)

)
= σ2

t dt

∫ −1/m

−1

(1 +mx)ν(dx).

Hence, to keep the short-term expected loss at the same level, the variable
multiplier mt should be chosen to have

σ2
t

∫ −1/mt

−1

(1 +mtx)ν(dx) = const.

Loss distribution The conditional characteristic function of the loss loga-
rithm can be computed similarly to other risk indicators:

E[eiu log(−C∗
T )|τ ≤ T,Ft] =

E[eiu log(−C∗
T )1τ≤T |Ft]

P [τ ≤ T |Ft] =
φ̃(u)(1 − L(σt, T − t, λ∗ − ψ(u)))
(λ∗ − ψ(u))(1 − L(σt, T − t, λ∗))

.

The loss distribution can then be computed by numerical inversion of this char-
acteristic function as in theorem 1.
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5 Pricing and hedging gap risk

The client of a CPPI fund may be insured against the gap risk meaning that if
the fund breaks the floor, a third party such as the bank controlling the fund,
reimburses the loss. In this case, the share of a CPPI fund is a financial product
with an optional component. It is then equivalent to the sum of a self-financing
portfolio corresponding to the uninsured CPPI strategy and an option to receive
the difference between the floor and the portfolio value, if the portfolio goes
below the floor. This option will be referred to as the CPPI-embedded option.
The (discounted) payoff of this option is equal to −C∗

T 1τ≤T .
If the underlying is liquid (such as a market index) and the market quotes for

European options on this underlying are available, the CPPI-embedded option
can be marked to market (priced) and its risk can be hedged away. The price of
this option is equal to the expectation of its discounted pay-off under the risk-
neutral probability Q which must be calibrated to the market-quoted prices of
European options as in [10] or [3] (this is because as we will see below, a near-
perfect hedge with European puts can be constructed). The price is then given
by (6) in the Lévy setting or (14) in the stochastic volatility setting, where both
expectations must be evaluated under the risk-neutral probability. Note that
the option price does not depend on the current underlying value and is not
sensitive to small movements of the underlying. The CPPI-embedded option is
a pure ’gap risk’ and volatility product.

A hedging strategy for a CPPI-embedded option can be constructed using
short maturity put options. We suppose that at each date, the market quotes
put options with time to maturity h := T/n for some integer n > 0. In order
to construct a perfect hedge, we modify the CPPI strategy in question: instead
of continuous rebalancing, we suppose that the rebalancing step is equal to h.
Later, we show that when h→ 0, the terminal value of the discretely rebalanced
portfolio hedged using short maturity put options converges to the terminal
value of a continuously rebalanced CPPI without the gap risk.

In this section we adopt an exponential Lévy model for the discounted stock
price:

S∗
t = E(L)t,

where L is a Lévy process under Q. We denote by Cnk and C∗,n
k the values of,

respectively, the non-discounted and the discounted cushion at the rebalancing
date k and make the simplifying hypothesis that the interest rate is constant and
equal to r. We consider two different hedging strategies: in the first case, the
cost of put options used for hedging is considered exogenous, and we compute
separately the terminal value of the hedge portfolio and the cost of hedging. In
the second case we consider a more realistic situation where the cost of hedging
is subtracted from the cushion (in the form of a management fee) at each step.

Case 1 By definition of the CPPI strategy we get

C∗,n
k+1 = mC∗,n

k

S∗
(k+1)h

S∗
kh

+ (1 −m)C∗,n
k , (15)
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where S∗ is the discounted stock price. This expression is negative if S∗
(k+1)h <

m−1
m S∗

kh. To hedge this risk, we therefore buy put options with strike m−1
m erhSkh

expiring at date (k+1)h. One such option has pay-off erhSkh
(
m−1
m − S∗

(k+1)h

S∗
kh

)+

,

and if we buy mCn
k

Skh
units, the discounted pay-off is equal to C∗,n

k

(
m− 1 −m

S∗
(k+1)h

S∗
kh

)+

,
that is, to the negative part of equation (15). Therefore, the discounted cushion
in presence of hedging satisfies

C∗,n
k+1 = C∗,n

k

(
1 +m

(
S∗

(k+1)h

S∗
kh

− 1
))+

,

and

C∗,n
n = C∗

0

n−1∏
k=0

(
1 +m

(
S∗

(k+1)h

S∗
kh

− 1
))+

. (16)

The cost of hedging is given by the sum of prices of all put options necessary
for hedging:

Costn =
n−1∑
k=0

EQ

[
C∗,n
k

(
−1 −m

(
S∗

(k+1)h

S∗
kh

− 1
))+

]
= EQ[C∗,n

n ] − C∗
0 .

Case 2 We now suppose that the cost of hedging is taken from the cushion at
each step. In this case, by arguments similar to the ones used above, one can
show that the discounted cushion satisfies

C̃∗,n
n = C∗

0

n−1∏
k=0

(
1 +m

(
S∗

(k+1)h

S∗
kh

− 1
))+

EQ
[(

1 +m
(
S∗

(k+1)h

S∗
kh

− 1
))+

|Fkh
] .

In this case, the portfolio is again self-financing and it is not surprising that the
discounted cushion is a martingale.

The following proposition provides convergence results as the number of
rebalancing dates goes to infinity.

Proposition 3. Suppose that the Lévy measure ν of L has no atom at the point
−1/m. Then

i. The discounted cushion in case 1 converges to the value obtained with a
continuous-time CPPI but without the gap risk:

lim
n→∞C∗,n

n = C∗
T 1τ>T a.s.

Suppose, in addition that
∫∞
1 xmν(dx) <∞. Then

15



ii. The cost of hedging in case 1 converges to the expected loss under the
risk-neutral probability:

lim
n→∞Costn → −EQ[C∗

T 1τ≤T ].

iii. The discounted cushion in case 2 converges to the value obtained with a
continuous-time CPPI but without the gap risk, divided by its risk-neutral
expectation:

lim
n→∞ C̃∗,n

n =
C∗
T 1τ>T

EQ[C∗
T 1τ>T ]

a.s.

Proof.

Part (i) Let X be a the Lévy process satisfying eX = E(L). If τ ≤ T then
starting from some n, C∗,n

n ≡ 0. Suppose that τ > T . Then, starting from some
n, all terms in the product (16) are positive and therefore we can write

logC∗,n
n = logC∗

0 +
n−1∑
k=0

log
(
1 +m(eX(k+1)h−Xkh − 1)

)
.

Fix ε > 0 and let A and B be two disjoint sets of jumps of X such that A ∪B
exhausts the jumps of X on [0, T ], A is finite and

∑
s∈B ΔX2

s < ε. We will use
the notation A = {k < n : A ∩ (kh, (k + 1)h] �= ∅} and Ã = {k < n : k /∈ A}.
Then, using the Taylor expansion up to second order for the function f(x) =
log(1 +m(ex − 1)),

logC∗,n
n = logC∗

0 +
∑
k∈A

log
(
1 +m(eX(k+1)h−Xkh − 1)

)

+
∑
k<n

{m(X(k+1)h −Xkh) +
1
2
(m−m2)(X(k+1)h −Xkh)2}

−
∑
k∈A

{m(X(k+1)h −Xkh) +
1
2
(m−m2)(X(k+1)h −Xkh)2}

+
∑
k∈Ã

R(X(k+1)h −Xkh),

where R stands for the residual term in the Taylor formula. Starting from some
n, supk∈Ã |X(k+1)h − Xkh| ≤ 2ε, hence

∑
k∈Ã |R(X(k+1)h − Xkh)| ≤ r(ε)[X ]T

with r(ε) ε→0−−−→ 0. The first sum in above converges to∑
t∈A

log(1 +m(eΔXt − 1))

as n→ ∞, the second sum converges to

mXT +
1
2
(m−m2)[X ]T ,
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and the third sum gives

∑
t∈A

(mΔXt +
1
2
(m−m2)ΔX2

t ).

Assembling all this together and making ε tend to 0, we conclude that on the
set τ > T ,

logC∗,n
n → logC∗

0+
∑

t≤T :ΔXt �=0

{log(1+m(eΔXt−1))−mΔXt}+mXT+
1
2
(m−m2)[X ]cT .

almost surely as n → ∞. Exponentiating both sides and going back to the
process L using proposition 4, we finally find

lim
n→∞C∗,n

n = C∗
T 1τ>T a.s.

Part (ii) This follows from part (i) and the dominated convergence theorem
using the bound

C∗,n
n = C∗

0

n−1∏
k=1

(
1 +m(eX(k+1)h−Xkh − 1)

) ≤ C∗
0e
mXT

which is integrable under the hypothesis
∫∞
1 xmν(dx) <∞.

Part (iii) This is a direct consequence of parts (i) and (ii).

6 Examples

Let us now illustrate the results of section 3 in the case of a jump diffusion
model with a double-exponential jump size distribution [16] with parameters
estimated from daily returns of various assets.

6.1 Model setup and parameter estimation

To estimate the parameters have used daily time series of log returns from
December 1st 1996 to December 1st 2006 for

1. General Motors Corporation (GM)

2. Microsoft Corporation (MSFT)

3. Shanghai Composite index

making a total of 2500 data points for each series (expect for Shanghai Compos-
ite for which we have 9 years). We model these data sets using an exponential

17



Lévy model [16] where the driving Lévy process has a non-zero Gaussian com-
ponent and a Lévy density of the form

ν(x) =
λ(1 − p)
η+

e−x/η+1x>0 +
λp

η−
e−|x|/η−1x<0. (17)

Here, λ is the total intensity of positive and negative jumps, p is the probabil-
ity that a given jump is negative and η− and η+ are characteristic lengths of
respectively negative and positive jumps.

To estimate the model parameters from market data, we use the empirical
characteristic function as suggested in [22, 23]: we find the parameter vector
θ = (b, σ, λ, p, η+, η−) by minimizing∫ K

−K
|ψθ(u) − ψ̂(u)|2w(u)du.

where

ψ̂(u) =
1
t

log
1
N

N∑
k=1

eiuXi

is the empirical characteristic exponent,

ψθ(u) = −σ
2u2

2
+ iγu+

λp

1 + iuη−
+
λ(1 − p)
1 − iuη+

− λ

is the characteristic exponent of the Kou model and w is the weight function.
Ideally, the weights should reflect the relative precision of ψ̂(u) as an estimate

of ψθ(u), and one should choose w to be equal to the inverse of variance of ψ̂(u):

w(u) =
1

E[(ψ̂(u) − E[ψ̂(u)])(ψ̂(u) − E[ψ̂(u)])]

≈ t2φθ∗(u)φθ∗(u)

E[(φ̂(u) − φθ∗(u))(φ̂(u) − φθ∗(u))]
,

where θ∗ is the true parameter. However, this expression depends on the un-
known parameter vector θ and cannot be computed. Since the return distribu-
tion is relatively close to Gaussian, the characteristic function in the weight w
may be approximated with the Gaussian one

w(u) ≈ e−σ
2
∗u

2

1 − e−σ2∗u2

with σ2
∗ = VarX . The cutoff parameter K was fixed to 60 based on tests with

simulated data (the estimated parameter values are not very sensitive to this
parameter for K > 50).

The estimated parameter values are shown in table 1. Figure 1 shows that
Kou model fits the smoothed returns density quite well, in particular, the ex-
ponential tail decay seems to be a realistic assumption.

18



Series μ σ λ p η+ η−
MSFT −0.473 0.245 99.9 0.230 0.0153 0.0256
GM −0.566 0.258 104 0.277 0.0154 0.0204
Shanghai composite 0.101 0.161 39.1 0.462 0.0167 0.0175

Table 1: Kou model parameters estimated from MSFT, GM and Shanghai Com-
posite time series.

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20
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1

2
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Kernel estimator

Kou model

Figure 1: Logarithm of the density for MSFT time series. Solid line: kernel
density estimator. Dashed line: Kou model with parameters estimated via
empirical characteristic function.
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Figure 2: Probability of loss as a function of the multiplier.

6.2 Loss probability

Assuming the (discounted) risky asset price process follows the Kou model,
equation (5) for loss probability yields

P [∃t ∈ [0, T ] : Vt ≤ Bt] = 1 − exp
(
−Tpλ (1 − 1/m)1/η−

)
.

Figure 2 shows the dependence of the loss probability on the multiplier for a
CPPI portfolios containing MSFT and GM stocks or Shanghai Composite index
as risky assets. Although Microsoft is slightly riskier, the loss probabilities for
the two stocks are quite similar. A 5% loss probability over 5 years corresponds
to a multiplier value of about 5.5 for Microsoft and 6 for General Motors.

6.3 Expected loss

Once again, suppose that the discounted risky asset

S∗
t = E(L)t

follows the Kou model
S∗
t = S∗

0e
Nt ,

where N is a Lévy process with volatility σ, drift b and Lévy density ν of
the form (17). For convenience of notation we write λ± = 1/η±; c− = pλ;
c+ = (1 − p)λ. We assume λ+ > 1. Proposition 4 implies that L is a Lévy
process with volatility σ, drift b+ σ2

2 and Lévy density

νL(x) = λ+c+(1 + x)−1−λ+1x>0 + λ−c−(1 + x)−1+λ−1−1<x<0.
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Splitting this Lévy density in two parts, we find on one hand

λ∗ = c−(1 − 1/m)λ− ,

1 +
m

λ∗

∫ −1/m

−1

xνL(dx) = − m− 1
λ− + 1

,

and on the other hand, from (8), the characteristic exponent of the Lévy process
log E(mL1)t at the point −i is

ψ(−i) = m(b + σ2/2) +
c+m

λ+ − 1
− c−m
λ− + 1

− c−λ−m (1 − 1/m)λ−+1

λ− + 1
+ c−m (1 − 1/m)λ− .

Finally, assembling the two factors we get the expected loss:

E[C∗
T |τ ≤ T ] = − (m− 1)(1 − e−λ

∗T+ψ(−i)T )λ∗

(λ− + 1)(1 − e−λ∗T )(λ∗ − ψ(−i)) .

Figure 3 shows the dependence on the multiplier of the unconditional ex-
pected loss and (expected loss conditional on a loss having occurred for a CPPI
portfolio for various examples of risky assets and a time horizon of T = 3
years. While the loss probability for an Shanghai Composite-based fund is
much smaller than that of the GM-based one, if a loss does occur, the CPPI
fund based on Shanghai Composite will experience a much larger loss. This
happens because the Shanghai Composite index has a larger expected return
(about 14% per year compared to around zero for GM). Before the loss-making
jump, the Shanghai Composite-based fund will have a better performance, lead-
ing to a larger proportion of risky asset in the portfolio and therefore a larger
loss after a large negative jump. Of course, not only the expected loss but
also the expected gain of the Shanghai Composite-based portfolio will be much
greater than that of GM-based one.

6.4 Loss distribution

In the Kou model, the integrand in (11) must be evaluated numerically in gen-
eral. But for illustration purposes we consider here a particular case of Kou
model with p = 1 (only negative jumps) and η− = 1. This amounts to saying
that

Lt = μt+ σWt +
Nt∑
i=1

Yi,

whereN is a Poisson process with intensity λ and {Yi} are independent uniforms
on [−1, 0]. That is, we suppose that during a crash the jump size distribution
is uniform on [−1, 0]. It is easy to check that the condition (10) is satisfied.
This model can describe, for example, a defaultable asset with random recovery
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Figure 3: Expected loss over T = 3 years as a function of the multiplier, for
nominal N = 1000$ and r = 0.04. Left: expected loss conditional on a loss
having occurred. Right: unconditional expected loss.

on the interval [0, 1] in case of default. In this case, λ∗ = λ(1 − 1/m) and
L̃2 ∼ U([−1,−1/m]). An easy computation then shows that

φ̃(u) = E[eiuL̃
2
] =

(m− 1)iu

1 + iu
,

hence, condition (9) is also satisfied. On the other hand,

log E(mL1)t = m(μ− r)t +mσWt +
Nt∑
i=1

log(1 +mΔL1
t ),

and therefore

ψ(u) = iu

{
m(μ− r) − m2σ2

2

}
− u2m2σ2

2
− λ

m

iu

1 + iu
.

We see that the expression under the integral in (11) is explicit and only the
final integration must be done numerically.

Figure 4 shows the (unconditional) distribution of losses in this example,
with data μ = 0.1, σ = 0.2, r = 0.03, λ = 1/3. The initial capital was
N = 1000$, the time horizon T = 2 years and the multiplier m = 2. The 5%
probability corresponds approximately to a loss size of 62$ (this is the 5% VaR).

7 Discussion

We have argued that the study of CPPI strategies in continuous-time diffusion
models fails to account for the possibility of a loss: to account for this “gap”
risk jumps must be introduced in the dynamics of the underlying asset. We
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Figure 4: Probability of loss of a given size as a function of loss size (distribution
function of losses).

have proposed a simple framework for studying this “gap risk” caused by down-
ward jumps in the value of the underlying portfolio. Our framework leads to
analytically tractable expressions for the probability of hitting the floor, the
expected loss and the distribution of losses. This allows to measure the gap risk
but also leads to a criterion for adjusting the multiplier based on the investor’s
risk aversion.

We have illustrated these computations in the case of a jump-diffusion model,
with parameters estimated on daily stock and index returns. While these data
reveal a relatively low level of jump risk, as revealed by past price history, we
stress that they are not necessarily the ones to use from a risk management
perspective: for a CPPI strategy, the choice of jump parameters can be used
to design a stress test of the strategy and the values of jump parameters can
be determined with this interpretation in mind. Examples of “crash notes” on
CPPI funds have been recently observed in the over-the-counter market. The
values of spreads paid for such notes (typically 100 bps above LIBOR for many
CPPI funds) can be used as an indicator of “risk–neutral” jump parameters
which can be used for pricing the gap risk. The results above apply equally well
in both cases.

Finally, CPPI strategies are increasingly applied to credit portfolios. Credit
CPPI products are based on CPPI-type strategies applied to a portfolio of de-
faultable bonds or credit default swaps. In this case the underlying portfolio
naturally experiences downward jumps at each default event so the above frame-
work can be useful for analyzing the risk of such products.

Appendix A

In this appendix, we recall two results from stochastic calculus. Details and
proofs may be found in [9, Chapter 9] or [15].
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Let X be a semimartingale. Then the stochastic differential equation

dYt
Yt−

= dXt, Y0 = 1,

has a unique strong solution called stochastic or Doléans-Dade exponential of
X , denoted by E(X)t and written explicitly as

E(X)t = X0e
Xt− 1

2 [X]ct
∏

s≤t,ΔXs �=0

(1 + ΔXs)e−ΔXs .

Let us now recall a result linking the ordinary and stochastic exponentials
of a Lévy process:

Proposition 4. 1. Let (X)t≥0 be a real valued Lévy process with Lévy triplet
(σ2, ν, γ) and Z = E(X) its stochastic exponential. If Z > 0 a.s. then there
exists another Lévy process (Lt)t≥0 such that Zt = eLt where

Lt = lnZt = Xt − σ2t

2
+
∑

0≤s≤t

{
ln(1 + ΔXs) − ΔXs

}
.

Its Lévy triplet (σ2
L, νL, γL) is given by:

σL = σ,

νL(A) = ν({x : ln(1 + x) ∈ A}) =
∫

1A(ln(1 + x))ν(dx),

γL = γ − σ2

2
+
∫
ν(dx)

{
ln(1 + x)1[−1,1](ln(1 + x)) − x1[−1,1](x)

}
.

2. Let (L)t≥0 be a real valued Lévy process with Lévy triplet (σ2
L, νL, γL) and

St = expLt its exponential. Then there exists a Lévy process (X)t≥0 such
that St is the stochastic exponential of X: S = E(X) where

Xt = Lt +
σ2t

2
+
∑

0≤s≤t

{
1 + ΔLs − eΔLs

}
.

The Lévy triplet (σ2, ν, γ) of X is given by:

σ = σL,

ν(A) = νL({x : ex − 1 ∈ A}) =
∫

1A(ex − 1)νL(dx),

γ = γL +
σ2
L

2
+
∫
νL(dx)

{
(ex − 1)1[−1,1](ex − 1) − x1[−1,1](x)

}
.
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Appendix B

Lemma 1. Let X1 and X2 be random variables with E[|Xi|] <∞, i = 1, 2, and
denote, by Fi the distribution function of Xi, e.g. Fi(x) = P [Xi ≤ x], and by
φi the characteristic function of Xi. Then∫

R

eiux(F1(x) − F2(x))dx =
φ2(u) − φ1(u)

iu
, u �= 0. (18)

In addition, if ∫
R

|φi(u)|
1 + |u|du <∞, i = 1, 2

then

F1(x) − F2(x) =
1
2π

∫
R

e−iux
φ2(u) − φ1(u)

iu
du, all x.

Proof. First part. Denoting by pi the laws of Xi, i = 1, 2, we have

∫
R

eiux(F1(x) − F2(x))dx

=
∫

R

dxeiux
∫

R

dz{1x<01z≤x − 1x≥01z>x}(p1(dz) − p2(dz)). (19)

From the integrability of Xi, it follows that∫ 0

−∞
Fi(x)dx <∞ and

∫ ∞

0

(1 − Fi(x))dx <∞, i = 1, 2.

Therefore, we can use the Fubini theorem to interchange the integrals in (19),
which produces

∫
R

eiux(F1(x) − F2(x))dx

=
∫

R

dz(p1(dz) − p2(dz))
{

1z≤0
1 − eiuz

iu
− 1z≥0

eiuz − 1
iu

}
=
φ2(u) − φ1(u)

iu

for every u �= 0.
Second part. Without loss of generality, suppose that F2 is continuous,

because otherwise we could introduce a continuous CDF F3 and decompose
F1 − F2 = F1 − F3 + (F3 − F2). Multiplying both sides of (18) by

1
σ
√

2π
e−

u2

2σ2 e−iut

and integrating with respect to u, we get

1
2π

∫
R

e−
u2

2σ2 e−iut
φ2(u) − φ1(u)

iu
du =

σ√
2π

∫
e−

σ2
2 (x−t)2(F1(x) − F2(x))dx.
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When σ → ∞, the right-hand side converges to F1(t) − F2(t) in all continuity
points of F1. By the hypothesis E[|Xi|] <∞, i = 1, 2, φi(u) = 1+O(u), i = 1, 2,
φ2(u)−φ1(u)

iu is integrable near zero. Since it is also integrable at infinity by the
lemma’s condition, the left-hand side converges to

1
2π

∫
R

e−iut
φ2(u) − φ1(u)

iu
du

for every t, as σ → ∞, and the proof is completed.
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