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Abstract

Assuming a product space model for biometric and financial events,
there exists a rather natural principle for the decomposition of gains of
life insurance contracts into a financial and a biometric part using or-
thogonal projections. In a discrete time framework, the paper shows the
connection between this decomposition, locally variance-optimal hedg-
ing and the so-called pooling of biometric risk contributions. For ex-
ample, the mean aggregated discounted biometric risk contribution per
client converges to zero almost surely for an increasing number of clients.
A general solution of Bühlmann’s AFIR-problem is proposed.
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1 Introduction

Modern life insurance has to cope with two different kinds of risk. On the

one side, there is biometric risk which is the classical subject of life insurance

mathematics. On the other side, there is financial risk which comes to life

insurance by financial markets, for example by stochastic interest rates or

products like unit-linked life insurance policies. The modern actuary - called

the Actuary of the Third Kind in Bühlmann (1987) - has to deal with both

types of risk.
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Life insurance mathematics has developed fast during the last twenty years

and for many particular problems, for instance pricing, hedging and bonus

theory, solutions have been developed. Nonetheless, the problem of the de-

composition of gains (or risks) into biometric and financial parts has not yet

been sufficiently considered, especially not with respect to the needs of modern

life insurance, i.e. in the presence of stochastic financial markets. It is obvious

that information on how much of the win or loss of an insurance company

during a certain time interval is caused by financial, respectively biometric

events is crucial for the understanding and the management of the company.

Also on the single contract level risk decomposition is important as a client

usually participates in financial wins belonging to his/her contract (= bonus

payments), whereas financial losses remain in the company. For these reasons,

risk decomposition and the understanding how biometric risk contributions can

be pooled and coped with by the respective companies, which should actually

be their core competence, is the subject of this paper.

It must be mentioned that the above explained bonus problem is usually

considered in a different context which comes from the practical needs of real

life insurance companies (compare Norberg (1999, 2001) and Remark 3.3).

Due to the more theoretical context of this paper, we will not treat bonus

theory in the usual sense, here. Differences will become clear at a later stage.

However, a review of existing bonus theory with consideration of the results

of this paper may be a topic of future research.

In particular, there is the following connection between the risk decom-

position proposed in this paper, the pooling of biometric risks and locally

variance-optimal hedging:

Under the assumption of a discrete time complete arbitrage-free financial

market and a product space model for the biometric and financial events,

the alternation PVt − PVs of the present value (computed by the minimum

fair price as proposed in Fischer (2003)) of a life insurance contract from

time s to time t (s < t) (called gain or risk; a precise definition follows

later) is uniquely decomposed into a biometric and a financial part such

that the financial part can from time s on be replicated by a self-financing

purely financial trading strategy and the biometric residual is L2- (and

therefore variance-) minimal and has expectation 0 conditioned on s. The

decomposition is done by means of orthogonal projections. Under certain
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reasonable assumptions, the biometric part of the gains does not depend on

the investment strategy of the company. Furthermore, it is shown how a

certain purely financial self-financing strategy of price 0 at s, which hedges

away the financial part (except for a non-stochastic residual, seen from s),

leads to the locally variance-optimal present value at time t seen from s.

PVt is then exactly how PVs would have developed when invested into a

riskless bond (maturing at t), plus the remaining biometric risk contribution.

Reiteration of the locally variance-optimal hedge for a contract which was

fairly priced at the time of underwriting, i.e. which had the present value

zero then, implies that (under some restrictions) the mean discounted

total gain from the first m contracts converges to zero almost surely for

m → ∞ when clients are independent. Actually, this is a corollary of a

proposition that proves that the mean aggregated discounted biometric

risk contribution per client converges to zero a.s. for an increasing number

of independent clients. This property can for good reasons be called ”pooling”.

The section content is as follows. After the introduction, the second sec-

tion introduces a model that is similar to the one used in Fischer (2003). The

difference is the finiteness of the biometric state space. A lemma on the repli-

cation of portfolios in the proposed product space framework is given. Section

3 motivates the central problems that are considered in this paper, i.e. the de-

composition of gains, pooling and the so-called AFIR-problem (cf. Bühlmann,

1995) which concerns the pricing and hedging of the positive financial parts

of the gains. A list of four reasonable properties for the desired risk decom-

position is compiled. Section 4 explains the role of the investment portfolio

or strategy of an insurance company. It is shown that the financial risk of a

life insurance company actually depends on its trading strategy. This seems

to be obvious - nonetheless, the fact is for instance completely neglected by

the so-called stochastic discounting method (Bühlmann, 1992). Section 5 is

dedicated to a principle for the unique decomposition of gains into a biometric

(technical) and a financial part. This principle fulfills the four properties men-

tioned above. Orthogonality plays a fundamental role, here. In Section 6 and

7, several implications of the presented method are deduced and discussed. In

particular, a locally variance-optimal hedging method which is related to the

proposed decomposition is considered. Some of the results have already been

mentioned above. We also propose a general solution of the AFIR-problem.
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Section 8 shows that in a certain setup the mean accumulated discounted bio-

metric risk contribution per contract converges to zero a.s. for an increasing

number of individuals under contract. This is an important result concerning

(actually, to some extent, defining) the “pooling” of biometric risks. Section

9 is on the open problem of multiperiod risk decomposition. Section 10 is a

short review of the stochastic discounting and risk decomposition approach

of Bühlmann. Some problems arising from these techniques are discussed.

Section 11 is the conclusion of the paper. In the Appendix, several lemmas

concerning conditional expectations can be found.

Please note that this paper heavily relies on the life insurance framework

introduced in Fischer (2003). Both papers, the present one and Fischer (2003)

are spin-offs of the Ph.D. thesis of the author (Fischer, 2004a).

2 The model

We use the definitions, notions and notation of Fischer (2003). As a model for

the biometric evolution and the development of the financial market, we use

Axiom 1 and 2 of that paper. For convenience, the axioms and some notions

are stated in the following. Please refer to Fischer (2003) for further details

and explanations concerning the modelling.

Let (F,FT , F) be a probability space equipped with the filtration (Ft)t∈T,

where T = {0, 1, 2, . . . , T} denotes the discrete finite time axis. We assume

that F0 = {∅, F}. The price dynamics of d securities of a frictionless financial

market are given by an adapted Rd-valued process S = (St)t∈T. The d assets

with price processes (S0
t )t∈T, . . . , (Sd−1

t )t∈T are traded at times t ∈ T\{0}. The

first asset with price process (S0
t )t∈T is called the money account and features

S0
0 = 1 and S0

t > 0 for t ∈ T. The tuple MF = (F, (Ft)t∈T, F, T, S) is called

a securities market model. A portfolio with respect to MF is a d-dimensional

vector θ = (θ0, . . . , θd−1) of real-valued random variables θi (i = 0, . . . , d − 1)

on (F,FT , F). A t-portfolio is a portfolio θt which is Ft-measurable. Ft is

interpreted as the information available at time t. A trading strategy is a

vector θT = (θt)t∈T of t-portfolios θt since an economic agent takes decisions

due to the available information.

In this paper, we call all data concerning the biological and some of the

social states of human individuals biometric. This can include characteristics

like health, age, sex, family status, but also the ability to work. In the context
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of life insurance, the most important biometric information at a certain point

of time will always be the age and sex of an individual, and whether the indi-

vidual is alive or not. For the following, we assume that a filtered probability

space (B, (Bt)t∈T, B) describes the development of the biometric states of all

considered human beings.

AXIOM 1. A common filtered probability space

(M, (Mt)t∈T, P) = (F, (Ft)t∈T, F)⊗ (B, (Bt)t∈T, B) (1)

of financial and biometric events is given, i.e. M = F ×B, Mt = Ft ⊗ Bt and

P = F⊗ B. Furthermore, F0 = {∅, F} and B0 = {∅, B}.

AXIOM 2. A complete securities market model

MF = (F, (Ft)t∈T, F, T, F S) (2)

with |FT | < ∞ and a unique equivalent martingale measure Q are given. The

common market of financial and biometric risks is denoted by

MF×B = (M, (Mt)t∈T, P, T, S), (3)

where S(f, b) = F S(f) for all (f, b) ∈ M .

Hence, financial modelling is done by the standard discrete time model of

a complete arbitrage free financial market. Biometry and finance are assumed

to be independent from each other. See Fischer (2003) for more details on the

embedding of MF into MF×B.

The valuation principle π (minimum fair price) of Fischer (2003) is used.

This kind of valuation is standard in modern life insurance mathematics

(cf. Fischer (2003) and the references therein). The value of any Ft ⊗ Bt-

measurable (t ∈ {0, 1, . . . , T} = T) and F ⊗ B-integrable portfolio θt at time

s ≤ t is supposed to be

πs(θt) = S0
s · EQ⊗B[〈θt, ST 〉/S0

T |Fs ⊗ Bs] (4)

= S0
s · EQ⊗B[〈θt, St〉/S0

t |Fs ⊗ Bs].

The second line follows from the fact that (St/S
0
t )t∈T is a Q- and therefore a

Q⊗B-martingale. For a deduction of (4) and an explanation of the concept of

a valuation principle see Fischer (2003). Recall that we work with a complete,

arbitrage-free financial market model MF featuring a unique EMM Q. The
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measure Q⊗ B, however, is one of many possible EMMs in the usually incom-

plete market model MF×B. Hence, (4) is the standard risk-neutral valuation

formula for that special EMM in MF×B.

We do not apply Axiom 3 and 4 of Fischer (2003) as finite biometric state

spaces are sufficient for the most considerations in this paper. Actually, we

will usually consider only one life in finite time, except for Section 8. For the

development of the biometric information we propose a filtration (Bt)t∈T with

|BT | < ∞. Therefore, |FT ⊗ BT | < ∞. In particular, for t ∈ T one has that

Lp(F ×B,Ft⊗Bt, F⊗B), the set of p-integrable real-valued random variables

on (F × B,Ft ⊗ Bt, F ⊗ B), denotes the same set for all p ∈ [0,∞], namely

all real-valued measurable functions on (F ×B,Ft ⊗Bt, F⊗ B). The set Θ of

portfolios in MF×B which are taken into consideration is therefore given by

Θ = (L0(F ×B,FT ⊗ BT , F⊗ B))d (5)

and the MF -portfolios analogously by ΘF = (L0(F,FT , F))d.

We will encounter situations where it is more comfortable to use a valuation

principle directly defined for payoffs instead for portfolios.

DEFINITION 2.1. For any s ≤ t, s, t ∈ T and any X ∈ L0(M,Mt, P)

Πt
s(X) := πs(X/S0

t · e0) = S0
s · EQ⊗B[X/S0

t |Fs ⊗ Bs]. (6)

Actually, (6) is well-defined as the conditional expectation exists.

Please note that Lemma 3.3 in Fischer (2003) showed that any Ft-

measurable portfolio and any Ft-measurable payoff can be replicated until

t by a s.f. financial strategy. The following lemma will be useful.

LEMMA 2.2. For all s ≤ t and any X ∈ L0(M,Ft ⊗ Bs, P) there exists a

Ft ⊗ Bs-measurable portfolio θ such that X = 〈θ, St〉 and Πt
s(X) = πs(θ).

Proof. Due to (ii) of Lemma 3.3 in Fischer (2003), there exists a Ft-measurable

portfolio ξ with 〈ξ, St〉 = 1. Now, chose θ = Xξ. Clearly, 〈θ, St〉 = X and the

proof follows from (6).

The next lemma will play an important role, later.

LEMMA 2.3. Under the model assumptions and valuation principles as

above, any t-portfolio θt ∈ (L0(M,Ft ⊗ Bs, P))d, respectively any Ft ⊗ Bs-

measurable payoff X, which has the value πs(θt), resp. Πt
s(X), at s (0 ≤ s <

t ≤ T ) can be replicated by a purely financial s.f. strategy which starts at time

s and costs πs(θt), resp. Πt
s(X), at s.
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Here, a purely financial self-financing strategy which starts and has

the price P ∈ L0(M,Fs⊗Bs, P) at time s is understood as a vector of portfolios

(ϕr)s≤r≤t such that ϕr is Fr⊗Bs-measurable, 〈ϕr−1, Sr〉 = 〈ϕr, Sr〉 for s < r ≤ t

and πs(ϕs) = P .

Proof. At first, we prove the portfolio case. Due to Lemma 3.3 in Fis-

cher (2003) there exists for any Ft-measurable F θt a replicating s.f. strategy

(ϕr)0≤r≤t in MF such that ϕt = F θt and πs(F θt) = πs(ϕs) = 〈ϕs, Ss〉 for s < t.

Naturally, a strategy starting at s that replicates F θt can start with the ran-

dom portfolio ϕs. For all b ∈ B, the MF -portfolio θt(., b) is Ft-measurable.

This implies the existence of MF -strategies (bϕt)0≤r≤t as above for all b ∈ B
(i.e. bϕt = θt(., b)). However, Bs is finite and therefore there exists a set Bmin

s of

minimal sets in Bs which is a partition of B. By contradiction it can easily be

shown that for any ε ∈ Bmin
s and b1, b2 ∈ ε one has θt(., b1) = θt(., b2). Define

ϕr on M = F ×B by

ϕr : (f, b) 7→ bϕr(f). (7)

Since (bϕr)0≤r≤t replicates θt(., b), we can assume ϕr(., b1) = ϕr(., b2) for b1, b2 ∈
ε ∈ Bmin

s (s ≤ r ≤ t). Hence, the inverse image of any measurable set due to

ϕr is a finite union of sets of the form A× ε where A ∈ Fr and ε ∈ Bmin
s . So,

ϕr ∈ (L0(M,Fr ⊗ Bs, P))d for s ≤ r ≤ t. Furthermore, 〈ϕr−1, Sr〉 = 〈ϕr, Sr〉
for s < r ≤ t is clear as 〈ϕr−1(., b), Sr〉 = 〈ϕr(., b), Sr〉 for all b by definition.

Using Lemma 6.1 of Fischer (2003), the proof is completed by the fact that

for all b ∈ B one has ϕt(., b) = θt(., b) and F-a.s.

〈ϕs(., b), Ss〉 = S0
s · EQ[〈θt(., b), St〉/S0

t |Fs] (8)
Lemma 12.2

= S0
s · EQ⊗B[〈θt, St〉/S0

t |Fs ⊗ Bs](., b)

= πs(θt)(., b)

Note that for the use of Lemma 12.2 (Section 12) we needed that |Bs| < ∞
(the lemma is used with F = Bs, B = Ft and B′ = Fs). The case for payoffs

follows from Lemma 2.2.

REMARK 2.4. Lemma 2.3 is the only result of this paper where the finite-

ness of the biometric state space is explicitly used in the proof. Note, that

finiteness of FT was not explicitly used, but indirectly for the existence of

conditional expectations. It is not clear, whether (or how) the lemma can be

proven for infinite biometric state spaces (for portfolios in (L1(M,Ft⊗Bs, P))d).

Fortunately, finite state spaces are sufficient for all practical purposes.
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3 Gains in life insurance - the AFIR-problem

The following definition is taken from Fischer (2003).

DEFINITION 3.1. A general life insurance contract is a vector (γt, δt)t∈T

of pairs (γt, δt) of t-portfolios in Θ (to shorten notation we drop the inner

brackets of ((γt, δt))t∈T). For any t ∈ T, the portfolio γt is interpreted as a

payment of the insurer to the insurant (benefit) and δt as a payment of the

insurant to the insurer (premium), respectively taking place at t. The notation

(iγt,
iδt)t∈T means that the contract depends on the i-th individual’s life.

Consider a general life insurance contract (γt, δt)t∈T as defined above and

any valuation principle π (cf. Fischer, 2003). From the viewpoint of the insurer,

the contract is equivalent to the portfolios (δt − γt)t∈T. A first guess for the

minimum fair price or present value of the contract at time t is therefore∑
r∈T

πt(δr − γr). (9)

Due to (9), the company’s gain Gt obtained in the time interval [s, t] due to

(γt, δt)t∈T and π is the difference

Gs,t =
∑
r∈T

πt(δr − γr)−
∑
r∈T

πs(δr − γr) (10)

of the values of the contract at time t and s.

REMARK 3.2. The notions gain and risk are almost identically used in

this paper. Clearly, a random gain can also be negative (i.e. can be a loss)

and therefore be considered as a risk. The subject which is meant by the two

expressions is a difference of (random) present values belonging to two different

points of time (cf. (10)).

Now, Gs,t is presumed to have two components:

1. a financial component GF
s,t and

2. a biometric (technical) component GB
s,t,

such that

Gs,t = GF
s,t + GB

s,t. (11)

Bühlmann (1995) states that from the philosophy of life insurance it would be

clear that the company has to pool technical gains or losses (due to the Law of
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Large Numbers), whereas financial wins should be given to the insurant (e.g. as

bonus). However, financial losses should be realized by the insurer. Actually,

this is almost like real life insurance companies commonly work. Hence, it is

important to have a reasonable decomposition of the e.g. yearly gains.

The so-called AFIR-problem, formulated in Bühlman (1995), is the question

how the claim of the insurant on the financial wins (GF
s,t)

+ should be priced

and how it can be hedged.

REMARK 3.3 (Bonus). In fact, Bühlman (1995) does not consider the

gain (10) but a gain discounted to the beginning of the time interval (s). The

differences will become clear in Section 10 (Eq. (78)). However, our approach

to risk decomposition is inspired by Bühlmann’s. Both approaches differ from

the considerations usually taking place in bonus theory. There, the technical

surplus is defined as the difference between the second order retrospective re-

serve and the first order reserve (cf. Remark 2.1 in Fischer (2003) and Norberg

(1999, 2001)). As the first order base is chosen conservatively, this surplus is

systematically positive and must be distributed to the insured for legal rea-

sons. However, for the purposes of this paper, we stay in the second order base

and do not treat the bonus problem in the above sense (see also Section 1).

As already mentioned above, pooling should be seen as the core compe-

tence of life insurance companies. The idea is, that the pool should consist of

biometric gains and losses such that a growing number of independent individ-

uals which are taken into consideration implies that the mean (accumulated)

biometric risk contribution per client converges to zero almost surely by the

Strong Law of Large Numbers (this will be specified later). For this reason,

one should also demand that biometric parts of gains have expectation zero.

In this sense, an insurance company copes with the pool by its mere existence

and growing size. No further hedging is expected to take place.

Fischer (2003) showed that at least in the presence of stochastic financial

markets such convergence properties (as mentioned above) are not necessarily

trivial and must therefore be carefully examined. The precise understanding

of the pooling idea is developed in Section 8.

As we work with complete financial markets, there exists no real financial

risk in our model since any purely financial payoff or portfolio can be repli-

cated for a certain price (which may therefore be seen as the only risk). For

this reason we demand that the financial part GF
s,t in (11) can be replicated

ongoing from time s. To simplify things, we further assume that the increase
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of biometric information in (s, t] is not used for trading and hedging purposes.

For s = t − 1 this is inevitable. We therefore call such a decomposition a

one-period decomposition even if s < t − 1. In the case of s < t − 1 think of

a real company. For example, premiums and claims are paid (or registered)

monthly, the asset portfolio however is traded daily or almost secondly. Hence,

new biometric information is not taken into account during the month, but at

its end. This justifies the suggested approach. Due to Lemma 2.3 we therefore

demand GF
s,t ∈ L0(M,Ft ⊗ Bs, P). Furthermore, GF

s,t should not be arbitrar-

ily chosen, but close to Gs,t - such that the non-hedgeable part GB
s,t is small

(e.g. due to the L2-norm).

In summary, we can compile the following short list of properties the desired

decomposition should have.

1. GF
s,t ∈ L0(M,Ft ⊗ Bs, P), i.e. GF

s,t is replicable by a purely financial

s.f. strategy starting at s (cf. Lemma 2.3).

2. GF
s,t close to Gs,t (e.g. in L2).

3. E[GB
s,t] = 0.

4. Biometric parts can be pooled (as heuristically explained above).

4 The role played by the insurer’s portfolio

Before it comes to the matter of risk decomposition in the next section, we

have to carry out some further analysis with respect to Equation (10).

Indeed, philosophical problems can arise from this definition since the anal-

ysis of the gains process not only requires pricing of future cash flows, but also

pricing of past cash flows. In a deterministic financial framework, this is no

problem as any investment develops like (S0
t )t∈T which is known in advance

for sure (cf. Section 5 in Fischer (2003)). That means a payment Cr in cash

at r will (for sure!) be worth Cr · S0
t /S

0
r at t > r. However, if one has a

stochastic financial market with more than one asset, one could invest Cr in

several completely different assets or strategies. So, looking back, one needs

to know which strategy was chosen. Therefore, any valuation approach which

does not take trading strategies into account (like the stochastic discounting

approach, cf. Section 10) should be carefully examined for its adequacy.

Note that in Fischer (2003) the focus is on the suitable valuation of port-

folios (and not complete contracts) in the context of life insurance. Therefore,
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the development of the portfolios at later stages (when trading takes place)

was not considered there.

To meet the demands pointed out above, some new notation has to be

introduced. Any r-portfolio δr which is paid as a premium to the insurer at time

r ∈ T is seen together with the self-financing MF×B-strategy (δr,t)t≥r starting

at r which describes how the insurance company works with the premiums after

receiving them (here, trading also takes biometric information into account).

Observe that one has

δr,t ∈ (L0(M,Ft ⊗ Bt, P))d for t ≥ r. (12)

Defining

δr,t = δr for t ≤ r (13)

the vector (δr,t)t∈T contains all information concerning the premium δr received

in r by the insurance company. Hence, πt(δr) = πt(δr,t) for all r, t ∈ T with

t ≤ r, but for t > r we may have δr 6= δr,t as vectors of random variables and

πt(δr) 6= πt(δr,t) which means that the insurance company worked with the

premium after receiving it.

Exactly the same considerations are suitable for the claims γr, r ∈ T where

a vector (γr,t)t∈T provides the respective information. However, as the claims

are usually payments of the insurer to the insurant, one might ask for the

sense of a trading strategy for losses which have taken place. Actually, if these

losses would not have taken place, the company would have invested the money

into some strategy. For instance, if the company has an investment portfolio

and any incomes or losses are just understood as an up- or downsizing of this

portfolio (where the relative weights of the different assets are kept constant),

then it is clear that losses exactly develop like this portfolio (apart from the

negative sign).

EXAMPLE 4.1. It is assumed that the investment portfolio of the considered

insurance company basically follows a self-financing trading strategy (ζt)t∈T

in MF×B (which means that the company can react on biometric events).

Any incomes or losses of the company are assumed to be realized by up- or

downsizing the respective portfolio (at that time) by a certain factor. To

make things easier, simply assume an additional asset Sd with Sd
t = 〈ζt, St〉 in

MF×B. This does not affect completeness or absence of arbitrage in the “old”

MF which still only has d assets. Now, any portfolio θt ∈ Θ which is a gain
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or a loss (e.g. a premium or claim) of the company, has the following price at

s ∈ T from the viewpoint of the company (here, π is as in (4)):

πs(πt(θt)/S
d
t · ed), (14)

ed being the (d+1)-th canonical base vector of Rd+1. The reason is that at time

t, when the portfolio is handed over, the company invested its present value

πt(θt) in πt(θt)/S
d
t shares of Sd (which represents its trading strategy/overall

portfolio). This clarifies (14) for s ≥ t. However, as

πs(θt) = πs(πt(θt)/S
d
t · ed), (15)

(14) is also correct for s < t.

Using the introduced notation, the present value of a life insurance con-

tract at time t can now more precisely (cf. (9)) be written as

PVt = PVt((γr,t, δr,t)r∈T) (16)

=
∑
r∈T

πt(δr,t − γr,t)

=
∑
r<t

πt(δr,t − γr,t)︸ ︷︷ ︸ +
∑
r≥t

πt(δr − γr)︸ ︷︷ ︸ .

value of past stream value of future stream

Hence, the evolution of the present value (16) (more precise, the present value

of the past stream) of any life insurance contract depends on the asset man-

agement of the particular company. The definition of the gains obtained in

[s, t] must be altered to

Gs,t = PVt − PVs (17)

=
∑
r∈T

πt(δr,t − γr,t)−
∑
r∈T

πs(δr,s − γr,s).

The expression

R′
t := −πt(δt)−

∑
r>t

πt(δr − γr) (18)

is usually called the reserve at time t and traditionally only considered under

the condition that the respective individual is still living. The difference πt(γt)

to the negative value of the future stream in (16) is caused by the classical

convention that benefits at time t and premiums at time t− 1 are considered

to be due to the same time interval (t− 1, t] (cf. Gerber, 1997).
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Under the valuation principle (4), the following decomposition of the pre-

mium πt(δt) can easily be deduced.

πt(δt) = πt(R
′
t+1/S

0
t+1 · e0)−R′

t + πt(γt+1) (19)

= Πt+1
t (R′

t+1)−R′
t︸ ︷︷ ︸ + πt(γt+1)︸ ︷︷ ︸,

savings premium risk premium

i.e. the premium in t can be seen as the sum of a part which is together with

the reserve R′
t at t the t-value of the future reserve R′

t+1 and one part which

is exactly the t-value of the claim (or risk) γt+1 at t + 1. Actually, this is the

generalization of a well-known classical relationship (cf. Gerber, 1997).

In the general context presented in this paper, the negative value of the

future stream in (16) may be a more appropriate choice for the reserve, i.e.

Rt := −
∑
r≥t

πt(δr − γr). (20)

For a numeric spreadsheet example we refer to Fischer (2004b) where a stochas-

tic reserve is implemented using a Cox-Ross-Rubinstein model for the financial

market.

In contrast to the previous section, one could also be interested in the

consideration of a technical gain (in this context not the biometric gain!),

which is (in some analogy to Gerber (1997)) defined as the trading gains from

the reserve Rt−1 and the cash πt−1(δt−1−γt−1), minus the new reserve Rt. The

philosophy behind that approach is, that the insurance company somehow

compensates at any time t the difference between the value of the past stream

and the future stream, such that the new present value of the contract is zero.

Of course, such a policy requires some additional reserves that can compensate

the respective gains and losses. Furthermore, the analysis of such technical

gains requires the precise knowledge of how Rt−1 +πt−1(δt−1−γt−1) is invested

in the market. In particular, one could realize the compensation at t − 1 by

assuming a strategy (ξt)t∈T such that ξs = 0 for s < t− 1,

πt−1(ξt−1) = −PVt−1 = −
∑
r∈T

πt−1(δr,t−1 − γr,t−1) (21)

and (ξt)t∈T s.f. after time t− 1. Observe that

Rt−1 =
∑

r<t−1

πt−1(δr,t−1 − γr,t−1)︸ ︷︷ ︸ + πt−1(ξt−1)︸ ︷︷ ︸ . (22)

value of past stream compensation
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The technical gain during the time interval [t− 1, t] would then be defined as

Gtech
t−1,t =

∑
r≤t−1

πt(δr,t − γr,t) + πt(ξt)−Rt. (23)

When calculating reserves with first order bases, technical gain and surplus

are similar constructions (cf. Remark 3.3).

5 Orthogonal risk decomposition

In the framework of Section 2, the payoffs 〈θt, St〉 of all t-portfolios θt are

the Hilbert space L0(M,Mt, P) with the scalar product (X, Y ) = EP[XY ]

(cf. Lemma 2.2). Clearly, the analogous set L0(F,Ft, F) of purely financial

payoffs is a closed subspace of L0(M,Mt, P). It can be shown (and was

in a similar context mentioned in Fischer (2003)) that the operator EB[.]

is the orthogonal projection of L0(M,Mt, P) onto L0(F,Ft, F). Thus, since

EB[〈θt, St〉] = 〈EB[θt], St〉 for all t ∈ T, EB[θ] is the best purely financial ap-

proximation to any θ ∈ Θ in the L2-sense (concerning the respective payoffs).

In contrast to Fischer (2003), the present paper intends to consider trading

strategies which also take biometric events later then time 0 into account. For

this reason, the following problem is of interest.

Consider a t-portfolio θ in the market MF×B. Assume that all information

until some time s < t is given. What is the best approximation (in the L2-

sense) of θ that can be reached by a purely financial trading strategy starting

from s and being given all information up to s? As surely expected and shown

by the following two lemmas, it is EP[θ|Ft ⊗ Bs].

Have in mind that P-a.s.

EP[〈θ, St〉|Ft ⊗ Bs] = 〈EP[θ|Ft ⊗ Bs], St〉. (24)

LEMMA 5.1. Under the notation of Section 2, consider the Hilbert space

L0(M,Mt, P) and for s < t its closed subspace L0(M,Ft ⊗ Bs, P). For any

X ∈ L0(M,Mt, P) one has the orthogonal decomposition

Ps,t(X) = EP[X|Ft ⊗ Bs] (25)

and

Qs,t(X) = X − Ps,t(X) (26)

due to the subspaces L0(M,Ft⊗Bs, P) and L0(M,Ft⊗Bs, P)⊥. The orthogonal

projection (25) of X is the (uniquely determined) closest point in L0(M,Ft ⊗
Bs, P) to X due to the L2-norm.
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Proof. Lemma 12.3.

From now on presume π to be as in Equation (4).

LEMMA 5.2. Let X ∈ L0(M,Mt, P) and Ps,t(X) as in (25). Then

Πt
s(X) = Πt

s(Ps,t(X)), (27)

and the payoff Ps,t(X) at t can ongoing from time s be replicated by a purely

financial s.f. strategy of price (27) at s.

Proof. Lemma 2.3 proves the existence of the replication. By Lemma 12.4,

Πt
s(Ps,t(X)) = S0

s · EQ⊗B[EF⊗B[X|Ft ⊗ Bs]/S
0
t |Fs ⊗ Bs] (28)

= S0
s · EQ⊗B[EQ⊗B[X|Ft ⊗ Bs]/S

0
t |Fs ⊗ Bs] = Πt

s(X).

REMARK 5.3. Lemma 5.2 is a further justification for the valuation princi-

ple Π (on the payoffs, but also for π on the portfolios; cf. Lemma 2.2 and 2.3)

as an approximation price.

For X in any L2(P,P , P) and Y ∈ L2(P,P ′, P) with σ-algebras P ′ ⊂ P one

has
√

Var(X − Y ) = ||X − Y − E[X − Y ]||2 ≤ ||X − Y ||2. So, if X − Y is

L2-minimal (for fixed X and variable Y as above) we must have ||X − Y −
E[X − Y ]||2 = ||X − Y ||2 since Y + const is also an element of L2(P,P ′, P).

Variance-optimality of X − Y follows immediately. Hence, if s = 0 and t > 0

then Pt,0(X) is not only the unique L2-optimal, but also a variance-optimal

hedge of the payoff X when the increase of biometric information during (0, t]

is not used for hedging purposes.

Please note that the results in the existing literature on variance-optimal

hedging can not be directly applied to our problems when explicit hedging

strategies are desired. For instance, in a discrete time framework Schweizer

(1995) assumes a constant money account and only one stochastic asset.

Furthermore, in our setup only arising financial information is used for hedging.

One-period decomposition. We use

GF
s,t = Ps,t(Gs,t) = EF⊗B[Gs,t|Ft ⊗ Bs] (29)

and

GB
s,t = Qs,t(Gs,t) = Gs,t − Ps,t(Gs,t) (30)
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as financial, respectively biometric (technical) part of any Gs,t ∈
L0(F × B,Ft ⊗ Bt, F ⊗ B) (cf. (17)) whenever the increase of biometric

information between s and t is not used for hedging purposes.

REMARK 5.4. Due to Lemma 5.1, (25) and (26), resp. (29) and (30), is the

unique decomposition which splits a payoff X into a replicable (by a purely

financial strategy starting at s, cf. Lemma 2.3) and a non-replicable part such

that the replicable one is L2-closest to X and the residual (non-replicable part)

hence L2-minimal. Observe that

EP[G
B
s,t|Fs ⊗ Bs] = EP[G

B
s,t] = 0. (31)

Therefore, the first three properties which are listed at the end of Section 3 are

fulfilled and the tightening of the second property as above induces that the

first and the second one directly imply (29) and (30). One also has Πt
s(G

B
s,t) = 0

by (27).

The results so far obtained rely on the fact that we work with L2-spaces.

However, one could also use (29) and (30) as financial, respectively biometric

part of Gs,t when |FT ⊗ BT | = ∞ and Gs,t ∈ L1(M,Ft ⊗ Bt, P).

Concerning pooling, note that the projection EF⊗B[.|Ft ⊗ Bs] (t > s), is

so to speak a generalization of the projection EB[.] which was considered in

Fischer (2003) for other reasons. However, in Fischer (2003) the convergence

of mean balances belonging to “pools” consisting of portfolios of the form
iθ − EB[iθ] was shown. Since the use of arising biometric information for

trading was not allowed there and iθ − EB[iθ] therefore is a biometric part of

a portfolio in our sense, we actually have a first glimpse of what “pooling”

can mean. The differences to the results of Fischer (2003) will become clear

in Section 8.

With the decomposition proposed in this section, the following general

solution of Bühlmann’s AFIR-problem can be stated.

Solution of the AFIR-problem. The minimum fair price of the t-claim

with payoff (GF
t−1,t)

+ at time s ≤ t− 1 is

Πt
s((G

F
t−1,t)

+) = S0
s · EQ⊗B[(GF

t−1,t)
+/S0

t |Fs ⊗ Bs], (32)
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where (GF
t−1,t)

+ is given by (17) and (29).

The respective replicating strategy for (GF
t−1,t)

+ depends on the contract

and might be difficult to determine.

6 Time-local properties

Until now, L2-, respectively variance-optimality of hedges was considered glob-

ally, i.e. from the viewpoint of time 0. We will now derive that certain opti-

mality properties also hold from the viewpoint of later time stages.

First, we reconsider the L2-minimality. Whenever Y ∗ minimizes ||X−Y ||2
for fixed X ∈ L2(P,P , P) and Y ∈ L2(P,P ′, P) with P ′ a sub-σ-algebra of P ,

one has Y ∗ = E[X|P ′] by Lemma 12.3. However, Lemma 12.5 gives that

E[(X − Y )2|P ′] ≤ E[(X − Z)2|P ′] (33)

for any Z ∈ L2(P,P ′, P) if and only if Y = E[X|P ′] P-a.s. Therefore, the

orthogonal risk decomposition considered in Section 5 is so to speak L2-optimal

from the viewpoint of s.

PROPOSITION 6.1 (Locally variance-optimal hedge). Suppose X ∈
L0(M,Mt, P) and let Y be the set of all payoffs Y ∈ L0(M,Ft ⊗ Bs, P) at t

which are produced by purely financial s.f. strategies with price 0 at s. Then

the minimization problem

min
Y ∈Y

Var[X − Y |Fs ⊗ Bs] (34)

has the unique solution Y ∗ which is determined by the payoff of the s.f. strategy

that replicates Ps,t(X) and sells for Πt
s(Ps,t(X)) zero-coupon bonds with time

to maturity t− s at s.

P-a.s. identical solutions are identified, here. The conditional variance is

defined in the Appendix, Definition 12.6.

Proof. Lemma 5.2 proved that Ps,t(X) can be replicated and Lemma 12.7

implies that any Y ∗ = Ps,t(X) + C ∈ Y , C ∈ L0(M,Fs ⊗ Bs, P), would be a

solution of (34) as long as the price at s is also allowed to be different from

0. However, the only investment at s with such a payoff C at t can be in

zero-coupon bonds (or any asset behaving like a zero-coupon bond between s

and t) with maturity date t as they have constant payoffs at t seen from s.
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Uniqueness of Y ∗ follows from the demand for price 0 at s, i.e. one must invest

−Πt
s(Ps,t(X)) in zero-coupon bonds.

7 Implications

In this section we will derive several implications of the proposed decomposition

(29) and (30).

Let us again consider the gains (17) arising from a life insurance contract.

PROPOSITION 7.1. For t > 0, the biometric part GB
t−1,t of the gain Gt−1,t

per period is not depending on the particular trading strategy, since

GB
t−1,t = Qt−1,t

(∑
r≥t

πt(δr − γr)

)
. (35)

Proof. From (16), one has

PVt =
∑
r<t

πt(δr,t − γr,t) +
∑
r≥t

πt(δr − γr) (36)

PVt−1 =
∑

r<t−1

πt−1(δr,t−1 − γr,t−1) +
∑

r≥t−1

πt−1(δr − γr). (37)

Obviously, PVt−1 is Ft ⊗Bt−1-measurable, and for any r < t also πt(δr,t − γr,t)

is since

πt(δr,t − γr,t) = 〈δr,t − γr,t, St〉 = 〈δr,t−1 − γr,t−1, St〉. (38)

By (25), (26) and (30), (35) follows.

The proposition has pointed out that only the financial part GF
t−1,t of

Gt−1,t depends on financial trading. However, (35) does not mean that GB
t−1,t

does not depend on the market. In fact, it can be strongly depending, but

the company is apart from its influence on GB
t−1,t by the contract design not

responsible for GB
t−1,t, i.e. after time 0, the part GB

t−1,t of the gains Gt−1,t can

not be influenced by the company, anymore.

Section 5 showed that the financial part GF
s,t of any gain Gs,t of a life

insurance contract can be replicated by a purely financial s.f. strategy starting

at s (cf. Lemma 5.2). But, how much costs the hedge of the claim with payoff

GF
s,t = Ps,t(Gs,t)? The answer given in the following proposition is a central

result of this paper.
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PROPOSITION 7.2. The price of the t-claim GF
s,t = Ps,t(Gs,t) at time s < t

is

Πt
s(G

F
s,t) = (1− p(s, t− s))PVs, (39)

where p(s, t− s) denotes the price of a zero-coupon bond with time to maturity

t− s at time s, i.e. p(s, t− s) := S0
s · EQ[1/S0

t |Fs].

Proof. Due to Lemma 12.4 and the fact that St is Ft⊗Bs-measurable, one has

for any θ ∈ Θ

Ps,t(πt(θ)) = S0
t · EQ⊗B[〈θ, ST 〉/S0

T |Ft ⊗ Bs] (40)

and one gets by (6)

Πt
s(Ps,t(πt(θ))) = S0

s · EQ⊗B[〈θ, ST 〉/S0
T |Fs ⊗ Bs] = πs(θ). (41)

On the other side, for any θ ∈ Θ one has Ps,t(πs(θ)) = πs(θ) and

Πt
s(Ps,t(πs(θ))) = πs(θ) · S0

s · EQ⊗B[1/S0
t |Fs ⊗ Bs] (42)

= πs(θ) · p(s, t− s).

Observe that

πs(δr,t − γr,t) = πs(δr,s − γr,s) (43)

for no-arbitrage reasons. The definition of Gs,t in (17), the linearity of the

valuation operators π, Π as well as the linearity of (41) and (42) in θ imply

(39).

We will now interpret (39) from the economic point of view by using the

following corollaries of Proposition 7.2.

COROLLARY 7.3. Starting at s, the payoff GF
s,t at t can be replicated by a

purely financial s.f. strategy with price (39) at time s.

Proof. Lemma 2.3.

COROLLARY 7.4 (Locally variance-optimal present value). Given a

life insurance contract with present value PVs at time s,

PVt = p(s, t− s)−1PVs + GB
s,t (44)

is the locally variance-optimal present value (seen from s) for time t which can

be achieved by a purely financial s.f. strategy starting and being for free at s.
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Proof. Lemma 12.7 (104) implies that PVt is locally variance-optimal if and

only if PVt − PVs is. We therefore apply Proposition 6.1 to this difference.

The optimal PVt (44) is therefore achieved by replication of the payoff −GF
s,t

(cf. Corollary 7.3) and investing the negative price, i.e. (39), in zero-coupon

bonds with maturity t.

Hence, an insurance company can reduce the risk of its business in the sense

that in any time period [s, t] it can accomplish the maximum sure wins possible

in the market starting from an initial capital PVs, but must bear a remaining

biometric fluctuation risk (with conditional expectation EP[G
B
s,t|Fs ⊗Bs] = 0)

which can not be influenced by trading if s = t− 1 (cf. Proposition 7.1).

Seen from time s, the present value under the locally variance-optimal

hedge develops like a riskless investment in the mean.

The two corollaries are strong arguments for the proposed decomposition

(29) and (30). If the company wants to, it can theoretically hedge away the

financial part GF
s,t of the gain Gs,t - except for an outstanding (and usually

positive) rest (p(s, t − s)−1 − 1)PVs which is not random from the viewpoint

of time s and which actually is the return of the safely invested negative cost

of the hedge (the negative cost of the hedge is (39)). More precise, (39) is the

cost of the capital PVs at time s for the time period [s, t] when PVs is financed

by zero-coupon bonds.

To make things more clear: If one borrows the amount PVs at s (e.g. to

work with it at the stock exchange), the fixed(!) amount which must be paid

back at time t can easily be computed as

PVs

S0
s · EQ⊗B[1/S0

t |Fs ⊗ Bs]
=

PVs

p(s, t− s)
. (45)

Hence, (
p(s, t− s)−1 − 1

)
PVs (46)

must be gained during [s, t] to avoid losses. The cost of doing this (= the cost

of the capital PVs at time s) is (1− p(s, t− s))PVs as this amount has to be

invested in zero-coupon bonds with time to maturity t − s at time s to have

the sure return (46) at t.

From the economic point of view, it is absolutely reasonable that the repli-

cation of GF
s,t costs something. Otherwise, it would be possible to obtain the

same returns from an initial capital zero as from any other positive initial

capital just by following self-financing trading strategies.
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COROLLARY 7.5. Starting with a present value PVs at time s, the present

value of a contract develops like

PVt = PVs ·
t−1∏
r=s

p(r, 1)−1 +
t∑

r=s+1

GB
r−1,r ·

t−1∏
u=r

p(u, 1)−1, (47)

when the locally variance-optimal hedge of Corollary 7.4 is applied in each

period (the product over an empty index set is 1).

Proof. Reiterate Corollary 7.4.

Clearly,
∏t−1

r=s p(r, 1)−1 is the value of a strategy at time t, where beginning

at s one currency unit is repeatedly invested in immediately maturing zero-

coupon bonds, i.e. in bonds with time to maturity 1. For very small time

intervals (e.g. 1 =̂ 1 month or even less) one can consider this strategy as a

so-called locally riskless (short rate) money account. In the literature often

exactly this money account is used as the discounting factor.

REMARK 7.6. The hedging possibilities described in the Corollaries 7.3-7.5

do not necessarily demand complete financial markets. Actually, the existence

of such strategies depends on the particular structure of the portfolios in the

underlying insurance contract. Hedging of particular contracts in incomplete

markets could be possible. Again, it should be clear that the realization of

such hedging strategies for real world insurance companies would demand the

precise knowledge of the second order base defined by the Axioms 1 and 2.

8 Pooling - a convergence property

In this section, a convergence property of the mean accumulated discounted

biometric risk contribution per contract will be deduced. The considered type

of convergence is different and somehow more general than the one in Fischer

(2003). There, the impact of the Law of Large Numbers was examined for

an exploding number of clients and a finite time horizon, only. This time, it

can also be assumed that the number of the company’s clients at any time t

is bounded, but an infinite time axis is given. Under both assumptions, an

insurance company can pool biometric risk contributions and benefit from the

growing number of independent individuals which have a diversifying influence

on the portfolio.

It is necessary to extend the model assumptions.
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Consider a sequence of securities market models MF×B as defined by the

Axioms 1, 2 and 3 of Fischer (2003), excluding Axiom 4. That means, for

t ∈ N+ the common model of financial and biometric risks up to time t is

given by
tMF×B = (M, (Ms)s∈{0,...,t}, P, {0, . . . , t}, tS), (48)

where
tMF = (F, (Fs)s∈{0,...,t}, F, {0, . . . , t}, F

tS) (49)

is a complete financial market together with a unique equivalent martingale

measure Q. We assume that the market models (48) are embedded into each

other in the sense that t+1MF×B extends tMF×B by one step of time, and

F, F, B, B and Q are identical for all t. In particular, sSr = tSr for r ≤ s ≤ t,

i.e. we can assume to be given a price process (St)t∈N for the d securities on

the whole time axis N. (F × B,F∞ ⊗ B∞, F ⊗ B) denotes the underlying

probabilistic universe. We can have |F∞ ⊗ B∞| = ∞, here. For the biometric

probability spaces we propose that |Bi
t| < ∞ for all i ∈ N+, t ∈ N, which surely

is no drawback for all practical purposes.

The existence of such sequences of models seems to be natural - e.g. for the

financial parts tMF one could think of a binomial model (Cox-Ross-Rubinstein)

which is extended further and further by additional nodes.

REMARK 8.1. Please note that for any i, t ∈ N+ the filtered probability

space (F×Bi, (Fs⊗Bi
s)s∈{0,...,t}, F⊗Bi) fulfills the model assumptions of Section

2 and can in the obvious way be embedded into the larger model described

above. Hence, all results (on hedging, risk decomposition etc.) of the previous

sections can be applied to this subspace and to particular contracts or portfolios

working on it.

The insurance contracts are modelled, now. As an infinite time axis is

considered, several things will be altered.

We assume that all considered individuals (i ∈ N+) will for sure be born

and will have a contract with the respective company. We do not intend to

develop birth or canvassing models, here. The next assumption is a maximum

lifetime ∆ for the human beings (e.g. ∆ =̂ 150 years). For all individuals i

a maximum date of death (Ti ∈ N+) is supposed. Only the living can be

contracted.

Now, consider a life insurance contract (iγt,
iδt)0≤t≤Ti

, Ti ∈ N+, in some
T MF×B with Ti ≤ T , i.e. iγt = iδt = 0 for t > Ti when the contract is
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considered on the time scale N. Let us define

Ai
t = {i signs at t} ∈ Ft ⊗ Bi

t, (50)

i.e. Ai
t is the event that a contract between i and the company is established

at t. In the obvious way, Ai
t ∈ Ft ⊗ Bt. So, (iγt,

iδt)t∈N should be seen as the

meta-contract (in fact, this is a sum) that contains all the sub-contracts that

i will probably sign in the future. Actually, the meta-contract exists by its

definition throughout the whole time axis - even before the birth and after the

death of the respective individual. The sub-contract signed at t is assumed to

start immediately, even if the first claims or premiums equal zero.

Under the assumptions made so far, the date of birth, date of death, kind

of insurance sub-contract or duration of this sub-contract are stochastic. Also

the number of individuals under contract at a certain time is stochastic. What

is assumed for sure is that the individual i (a) will have a contract with our

company one day, (b) will die before Ti, and (c) has a maximum life span ∆.

A more general model which also includes canvassing is beyond the scope of

this paper.

Clearly, {Ai
t : 0 ≤ t < Ti} is a partition of F ×B. One has

Ti−1∑
t=0

1Ai
t
= 1 and

Ti−1∑
t=0

P(Ai
t) = 1. (51)

Furthermore, iγs = iδs = 0 on Ai
t for s < t and s > t + ∆. Hence, 1Ai

t

iγs is

Ms-measurable for all t, s ∈ N (analogously, 1Ai
t

iδs). From the definition of

Ai
t it is clear that 1Ai

t
(f, .) (f ∈ F ) depends on the i-th biometric probability

space, only.

Assume that each portfolio iγt or iδt can only in the null-th component

be different from zero, i.e. any portfolio of the contract is given in terms of

the reference asset with price process (S0
t )t∈N (compare Example 4.1). This

assumption does not affect the trading strategies of the company. There is no

necessity to consider particular strategies (cf. Section 3) in this section as we

are interested in the biometric parts of the gains due to one time period, only

(cf. Proposition 7.1).

Now, assume to be given an infinite set of life insurance meta-contracts

{(iγt,
iδt)0≤t≤Ti

: i, Ti ∈ N+} as above. As in Fischer (2003), iδt and iγt only

depend on the i-th individual and MF , i.e. the biometric events concerning i

depend on (Bi, (Bi
t)t∈N, Bi), only. Furthermore, we assume for all elements

θ ∈ {iγt : i ∈ N+, t ∈ N} ∪ {iδt : i ∈ N+, t ∈ N} (52)
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that

|θ0| ≤ c ∈ R+ P-a.s. (53)

Of course, this is a much stronger condition than (K) in Fischer (2003).

Nonetheless, analogously to the discussion there, this condition is no draw-

back for all relevant practical purposes (cf. Example 8.7 below).

PROPOSITION 8.2. Under the above assumptions,

1

m

m∑
i=1

Ti−1∑
t=0

1Ai
t

Ti∑
r=t+1

iG
B

r−1,r/S
0
r

m→∞−→ 0 P-a.s. (54)

Interpretation. The mean aggregated discounted biometric risk contribution

per client converges to zero a.s. for an increasing number of independent clients.

The proposition explains to some extent what should be understood as the

core competence of life insurance companies. Due to the Strong Law of Large

Numbers they can aggregate the biometric parts of the risks over time and

individuals and accomplish balanced wins and losses in the mean. Naturally,

only risk contributions arising after the signing of a particular sub-contract are

considered, therefore the contributions are split using the 1Ai
t
. The division by

the reference asset in (54) is necessary as e.g. inflation influences have to be

avoided at this point. Otherwise, the use of the Law of Large Numbers would

not be possible.

COROLLARY 8.3. Assume that (S0
t )t∈N is the price process of the locally

riskless money account and that the insurance company sells fairly priced con-

tracts, only, i.e. 1Ai
t

iPV t = 0 for 0 ≤ t < Ti when iPV t denotes the present

value (cf. (16)) of the i-th meta-contract at t. Under the hedge of Corollary

7.5, started at the beginning of each sub-contract,

1

m

m∑
i=1

iPV Ti
/S0

Ti

m→∞−→ 0 P-a.s. (55)

Interpretation. (55) is the mean discounted total gain (= discounted present

value at Ti) of the first m contracts that converges to zero almost surely.

Proof. That the respective hedge can be applied follows from Remark 8.1. On

1Ai
t
we have that iPV t = 0 and hence (cf. (47))

1Ai
t

iPV Ti
= 1Ai

t

Ti∑
r=t+1

GB
r−1,r ·

Ti−1∏
u=r

p(u, 1)−1. (56)
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Furthermore, S0
t =

∏t−1
u=0 p(u, 1)−1 and hence(

Ti−1∏
u=r

p(u, 1)−1

)/
S0

Ti
= 1/S0

r . (57)

From (51), (56) and (57) we get

iPV Ti
/S0

Ti
=

Ti−1∑
t=0

1Ai
t

Ti∑
r=t+1

iG
B

r−1,r/S
0
r , (58)

and hence (55) by (54).

Note, that the result in Proposition 8.2 does not depend on the distribution

of the contracts on the time axis. For instance, the result is valid for a growing

number of clients over an infinite time interval, e.g. when |{i : Ti ≤ t}| < ∞
for all t ∈ N, as well as for an infinite number of contracts in a bounded time

interval, e.g. when supi∈N Ti < ∞, or when every contract is signed at t = 0 as

in the following corollary.

COROLLARY 8.4. When every contract (i ∈ N+) is signed at t = 0,

1

m

m∑
i=1

Ti∑
t=1

iG
B

t−1,t/S
0
t

m→∞−→ 0 P-a.s. (59)

Proof. 1Ai
0

= 1 for i ∈ N+, then.

REMARK 8.5. The convergence properties (54), (55) and (59) are addi-

tional arguments in favour of the proposed decomposition of gains. In fact,

Proposition 8.2 and its corollaries have shown that (29) and (30) fulfill the

four desired properties which where listed at the end of Section 3.

Proof of Proposition 8.2. For any θ as above we have

πt(θ) = S0
t · EQ⊗B[θ0|Ft ⊗ Bt]. (60)

In the following, we use the substitution

f i
r−1,r,s := EQ⊗B[iδ

0

s − iγ0
s|Fr ⊗ Br]− EQ⊗B[iδ

0

s − iγ
0

s|Fr ⊗ Br−1]. (61)

Observe that for t < r

1Ai
t
f i

r−1,r,s = EQ⊗B[1Ai
t
(iδ

0

s − iγ0
s)|Fr ⊗ Br] (62)

− EQ⊗B[1Ai
t
(iδ

0

s − iγ
0

s)|Fr ⊗ Br−1].
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By (35), we have for any i ∈ N+

Ti−1∑
t=0

1Ai
t

Ti∑
r=t+1

iG
B

r−1,r/S
0
r (63)

=

Ti−1∑
t=0

1Ai
t

Ti∑
r=t+1

1/S0
r ·Qr−1,r

(
Ti∑

s=r

πr(
iδs − iγs)

)

=

Ti−1∑
t=0

1Ai
t

Ti∑
r=t+1

1/S0
r ·Qr−1,r

(
Ti∑

s=r

S0
r · EQ⊗B[iδ

0

s − iγ
0

s|Fr ⊗ Br]

)

=

Ti−1∑
t=0

1Ai
t

Ti∑
r=t+1

Ti∑
s=r

f i
r−1,r,s

=

Ti−1∑
t=0

1Ai
t

t+∆∑
r=t+1

t+∆∑
s=r

f i
r−1,r,s ,

where the first equation uses (35), the third Lemma 12.4 and the last one (62)

and the fact that iγs = iδs = 0 on Ai
t for s > t + ∆. For f ∈ F define

(Ai
t)f := {b ∈ B : (f, b) ∈ Ai

t}. (64)

For any f ∈ F the set {(Ai
t)f : 0 ≤ t < Ti} is a partition of B.

Clearly, 1Ai
t
(f, .) = 1(Ai

t)f
. Hence, for fixed f ∈ F , the random variables

1Ai
t
(f, .)

∑t+∆
r=t+1

∑t+∆
s=r f i

r−1,r,s(f, .) for 0 ≤ t < Ti are orthogonal due to the

L2-norm on L2(B,BTi
, B). Furthermore,

||1Ai
t
(f, .)||22 = EB[(1(Ai

t)f
)2] = B((Ai

t)f ) (65)

and therefore
Ti−1∑
t=0

||1Ai
t
(f, .)||22 = 1. (66)

From (53) one obtains ∣∣∣∣∣
t+∆∑

r=t+1

t+∆∑
s=r

f i
r−1,r,s(f, .)

∣∣∣∣∣ ≤ 4c∆2. (67)
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Therefore, with (63), (66) and (67),∣∣∣∣∣
∣∣∣∣∣
Ti−1∑
t=0

1Ai
t
(f, .)

Ti∑
r=t+1

iG
B

r−1,r(f, .)/S0
r (f)

∣∣∣∣∣
∣∣∣∣∣
2

2

(68)

=

Ti−1∑
t=0

∣∣∣∣∣
∣∣∣∣∣1Ai

t
(f, .)

t+∆∑
r=t+1

t+∆∑
s=r

f i
r−1,r,s(f, .)

∣∣∣∣∣
∣∣∣∣∣
2

2

≤
Ti−1∑
t=0

(4c∆2)2||1Ai
t
(f, .)||22

= (4c∆2)2.

Furthermore, (62) and (63) prove that F-a.s.

EB

[
Ti−1∑
t=0

1Ai
t

Ti∑
r=t+1

iG
B

r−1,r/S
0
r

]
= 0. (69)

Hence, the Strong Law of Large Numbers (Kolmogorov’s Criterion for fixed f)

and Lemma 6.2 of Fischer (2003) imply (54).

REMARK 8.6. As it makes no difference whether the expectation in (69) is

taken due to B or Bi, it is easy to prove by Fubini’s Theorem that the biometric

risk contributions
∑Ti−1

t=0 1Ai
t

∑Ti

r=t+1
iG

B
r−1,r/S

0
r are pairwise uncorrelated.

EXAMPLE 8.7. Consider life insurance contracts which are for the i-th indi-

vidual given by two cash flows (iγt)t∈Ti
= (

iCt

S0
t
e0)t∈Ti

and (iδt)t∈Ti
= (

iDt

S0
t
e0)t∈Ti

with Ti = {0, 1, . . . , Ti} in years. Assume that each iCt is given by iCt(f, b) =
ict(f) iβ

γ
t (b

i) for all (f, b) = (f, b1, b2, . . .) ∈ M where ict is a positive Ft-

measurable function. Let (iδt)t∈T be defined analogously with the variables
iDt,

id and iβδ
t . Suppose that iβ

γ(δ)
t is Bi

t-measurable with iβ
γ(δ)
t (bi) ∈ {0, 1}

for all bi ∈ Bi. Clearly, (53) is fulfilled if

ict,
idt ≤ c · S0

t (70)

for all t ∈ Ti and all i ∈ N+. If S0
t ≥ 1 for all t ∈ Ti (which is quite realistic),

this condition is fulfilled by constants ict,
idt ≤ c (cf. Example 7.3 in Fischer

(2003)). However, (70) allows the adjustment of premiums and claims to a

possible inflation without the loss of (53) when one assumes that the money

account (S0
t )t∈Ti

would reflect such an inflation. Hence, (53) is an acceptable

condition from the practical point of view.
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Proposing that insurance companies reasonably price contracts and are

willing to drive financial hedging strategies, we have seen that they can ben-

efit in different ways from the biometric diversification by means of the Law

of Large Numbers. One possibility is a huge number of independent individ-

uals/contracts during a finite time interval (see also Fischer (2003)). Another

possibility is a huge number of independent individuals/contracts over a large

or infinite time interval where the number of contracts running during a finite

time interval may be small. Roughly speaking, a huge insurance company

which never goes bankrupt is the best proposition for an optimal benefit from

the Law of Large Numbers in life insurance.

9 Multiperiod decomposition

The multiperiod decomposition of gains is perhaps of less importance in prac-

tice since insurance companies usually consider time intervals of one year (as

balances are computed yearly) or one month and do not use in-between arising

biometric information for hedging purposes (cf. Section 3). However, the mul-

tiperiod decomposition, i.e. the decomposition of gains obtained over a time

interval in which also biometric information was used for trading, is an in-

teresting theoretical problem which is unfortunately beyond the scope of this

paper.

Ongoing from the L2-considerations in the previous sections, one could try

to define the financial part of the multiperiod decomposition as solution of the

following minimization problem.

Let X ∈ L0(M,Ft ⊗Bt, P) and Y be the set of all payoffs Y ∈ L0(M,Ft ⊗
Bt, P) at t which are produced by all self-financing strategies which start and

have a certain price P ∈ L0(M,Fs ⊗ Bs, P) at s. The solution Y ∗ of the

minimization problem

min
Y ∈Y

||X − Y ||2 (71)

is then taken as financial part of X (if the solution exists and is unique).

Observe the analogy to the definition of the one-period decomposition

(cf. Remark 5.4).

Again, (71) is different from the minimization problems which are usually

studied in the literature. Furthermore, it is not clear whether a reasonable form

of a possible solution Y ∗ (compared to (25)) can be deduced in our framework.

We must leave this topic open and postpone it to future research. Nonetheless,
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a pragmatic approach to the problem could be the use of Corollary 7.5.

As GB
r,r+1 does not depend on the trading strategy (cf. Proposition 7.1), the

right summand in (47) could be used as one (more or less) reasonable way to

compute the multiperiod biometric part of any gain Gs,t when biometric infor-

mation arising during (s, t] was used. One has to point out that the financial

part of this decomposition is not necessarily the solution of the minimization

problem (71). The two approaches should be expected to be different as long

as one does not know more about possible solutions of (71).

10 A review of Bühlmann’s approach

For the sake of completeness, we discuss Bühlmann’s approach to stochastic

discounting and risk decomposition in this section.

Bühlmann (1992, 1995) considers a (life) insurance policy as a vector X of

payoffs Xt at t ∈ T = {0, 1, . . . , T}. In fact, t = 0 is excluded in Bühlmann

(1992), but included in Bühlmann (1995). Positive numbers are interpreted as

payments from the insurer to the insurant. We do not consider any portfolios

in this section. The notion valuation principle is replaced by the valuation

Q of Bühlmann, which is the price for X ”made and to be paid” at t = 0.

Q is defined as a continuous linear functional on the vectors (Xt)t∈T of some

not further specified L2(M,M, P)|T|, which is a Hilbert space with the scalar

product

(X,Y ) =
∑
t∈T

E[XtYt]. (72)

Indeed, and despite of the fact that Bühlmann later uses a certain filtration

for the dynamics of information, at this point Q is defined on (L2(M,M, P)|T|.

Actually, this gives rise to some interesting questions and we will return to

this topic, soon.

Under the assumptions made, one obtains by a standard representation

theorem of continuous linear functionals in Hilbert spaces a representation of

Q by expectations, i.e.

Q[X] = E

[
T∑

t=0

ϕtXt

]
(73)

for some ϕ ∈ L2(M,M, P)|T|. In Bühlmann (1992), the ϕt are called stochastic

discount functions. After that, a filtration (Mt)t∈T is defined by

Mt = σ(X0, . . . , Xt; ϕ0, . . . , ϕt), t ∈ T. (74)
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The abstract random variables ϕt - a priori only known to be in L2(M,M, P)

- are used to define an information structure (history) which is later used to

represent the development of information in the real word. From the economic

point of view, this is a problematic assumption. In fact, the information struc-

ture should be fixed a priori (e.g. generated by the development of the given

price processes of assets in a financial market), i.e. before any price operator is

introduced. Furthermore, (74) depends on one single cash flow X, only.

Nonetheless, prices at time t are now defined by

Q[X|Mt] =
1

ϕt

E

[
T∑

s=0

ϕsXs

∣∣∣∣∣Mt

]
. (75)

One immediately obtains the following decomposition of the value of the con-

tract in prices of the past and the future payment stream:

Q[X|Mt] =
t∑

s=0

ϕs

ϕt

Xs︸ ︷︷ ︸ +
1

ϕt

E

[
T∑

s=t+1

ϕsXs

∣∣∣∣∣Mt

]
︸ ︷︷ ︸ . (76)

past stream future stream

As a consequence, any payment at some s < t develops in the same way

(seen from t), independent of the investment strategy. This result - which

is astonishing from the economic point of view when there are more assets

than only one in the market - has its mathematical roots in the problematic

assumptions concerning the information structure of the model.

First, it is important to note (and was already mentioned) that Bühlmann’s

equilibrium justification of (75) crucially depends on the fact that Q is defined

on the whole L2(M,M, P)|T|. However, using an economic equilibrium argu-

ment, it is problematic to explicitly use cash flows which cannot have any real

equivalent. For instance, payments at times s that are conditioned on events

at time t > s play an important role in Bühlmann (1992; p. 114, step b).

Clearly, Q should be defined on some

L2(M,M0, P)× . . .× L2(M,MT , P) (77)

with M0 ⊂ . . . ⊂ MT ⊂ M being an increasing series of a priori given σ-

algebras.

The second problem is (74) and was already discussed above. Additionally

it should be remarked that being given any information structure (Mt)t∈T in

advance, i.e. before computing the ϕt (as it should be reasonably assumed), it
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is not at all clear whether the ϕt would be Mt-measurable. However, this is a

crucial presumption for the representation (75) and a reasonable interpretation

of (76).

For these reasons it is problematic to use the stochastic discounting ap-

proach as explained above. Nonetheless, we continue the description.

Ongoing from the definitions,

Lt(X) =
ϕt

ϕt−1

Q[X|Mt]−Q[X|Mt−1] (78)

is defined as annual loss in (t−1, t], discounted to the beginning of the interval

(time in years; cf. Bühlmann, 1995). Then, the following definitions take place:

Gt = σ(X0, . . . , Xt−1; ϕ0, . . . , ϕt), (79)

R[X|Mt] =
1

ϕt

E

[
T∑

s=t+1

ϕsXs

∣∣∣∣∣Mt

]
, (80)

which is the prospective reserve, and

R+[X|Gt] =
1

ϕt

E

[
T∑

s=t

ϕsXs

∣∣∣∣∣Gt

]
. (81)

Now, a certain martingale sequence for the filtration

M0 ⊂ G1 ⊂M1 ⊂ G2 ⊂M2 ⊂ . . . (82)

is considered. The members of this sequence due to the Mt are discounted

sums of annual losses. From Mt−1 to Gt the “claims experience” is identical,

from Gt to Mt the “financial base” remains unchanged (cf. Bühlmann, 1995).

Considering differences of this martingale, the decomposition Lt = LF
t + LB

t is

proposed by

LB
t =

ϕt

ϕt−1

Xt +
ϕt

ϕt−1

R[X|Mt]−
ϕt

ϕt−1

R+[X|Gt] (83)

and

LF
t =

ϕt

ϕt−1

R+[X|Gt]−R[X|Mt−1]. (84)

Observe, that one has

Lt(X) =
ϕt

ϕt−1

Xt +
ϕt

ϕt−1

R[X|Mt]−R[X|Mt−1]. (85)

The problem with this decomposition is that one could choose

G ′t = σ(X0, . . . , Xt; ϕ0, . . . , ϕt−1) (86)

instead of Gt and get a quite similar, but different result. There is no explicit

reason for Gt given in Bühlmann (1995). Finally, it is not clear whether there

is an economic interpretation of (81).
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11 Conclusion

The paper made clear how strong the connection between hedging, risk decom-

position and pooling is. For instance, under certain assumptions, the reitera-

tion of the so-called locally variance-optimal hedge for a fairly priced contract

(under the minimum fair price) implies that the mean discounted total gain

of the first m contracts converges to zero almost surely for m → ∞ when

clients are independent. However, under the hedge, this mean gain is exactly

the mean accumulated discounted biometric risk contribution of the first m

contracts (cf. Proposition 8.2 and its corollaries).

Remarkable with Proposition 8.2 is that it does not matter how the con-

tracts under consideration are distributed on the time axis and whether the

time axis is finite or not. Hence, the proposition gives a very satisfying interpre-

tation of what should be understood as pooling of biometric risk contributions

in life insurance.

An adaption of the results to continuous time models must be postponed

to future research. Also more practical problems like an integration or review

of existing bonus theory in the proposed model should be considered then.

12 Appendix

LEMMA 12.1. For X in any L2(P,P , P) and any sub-σ-algebra P ′ ⊂ P

(E[X|P ′])2 ≤ E[X2|P ′] P-a.s. (87)

Hence, ||E[X|P ′]||2 ≤ ||X||2 < ∞ and therefore E[X|P ′] ∈ L2(P,P ′, P).

Proof. (87) is a well-known corollary of Jensen’s inequality.

LEMMA 12.2. For X in any L1(F ×B,F ⊗ B, F⊗ B) with |F| < ∞ and a

σ-algebra B′ ⊂ B one has F-a.s.

EF⊗B[X|F ⊗ B′](f, .) = EB[X(f, .)|B′] B-a.s. (88)

Proof. From Fubini’s Theorem one has for all F1 ∈ F , B1 ∈ B′ that∫
F1

∫
B1

XdBdF =

∫
F1

∫
B1

EF⊗B[X|F ⊗ B′]dBdF. (89)

Therefore it holds for all B1 ∈ B′ F-a.s. that∫
B1

X(f, .)dB =

∫
B1

EF⊗B[X|F ⊗ B′](f, .)dB. (90)
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Hence, (90) for all B1 ∈ B′ on a set F (B1) ∈ F with measure 1. As A :=⋂
B1∈B′ F (B1) is a finite intersection (since |F| < ∞), F(A) = 1. So for all

f ∈ A one has for all B1 ∈ B′ (90). This implies (88).

The following lemma can in several forms be found in the literature.

LEMMA 12.3. Consider the Hilbert space L2(P,P , P), where (P,P , P) is an

arbitrary probability space, and for some σ-algebra P ′ ⊂ P the closed subspace

L2(P,P ′, P). For any X ∈ L2(P,P , P) one has the orthogonal decomposition

P (X) = E[X|P ′] (91)

and

Q(X) = X − P (X) (92)

due to the subspaces L2(P,P ′, P) and L2(P,P ′, P)⊥. In particular, E[X|P ′] is

the unique Y ∈ L2(P,P ′, P) which minimizes ||X − Y ||2.

Proof. By Lemma 12.1, P (X) ∈ L2(P,P ′, P). It remains to prove that for any

X ∈ L2(P,P , P) the vector Q(X) is orthogonal to any Y ∈ L2(P,P ′, P):

E[Y Q(X)] = E[E[Y Q(X)|P ′]] = E[Y E[Q(X)|P ′]] = 0. (93)

The minimality property is a standard result (e.g. Rudin, 1987).

LEMMA 12.4. In the framework of Section 2, respectively Fischer (2003),

Lp(M,Ft ⊗ Bs, P) ⊂ Lp(M,Ft ⊗ Bs, M) for s, t ∈ T, s ≤ t and p ∈ [1,∞].

Furthermore, for X ∈ Lp(M,Mt, P)

EF⊗B[X|Ft ⊗ Bs] = EQ⊗B[X|Ft ⊗ Bs]. (94)

Proof. By the Fundamental Theorem the Radon-Nikodym-derivative

dM/dP = d(Q⊗ B)/d(F⊗ B) = dQ/dF (95)

is bounded, cf. Lemma 6.5 in Fischer (2003). This proves the first part of the

lemma. For the second part one applies Lemma 12.2 as well as Lemma 6.1 of

Fischer (2003) and obtains F⊗ B-a.s.

EF⊗B[X|Ft ⊗ Bs](f, b) = EB[X(f, .)|Bs](b) (96)

Replacing F by Q proves (94).
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LEMMA 12.5. Presume any X ∈ L2(P,P , P), Y ∈ L2(P,P ′, P) and σ-

algebras P ′′ ⊂ P ′ ⊂ P. It holds that

E[(X − Y ])2|P ′′] ≤ E[(X − Z)2|P ′′] P-a.s. (97)

for all Z ∈ L2(P,P ′, P) if and only if Y = E[X|P ′] P-a.s.

Proof. One has

E[(X − E[X|P ′])2|P ′′] (98)

= E[ E[ X2 − 2XE[X|P ′] + E[X|P ′]2 |P ′] |P ′′]

= E[ E[ X2|P ′] − E[X|P ′]2 |P ′′]

= E[ X2 − E[X|P ′]2 |P ′′].

Furthermore,

E[(X − Z)2|P ′′] = E[ X2 − 2E[X|P ′]Z + Z2 |P ′′]. (99)

One therefore gets for the difference of (99) and (98)

E[ (E[X|P ′]− Z)2 |P ′′] ≥ 0. (100)

Hence, Y = E[X|P ′] fulfills (97) for all Z ∈ L2(P,P ′, P). However, any other

candidate for Y must fulfill

−E[ (Y − E[X|P ′])2 |P ′′] ≥ 0, (101)

which can be derived from (97) setting Z = E[X|P ′]. Hence,

||Y − E[X|P ′]||22 ≤ 0 (102)

and therefore Y = E[X|P ′] P-a.s.

DEFINITION 12.6. For a random variable Z in any L2(P,P , P) its con-

ditional variance due to some sub-σ-algebra P ′ ⊂ P is defined by

Var[X|P ′] = E[(X − E[X|P ′])2|P ′]. (103)

For instance, when P is the information at some time t and P ′ at time s < t,

the interpretation of (103) as “the variance of X seen from s” is obvious.
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LEMMA 12.7. Propose some σ-algebras P ′′ ⊂ P ′ ⊂ P. For any X ∈
L2(P,P , P) and Z ∈ L2(P,P ′′, P)

Var[X + Z|P ′′] = Var[X|P ′′]. (104)

Presume X ∈ L2(P,P , P) and Y ∈ L2(P,P ′, P). It holds that

Var[X − Y |P ′′] ≤ Var[X − Z|P ′′] (105)

for all Z ∈ L2(P,P ′, P) if and only if Y = E[X|P ′] + C P-a.s. for some

C ∈ L2(P,P ′′, P).

Proof. (104) is clear. For the left side of (105) one has

E[ (X − Y − E[X − Y |P ′′])2 |P ′′], (106)

analogously the right side for Z. For Y = E[X|P ′]+C where C ∈ L2(P,P ′′, P),

the left side of (105) is identical to

E[ (X − E[X|P ′])2 |P ′′] (107)

since E[ X −E[X|P ′]−C |P ′′] = −C. This implies the backward direction by

Lemma 12.5 since Z + E[X − Z|P ′′] ∈ L2(P,P ′, P) due to the Jensen-Lemma

12.1. However, any other candidate Y must fulfill

0 ≤ E[ (X − E[X|P ′])2 |P ′′]− E[ (X − Y − E[X − Y |P ′′])2 |P ′′] (108)

= −E[ (Y + E[X − Y |P ′′]− E[X|P ′])2 |P ′′].

Therefore,

Y = E[X|P ′]− E[X − Y |P ′′] P-a.s. (109)

But (109) if and only if Y = E[X|P ′]+C P-a.s. for some C ∈ L2(P,P ′′, P).
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