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Abstract 
In the presence of a heterogeneous population, it appears that the modeling 

of the risk of death provides different results at the aggregated level (i.e. by 
considering the population in total) and the disaggregated (i.e. by segmenting 
the population into subpopulations), which expresses a heterogeneity bias (cf. 
for example Droesbeke and al. [1989]). This result is often explained by the 
“mobile-stable” phenomenon, according to which the individuals of the 
segment with a high mortality hazard rate leave first and thus increase the 
proportion of individuals of the segment with a low mortality hazard rate as 
time passes. 

A reflection then is essential on the approach to retain to model the time to 
death for a heterogeneous population, taking into account in particular the 
problems of choice of optimal segmentation (cf. Planchet and Leroy [2009]) 
and of risk estimation (cf. Kamega and Planchet [2010]). Three possible 
approaches are quoted here: the first approach consists in modeling the 
behavior of each subpopulation in an independent way, the second approach 
consists in turning to models of survival data integrating of the observable 
factors of heterogeneity starting from explanatory variables, and the third 
approach consists in turning to models integrating of the unobservable factors 
of heterogeneity (frailty models). In this study one is interested in the models of 
the second category, in particular with the semi-parametric models of 
Cox [1972] and Lin and Ying [1994]. For these models, the model of Brass is 
used to adjust the population of reference with a table of external reference. 
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Thanks to simulations, this study presents a measurement of the risk 

estimation for these two examples of models integrating heterogeneity starting 
from observable explanatory variables. In particular, the study makes it 
possible to show that the choice of such models for the measurement of 
heterogeneity, at the expense of the approach consisting in modeling the 
behavior of each subpopulation in an independent way, makes it possible to 
limit the level of the risk estimation. 
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1. Introduction 
As recalled by Vaupel [2002], all the populations are heterogeneous: two 

individuals of the same age and of the same sex in a population can present two 
very different risks of deaths. 

In practice, it appears that the modeling of the risk of death provides 
different results at the aggregated level (i.e. by considering the totality of 
population) and the disaggregated (i.e. by segmenting the population in 
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subpopulations), reflecting a heterogeneity bias (cf. for example Droesbeke and 
al. [1989]). This result is often explained by the “mobile-stable” phenomenon, 
according to which the individuals of the segment with a high mortality hazard 
rate leave first and thus increase the proportion of individuals of the segment 
with a low mortality hazard rate as time passes. Thus, it is understood that 
when the pattern of settlement by segment remains stable over time, one can 
avoid modeling heterogeneity. On the other hand, as soon as the pattern of 
settlement evolves, like often during the evaluation of a technical provision, a 
taking into account of heterogeneity is essential in order to have a robust life 
table. 

A reflection then is essential for the approach to retain the modeling of the 
hazard function of a heterogeneous population, taking into account in particular 
the problems of choice of optimal segmentation (cf. Planchet and Leroy [2009]) 
and of risk estimation (cf. Kamega and Planchet [2010]). Three possible 
approaches are quoted here. 

The first approach consists in modeling the behavior of each subpopulation 
in an independent way. The models associated with this approach can however 
quickly encounter problems of insufficient data, which accentuates the 
problems of choice of optimal segmentation and raise the risk estimation (cf. 
Kamega and Planchet [2010]). 

The second approach consists in turning to models integrating the 
observable factors of heterogeneity starting from explanatory variables. Here, 
the population is considered as a whole and we endeavor to measure the effect 
of the explanatory variables (which define the segments) on the observed 
phenomenon (which is the hazard function). 

The third approach consists in turning to models integrating the 
unobservable factors of heterogeneity (or residual, cf. for example Delwarde 
and Denuit [2006]). For this purpose, we can be based on frailty models, which 
make it possible to account for heterogeneity in the risks of individual deaths. 
In practice, we distinguish the traditional frailty model of Vaupel, which 
considers the differences in level of mortality per individual and is based on the 
assumption of proportionality, and the combined frailty model of Barbi, which 
considers the differences in level per individual and the differences in slope by 
group of individuals and thus, it is not based on the assumption of 
proportionality (these models are presented in Vaupel and al. [1979] and in 
Barbi and al. [2003]). 

In this study, we are interested in the models of the second category which 
integrate observable factors of heterogeneity starting from explanatory 
variables. In particular, this study makes it possible to appreciate the evolution 
of risk estimation over the passage of time from the first to the second 
approach. 

Plan and data 

The study then seeks to justify the choice of the heterogeneity model 
retained (section 2) and to measure the associated risk estimation (sections 3 to 
6). 
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The presented numerical illustrations are based on the data from insurers 

used for the construction of the regulatory mortality tables in zone 
CIMA/FANAF  1 for the contracts of insurance in the event of life and death. 
These data more precisely cover the population of the countries of under-area 
UEMOA, represented here by the Côte d’Ivoire, Mali and Togo. 

We consider a potential heterogeneity by country, beyond the differences 
related on sex and age. Also, the following tables present statistics (exposure, 
average age and average rate of annual mortality) of the data on the population 
of insured persons by country for men and women of under-area UEMOA and 
aged from 30 to 55 years. 

Table 1 - Statistics broken down by country (UEMOA - Woman) 

Man
(insured population)

Population at 
risk

Average age
Average death 

rate

Average death 
rate (lower limit  

at 95%)

Average death 
rate (upper limit  

at 95%)

CI 549 656 43,9 years old 0,40% 0,38% 0,41%

ML 12 114 42,5 years old 0,22% 0,14% 0,31%

TG 133 779 43,2 years old 0,42% 0,39% 0,46%

UEMOA (CI-ML-TG) 695 549 43,8 years old 0,40% 0,38% 0,41%  
 

Table 2 - Statistics broken down by country (UEMOA - Man) 

Woman
(insured population)

Population at 
risk

Average age
Average death 

rate

Average death 
rate (lower limit  

at 95%)

Average death 
rate (upper limit  

at 95%)

CI 117 199 43,2 years old 0,19% 0,17% 0,22%

ML 3 499 41,7 years old 0,11% 0,00% 0,23%

TG 22 882 42,2 years old 0,07% 0,04% 0,11%

UEMOA (CI-ML-TG) 143 580 43,0 years old 0,17% 0,15% 0,19%  
 

These data were collected in 2009 and are presented in detail in Planchet 
and al. [2010]. It is retained here that they are observed over the years 2003 to 
2006 and count truncations on the left (relating to the entries after 01/01/2003) 
and censures on the right (relating to data before 12/31/2006 for any reason 
other than death). 

2. Choice of model 

In this section, we present the steps of the process of choosing the retained 
model: presentation of the problems of dimension associated with the models 
with explanatory variables with the choice of the models of Cox and Lin and 
Ying. 

                                                           
1 Area covering the countries of CIMA members and represented by insurance 
companies or reinsurance FANAF, namely Benin, Burkina Faso, the Côte d’Ivoire, 
Mali, Niger, Senegal and Togo (that is, the UEMOA countries, except Guinea Bissau) 
and Cameroon, Central African Republic, Congo Brazzaville, Gabon, Chad (that is, the 
CEMAC countries, excluding Equatorial Guinea). 
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2.1. Models with explanatory variables and problems of 

dimension 

In statistics, when a phenomenon can be explained by several explanatory 
variables, one can turn to purely parametric regressions such as linear 
regressions. The advantage is that, in this case, one can easily find consistent 
estimators. The disadvantage of these models is that they are based on many 
assumptions on the behavior of the phenomenon observed and thus present a 
significant risk of not being faithful to the experience. 

An alternative then consists in turning to nonparametric regressions, which 
are based on a limited number of assumptions for the behavior of the observed 
phenomenon and, thus, are less constraining. However, these models present a 
well-known disadvantage under the term of “curse of dimensionality” (by 
mathematician Richard Bellman), relating to the problem caused by an 
exponential increase in volume associated with adding extra dimensions to a 
(mathematical) space. According to this curse, the nonparametric estimators of 
a function of regression behave badly when the number of variables is 
important (for this, we can refer to Viallon [2006]). 

The additive Aalen model is an example of a nonparametric model. This 
model presumes that the intensity of a process of Poisson ( )N t  

( [ ]0,τ ,τt ∈ < ∞ ) of dimension n  ( n representing the number of individuals 

under risk) takes the following form (a complete description of this model is 
available in Martinussen and Scheike [2006] and Klein and Moeschberger 
[2005]): 

( ) ( ) ( ) ( )λ β
Tt Y t X t t= , 

where ( )Y t  is an indicator of risk (for all [ ]1,i n∈ , ( )iY t  is equal to 1 if 

individual i is under risk at the date t, and otherwise, is equal to 0), ( )β t  

represents the vector of the basic coefficient and the coefficients of the p  

variables, and ( )X t  represents the matrix of the basic constant term and the 

variables of dimension p  (the first column of ( )X t  is thus equal to the unit). 

If this model has great flexibility, in certain cases it could be too sophisticated, 
in particular when volumes of data available are limited, and can be subject to 
significant operational limitations, in particular because of the “curse of 
dimensionality”. 

It is thus necessary to reduce the dimension of the models. The method 
which is considered here is the method adopted by Lopez [2007] in his doctoral 
thesis on the reduction of dimension in the presence of censured data: it is the 
single index model. 

2.2. Choice of single-index models (SIM): Cox and Lin 

and Ying 

The single-index models (SIM) are defined by: 



6 Heterogeneity : measure integrating risk of estimate in the case of a 
modeling of the observable factors 

 

( ) ( ) ( )| δ
Tm z E Y Z z f z= = = , 

where Y  represents the dependent variable of dimension 1, Z  represents the 
explanatory variables of dimension p , m  represents an unknown function 

such as : pm →ℝ ℝ , f  represents a function of an unknown link such as 

:f →ℝ ℝ  and δ p∈ Θ ⊂ ℝ  is an unknown parameter of a finished dimension. 

If f  is known, the problem becomes purely parametric; and on the other 

hand if δ  is known, the problem becomes nonparametric but of dimension 1. 
In general, single-index models (SIM) are often presented as a reasonable 
compromise between purely parametric modeling and purely nonparametric 
modeling (as specified, for example, in the work of McCullagh and 
Nelder [1989]). 

Lopez [2007] thus proposes the choice of SIM to limit the problem of 
dimension and shows that one can reasonably estimate these semi-parametric 
models in the presence of censure. To model the heterogeneity from a model 
taking into account explanatory variables, the semi-parametric models of type 
SIM thus seem to be adapted. It is now appropriate to consider retaining the 
SIM. 

In practice, it appears that the multiplicative Cox [1972] model and the 
additive Lin and Ying [1994] model are typical cases of SIM, in which the 
assumptions do not relate on conditional expectancy but they do to the 
conditional instantaneous hazard rate. Indeed, the multiplicative Cox model can 
be written as: 

( ) ( ) δ
0λ | λ

T zt Z z t e= = , 

where 0λ  is a presumably unknown function and δ  is a parameter to be 

estimated (thus, we easily find the representation of a SIM). In the same way, 
the additive Lin and Ying model can be written as: 

( ) ( )0λ | λ γ
Tt Z z t z= = + , 

where 0λ  is a presumably unknown function and γ  is a parameter to be 

estimated (the Lin and Ying model is a typical case of the Aalen model, in 
which γ  replaces ( )γ t ). Moreover, it appears that the multiplicative Cox 

model and the additive Lin and Ying model get together when 0λ  is constant 

(thus invariant in time) and the exponential term in the multiplicative model (or 

δ
T ze ) is replaced by the linear expression { }1 δ

T z+  ; in this case 0γ λ δ= . 

Here, we limit our choice of SIM to the two models above: the Cox model 
and the Lin and Ying model (in practice, many alternative models could have 
been retained, including extensions of the multiplicative Cox model and the 
additive Aalen model, cf. Martinussen and Scheike [2006]). 
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The Cox model is most widely used given its sound properties which were 
largely studied. However, as Hill et al. [1990] point out, in this model the 
hazard ratio for two subpopulations of characteristics 1z  and 2z  depends only 

on 1z  and 2z  and not on time: ( ) ( ) 1 2δ δ
1 2λ | λ |

T Tz z
t Z z t Z z e e= = = . The 

Cox model is thus based on the assumption of proportionality of the 
instantaneous death rates between different segments, which is binding. 

In the Lin and Ying model, it is the absolute difference of the instantaneous 
risks for two subpopulations of characteristics 1z  and 2z  which depends only 

on 1z  and 2z  and not on time: ( ) ( )1 2 1 2λ | λ | γ γ
T Tt Z z t Z z z z= − = = − . This 

assumption is also binding. 

In practice, it is therefore necessary to choose between a constraint on 
relative differences (proportionality assumption) and a constraint on the 
absolute differences. Beyond any statistical test on the assumptions (cf. 
references in the following sections, in particular for the Cox model and the 
validation of the proportionality assumption), the choice can be guided by 
“expert advice”, by taking into account the context of the study. 

According to the statistics of WHO2, on the general population it appears 
that the relative differences of mortality rates between 30 and 54 years within 
zone CIMA/FANAF as the age increases are more stable than the absolute 
differences (on this point, references are also available in Planchet et 
al. [2010]). In this context, a constraint on the relative differences would seem 
more suitable. 

But, alternatively, according to the same statistics of WHO, it appears that 
beyond 55 years of age, the differences in mortality rates decrease as the age 
increases (on this point, the references are also available in Planchet and 
al. [2010]). In this context, a constraint on the absolute differences would seem 
more suitable. 

In other words, according to the framework of exploitation of the data, the 
Cox model or the Lin and Ying model can be more or less suitable. Also, in this 
study, we will use these two models to measure the risk estimation within the 
framework of a model integrating heterogeneity starting from observable 
factors (in particular, the Lin and Ying model is compared to Cox model). 

3. Cox model: adjustment and simulation of mortality 

rates 

The Cox model is a traditional model in survival analysis and has been 
largely studied. Here, we focus on its use of the measurement of risk 
estimation. 

The approach used here to illustrate risk estimation is by directly generating 
random and crude rates (as appropriate distribution), in order to deduce the 
impact on the estimate of parameters required to estimate adjusted rates. 

                                                           
2 Cf. http://apps.who.int/whosis/database/life_tables/life_tables.cfm 
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In this context, at first this section presents the evaluation of the annual 

adjusted deaths rates (cf. 3.1), and then it presents the simulation of annual 
mortality rates for the measurement of risk estimation (cf. 3.2). 

3.1. Cox: evaluation of the annual adjusted mortality 

rates 

The Cox model, which for memory’s sake can be written as following 

( ) ( ) δ
0λ | λ

T zt Z z t e= = , makes it possible to measure the multiplicative effect 

of explanatory variables, in this case countries, on survival. For this purpose, 
we estimate the parameter δ  by the maximum likelihood method. We consider 
in particular the Cox partial likelihood, which is calculated by the product of 
conditional probabilities observed at a given moment it  ( [ ]1;i D∈ ) one (or 

several) death knowing the composition of the population under risk at this 
given moment (Hill and al. [1990] present a justification of this approach). 

3.1.1. Estimate of Cox (in absence and in presence of a tie) 

This paragraph presents the estimate suggested by Cox, in absence and in 
presence of tie. 

Estimate of Cox in absence of a tie 

When it is supposed that one death occurs at every moment it , Cox [1972] 

indicates that the conditional probability that is the subject of a characteristic 

( )iz  which dies in it , given that one had a group iR  of subjects at risk, is 

( ){ } ( ){ }exp δ exp δ

i

T T
i j i

j R

z z
∈
∑ , where ( )j iz  represents the characteristics of 

the jth individual under risk in it . Partial likelihoods of Cox is calculated thus 

like the product of his contributions, and log likelihoods is written then as 

( ) ( ) ( ){ }
1 1

δ δ ln exp δ

i

D D
T T

i j i
i i j R

L z z
= = ∈

 
 = −
 
 

∑ ∑ ∑ . 

Estimate of Cox in presence of a tie 

When it is supposed that several deaths occur at every moment it , 

Cox [1972] provides a new specification of a multiplicative model in a discrete 
case: 

( )
( )

( )
( )

δ0

0

λ | λ

1 λ | 1 λ

T zt Z z t
e

t Z z t

=
=

− = −
. 

Indeed, if Cox supposes that in continuous time (when only one death occurs at 

every moment it ) its model is written as following ( ) ( ) δ
0λ | λ

T zt Z z t e= = , in 
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discrete time (when several deaths occur at every moment it ) he supposes that 

the instantaneous hazard rates are not sufficiently close to 0 to consider 

( )1 λ | 1t Z z− = =  and ( )01 λ 1t− = . 

With this new specification, the contribution to the probability of deaths id  

in time it , knowing that one had the group iR  of subjects at risk, is written: 

( ){ } ( ){ }
( );

exp δ exp δ

i i

T T
i j i

j R d

s s
∈
∑ , 

where ( )is  represents the sum of ( )iz  for all individuals who died in it , and the 

notation of the denominator means that the sum is taken over all individuals id  

is quite distinctive from the one taken on iR . Log likelihoods is then written as: 

( ) ( ) ( ){ }
( )1 1 ;

δ δ ln exp δ

i i

D D
T T

i j i
i i j R d

L s s
= = ∈

 
 = −
  
 

∑ ∑ ∑ . 

3.1.2. Estimate of Breslow (in presence of tie) 

One of specificities of the death risk is that the frequency of supervening of 
the risk is weak and that the exposure to the risk is relatively high. Also, in this 
case, the number of possible combinations of the sum of the denominator 

( ){ }
( );

exp δ

i i

T
j i

j R d

s
∈
∑  in the Cox estimator in the presence of tie is particularly 

important and limits the implementation of the estimate (in particular when the 
estimate lies within the scope of simulations, as is the case here). 

In this context, one can turn to the approximations of Breslow and Elfron (a 
comparison of the approaches of Cox, Breslow and Elfron starting from simple 
quantified examples is presented in Klein and Moeschberger [2005]). Here, one 
retains the Breslow simplification, which is the most practiced, according to 
which the contribution to the probability of id  deaths in it  time, knowing that 

one had the group iR  of subjects at risk, is written as 

( ){ } ( ){ }exp δ exp δ

i

i

d

T T
i j i

j R

s z
∈

 
 
 
 
∑ with the notations defined above. Log-

likelihoods is then written as: 

( ) ( ) ( ){ }
1 1

δ δ ln exp δ

i

D D
T T

ii j i
i i j R

L s d z
= = ∈

 
 = − ×
 
 

∑ ∑ ∑ . 
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3.1.3. Test statistic 

Within the framework of this study, we limit ourselves to the illustrations of 
the test of total significance and the test of parameter significance. It is 
supposed here that the tests are carried out starting from the statistics of the 
likelihoods ratio which follows a distribution of Chi-2 under the null hypothesis 

0H  (these statistics count among the most used in this context, with the Wald’s 

statistic, cf. for example Klein and Moeschberger [2005] for an illustrated 
presentation). 

In the case of the test of total significance, we test the hypothesis of 
simultaneous nullity of the whole of the parameters, and we thus consider 

0 : δ 0H = , or ( pbeing the dimension of Z  representing explanatory variables 

of the model): 

( ) ( ) ( )2
χ 2 δ 0L p L L = −  

ɵ . 

In the case of a significance test of the parameters, we test the null 

hypothesis of each parameter δ j  (with 1,...,j p=  and ( )1δ δ ,...,δp= ), and we 

thus consider 0 : δ 0jH = , or: 

( ) ( ) ( )2
χ 1 2 δ δ \ δ , δ 0

j
jL jL L = − =  

ɵ ɶ ɶ , 

where the expression “δ \ δ , δ 0j j =ɶ ɶ ” represents the estimate of the parameters 

δg  (with ( )1,..., \g p j∈ ) while fixing δ 0j = . 

Only these two tests of significance of the model and the parameters are 
carried out here within the framework of our study. It is noted, however, that in 
practice, the use of the Cox model turns to many complementary statistical 
tests. The literature is abundant on this subject (a detailed review of the 
literature on the principal existing statistical tests on the Cox model is presented 
in the works of Hill and al. [1990], Therneau and Grambsch [2000] and 
Martinussen and Scheike [2006]). While limiting ourselves to the most 
traditional tests and relating only to the hypothesis of proportional hazard rates 
(in practice, the tests also relate to the link function of the model, the form of 
the variables of the model, the proprieties of the residuals, etc.), we enumerate 
three approaches. The first (graphic approach of Kay) consists in considering a 
stratified model and illustrating the evolution of the differences of the 
logarithms of the hazard’s cumulated functions of the stratum as age increases: 
if they are about constant, the hypothesis of risk proportional is deemed to be 
adequate for the selected stratification. The second (approach of Therneau and 
Grambsch [2000]) consists of considering an extension of the Cox model by 
considering a parameter dependent on time: if the parameter depends 
significantly on time, the hypothesis of proportionality is not suitable. Third 
(approach of Lin and al. [1993]) consists in testing the hypothesis of 
proportionality starting from the cumulated residuals of the model. 
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3.1.4. Evaluation of the adjusted annual mortality rates 

Once the parameters are considered, we deduce the adjusted annual 
mortality rates for each subpopulation. 

In practice, we initially determine the adjusted mortality rates for the 
subpopulation of the Côte d’Ivoire (basic subpopulation in our applications) 
starting from the Brass model with external reference. For this purpose, the 
crude rates are estimated according to the Hoem approach and the reference 
rates are those of regulatory French life tables TH/TF00-02 (for deaths). These 

adjusted rates are noted as ( ), θx CIq ɵ , where ɵ( )θ ,a b=ɵ ɵ  is the parameter of the 

Brass model (cf. Kamega and Planchet [2010]). 

Next, we deduce the adjusted mortality rates of Mali and Togo, starting 
from the parameters of the Cox model by the following relations (by retaining 
the hypothesis that the rates of instantaneous hazard are constant between two 

entire ages): ( ) ( )( ) ( )exp δ

, ,θ; δ 1 1 θ
ML

MLx ML x CIq q= − −
ɵ

ɵ ɵ ɵ  and 

( ) ( )( ) ( )exp δ

, ,θ; δ 1 1 θ
TG

TGx TG x CIq q= − −
ɵ

ɵ ɵ ɵ , where ( )δ δ ; δTG ML=ɵ ɵ ɵ  is the 

estimated parameter of the Cox model. 

3.2. Cox: evaluation of the simulated annual mortality 

rates 

We place ourselves in the case where the crude rates are estimated 
according to the Hoem approach for each subpopulation. These crude rates are 

written as ɵ ,x hq  for a countryh . 

The simulation technique selected consists in considering a Monte Carlo 
method to simulate the distribution of a normal law (starting from the 
simulation of a standard normal distribution, which itself is deduced from a 
simulation of uniform distribution between 0 and 1). Thus, for each country h , 

we generate, as the first step, k  simulations ( [ ]1,k K∈ ) of the crude mortality 

rates for all ages x  ( ,m Mx x x ∈   ), according to 

ɵ

ɵ ɵ( ), ,
, ,

,

1
;

x h x h
x h x h

x h

q q
Q N q

R

 
− 

 
 
 
 

∼ .  

In second step, we deduce for each simulation k and all ages x  the value 

close to the quantity of deaths by country by ɵ ɵ
, ,,A

k k
x h x hx hd q R ≈ × 

 
, where 

( )A .  is rounded to the nearest whole, ɵ ,
k
x hq  represents a realization k  of ,x hQ , 

and ,x hR  represents the group of subjects at risk of age x  for country h . 
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The following steps consist in estimating K  -the achievements (as the 

fluctuations of sampling) of the adjusted rates (one speaks then about simulated 
rates), and for this purpose, one distinguishes the case of the Côte d’Ivoire from 
the case of Mali and Togo. 

In the case of the Côte d’Ivoire, the adjusted rates are obtained starting from 
the Brass model. For each simulation k , one thus has 

ɵ

ɵ
,

exp
θ

1 exp

k k
xk

x CI k k
x

a z b
q

a z b

 + 
   = 

   + + 
 

ɵ

ɵ

ɵ

, where for memory’s sake 

( )( )ln / 1ref ref
x x xz q q= −  and ɵθ ,

k k k
a b =  
 

ɵ ɵ  is estimated by the least squares 

method for each simulation k . 

In the case of Mali and Togo, the adjusted rates are obtained starting from 
the Cox model. For each simulation k , we estimate the parameters 

( )δ δ ; δk k k
ML TG=  of the aforesaid model with the method of Breslow; in this 

case, log likelihood is written: 

( ) ( ) ( )
ɵ ( ) ( )

1 1

δ δ ln exp δ

i

D DT Tkk k k k
ii j i

i i j R

L s d z
= = ∈

   = − ×     
∑ ∑ ∑ , 

where ɵ ɵ
,

k k
i i h

h

d d=∑  (with , ,h CI ML TG=  in our study). For each simulation 

k , we then deduce from the parameters ( )δ δ ; δk k k
ML TG=  the adjusted rates of 

Mali and Togo by 
exp δ

, ,θ ; δ 1 1 θ

k
MLk k kk

MLx ML x CIq q

 
 
     = − −    

    

ɵ

ɵ ɵ ɵ  and 

exp δ

, ,θ ; δ 1 1 θ

k
TGk k kk

TGx TG x CIq q

 
 
     = − −    

    

ɵ

ɵ ɵ ɵ . 

4. Lin and Ying model: adjustment and simulation of 

mortality rates 

According to the studies presented for the Cox model, we concentrate here 
on the use of the Lin and Ying model within the framework of the measurement 
of risk estimation. 

Thus, we show on one hand the adjusted rates (cf. 4.1), and on the other 
hand the simulated rates (cf. 4.2). 
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4.1. Lin and Ying: evaluation of the rates of adjusted 

annual deaths 

The Lin and Ying model, which for memory can be written 

( ) ( )0λ | λ γ
Tt Z z t z= = + , is a typical case of the Aalen additive model. It 

makes it possible to measure the additional risk due to the effect of explanatory 
variables of the model, which are the countries in this case, in absolute terms (a 
reminder: the Cox multiplicative model measures the excess of  risk in relative 
terms). For this purpose, we estimate the parameter γ  using an explicit 

formula. 

4.1.1. Estimate of Klein and Moeschberger 

Lin and Ying [1994] and Klein and Moeschberger [2005] show that starting 
with the decomposition martingale of the Poisson process, the estimate of the 

coefficients of the model is: 

1
γ A B−=ɵ , 

where ( ) ( )( ) ( ) ( )( )
1

A

i

D T
j i j ij i j i

i j R

z z z z
= ∈

= − −∑∑ , ( ) ( )( ), ,
1

B
D

ii h i h
i h

d z z
=

= −∑∑  

and ( ) ( )
1

i

i j i
i j R

z z
R ∈

= ∑  (with the same notations as those of section 3 relating to 

the Cox model). 

4.1.2. Test statistic 

Like the work done for the Cox model, within the framework of this study, 
we limit ourselves to illustrations of the test of total significance and the test of 
parameter significance. 

According to the same authors, the total significance of the model can be 
appreciated starting from the Wald statistics which follows a distribution of 
Chi-2 to p  degrees of freedom (p  being the dimension of Z  representing the 

explanatory variables of the model) under the assumption 0 : γ 0H = , or: 

�
12

χ γ V γ
T

W
−

= ɵ ɵ , 

where � 1 1V A CA− −= , with ( ) ( )( ) ( ) ( )( ), , ,
1

C
D T

i ii h i h i h
i h

d z z z z
=

= − −∑∑ . 

In the case of the test of parameter significance, we test the null hypothesis  

for each parameter γ j  (with 1,...,j p=  and ( )1γ γ ,...,γ p= ), and we thus 

consider 0 : γ 0jH = , or: 

�
22

χ γ V
j

jjW j= ɵ . 
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4.1.3. Evaluation of the adjusted mortality rates 

Once the parameters are considered, we deduce the adjusted mortality rates 
for each subpopulation. 

In practice, at first we determine the adjusted mortality rates for the 
subpopulation of the Côte d’Ivoire (which concerns the basic subpopulation) 
starting from the approach adopted for work on the Cox model (cf. paragraph 

3.1.4). These adjusted rates are noted ( ), θx CIq ɵ , where ɵ( )θ ,a b=ɵ ɵ  are the 

parameters of the Brass model (cf. Kamega et Planchet [2010]). 

Secondly, we deduce the adjusted mortality rates of Mali and Togo, starting 
from the parameters of the Lin and Ying model, by the following relationship 
(under the assumption that the instantaneous rates of hazard are constant 

between two entire ages): ( ) ( )( ) ( ), ,θ; γ 1 1 θ exp γx ML x CIML MLq q= − − −ɵ ɵ ɵ ɵ  and 

( ) ( )( ) ( ), ,θ; γ 1 1 θ exp γx TG x CITG TGq q= − − −ɵ ɵ ɵ ɵ , where ( )γ γ ; γTG ML=ɵ ɵ ɵ  are the 

estimated parameters of the Lin and Ying model. 

4.2. Lin and Ying: evaluation of the simulated annual 

mortality rates 

The first steps in the simulation of the mortality rates for the Lin and Ying 
model are identical to those are carried out for simulations of the Cox model 
(cf. sub-section 3.2). 

For each simulation k  ( [ ]1,k K∈ ) of the crude death rate, and for all ages 

x  ( ,m Mx x x ∈   ), we thus have a simulation of the number of deaths by 

country by ɵ ,
k
x hd  and of the mortality rate simulated for the Côte d’Ivoire 

, θ
k

x CIq  
 
 
ɵ . 

One can then determine, for each simulation k , the mortality rates of Mali 
and Togo. For this purpose, we are based on the Lin and Ying model and we 

estimate for simulation k  the parameters ( )γ γ ; γk k k
ML TG=  of the aforesaid 

model, using the relation: 

1
γ A Bk−=ɵ , 

where ɵ
( ) ( )( ), ,

1

B
D kk

ii h i h
i h

d z z
=

= −∑∑ . For each simulation k , we then deduce 

the mortality rates simulated for Mali and Togo by 
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, ,θ ; γ 1 1 θ exp γ
k k k kk

x ML x CIML MLq q
      = − − −      

      

ɵ ɵ ɵ ɵ  and 

, ,θ ; γ 1 1 θ exp γ
k k k kk

x TG x CITG TGq q
      = − − −      

      

ɵ ɵ ɵ ɵ . 

5. Comparison of the adjustments of the Cox model and 

Lin and Ying model and backtesting on heterogeneity 

This section presents the results of the adjustments of the models integrating 
heterogeneity starting from observable factors and presents a backtesting of the 
capacity of these models to take into account heterogeneity, compared with an 
approach selecting an independent model for each subpopulation. 

5.1. Comparison of the adjustments of Cox and Lin and 

Ying 

This subsection presents the results of model fitting for the Cox model and 
the Lin and Ying model respectively. A comparison of these results is also 
presented. 

5.1.1. Results of the adjustments of Cox 

We consider here population UEMOA, represented here by the Côte 
d’Ivoire, Mali and Togo (cf. Table 1 and Table 2 abovementioned). 

The results of the estimate ( )δ δ ; δTG ML=ɵ ɵ ɵ  starting from the two 

approaches taken in consideration in case of the presence of a tie (Cox or 
Breslow approach), are presented in the following table (for women only). 
These estimates are made from deaths and exposures by age. 
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Table 3 – Cox model: comparison adjustment (UEMOA - Woman) 

Statistic Cox (with tie) Breslow (with tie) 

Minimum(*) 1747 2146 

Iterations 8  8  

2
χL  (p-value model) ( )218,02 0,01.10p −=  ( )218,07 0,01.10p −=  

δML
ɵ  (initial value) ( )0,4638 0−  ( )0,4709 0−  

( )exp δML
ɵ  0,6289 0,6244 

2
χ

MLL  (p-value parameter) ( )21,03 31,01.10p −=  ( )21,07 30,10.10p −=  

δTG
ɵ  (initial value) ( )0,9199 0−  ( )0,9198 0−  

( )exp δTG
ɵ  0,3986 0,3986 

2
χ

TGL  (p-value parameter) ( )517,49 2,89.10p −=  ( )517,51 2,86.10p −=  

(*) because in practice we minimize the opposite of the log-likelihood. 

It appears that the estimates of Cox and Breslow lead to comparable results 
in this example. 

By adopting from now on the approach of Breslow only, the table below 
presents the results of the estimates for the female and male population. 
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Table 4 – Cox model : Breslow adjustment (UEMOA – W. et M.) 

Statistic Woman Man 

2
χL  (p-value model) ( )218,07 0,01.10p −=  ( )212,79 0,17.10p −=  

( )exp δML
ɵ  0,6244 0,6084 

2
χ

MLL  (p-value parameter) ( )21,07 30,10.10p −=  ( )27,89 0,50.10p −=  

( )exp δTG
ɵ  0,3986 1,1035 

2
χ

TGL  (p-value parameter) ( )517,51 2,86.10p −=  ( )24,38 3,64.10p −=  

 

The results of the parameters are coherent with the descriptive statistics 
presented in Table 1 and Table 2. For the significance test of the models, it 
arises that the value of the empirical test is higher than that of the table to a 
threshold of 5% at 2 degrees of freedom (equal to 5.99, for memory), whether it 
is for the female or the male population. Thus, the models are significant with 
the threshold of 5%. On the level of the variables, however, it appears that the 
parameter for Mali for women is not significant with a threshold of 5% (for this 
individual parameter, the value of the empirical test is lower than that of the 
table to a threshold of 5% at 1 degree of freedom, equal to 3.84, for memory). 
The parameters of the other variables are on the other hand significant with the 
threshold of 5%. 

5.1.2. Results of the adjustments of Lin and Ying 

Like the illustration of the Cox model, we consider here the female and 
male population of population UEMOA, represented here by the Côte d’Ivoire, 
Mali and Togo (cf. Table 1 and Table 2). 

The results of the estimate of ( )γ γ ; γTG ML=ɵ ɵ ɵ  are presented in the following 

table. 
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Table 5 – Lin and Ying model: adjustment (UEMOA – W. & M.) 

Statistic Woman Man 

2
χW   (p-value model) ( )626,55 1,71.10p −=  ( )216,01 0,03.10p −=  

γML
ɵ  0,0693 %−  0,1429 %−  

2
χ

MLW  (p-value parameter) ( )21,43 23,25.10p −=  ( )210,68 0,11.10p −=  

γTG
ɵ  0,1129 %−  0,0399 % 

2
χ

TGW  (p-value parameter) ( )726,14 3,17.10p −=  ( )24,07 4,37.10p −=  

 

The results of the parameters are coherent with the descriptive statistics 
presented in Table 1 (for women) and in Table 2 (for men) on one hand, and 
with the coefficients of the Cox model presented in Table 4 (for women and 
men) on the other hand. In statistical terms of tests, like the results of the Cox 
model, it appears that the models for women and men are significant with a 
threshold of 5%, even if the parameter of Mali for women is not significant. 

Moreover, concerning the comparison between the multiplicative model 
(Cox) and the additive model (Lin and Ying) on an operational component, we 
find the principal conclusions of the work of Cao [2005]. Thus, it appears that 
these two multiplicative and additive models are exploitable for the truncated 
and/or censured data, can account for observable factors, and present consistent 
p-values for the coefficients of variables in the model. 

5.1.3. Illustration and comparison of the results of the 

adjustments of Cox and Lin and Ying 

The two graphs below (Figure 1) present a comparison between the results 
of the Cox model and those of the Lin and Ying model, for the male population 
only. The first graph shows the adjusted mortality rates of the Côte d’Ivoire, 
resulting from the Brass model, like those of Mali and Togo, derived from the 

parameters ( )δ δ ; δTG ML=ɵ ɵ ɵ  of the Cox model. On the same principle, the 

second graph shows the adjusted mortality rates of the Côte d’Ivoire resulting 
from the Brass model, like those of Mali and Togo, derived from the 

parameters ( )γ γ ; γTG ML=ɵ ɵ ɵ  of the Lin and Ying model (the curves of the two 

graphs relating to the Côte d’Ivoire are thus identical). 

In statistical terms, within the framework of the adjustment of the rates from 
the Brass model for the Côte d’Ivoire, it can be seen that the model is 
significant at a threshold of 5% (Fisher test) and that the adjusted R2 is equal to 
83.8%. One can also point out that the retained parameters for the evaluation of 
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the adjusted rates from Lin and Ying for Togo and Mali are significant at a 
threshold of 5%. 

Figure 1 - Adjusted mortality rates (Cox and Lin and Ying, UEMOA - M) 

 
To continue the comments relating to the choice between these two models 

(cf. sub-section 2.2), it appears that for the Cox multiplicative model of 
heterogeneity, the absolute differences between the countries increase 
significantly as age increases, contrary to the Lin and Ying model of 
heterogeneity in which the absolute differences are constant across all ages. 

5.2. Backtesting on heterogeneity (comparison of the 

models of heterogeneity) 

The aim of the study is to compare the risk estimation of two approaches for 
the treatment of heterogeneity. This comparison is presented in the following 
section (section 6). We consider a population made up of three subpopulations: 
the Côte d’Ivoire (basic subpopulation), Mali and Togo. In the first approach, 
heterogeneity is taken into account for the independent models of each 
subpopulation (in practice, the mortality rates of each population are adjusted 
according to a Brass model). In the second approach, heterogeneity is taken 
into account from the models integrating the observable factors (here, the 
mortality rates are adjusted from the Brass model for the Côte d’Ivoire and 
from the Cox model or Lin and Ying model for Mali and Togo). 

The results of adjustmented mortality rates according to these two 
approaches (which count three models in total) are presented in the graph 
below for Mali and Togo (the graph relating to the Côte d’Ivoire is not 
presented because it is identical for the two approaches). 
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Figure 2 – Presentation of mortality rate of Mali and Togo (M) 

 
In Mali’s case, it appears that some crude death rates equal zero (cf. graph 

above) limiting the use of the logit of crude death rates, which are still essential 
to the modeling of Brass. Thus, the following convention was retained for the 
adjustment (for the Brass model only): we consider that the zero death rates are 
equal to the lower level of crude death rates greater than zero for the age range 
retained for the adjustment. Alternative approaches could have been to not 
retain the ages where one observes the zero crude death rates or to substitute 
the crude death rates equal to zero by average observed rates, but these 
solutions significantly raise the mortality rates retained for the adjustment. 

On these bases, the adjusted mortality rates for Mali diverge and depend on 
the model. On a statistical level, the Brass model for Mali (first approach) is not 
significant at a threshold of 5% (Fisher’s test), and the adjusted R2 is equal to 
1.4%. In addition, as mentioned before, the parameters of Mali for the Cox 
model and Lin and Ying model (models of the second approach) are significant 
at a threshold of 5% (cf. Table 4 and Table 5). Thus, we retain that the models 
integrating heterogeneity allow us, contrary to the Brass model, to avoid 
retaining conventions where crude death rates equal zero while also getting 
satisfactory results in terms of statistical tests. 

For Togo, the adjusted mortality rates are similar regardless of the model 
considered. We note that the Brass model for Togo is significant at a threshold 
of 5% (Fisher’s test) and that adjusted R2 is equal to 69.2%. To reiterate, the 
parameters of Togo for the Cox model and Lin and Ying model are significant 
at a threshold of 5% (cf. Table 4 and Table 5), in spite of the weak variations 
within the Côte d’Ivoire rates (cf. Figure 1). 

To appreciate the relevance of the mortality rates adjusted in these three 
models, the following table presents the comparisons between the achievements 
and predictions of the deaths (established from the adjusted mortality rates and 
exposures to risk by age). 
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Table 6 – Comparison achievement/prediction of deaths (UEMOA – M.) 

Country
Observed 

deaths
Predicted 

deaths
Différence Country (model)

Observed 
deaths

Predicted 
deaths

Différence

Côte d'Ivoire 2 188 2 203 0,7% Côte d'Ivoire (Brass) 2 188 2 144 -2,0%

Mali (Brass(*)) 29 8,4%

Mali (Cox) 26 -3,2%

Mali (Lin et Ying) 26 -4,9%

Togo (Brass) 565 -0,1%

Togo (Cox) 548 -3,0%

Togo (Lin et Ying) 550 -2,7%
(*) agreement with the treatment of crude death rate equal to zero.

Togo 565 511 -9,6% 565

Global model UEMOA - H (Brass global) Integrating heterogeneity models (without and with obs. fact.)

Mali 27 44 63,8% 27

 
The first sub-table presents the differences when the adjusted mortality rates 

are given in total without taking into account heterogeneity between 
subpopulations. The second sub-table presents the differences when the 
adjusted mortality rates are given from the models integrating heterogeneity, 
either from the independent models for each subpopulation (as with the Brass 
model), or from the models integrating heterogeneity from observable factors 
(as with the Cox model and Lin and Ying model, the factors here being 
countries). A comparison of the two sub-tables confirms the need to take into 
account the heterogeneity of the population. 

In the sub-table integrating heterogeneity, it appears that except for the 
adjusted rates of Mali with the Brass model, the differences between the 
observed deaths and the theoretical deaths are all less than 5%, which confirms 
the need to account for heterogeneity. 

In detail, for this second sub-table, we note initially that the number of 
theoretical deaths for the Côte d’Ivoire underestimate the number of observed 
deaths by 2%. This difference reflects the estimation bias introduced by the 
logit function of the Brass model. Indeed, the concave character of the logit 
function between 0 and ½ led, by using Jensen’s inequality, to the 
undervaluation of the mortality rates (cf. Planchet and Thérond [2006] for a 
more through description of this phenomenon). 

The estimates of the Brass model for the Côte d’Ivoire are used to estimate 
the Cox model and the Lin and Ying model for Mali and Togo. Also, the 
observed differences for Mali and Togo using these models include the 
observed differences for the Côte d’Ivoire given by the Brass model. 

Finally, in spite of the retained convention for the treatment of Mali with the 
Brass model (substitution of the zero crude death rates by the observed lower 
non-zero crude death rates), we note in this second sub-table that the estimated 
theoretical deaths of Mali with the Brass model gross up the observed deaths. 
As comparison, with convention consisting in retaining only the ages where the 
crude death rates are not zero, the predicted number of deaths for Mali rises to 
38 (or a difference of 39.7% against theoretical deaths, compared to 8.4% with 
the selected convention). Thus, the convention selected seems more suited 
although it presents important limits (the differences obtained for the Brass 
model applied to Mali are not satisfactory in comparison to differences 
observed for other countries and other models). 
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In the end, these analyses lead to the observation that the choice of a model 

integrating heterogeneity from observable factors (for example the Cox model 
or the Lin and Ying model), makes it possible to preserve a good statistical 
appreciation of the risk of death for the heterogeneous subpopulations within a 
population. Moreover, these models make it possible to account for the annual 
mortality rates equal to zero for the given ages (frequent phenomenon in the 
small populations), and thus allows the avoidance of retaining the assumptions 
or convention (contrary to the Brass model). 

6. Comparison of the risks estimation between the 

independent models for each subpopulation and those 

integrating heterogeneity from observable factors 

This section presents the systematic risk related to the sampling fluctuations 
(that is, the risk estimation) in the different models selected for each of the two 
approaches: the Brass model (the first approach), and the Cox model and Lin 
and Ying model (the second approach). For the three studied models, the 
measuring instruments are presented through the adjusted mortality rates and 
through life tables. 

In general, the approaches presented here are in line with those detailed in 
Kamega and Planchet [2010] on measuring risk estimation under the Brass 
model. 

In addition, in all the presented numerical applications, we let 1 000K =  

simulations of the crude rates and we consider that for each simulation k , the 

sample results of the standard normal distribution ( )0;1N  from which we 

deduce the suitable outcomes for each subpopulation, are exactly the same as 
the ones in the three models used (for a given subpopulation). It also notes that 

crude rates are in practice generated under the constraint , 0k
x hq >  (when this 

condition is not met for a simulation k , the outcome is not counted and we 
resample for country h ). 

Finally, in this section, only the numerical illustrations relating to Togo will 
be presented: the illustrations of the Côte d’Ivoire are not presented because its 
modeling is identical in the two approaches, and those of Mali are not presented 
either because they need arbitrary conventions which could create a bias in the 
exploitation and the analysis of the results. In addition, the aim of the study is 
to present measurements of risk estimation according to the choice of the 
selected model taking into account heterogeneity. Therefore, analysis of the 
risk estimation of the various models while limiting ourselves to the Togolese 
subpopulation thus improves the clarity of the illustrations. 

6.1. Measure risk estimation on the adjusted rates 

We present here the measuring instruments of the risk estimation on the 
adjusted rates, as well as an illustration and interpretation of the results for the 
three studied models. 
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6.1.1. Measuring instruments of risk estimation on the rates 

We have the mortality rates adjusted according to the Brass model, the Cox 

model or the Lin and Ying model. To simplify the notations, we write ( ), θx hq ɵ  

as the adjusted mortality rates for a country h  (for Mali and Togo, the adjusted 

mortality rates should normally be noted as , θ;δhx hq  
 
 
ɵ ɵ  and , θ;γx h hq  

 
 
ɵ ɵ , 

respectively, for the Cox model and Lin and Ying model). Given k  simulations 
of the crude rates for each country h , we also have the mortality rates 
simulated according to the Brass model, the Cox model or the Lin and Ying 

model. To simplify the notations, we denote , θ
k

x hq  
 
 
ɵ  as the mortality rates 

for simulation k  and country h  (for Mali and Togo, the simulated mortality 

rates should normally be noted as , θ ;δ
k k

hx hq  
 
 
ɵ ɵ  and , θ ;γ

k k
x h hq  

 
 
ɵ ɵ , 

respectively, for the estimates of the Cox model and the Lin and Ying model). 

The risk estimation of the mortality rates for a country h  can then be 

measured using the coefficient ( ) ( )
,

,
,

ψ
ψ

θ

x h
x h

x h

c
q

=
ɵ

, where 

( )
2

, , ,ψ θ θ
k

x h x h x hE q q
    = −  

    

ɵ ɵ . This coefficient constitutes a measure of 

dispersion of the mortality rates simulated around the rate of adjusted death 
(expressed as a percentage and under risk estimation). 

6.1.2. Comparison of risk estimation on the rates 

The comparison of risk estimation on adjusted rates is carried out by means 

of the average of the coefficient ( ),ψx hc , for all ages ,m Mx x x ∈   . 

Table 7 – Risk estimation on the mortality rates (average) (Togo - M) 

Population Brass model 
(approach 1) 

Cox model 
(approach 2) 

Lin et Ying model 
(approach 2) 

Togo ( )ψTGc  9,89 % 6,19 % 6, 78 % 

 

It appears that the use of the Brass model (independent model for each 
subpopulation) led to a risk estimation higher than that obtained by the Cox 
model (multiplicative model integrating heterogeneity using observable factors) 
or with the Lin and Ying model (additive model integrating heterogeneity using 
observable factors). For the Lin and Ying model, the comparisons must 
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however be treated with prudence, taking into account the assumption that the 
absolute differences of the rates of instantaneous deaths are constant. 

Note that in addition, the risk estimation is the more important as the 
population presents a weak exposure. Thus, for example, the risk estimation 
with the Brass model for the Côte d’Ivoire is equal to 4.73 %. In the same way, 
the risk estimation for Mali with the Cox model is equal to 22.27 %. 

The comparisons presented above are limited to the simulated mortality 
rates; the comparisons of the mortality tables built starting from the simulated 
mortality rates are presented in the sub-section below. 

6.2. Measure of risk estimation in the tables 

In addition to the presentation and the comparison of the mortality rates, it 
is necessary to compare the associated mortality tables. 

6.2.1. Measuring instrument of risk estimation in the tables 

For the measurement of risk estimation in the mortality tables, it is 
advisable to use a specific function for each table which associates a positive 
number to it. The life expectancy is, from this point of view, a natural 
functional within the framework of insurance, the amount of the liability is 
another. Thus, these two functions are used in the work below. 

Initially, the risk estimation in the tables is measured from the residual life 
expectancy at 30 years, between 30 and 55 years. For this purpose, we use the 
distribution of residual life expectancies established from simulated mortality 
rates. 

Next, the risk estimation in the tables is measured from the liabilities. We 
consider more precisely the deterministic provisions relative to temporary 
obligations to the deaths (the term of the obligations is d  years, with 1d ≥ ) 
and evaluated from the simulated mortality rates (in this case, the mortality 
rates are the only sources of risk). By assuming a death to be in middle of year, 
we deduce that the amount of liabilities of a death for k  is 

( ) ( )
1 1

2
0, , 1

0

1
d

tk k
h x h t

t

L F t r
−

− −
+

=
= × +∑ , where ( ),

k
x hF t  represents the probable cash 

flows of the services to pay in time t  for an individual of age x  of country h  
(for k  simulated mortality rates) and tr  represents the discount rate of cash 

flows at time t . The impact of the risk estimation on the liabilities can then be 

measured by the coefficient( )
0,

h
h

h

c
L

ϒ
ϒ = , where 0,hL  corresponds to the 

liability calculated from the adjusted mortality rates ( ), θx hq ɵ  and 

( )2

0, 0,
k

h h hE L L
 

ϒ = − 
 

. This coefficient makes it possible to have a 
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measurement of dispersion expressed as a percentage (as the risk estimation) 
around the liability calculated from the adjusted mortality rates. 

Finally, we denote 0, 0,
1

1 K
j

h h
j

L L
K =

= ∑  as the average of the deterministic 

liabilities calculated with simulated mortality rates. 

6.2.2. Comparison of the risk estimation in the tables 

Initially, we present the risk estimation in the tables through the partial life 
expectancies. In this context, the following graph presents, for the 
subpopulation of Togo, the estimates of the functions of density (by the kernel 
estimator) of the residual life expectancies (between 30 and 55 years) 
established from the simulated mortality rates. 

Figure 3 - Distribution of the partial life expectancies of Togo (M) 

 
Following the observations and conclusions above, it appears in this graph 

that the distribution of the partial life expectancy resulting from the Cox model 
presents a tail lower than that resulting from the Brass model. In other words, 
the mortality tables resulting from the simulated mortality rates from the 
multiplicative model integrating heterogeneity using the observable factors 
have a lower volatility than the tables resulting from the simulated mortality 
rates from the Brass model used independently for each subpopulation. In the 
case of the additive Lin and Ying model on the other hand, it appears that the 
mortality tables have a volatility comparable with that resulting from the Brass 
model. 

Moreover, it is a question of quantifying this additional risk estimation in 
the tables in an insurance context. For this purpose, we introduce the concept of 
liability, calculated with the discount rate curve of the Institut des Actuaires on 
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12/31/20093. Moreover, we consider an insured person of age 31x = , an 
ensured capital equal to 1C =  and a term of contract equal to 20d = . 

For this reason, we present in the table below the synthetic results of the 
estimates and simulations of deterministic liabilities, respectively, with the 
adjusted mortality rates and the simulated mortality rates. 

Table 8 - Risk estimation in the liabilities (20 years) (Togo - M) 

Statistic 

Brass Cox Lin et Ying 

Liab. and 
adjusted 

rate 

Liab. and 
simula-
ted rate 

Liab. and 
adjusted 

rate 

Liab. and 
simula-
ted rate  

Liab. and 
adjusted 

rate 

Liab. 
and 

simula-
ted rate 

Mean (
0L  

ou 0L ) 

2
4,18.10

−

 

24,03.10−

 

2
4,06.10

−

 

24,01.10−

 

24,22.10−

 

24,17.10−

 

Quantile at 
0,5 % 

NA 23,18.10−  NA 23,52.10−  NA 
23,54.10−

 

Quantile at 
5 % 

NA 23,52.10−  NA 23,70.10−  NA 
23,74.10−

 

Quantile at 
95 % NA 

24,50.10−

 
NA 

24,34.10−

 
NA 

24,61.10−

 

Quantile at 
99,5 % NA 

24,74.10−

 
NA 

24,50.10−

 
NA 

24,83.10−

 

Coefficient 
( )c ϒ   NA 7,91 % NA 5,15 % NA 6, 41 % 

 

It arises that with the male data of Togo, accounting for systematic risk 
decreases the calculated liability by 3.6 % when the Brass model is retained, 
where as the impact is weaker with the Cox model and Lin and Ying model (it 
falls to 1.2 % for these two models). Concerning quantiles, it arises that the 
differences of the averages are more important for the Brass model than for the 
Cox model and Lin and Ying model. Lastly, it appears that the coefficient 

( )c ϒ  relating to modeling starting from the Cox model or Lin and Ying model 

undervalues the one obtained starting from the Brass model (respective falls of 
20% and 35%). 

Thus, we retain that the choice of a model integrating heterogeneity makes 
it possible to significantly reduce the risk estimation associated with the life 
table based on an insured population. In our example, it appears however that 
                                                           
3 Curve available on the website of the Institut des Actuaires : 
http://www.institutdesactuaires.com/gene/link.php?doc_link=../docs/2010003190313_I
A20091231.xls. 
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the weight of the risk estimation in the evaluation of a liability (measured for 
each model by the difference between the liability calculated from the adjusted 
mortality rates and that calculated from the simulated mortality rates) is 
comparable to the weight of the risk of model (measured by the difference 
between the liability calculated from the adjusted mortality rates for the three 
models suggested). Part of the risk estimation is transformed into model risk. 

7. Synthesis and conclusion 
In a context of heterogeneity, this study aims to appreciate the evolution of 

the risk estimation during the passage of an evaluation of mortality rates of 
independent models for each subpopulation (first approach), to a model directly 
integrating heterogeneity of observable factors (second approach). 

If it is acquired in this study that the choice of the model for the first 
approach is the Brass model (in continuity of the works completed in Kamega 
and Planchet [2010]), it is appropriate to inquire on the choice(s) of model(s) 
for the second approach. The analysis carried out in the section 2 led to the 
choices of the multiplicative Cox model and the additive Lin and Ying model. 

Consequently, the adjustment of the mortality rates for each subpopulation 
was presented and implemented for these two models of the second approach. 
A comparison of calibration results and statistical tests associated with these 
two models illustrate their consistency. However, the Cox model and Lin and 
Ying model present differences which can justify the choice of one of the two 
models according to our needs. Thus, whereas the Cox model considers that the 
relative differences of the hazard rates are stable (the absolute differences thus 
increase significantly with age), the Lin and Ying model considers that the 
absolute differences are stable (the relative differences thus decrease 
significantly with age). As a result, if these two models can lead to comparable 
results on the ages retained for the adjustment, they can lead to mortality rates 
considerably different outside this age range (moreover, the model of Lin and 
Ying can present important operational limits for the younger ages). 

After having verified in sub-section 5.2 that these two models take into 
account the heterogeneous character of the population, a measurement of risk 
estimation was carried out. For this purpose, several estimates of the mortality 
rates resulting from the Brass model (first approach) and models of Cox and 
Lin and Ying (second approach) were simulated on crude mortality rates 
(generated from the distribution of the initial crude rates in order to reflect the 
sampling fluctuations). 

The obtained results illustrate a reduction in the impact of risk estimation on 
the liabilities of more than 50 % with the models of the second approach (Cox 
model and Lin and Ying model), compared to the impact observed with the 
model of the first approach (Brass model). Moreover, with the models of the 
second approach, the measurement of the risk estimation on the liabilities 
decreases by 20% to 35%. Nevertheless, in our example we note in parallel that 
the weight of the risk estimation on the provisions (which reflects the 
dispersion of the estimates of liability due to the crude rate sampling 
fluctuations for a given model) is comparable with the weight of the risk of a 
model (which reflects the dispersion of the liability estimates due to the model 
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choice). In search of a model which makes it possible to reduce risk estimation, 
special attention must also be given to the consequences in terms of model risk. 

Finally, the choice of a model integrating heterogeneity from observable 
factors (second approach) has several advantages, among which we emphasize: 

− the reduction of the impact of the risk estimation on the estimated 
liability (drops by more than 50% compared to the impact observed 
with the Brass model used independently for each subpopulation); 

− the capacity to model the mortality rates when the data are noticeably 
limited (in particular when there are the data with crude rates equals 
zero, knowing that such data are not exploitable with the Brass model, 
except when retaining the arbitrary conventions). 

The choice of models of the second approach, however, presents some 
disadvantages, among which we note: 

− the assumption that relative differences are constant (model of Cox) or 
absolute (model of Lin and Ying) of the hazard rates; 

− the general potential impact in terms of model risk. 
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