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1 Introduction

Growing evidence demonstrates that sensible continuous-time models for several financial time

series should account for the presence of discontinuous jump components (see Bakshi, Cao and

Chen (1997), Duffie, Pan, and Singleton (2000) and the references therein for discussions regarding

the equity market; see Das (1998), Piazzesi (2000), Johannes (2000) and the references therein for

descriptions of jump-diffusion behavior in the fixed-income market). Unfortunately, econometric

estimation of the parameters representing the jump arrival intensity and the distribution of the jump

size is particularly cumbersome when using data sampled at discrete time intervals. In particular,

it is empirically difficult to discriminate between variation caused by the continuous Brownian

motion shocks and genuine discontinuities in the path of the process.1 Even from a theoretical

standpoint, the second (conditional) infinitesimal moment of the process can be expressed as the

sum of the conditional volatility of the diffusion component (i.e. the so-called diffusive volatility)

and the conditional second moment of the jump part (c.f. formula (11) in Section 2).

Nonetheless, should jumps play a role, then all the infinitesimal moments of order higher than

one (c.f. formulae (11) and (12) in Section 2) would carry information about the probability of

arrival and the features of the distribution of the jump size (c.f. Gikhman and Skorohod (1972) for

a classical treatment). As a consequence, coherently with Bandi and Phillips (1998) (BP, hereafter)

in the context of scalar diffusion processes and Johannes (2000) in the case of jump-diffusion models,

in this work we pursue identification by considering estimators that can be readily interpreted as

functional sample analogues to the instantaneous conditional moments of the underlying process.

The procedure is nonparametric. In contrast to the previous work on the functional estimation

of continuous-time processes with discontinuous sample paths (c.f. Johannes (2000)), a complete

asymptotic theory for the estimates is derived. In particular, we provide a theoretical framework

that justifies the nonparametric extraction of the parameters and functions controlling the arrival of

a jump and the distribution of the jump size from the estimated infinitesimal conditional moments

as suggested by Johannes (2000).2 The estimation procedure is sufficiently flexible to allow for

potential nonlinearities in the drift, in the diffusive volatility and in the intensity of the discontinuous

jump component.

Our results apply to both stationary and nonstationary jump-diffusions under mild assumptions.

Technically, we only require the underlying process to be Harris recurrent (see Section 2 for a formal
1There have been recent advances in dealing with this problem. Inter alia, Andersen et al. (1998) rely on

the efficient method of moment, Singleton (2001) and Chacko and Viceira (1999) employ moment conditions in
time and/or frequency domain based on the characteristic function of the sampled data, Johannes (2000) advocates
nonparametric methods.

2Our discussion complements the existing theoretical treatments on the estimation of structural breaks in discrete-
time (c.f. Yin (1998), Müller (1992), Chu and Wu (1993), Delgado and Hidalgo (2000) and Perron (1999), inter alia)
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definition) for the consistency and weak convergence results in this paper to be valid. Intuitively,

Harris recurrence guarantees infinite returns of the continuous (in time) sample path of the process

to every set of non zero Lebesgue measure in its range with probability one (c.f. (13) below). By

recurrence we are able to identify the relevant functions at every admissible level in the range of

the process through the contemporaneous implementation of infill and long span asymptotics (c.f.

BP (1998)). The former (asymptotically decreasing distance between adjacent discretely sampled

observations, that is) allows us to approximate the discrete sampled path of the process with its

underlying continuous counterpart. The later (asymptotically increasing length of data, that is)

permits us to exploit the properties of the path of the system for the purpose of the (pointwise)

identification of the conditional infinitesimal moments of the process through infinite visits to every

spatial set, as implied by recurrence.

We expect our theory to be particularly useful to study and model discontinuous processes

for which standard parametrizations (often of the affine type in the finance literature3) are likely

to be misspecified and for which the ubiquitous stationarity assumption appears to be excessively

restrictive, as sometimes the case when dealing with financial time series in continuous-time models

for asset pricing (c.f. Bandi (2001) for a discussion of potentially nonstationary behavior, and its

implications, in a nonparametric diffusion model for the short-term interest rate process).

The plan of the paper is as follows. Section 2 introduces the model along with some useful

preliminary results about the cádlág local time (or sojourn time, as it is sometimes referred to)

of semimartingales. Consistently with the pure diffusion case discussed by BP (1998), local time

plays an important role in affecting the convergence rates of the nonparametric estimates of the in-

finitesimal moments. In consequence, local time estimation is a necessary step for proper inference.

Additionally, estimated local time is known to represent a valuable descriptive tool for nonstation-

ary discrete-time series and recurrent continuous-time processes as discussed by Phillips (2001) and

Bandi (2001), respectively. The focus in this paper is on the identification of a discontinuous pro-

cess through the estimation of its infinitesimal moments. Hence, we do not dwell on the use (and

logic) of local time as a descriptive statistic (the interested reader is referred to the papers cited

above). In Section 3 we present the functional estimation scheme for the infinitesimal moments

of the process and the local time factor. Section 4 contains the limit results. Identification of the

features of the jump component through nonparametric extraction from the estimated infinitesimal

moments is discussed in Section 5 with the aid of two examples. A simple Monte Carlo exercise

showing the finite sample accuracy of our asymptotic theory and the empirical plausibility of our

sampling scheme relying on twofold asymptotics is presented in Section 6. Section 7 concludes. All
3The reader is referred to Singleton (2001) and the references therein for a discussion of affine asset pricing models

and related estimation methods.
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technical proofs are confined to the Appendix.

2 The model

The model we analyze is time-homogeneous Markov and described by the equation

dXt =
[
µ(Xt−)− λ(Xt−)

∫

Y
c(Xt−, y)Π(dy)

]
dt + σ(Xt−)dWt + dJt

= [µ(Xt−)− λ(Xt−)EY [c(Xt−, y)]] dt + σ(Xt−)dWt + dJt (1)

where {Wt : t ≥ 1} and {Jt : t ≥ 1} are a standard scalar Brownian motion and an independent

jump process, respectively. The initial condition X belongs to Lβ for some β > 0 and is taken to

independent of both Wt and Jt. The functions µ(.) and σ(.) have the conventional interpretation

in diffusion models. The jumps are bounded (i.e. supt |∆Xt| ≤ C < ∞ almost surely where C is

a non-random constant4) and occur with conditional (on the level of the process) intensity λ(.).5

The conditional impact of a jump is given by the function c(., y) where y is a stationary random

variable with probability distribution function represented by Π(.). In consequence,

dJt = ∆Xt = Xt −Xt− =
∫

Y
c(Xt−, y)N(dt, dy) (2)

where

NΦ
t =

∑

j=1

1[τj≤t,yτj∈Φ] (3)

is a Poisson counting measure with stationary and independent increments. In the integral form,

write

Xt+∆ = Xt +
∫ t+∆

t
µ(Xs−)ds +

∫ t+∆

t
σ(Xs−)dWs +

∫ t+∆

t+

∫

Y
c(Xs−, y)ν(ds, dy) (4)

where

ν(dt, dy) : = N(dt, dy)− E(N(dt, dy))

: = N(dt, dy)− λ(Xt−)Π(dy)dt (5)
4If Vt is a Lévy process with bounded jumps, then E {|V n

t |} < ∞ ∀n. In other words, Vt has bounded moments
of all orders (c.f. Protter (1995), Theorem 34, page 25).

5Contrary to most current estimation methodologies, we allow the drift, the diffusive volatility and the intensity
of the jump (µ(.), σ2(.) and λ(.), that is) to be fairly general (c.f. Assumption 1), potentially non-affine, functions.
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is a compensated random measure and the notation
∫ t
0+ =

∫
(0,t] denotes the integral over the

half-open interval. Note that

∫ t+∆

t+

∫

Y
c(Xs−, y)ν(ds, dy) =

∫ t+∆

t+
dJt − λ(Xs−)EY [c(Xs−, y)]ds (6)

represents the conditional variation between t+ and t + ∆ in the path of the process due to

discontinuous jumps of random impact c(., y) net of its expected conditional magnitude at t+ . The

model is defined “compensated” by virtue of the presence of the term λ(Xt)EY [c(Xt, y)]dt denoting

the conditional mean of the jump component. Its presence ensures that the component (6) is a

martingale.6 The martingale nature of the jump part will be heavily exploited in the proofs.

We impose the following conditions on the model. They guarantee existence of a càdlàg strong

solution to (1).

Assumption 1.

(i) The functions µ(.), σ(.), c(., .) and λ(.) are time-homogeneous and B-measurable on D = (l, u)

with −∞ ≤ l < u ≤ ∞ where B is the σ-field generated by Borel sets on D. They are at least

twice continuously differentiable. They satisfy local Lipschitz and growth conditions. Thus,

for every compact subset Ψ of the domain of the process, there exists a constant C1 such that,

for all x and z in Ψ,

|µ(x)− µ(z)|+ |σ(x)− σ(z)|+ λ(x)
∫

Y
|c(x, y)− c(z, y)|Π(dy) ≤ C1|x− z|. (7)

Furthermore, there exists a constant C2 so that for any x ∈ D,

|µ(x)|+ |σ(x)|+ λ(x)
∫

Y
|c(x, y)|Π(dy) ≤ C2{1 + |x|}. (8)

(ii) For a given α > 2, there exists a constant C3 such that for any x ∈ D,

λ(x)
∫

Y
|c(x, y)|αΠ(dy) ≤ C3{1 + |x|α}. (9)

(iii) λ(.) ≥ 0 and σ2(.) ≥ 0 on D.

Given (i), (ii) and (iii), the infinitesimal conditional moments of the changes in the solution to

(1) can be written in terms of the functions µ(.), σ(.), c(., .) and λ(.) (c.f. Gikhman and Skorohod

(1972)). In particular,
6In particular, the solution to (1) is a semimartingale. It is known that the semimartingale property implies the

existance of an equivalent martingale measure under which the process is a (local) martingale. In consequence, should
(1) be a price process, then absence of arbitrage in the spaces that preclude doubling strategies would be guaranteed
by the semimartingale property of the price process itself (c.f. Duffie (1990)).
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M1(x) = lim∆→0
1
∆

E[Xt+∆ −Xt|Xt = x] = µ(x), (10)

M2(x) = lim∆→0
1
∆

E[(Xt+∆ −Xt)
2 |Xt = x] = σ2(x) + λ(x)EY [c2(x, y)], (11)

Mk(x) = lim∆→0
1
∆

E[(Xt+∆ −Xt)
k |Xt = x] = λ(x)EY [ck(x, y)] ∀k > 2. (12)

Equations (10), (11) and (12) will form the basis for our estimation procedure. It is noted

that the generic Mk(x) is defined as an infinitesimal conditional expectation. We will show that

every Mk(x) is identifiable, for every sample path, using standard functional methods for condi-

tional expectations (c.f. Section 3). Consistent estimates of the objects of interest, i.e. µ(.), σ(.),

EY [ck(x, y)] and λ(.), can then be obtained, through nonparametric extraction from the estimated

moments, provided appropriate identifying conditions are imposed on the underlying system (c.f.

Section 5).

We now discuss the main identifying assumption in this paper: Harris recurrence (c.f. Meyn

and Tweedie (1993) for a standard treatment). Let A be a measurable set of the range D of the

process of interest. Define the first hitting time of A as τA = inf {t ≥ 0 : Xt ∈ A} . A generic Markov

process Xt is null Harris recurrent if there is an invariant measure φ(dx) (see below for a definition)

such that φ(A) > 0 implies Pa [τA < ∞] = 1 for every a ∈ D/A. Positive Harris recurrence holds

if there is an invariant measure φ(dx) such that φ(A) > 0 implies Ea[τA] < ∞ for every a ∈ D/A.

Under both notions of recurrence, the process returns to A an infinite number of time over times,

i.e.

Px

(∫ ∞

0
1{Xs∈A}ds = ∞

)
= 1, (13)

for any x ∈ D.

Null Harris recurrence guarantees the existance of an invariant measure φ(dx) so that

φ(A) =
∫

D
P (X(x)

t ∈ A)φ(dx) ∀A ∈ B (D) . (14)

Under positive recurrence the invariant measure is finite on D and the process possesses an invariant

probability measure given by f(dx) = φ(dx)
φ(D) . Stationary processes are positive Harris recurrent

processes started at the invariant probability measure f(dx).

Either Assumption 2 or Assumption 3 below will be imposed on the dynamic properties of the

jump-diffusion process of interest.

Assumption 2. The solution to (1) is Harris recurrent.
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Assumption 3. The solution to (1) is positive Harris recurrent.7

Our estimation procedure only requires infinite returns of the path of the underlying process

to every measurable set in its range (c.f. (13)). Assumption 2 is therefore sufficient. Nonetheless,

consistently with the pure diffusion case discussed elsewhere (c.f. BP (1998)), the existence of a

stationary probability measure (as implied by Assumption 3) increases the rate of convergence of

the functional estimates to their theoretical counterparts.

2.1 Some useful preliminaries

We now report results about the local times of cádlág semimartingales that will be useful in the

development of our limit theory. All what is needed below is contained in standard treatments like

Protter (1995) and Revuz and Yor (1998).

Lemma 1. (The Tanaka formula) Let X be a semimartingale and let LX(., a) be its local time

at a. Then,

(Xt − a)+ − (X0 − a)+ =
∫ t

0+
1(Xs−>a)dXs +

∑

0<s≤t

1(Xs−>a)(Xs − a)−

+
∑

0<s≤t

1(Xs−≤a)(Xs − a)+ +
1
2
LX(t, a), (15)

and

(Xt − a)− − (X0 − a)− = −
∫ t

0+
1(Xs−≤a)dXs +

∑

0<s≤t

1(Xs−>a)(Xs − a)−

+
∑

0<s≤t

1(Xs−≤a)(Xs − a)+ +
1
2
LX(t, a). (16)

Lemma 2. (Continuity of semimartingale local time) Let X be a semimartingale with
∑

0<s≤t |∆Xs| < ∞ a.s. ∀t > 0. Then, there exist a B⊗P measurable version of (a, t, $) →
LX(t, a,$) which is everywhere jointly right continuous in a and continuous in t. Moreover a.s.

the limits LX(t, a−) = limb→a, b<a LX(t, b) exist.

7The interested reader is referred to the papers by Menaldi and Robin (1999) and Wee (2000) for necessary and
sufficient conditions for null recurrence, positive recurrence and transience that make use of appropriately defined
Lyapounov functions.
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Lemma 3. (The occupation time formula) Let X be a semimartingale with local time

(LX(., a))a∈R. Let g be a Borel measurable function. Then, a.s.

∫ ∞

−∞
LX(t, a)g(a)da =

∫ t

0
g(Xs−)d[X]cs (17)

where [X]c is the continuous part of the quadratic variation of X.

Lemma 4. (Local times) Let X be a semimartingale satisfying
∑

0<s≤t |∆Xs| < ∞ a.s. ∀t > 0.

Then, for every (a, t) we have

LX(t, a+) = LX(t, a) = lim
ε→0

1
ε

∫ t

0
1(a≤Xs≤a+ε)d[X]cs, a.s., (18)

and

LX(t, a−) = lim
ε→0

1
ε

∫ t

0
1(a−ε≤Xs≤a)d[X]cs a.s. (19)

Also,

LX(t, a+) + LX(t, a−)
2

= lim
ε→0

1
2ε

∫ t

0
1(|Xs−a|≤ε)d[X]cs := L⊕X(t, a) a.s. (20)

is a symmetrized version of local time.

Consistently with the standard diffusion case, the local time (c.f. Lemma 1) of a semimartingale

with discontinuous sample path measures the amount of time spent by the process in the local

neighborohood of a point. Time is measured in units of the continuous part of the quadratic

variation process ([X]cs = σ2(Xs)ds in our case), i.e. in information units (c.f. Lemma 4). For

general semimartingales, the local time process is càdlàg (c.f. Lemma 2). This observation leads

to the notions of symmetrized local time (20), local time from the left (19) and local time from the

right (18), as Lemma 4 reveals. Chronological versions (where time is measured in real time units)

of the various local time notions at the spatial point a, say, can be defined in the usual fashion by

simply rescaling the corresponding expressions by σ2(a). It is noted that chronological local time

from the right is a version of the Radon-Nykodym derivative of the occupation measure of the

process (i.e.
∫ T
0 1{Xs∈A}ds, ∀A ∈ B(D)). The result follows from the occupation time formula in

Lemma 3 by simply replacing the function g(.) with the indicator over the set A. In the case of the

solution to (1) above, the three notions of local time coincide since

∫ ∞

0
1(Xs−=a)|dV | = 0 ∀a ∈ D (21)
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where V is the continous finite variation component of X (c.f. Yor (1978)). As a result, the process

of interest has a bicontinuous (in a and t) modification of its family of local times (c.f. Revuz and

Yor (1998, Theorem 1.7) and Protter (1995, Theorem 56, Corollary 1)).

As briefly mentioned in the introduction, the role played by local time is twofold.

First, estimated local times are known to be valuable in defining descriptive statistics for poten-

tially non-stationary discrete time series and recurrent continuous-time models (c.f. Phillips (2001)

and Bandi (2001)) in just the same way as estimated probability densities assist in summarizing

the information contained in stationary processes. In Section 3 we introduce a general methodol-

ogy, which we specialize to the case of the jump-diffusion process analyzed here, to identify (c.f.

Theorem 1 in Section 4) the three notions of local time discussed earlier by virtue of averaged ker-

nel functions constructed using symmetric, left and right kernels (K⊕, K− and K+, respectively)

whose properties are listed in Assumption 4 below. Being the three notions of local time equivalent

in our framework, the use of a standard symmetric kernel is generally preferable in virtue of its

superior stability properties and will be our choice in the sequel.

Second, coherently with the pure diffusion case discussed elsewhere (c.f. BP (1998)), local time

affects the rate of convergence (and, in consequence, the asymptotic variances) of the functional

estimates of the infinitesimal moments of recurrent jump-diffusions (c.f. Theorem 3 in Section

4). Consistent estimation of the local time factor will then be crucial to perform inference on the

estimated moments.

We now present the properties of the kernel functions used in this paper before turning to a

discussion of the estimation procedure and limit results. In what follows the notation K(.)± signifies

either K+ or K−, where K+ is a right kernel function (zero for negative values and nonnegative

for positive values) and K− is a left kernel function (zero for positive values and nonnegative for

negative values), as shown in the assumption below.

Assumption 4.

(i) (Symmetric kernel function) The kernel K⊕(.) is a continuously differentiable, symmetric and

nonnegative function such that

∫

R
K⊕(s)ds = 1,

∫

R

(
K⊕(s)

)2
ds < ∞ (22)

and

∫

R
|s2K⊕

(m)(s)|ds < ∞,

∫

R
|K⊕

(m)(s)|ds < ∞ (23)

9



for m = 0, 1 where K⊕
(m)(s) = ∂m K⊕(s)/∂sm.

(ii) (Asymmetric kernels) The kernels K±(.) are continuously differentiable and asymmetric func-

tions such that

K±(.) : R± → R where

∫

R±
K±(s)ds = 1 and

∫

R±

(
K±(s)

)2
ds < ∞ (24)

In addition,

∫

R±
|s2K±

(m)(s)|ds < ∞ and

∫

R±
|K±

(m)(s)|ds < ∞ (25)

for m = 0, 1 where K±
(m)(s) = ∂m K±(s)/∂sm.8

3 Econometric estimation

Assume we observe the process Xt at {t = t1, t2, .., tn} in the time interval [0, T ], with T ≥ T0,

where T0 is a positive constant. Furthermore, assume the observations are equispaced. Then,

{Xt = X∆n,T
, X2∆n,T

, X3∆n,T
, ..., Xn∆n,T

} are n observations on the process Xt at {t1 = ∆n,T , t2 =

2∆n,T , t3 = 3∆n,T , ..., tn = n∆n,T } where ∆n,T = T/n.

We start with the identification of the local time factors. Assume the time span is fixed, i.e.

T = T . Then, functional estimation of (18), (19) and (20) at the spatial point a and T can be

performed based on

L̂X(T , a+) = L̂X(T , a) =
∆n,T

hn,T

n∑

i=1

K+

(
Xi∆n,T

− a

hn,T

)
, (26)

L̂X(T , a−) =
∆n,T

hn,T

n∑

i=1

K−
(

Xi∆n,T
− a

hn,T

)
(27)

and

L̂
⊕
X(T , a) =

∆n,T

hn,T

n∑

i=1

K⊕
(

Xi∆n,T
− a

hn,T

)
, (28)

respectively. We now turn to the nonparametric estimates of the infinitesimal moments (10) - (12).

We study the estimators for M1(x), M2(x) and Mk(x) with k > 2 suggested by Johannes (2000).

Johannes extends the nonparametric procedure developed by Stanton (1997) and BP (1998). The

generality of functional procedures based on sample analogues to the infinitesimal moments of
8See Delgado and Hidalgo (2000) and Perron (1999) for similar assumptions on the kernel weights.
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continuous-time processes with conditional moment definitions is discussed in Bandi (2000). We

propose the following estimators:

M̂1
n,T (a) =

1
hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−a

hn,T

)
[X(i+1)∆n,T

−Xi∆n,T
]

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) , (29)

M̂2
n,T (a) =

1
hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−a

hn,T

)
[X(i+1)∆n,T

−Xi∆n,T
]2

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−a

hn,T

) , (30)

and

M̂k
n,T (a) =

1
hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−a

hn,T

)
[X(i+1)∆n,T

−Xi∆n,T
]k

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−a

hn,T

) (31)

∀k > 2. The expressions (29) - (31) are sample analogues to conditional expectations defined as

weighted averages of differences between observations sampled discretely on the discontinuous path

of the process raised to some power.

4 Limit theory

We begin with the consistency (Theorem 1) of the estimates of the local time process.

In Theorem 1 we assume a fixed time span T as in the definitions of (26) - (28). A fixed

span of time does not permit to exploit the recurrence properties of the underlying process. In

consequence, recurrence is not a necessary assumption for estimating the local time factors over a

predefined period of time as sometimes the case when using local times to describe the locational

features of a possibly nonstationary continuous-time process of interest (c.f. Bandi (2001)).

In Corollary 1 and Theorem 2 below we let T diverge to infinity. We will show that pointwise

explosion (for every sampled path) of the local time factor as T grows to infinity is a necessary

assumption for the consistency of the infinitesimal moment estimators (c.f. Theorem 2). As the time

span increases asymptotically, almost sure explosion of local time is guaranteed by the recurrence

of the underlying continuous-time process (c.f. Corollary 1).

Theorem 1. If n →∞ (with T = T ) and hn,T (→ 0) is such that 1
hn,T

(∆n,T )θ = O(1) for some

θ ∈ (
0, 1

2

) ∀a ∈ D, then

L̂X(T , a±) a.s.→ LX(T , a±) (32)
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where

LX(T , a+) = LX(T , a) =
1

σ2(a)
lim
ε→0

1
ε

∫ T

0
1(a≤Xs≤a+ε)d[X]cs, a.s. (33)

and

LX(T , a−) =
1

σ2(a)
lim
ε→0

1
ε

∫ T

0
1(a−ε≤Xs≤a)d[X]cs, a.s. (34)

Furthermore,

L̂
⊕
X(T , a) a.s.→ L

⊕
X(T , a) (35)

with

L
⊕
X(T , a) =

LX(T , a+) + LX(T , a−)
2

=
LX(T , a) + LX(T , a−)

2

=
1

σ2(a)
lim
ε→0

1
2ε

∫ T

0
1(|Xs−a|≤ε)d[X]cs, a.s. (36)

Corollary 1. If T → ∞ with n but T
n = ∆n,T → 0 and hn,T (→ 0) in such a way that

LX(T,a)
hn,T

(∆n,T )θ = Oa.s.(1) for some θ ∈ (
0, 1

2

) ∀a ∈ D, then

L̂
±
X(T, a) a.s.→ LX (sup{s : Xs = Xs− = a}, a) (37)

and

L̂
⊕
X(T, a) a.s.→ LX (sup{s : Xs = Xs− = a}, a) . (38)

Under Assumption 2,

LX (sup{s : Xs = Xs− = a}, a) = ∞. (39)

As pointed out earlier, depending on the choice of the kernel function (c.f. Assumption 4) we

obtain almost sure convergence to the various notions of local time for cádlág semimartingales that

were presented in Lemma 4. The three notions are equivalent in the case of the solution to (1),

thereby rendering the use of the more stable symmetric kernel preferable. We employ a symmetric

kernel in what follows.

We now discuss the asymptotic theory of the infinitesimal conditional moments.

12



Theorem 2. Assume Assumption 2 is satisfied. If n → ∞, T → ∞, T
n → 0 and hn,T (→ 0) is

such that L
⊕
X(T,a)
hn,T

(∆n,T )θ = Oa.s.(1) for some θ ∈ (
0, 1

2

)
and hn,T L

⊕
X(T, a) a.s.→ ∞ ∀a ∈ D, then

M̂p
n,T (a) a.s.→ Mp(a) ∀p. (40)

Furthermore, if h5
n,T L

⊕
X(T, a) a.s.→ 0 ∀a ∈ D, then

√
hn,T L

⊕
X(T, a)

(
M̂p

n,T (a)−Mp(a)
)
⇒ N

(
0,K⊕

2 M2p(a)
) ∀p (41)

where

K⊕
2 =

∫

R

(
K⊕(s)

)2
ds. (42)

Theorem 2 shows that straight sample analogues to the infinitesimal moments converge to

the true functions with probability one as the time span and frequency of observations increase

asymptotically. As in the case of drift function estimation, but contrary to the case of diffusion

function estimation, in the pure scalar diffusion context (c.f. BP (1998)), an enlarging time span

(T →∞) is necessary to guarantee the consistency result for all the estimated moments. A fixed

T (or a non-diverging local time in the presence of explosive processes) would make the functional

estimates diverge at speed 1√
hn,T

. The result is intuitive and reflects the common belief that a long

span of observations is necessary to gather sufficient (for consistency) information about the features

of the Lévy measure of the jump component (intensity of the jump and probability distribution of

the jump size, that is).

The asymptotic distributions are normal and the rates of convergence are path-dependent and

defined pointwise as
√

hn,T L
⊕
X(T, a) where L

⊕
X(T, a) is the local time process of the underlying

jump-diffusion process. Contrary to the standard diffusion case (c.f. BP (1998)), the second

infinitesimal moment estimator has a rate of convergence that is the same as the rate of convergence

of the first infinitesimal moment estimator. Apparently, this is due to the presence of discontinuous

breaks that have an equal impact on all the functional estimates. In fact, all the estimated functions

have the same convergence rate pointwise. As in the pure diffusion case (c.f. BP (1998)), we expect

the rate of convergence to be maximized
(√

hn,T T , that is
)

when the underlying process is endowed

with a stationary probability measure (that is, when the process is positive Harris recurrent, as

implied by Assumption 3, or stationary). In this case the local time process increases like T , i.e.

L
⊕
X(T, a)

T

a.s.→ f(a) =
φ(a)
φ(D)

∀a ∈ D (43)

13



(c.f. Davydov (1976), for example). Slower divergence rates for the local time factor (and slower

convergence rates for estimated moments) occur in the presence of null Harris recurrent jump-

diffusion processes.

If hn,T satisfies the above conditions but hn,T = Oa.s.

(
L
⊕
X(T, a)−1/5

)
, then a non-random bias

term plays a role in the limit (c.f. the proof of Theorem 2). Its form is

h2
n,T

(∫

R
s2K⊕(s)ds

) (
1
2

(Mp(a))
′′

+ (Mp(a))
′ φ

′
(a)

φ(a)

)
∀p (44)

where φ(dx) is the invariant measure of the process. The features of the bias term imply an

asymptotic mean-squared error of order h4
n,T + 1

hn,T L
⊕
X(T,a)

and, in consequence, optimal bandwidth

sequences of order
(
L
⊕
X(T, a)

)−1/5
. For all practical purposes, the bandwidth sequence for the

generic moment Mp(a) can be set equal to

hp
n,T (a) = ϑp log


 1

L̂
⊕
X(T, a)




(
L̂
⊕
X(T, a)

)−1/5

(45)

where ϑp is a moment specific constant of proportionality and log
(

1bL⊕X(T,a)

)
is a standard adjust-

ment factor intended to guarantee slight undersmoothing and, consequently, absence of a limiting

bias term (c.f. (41) above) from the asymptotic distributions of the functional estimates as in the

statement of Theorem 2. Two additional observations are in order. First, the optimal bandwidth

sequences have a local nature. Larger bandwidths are required in regions where the data is sparser

as summarized by the information contained in the local time factor. Second, the proportionality

factor ϑp and the optimal smoothing sequence for local time estimation should be determined based

on data-driven criteria. The design of such criteria goes beyond the scope of the present paper and

is left for future research.

5 Identification: two examples

We now discuss two examples that will serve the purpose of illustrating possible mechanisms to

extract the functions of interest from the estimated nonparametric moments. For simplicity, we

write c(., y) = y. Then, equations (10), (11) and (12) reduce to

M1(x) = µ(x), (46)

M2(x) = σ2(x) + λ(x)EY [y2], (47)

and

14



Mk(x) = λ(x)EY [yk] ∀k > 2. (48)

Identification of the drift, diffusive volatility, intensity of the jump size and parameters of the

distribution of the jump component simply requires choice of an appropriate parametric family for

the probability measure of the jump part as well as use of the estimated moments. In this section

we discuss two choices for the distribution of the jump component that accomodate different jump

behaviors, namely normal and mixed normal jump sizes. Extensions to alternative specifications

are straightforward based on our subsequent discussion.

5.1 Normal jumps

Assume y ; N
(
0, σ2

y

)
(c.f. Johannes (2000)). Thus,

EY [y2r] = σ2r
y

r∏

n=1

(2n− 1) (49)

and

EY [y2r−1] = 0 (50)

for r = 1, 2, 3, ... A natural way to extract estimates of the underlying objects of interest from the

moment restrictions (46)-(48) is to use the following sequential algorithm suggested by Johannes

(2000):9

[1] Obtain an estimate of σ2
y via

(
σ̂2

y

)
n,T

=
1
n

n∑

i=1

M̂6
n,T (Xi∆n,T

)

5M̂4
n,T (Xi∆n,T

)
. (51)

[2] Obtain an estimate of λ(x) via

λ̂n,T (x) =
M̂4

n,T (x)

3
(
σ̂4

y

)
n,T

. (52)

[3] Obtain an estimate of σ2(x) via

σ̂2
n,T (x) = M̂2

n,T (x)− λ̂n,T (x)
(
σ̂2

y

)
n,T

. (53)

[4] Obtain an estimate of µ(x) via

M̂1
n,T (x). (54)

9Johannes (1999) contains a thorough illustration of the empirical issues posed by this estimation procedure. We
refer the interested reader to his work.

15



Due to the averaging, and coherently with standard semiparametric models, we expect the rate

of convergence of the parameter estimate
(
σ̂2

y

)
n,T

to be faster than those of the functional estimates

λ̂n,T (.), σ̂2
n,T (.) and µ̂n,T (.). The same intuition applies to the parameter estimates in the mixed

normal model discussed below.

5.2 Mixed normal jumps (The Variance Gamma model)

Assume y ; N
(
0, σ2

yV
)

and V ; G(v) = 1
Γ( 1

b )
1
b

(
1
bv

) 1
b
−1

e−
1
b
vI {v ≥ 0} where Γ (.) is the gamma

function (c.f. Madan and Soneta (1990)).10 V has expected value equal to 1 and variance equal to

b, hence σ2
y serves as a scale parameter. Madan and Soneta (1990) introduced this model as a way

to capture long taildeness in daily stock returns (the proportional excess kurtosis over the normal

kurtosis is given by the positive parameter b).11 It is easy to note that

EY [y2r] = E
(
E[y2r|V]

)
= E

(
σ2r

y

(
r∏

n=1

(2n− 1)

)
Vr

)

= σ2r
y

(
r∏

n=1

(2n− 1)

)
E[Vr] = σ2r

y

(
r∏

n=1

(2n− 1)

)
Γ

(
1
b + r

)

Γ
(

1
b

) br (55)

and

EY [y2r−1] = 0 (56)

for r = 1, 2, 3, ... Thus, a possible way to extract the functions and parameters of interest from the

estimated moments is as follows:

[1] Define Ψ̂6,4
n,T and Ψ̂8,6

n,T as

Ψ̂6,4
n,T =

1
n

n∑

i=1

M̂6
n,T (Xi∆n,T

)

M̂4
n,T (Xi∆n,T

)
, (57)

Ψ̂8,6
n,T =

1
n

n∑

i=1

M̂8
n,T (Xi∆n,T

)

M̂6
n,T (Xi∆n,T

)
. (58)

Hence,
10In a Bayesian framework, one could interpret G as being a prior distribution on the parameter V (Praetz (1972)).
11The Lévy process which is consistent with the Variance Gamma model as a distribution for the unit period

dynamics is a time changed Brownian motion with zero drift and variance σ2 where the time change has gamma
increments with mean 1 and variance b over unit intervals (c.f. Madan and Soneta (1990)). Option pricing with the
variance gamma process is discussed in Madan et al. (1998).
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(
σ̂2

y(b)
)
n,T

=
1
5b

Ψ̂6,4
n,T

(
Γ

(
1
b + 2

)

Γ
(

1
b + 3

)
)

=
1
5b

Ψ̂6,4
n,T

(
1

1
b + 2

)

=
1
5

(
1

1 + 2b

)
Ψ̂6,4

n,T , (59)

and b̂n,T can be found by solving

Ψ̂8,6
n,T −

7
5
Ψ̂6,4

n,T

(
Γ

(
1
b + 2

)
Γ

(
1
b + 4

)

Γ2
(

1
b + 3

)
)

= 0 (60)

which implies,

b̂n,T =
Ψ̂8,6

n,T − 7
5Ψ̂6,4

n,T

21
5 Ψ̂6,4

n,T − 2Ψ̂8,6
n,T

. (61)

It is now straightforward to compute
(
σ̂2

y

)
n,T

as

(
σ̂2

y

(
b̂n,T

))
n,T

=
1
5

(
1

1 + 2b̂n,T

)
Ψ̂6,4

n,T . (62)

[2] Obtain an estimate of λ(x) via

λ̂n,T (x) =
M̂4

n,T (x)

3
(
σ̂4

y

)
n,T

(1 + b̂n,T )
. (63)

[3] Obtain an estimate of σ2(x) via

σ̂2
n,T (x) = M̂2

n,T (x)− λ̂n,T (x)
(
σ̂2

y

)
n,T

. (64)

[4] Obtain an estimate of µ(x) via

M̂1
n,T (x). (65)

6 A Monte Carlo exercise

In this section we conduct a simple simulation experiment to examine the finite sample properties

of the estimators discussed in the paper and the coherence between asymptotic and finite sample

distributions. An extended version of a process widely used in modeling interest rates, namely the

Cox, Ingersoll, and Ross (1985) process, is our choice here. The model we analyze is

d log(rt) = β (α− rt) dt + σ
√

rtdWt + dJt (66)
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where Jt is a jump process with constant arrival intensity λ(.) = λ and jump size y ; N
(
0, σ2

y

)
.

The underlying parameters are chosen as

λ(rt) = λ = 20 ∀t (67)

β = .85837 (68)

α = .089102 (69)

σ = .3 (70)

σy = .03630427. (71)

We select values that determine sample trajectories that mimick the observed behavior of con-

ventionally used short-term interest rate series in the US bond market. The process displays a

mean-reverting drift and satisfies affine structures, i.e. both the drift and the diffusive volatility are

linear functions of the state variable. The log specification guarantees that the series stays positive

as required by nominal interest rates. Furthermore, consistently with the observation that interest

rates are more volatile at higher levels, this model allows the diffusive volatility to be an increasing

function of the underlying interest rate level.

We use the Euler’s scheme to simulate 10, 000 daily observations for each path, which is equiv-

alent to a daily data set spanning about 40 years of observations. 10, 000 paths are generated

using the antithetic variate technique. The use of daily frequencies in continuous-time asset pricing

accommodates the fact that the researcher often does not observe (or wishes to employ, due to

spurious microstructure contaminations) higher frequency data. We will show that the method is

robust to this “crude” frequency.

Our choice of the kernel is the ubiquitous, second order, symmetric Gaussian kernel, i.e.

K⊕(x) = 1
h
√

2π
exp

(
−1

2

(
x
h

)2
)

and K⊕
2 = 1

2
√

π
. Choosing the optimal bandwidth is still largely

an elusive question in the nonparametric literature. Moreover, the existing methods are generally

designed for standard regression contexts. The need for theoretical treatments of bandwidth se-

lection procedures in the case of continuous-time model estimation, especially when dealing with

possibly nonstationary series, has been discussed by Bandi and Nguyen (1999). In this simple

exercise we opt for employing a flat smoothing parameter equal to 1.5%. Such value is similar to

bandwidth values that are reported in empirical studies on the dynamics of US short-term interest

rates (for example, Aı̈t-Sahalia (1996) utilizes a bandwidth equal to 1.6033%). We leave the use

of more appropriate bandwidth selection methods for future research. In particular, as discussed

earlier, the optimal bandwidth should accomodate the divergence properties of the local time fac-

tor and be level-specific. We estimate the functions and parameters of interest by employing the
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extraction scheme in Subsection 5.1 (c.f. Johannes (2000)).

The estimation results are reported in Figure 1, where the graphs are for drift, diffusive volatility

and jump intensity. In each graph, the four curves represent the true value, the estimated value

(pointwise sample means across the 10, 000 simulations) and the 25 and 75 percentiles. The standard

deviation of the jump size (σy) is estimated quite accurately. Its mean value is 0.03582. The standard

deviation of the estimates is 0.0037. The minimum and maximum values are 0.0267 and 0.0691,

respectively. Despite the use of a simple extraction scheme and a rather naively-chosen smoothing

parameter, the estimators appear to capture sufficiently well the true parameter value and functions

in finite sample.

Figure 2 through 5 contain graphical comparisons between the limiting distributions of the first

four infinitesimal moment estimators from Theorem 2 and their empirical counterparts. We report

results for two levels that are often visited by the simulated trajectories (i.e. for which the mean

estimated local time is large) such as 6% and 7%. The asymptotic approximations appear to be

very satisfactory in finite sample. Similar results occur when considering different levels.

7 Conclusion

Since the fundamental paper by Merton (1976) which introduces jump-diffusion models as a possible

solution to the problem stemmed from the fact that the Black and Scholes (1973) approach fails to

fit observed option prices and stock price dynamics, continuous-time processes with discontinuous

sample paths have incited an on-again, off-again interest in the finance and econometrics literature.

The recent compelling evidence on the importance of discontinuous components in models for

continuous-time financial series has determined a vigorously renewed attention to the econometrics

of jump-diffusions.

This paper tackles the identification of the functions of interest under mild assumptions on the

underlying process. More specifically, no parametric specification is assumed for drift, diffusive

volatility and intensity of the jump size (c.f. Johannes (2000)). In addition, the process is not

required to possess a stationary probability measure. Together with the extreme computational

simplicity, these are features that should make the methodology particularly appealing to study

the dynamics of time series for which stationarity is an issue, as sometimes the case in finance, and

for which simple parametrizations appear to be too restrictive.

The asymptotic theory contained in this paper, along with the existing treatments in the stan-

dard diffusion case (c.f. BP (1998) and Bandi (2000)), represent useful theoretical tools to test for

the presence of discontinuous breaks based on the properties of the infinitesimal moments of the

underlying semimartingale when jumps play a role. Additionally, in light of the presence of a wide
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array of possible parametric forms for sensible jump-diffusion models, the asymptotics developed

here can be fruitfully employed to construct functional tests of model (mis)specification. Research

on these topics is being conducted and will be reported in later work.
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Appendix: Proofs

Proof of Lemma1. See Protter (1995), Theorem 49, page 165.

Proof of Lemma 2. See Protter (1995), Theorem 56, page 176.

Proof of Lemma 3. See Protter (1995), Corollary 1, page 168.

Proof of Lemma 4. See Protter (1995), Corollary 3, page 178.

Proof of Theorem 1. Consider the quantity
∫ T

0+

1
hn,T

K±
(

Xs− − x

hn,T

)
ds. (72)

From Lemma 3 (i.e. the occupation time measure), we obtain
∫ T

0+

1
hn,T

K±
(

Xs− − x

hn,T

)
d[X]cs

σ2(Xs)
=

∫ ∞

−∞

1
hn,T

K±
(

a− x

hn,T

)
1

σ2(a)
LX(T , a)da. (73)

Now, consider the transformation a → q where q = (a− x)/hn,T . The previous expression becomes
∫ ∞

−∞
K±(q)

1
σ2(hn,T q + x)

LX(T , hn,T q + x)dq

=
∫

R+
K±(q)

1
σ2(hn,T q + x)

LX(T , hn,T q + x)dq

+
∫

R−
K±(q)

1
σ2(hn,T q + x)

LX(T , hn,T q + x)dq. (74)

For general semimartingales, the map a 7→ La
t is a.s. cádlág (i.e. right-continuous with left limits) for a

fixed t (c.f. Lemma 2). Hence, as n →∞ and hn,T → 0, and since
∫

R± K±(q)dq = 1 from Assumption 4 in
Section 2, we have

∫

R

K±(q)
1

σ2(hn,T q + x)
LX(T , hn,T q + x)dq

=
∫

R+
K+(q)

1
σ2(hn,T q + x)

LX(T , hn,T q + x)dq

a.s.→ 1
σ2(x)

LX(T , x+) =
1

σ2(x)
LX(T , x)

=
1

σ2(x)
lim
ε→0

1
ε

∫ T

0

1(x≤Xs≤x+ε)d[X]cs := LX(T , x) (75)

by dominated convergence and provided K±(.) = K+(.). If K±(.) = K−(.), then
∫

R

K−(q)
1

σ2(hn,T q + x)
LX(T , hn,T q + x)dq

=
∫

R−
K−(q)

1
σ2(hn,T q + x)

LX(T , hn,T q + x)dq

a.s.→ 1
σ2(x)

LX(T , x−)

=
1

σ2(x)
lim
ε→0

1
ε

∫ T

0

1(x−ε≤Xs≤x)d[X]cs := LX(T , x−) (76)
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again by dominated convergence. To prove the result we have to show that

∆n,T

hn,T

n∑

i=1

K±
(

Xi∆n,T
− x

hn,T

)
−

∫ T

0+

1
hn,T

K±
(

Xs− − x

hn,T

)
ds

a.s.→ 0, (77)

under the stated conditions. This is equivalent to proving that

1
hn,T

n−1∑

i=0

∫ (i+1)T/n

iT/n+

[
K±

(
Xi∆n,T

− x

hn,T

)
−K±

(
Xs− − x

hn,T

)]
ds

−∆n,T

hn,T

K±
(

X0+ − x

hn,T

)
+

∆n,T

hn,T

K±
(

Xn∆n,T
− x

hn,T

)
a.s.→ 0. (78)

Using Assumption 4 again, the left side of (78) is bounded by

∣∣∣∣∣
1

hn,T

n−1∑

i=0

∫ (i+1)T/n

iT/n+

[
K±

(
Xi∆n,T

− x

hn,T

)
−K±

(
Xs− − x

hn,T

)]
ds

∣∣∣∣∣

+
∆n,T

hn,T

∣∣∣∣∣K
±

(
X0 − x

hn,T

)∣∣∣∣∣ +
∆n,T

hn,T

∣∣∣∣∣K
±

(
Xn∆n,T

− x

hn,T

)∣∣∣∣∣

≤ 1
hn,T

∣∣∣∣∣
n−1∑

i=0

∫ (i+1)T/n

iT/n+

K±
(1)

(
X̃is− − x

hn,T

)(
Xs− −Xi∆n,T

hn,T

)
ds

∣∣∣∣∣ + 2C4

∆n,T

hn,T

≤
(

1
hn,T

)
1

hn,T

n−1∑

i=0

∫ (i+1)T/n

iT/n+

∣∣∣∣∣K
±
(1)

(
X̃is− − x

hn,T

)∣∣∣∣∣
∣∣∣
(
Xs− −Xi∆n,T

)∣∣∣ ds + 2C4

∆n,T

hn,T

(79)

where X̃is− is on the line segment connecting Xs− and Xi∆n,T
and C4 is a suitable constant. Define

δn,T = max
i≤n

sup
i∆n,T +≤s≤(i+1)∆n,T

|Xs− −Xi∆n,T
|. (80)

The increments Xt+∆ − Xt are of order
√

∆. The order of magnitude can be deduced from the Lévy-
Khintchine representation (c.f. Protter (1990), Theorem 4.3, page 32). Furthermore, there is Ω0 ∈ = with
P[Ω0] = 1 such that, for every $ ∈ Ω0, Xt($) is right-continuous in t ≥ 0 and has left limit in t > 0 (c.f.
Sato (1999), Definition 1.6(5)). Then,

δn,T(
∆n,T

)θ
= oa.s.(1) (81)

for ∀ θ < 1
2 . Thus, if hn,T is such that 1

hn,T
(∆n,T )θ = O(1) for some θ ∈ (

0, 1
2

)
, then

δn,T

hn,T

=
δn,T(

∆n,T

)θ

(∆n,T )θ

hn,T

= oa.s.(1) (82)

as n →∞. Using (82) we have

K±
(1)

(
X̃is− − x

hn,T

)
= K±

(1)

(
Xs− − x

hn,T

+ oa.s(1)

)
, (83)

uniformly over i = 1, ..., n. It follows from (81) through (83) that (79) is bounded by
(

δn,T

hn,T

)
1

hn,T

n−1∑

i=0

∫ (i+1)T/n

iT/n+

∣∣∣∣∣K
±
(1)

(
Xs− − x

hn,T

+ oa.s(1)

)∣∣∣∣∣ ds + 2C4

∆n,T

hn,T
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≤
(

δn,T

hn,T

)
1

hn,T

∫ T

0+

∣∣∣∣∣K
±
(1)

(
Xs− − x

hn,T

+ oa.s(1)

)∣∣∣∣∣ ds + 2C4

∆n,T

hn,T

=

(
δn,T

hn,T

)
1

hn,T

∫ ∞

−∞

∣∣∣∣∣K
±
(1)

(
p− x

hn,T

+ oa.s(1)

)∣∣∣∣∣ LX

(
T , p

)
dp + 2C4

∆n,T

hn,T

=

(
δn,T

hn,T

) ∫ ∞

−∞

∣∣∣K±
(1) (q + oa.s(1))

∣∣∣ LX

(
T , qhn,T + x

)
dq + 2C4

∆n,T

hn,T

≤ C5

(
δn,T

hn,T

)
Oa.s

(
L
±
X(T , x)

)
+ 2C4

∆n,T

hn,T

, (84)

for some constant C5, by virtue of the absolute integrability of K±
(1) (from Assumption 4) and the continuity

properties of LX from Lemma 2. Since
δn,T

hn,T
→ 0 by (82), then the bound vanishes as n →∞. This proves

the stated result in the case of asymmetric kernels K±. The derivation is similar when using a symmetric
kernel K⊕ as in Assumption 4 and is omitted here for brevity.

Proof of Corollary 1. Expressions (37) and (38) follow from Remark 2 of Proposition 1.3 in Revuz
and Yor (1998) using the fact that the measure dLX(t, x)(w) is carried by the set {s : Xs−(w) = Xs(w) = x}
for a. a. w (c.f. Protter (1995), Theorem 50, page 166). Expression (39) is immediate given recurrence (c.f.
Corollary 1 in BP (1998)).

Proof of Theorem 2. We show limit results for the first and the second infinitesimal moment. Exten-
sions to the higher moments are rather straighforward based on the analysis presented below and can be
provided by the authors upon request.

We begin with the consistency of the first infinitesimal moment. Write

M̂1
n,T (x) =

1
hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

)
[X(i+1)∆n,T

−Xi∆n,T
]

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) (85)

=
1

hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) ∫ (i+1)∆n,T

i∆n,T +
µ(Xs−)ds

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) (86)

+
1

hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) ∫ (i+1)∆n,T

i∆n,T +
σ(Xs−)dWs

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) (87)

+
1

hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) ∫ (i+1)∆n,T

i∆n,T +

∫
Y

c(Xs−, y)ν(ds, dy)

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) . (88)

= αn,T (x) + βn,T (x) + γn,T (x). (89)

We start with the term αn,T (x). Arguments contained in the proof of Theorem 1 allow us to obtain

αn,T (x)

=
1

hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) ∫ (i+1)∆n,T

i∆n,T +
µ(Xs−)ds

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) (90)
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=
1

hn,T

∫ T

T/n
K⊕

(
Xi∆n,T

−x

hn,T

)
µ(Xs−)ds

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) (91)

=
1

hn,T

∫ T

0
K⊕

(
Xs−x
hn,T

)
µ(Xs−)ds + Oa.s.

(
L
⊕
X(T,a)
hn,T

(∆n,T )
1
2−ε

)

1
hn,T

∫ T

0
K⊕

(
Xs−x
hn,T

)
ds + Oa.s.

(
L
⊕
X(T,a)
hn,T

(∆n,T )
1
2−ε

) . (92)

Using the Quotient limit Theorem for Harris recurrent Markov processes (c.f. Azema et al. (1966) and
Revuz and Yor (1998), inter alia) for a fixed bandwidth hn,T , we can write

αn,T (x) a.s.→
∫

R
K⊕(a)µ(x + ahn,T )φ(x + ahn,T )da∫

R
K⊕(a)φ(x + ahn,T )da

(93)

where φ(dx) is the σ−finite invariant measure of the underlying discontinuous semimartingale. In the case
of the solution to (1) above, such measure is absolutely continuous with respect to the Lebesgue measure
(c.f. Menaldi and Robin (1999)), i.e. φ(dx) = φ(x)dx. Provided hn,T converges to zero slowly enough as

to guarantee that L
⊕
X(T,x)
hn,T

(∆n,T )θ = Oa.s.(1) for some θ ∈ (
0, 1

2

)
and hn,T L

⊕
X(T, x) a.s.→ ∞ ∀x ∈ D as in the

statement of the theorem, then

αn,T (x) a.s.→ µ(x). (94)

Now consider the term βn,T (x). By the strong law of large numbers for martingale difference sequences
(MGDS’s, henceforth) with zero first moments and finite second moments (c.f. Hall and Heyde (1986)), we
can write

βn,T (x) a.s.→ 0. (95)

The rate of convergence can be found invoking Knight’s embedding theorem (c.f. Revuz and Yor (1998)),
for example. Fix T (= T ), for simplicity. Define by βnum

n,T
(x) the numerator of the term βn,T (x) and write,

(
β̂

num

n,T (x)
)

r
=

√
hn,T

(
βnum

n,T
(x)

)
r

=
1√
hn,T

[nr]−1∑

i=1

K⊕
(

Xi∆n,T
− x

hn,T

) ∫ (i+1)∆n,T

i∆n,T

σ(Xs−)dWs. (96)

Using the occupation time formula in Lemma 3, the quadratic variation process at r of
(
β̂

num

n,T (x)
)

r
can be

expressed as

[
β̂

num

n,T (x)
]

r
=

1
hn,T

[nr]−1∑

i=1

(
K⊕

(
Xi∆n,T

− x

hn,T

))2 ∫ (i+1)∆n,T

i∆n,T

σ2(Xs−)ds

a.s.→
(∫ ∞

−∞

(
K⊕(s)

)2
ds

)
L
⊕
X(rT , x)σ2(x). (97)

Hence, the term
(
β̂

num

n,T (x)
)

r
converges (as n →∞) to the continuous local martingale MrT (x) with increas-

ing process
[M(x)]rT = K⊕

2 L
⊕
X(rT , x)σ2(x) (98)

where K⊕
2 =

∫∞
−∞ (K⊕(s))2 ds. In consequence, we can write

BrT = MτrT
(x) (99)

with
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τ rT = inf
{

s : K⊕
2 L

⊕
X(s, x)σ2(x) > rT

}
. (100)

Equivalently,

MrT (x) = B
K⊕

2 L
⊕
X(rT ,x)σ2(x)

where B and W are independent Brownian motions (see Revuz and Yor (Theorem 2.6, 1998) for the inde-
pendence property). It follows that

(
β̂

num

n,T (x)
)

r

∆n,T

hn,T

∑[rn]
i=1 K⊕

(
Xi∆

n,T
−x

hn,T

) ⇒ MN

(
0,

K⊕
2 σ2(x)

L
⊕
X(rT , x)

)
. (101)

Finally,
√

hn,T L
⊕
X(T, x)

(
βn,T (x)

) ⇒ N
(
0,K⊕

2 σ2(x)
)
, (102)

when r = 1 and T →∞ as in the statement of the theorem. Combining (95) and (102), we obtain

βn,T (x) = Oa.s.


 1√

hn,T L
⊕
X(T, x)


 . (103)

Now consider the term γn,T (x). Define

J(i+1)∆n,T
=

1√
hn,T

∫ (i+1)∆n,T

i∆n,T +

K⊕
(

Xi∆n,T
− x

hn,T

) ∫

Y

c(Xs−, y)ν(ds, dy)

=
1√
hn,T

∑

i∆n,T +≤s≤(i+1)∆n,T

K⊕
(

Xi∆n,T − x

hn,T

)
∆Xs

− 1√
hn,T

∫ (i+1)∆n,T

i∆n,T +

K⊕
(

Xi∆n,T − x

hn,T

)(
λ(Xs−)

∫

Y

c(Xs−, y)Π(y)dy

)
ds. (104)

Notice that J(i+1)∆n,T
is a martingale difference measurable with respect to =(i+1)∆n,T

. Furthermore,

E
(
J(i+1)∆n,T

)
= 0 (105)

and

λ(i+1)∆n,T

= Var(J(i+1)∆n,T
) =

1
hn,T

E

(∫ (i+1)∆n,T

i∆n,T +

(
K⊕

(
Xi∆n,T − x

hn,T

))2 (
λ(Xs−)

∫

Y

c2(Xs−, y)Π(y)dy

)
ds

)

< ∞ (106)

(c.f. Protter, Theorem 38, 1995). Hence,
(
J(i+1)∆n,T

,=(i+1)∆n,T

)
is a MGDS with zero mean and finite

variance λ(i+1)∆n,T
. As earlier, we invoke a standard strong law of large numbers for MGDS’s to prove that

γn,T (x) a.s.→ 0. (107)

Additionally (see Hall and Heyde (1986, Theorem 3.2, page 58), for instance), we can write
∑n−1

i=1 J(i+1)∆n,T√∑n−1
i=1 λi∆n,T +, (i+1)∆n,T

⇒ N(0, 1), (108)
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where

n−1∑

i=1

λi∆n,T +, (i+1)∆n,T

=
n−1∑

i=1

1
hn,T

(∫ (i+1)∆n,T

i∆n,T +

(
K⊕

(
Xi∆n,T

− x

hn,T

))2 (
λ(Xs−)

∫

Y

c2(Xs−, y)Π(y)dy

)
ds

)

a.s.→ K⊕
2

(∫

Y

c2(x, y)ν(dy)
)

L
⊕
X(T, x), (109)

using standard arguments. In consequence,
√

hn,T L
⊕
X(T, x)

(
γn,T (x)

) ⇒ N
(

0,K⊕
2

(∫

Y

c2(x, y)ν(dy)
))

. (110)

Finally, combining (110) and (107), we obtain

γn,T (x) = Oa.s.


 1√

hn,T L
⊕
X(T, x)


 . (111)

To conclude,

M̂1
n,T (x) = αn,T (x) + βn,T (x) + γn,T (x) (112)

= µ(x) + Oa.s.


 1√

hn,T L
⊕
X(T, x)


 a.s.→ µ(x) (113)

as hn,T L
⊕
X(T, x) a.s.→ ∞ ∀x ∈ D. We now turn to the asymptotic distribution. Write the estimation error

decomposition as

M̂1
n,T (x)− µ(x)

=
1

hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) ∫ (i+1)∆n,T

i∆n,T +
µ(Xs−)

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) − µ(x) (114)

+
1

hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) ∫ (i+1)∆n,T

i∆n,T +
σ(Xs−)dWs

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) (115)

+
1

hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) ∫ (i+1)∆n,T

i∆n,T +

∫
Y

c(Xs−, y)ν(ds, dy)

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) . (116)

= α
′
n,T (x) + βn,T (x) + γn,T (x) (117)

where α
′
n,T (x) = (114). From (102) and (110) the terms βn,T (x) and γn,T (x) are distributed as

√
hn,T L

⊕
X(T, x)

(
βn,T (x)

) ⇒ N
(
0,K⊕

2 σ2(x)
)
, (118)

and
√

hn,T L
⊕
X(T, x)

(
γn,T (x)

) ⇒ N
(

0,K⊕
2

(∫

Y

c2(x, y)ν(dy)
))

(119)
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where

K⊕
2 =

∫

R

(
K⊕(s)

)2
ds, (120)

respectively. Now consider the bias term α
′
n,T (x). Write

α
′
n,T (x) =

1
hn,T

∫ T

0
K⊕

(
Xs−−x

hn,T

)
(µ(Xs−)− µ(x)) ds + Oa.s.

(
L
⊕
X(T,x)∆

1/2−ε
n,T

hn,T

)

1
hn,T

∫ T

0
K⊕

(
Xs−−x

hn,T

)
ds + Oa.s.

(
L
⊕
X(T,x)∆

1/2−ε
n,T

hn,T

) (121)

We fix the bandwidth and, as earlier, use the Quotient limit Theorem for Harris recurrent processes to obtain

α
′
n,T (x) = h2

n,T K⊕
1

(
1
2
µ
′′
(x) + µ

′
(x)

φ
′
(x)

φ(x)

)
+ oa.s.(1). (122)

where K⊕
1 =

∫
R

u2K⊕ (u) du. The result (122) applies when hn,T → 0 so that L
⊕
X(T,x)
hn,T

(∆n,T )θ = Oa.s.(1) for

some θ ∈ (
0, 1

2

)
and hn,T L

⊕
X(T, x) a.s.→ ∞ ∀x ∈ D. We conclude by noticing that, in light of the independence

between {Wt : t ≥ 0} and {N(dt, dy) : t ≥ 0} (c.f. Section 2), the quantities γn,T (x) and βn,T (x) are also
independent. This fact implies that

√
hn,T L

⊕
X(T, x)

(
M̂1

n,T (x)− µ(x)
)

⇒ N
(
0,K⊕

2

(
σ2(x) + EY [c2(x, y)]λ(x)

))
(123)

provided h5
n,T L

⊕
X(T, x) a.s.→ 0 ∀x ∈ D. This proves the stated result for the first infinitesimal moment estimator

(c.f. (29)).
We now turn to the second infinitesimal moment and show consistency of the corresponding estimator

(c.f. (30)). Consider a generic function ϕ ∈ C2. A simple extension of Itô’s formula to the jump-diffusion
setting (c.f. Gikhman and Skorohod (1972) and Protter (Theorem 3.2, 1995)) permits us to write

dϕ(Xt) = Lϕ(Xt−)dt +Aϕ(Xt−)dt + ϕx(Xt−)σ(Xt−)dWt

+
∫

Y

[ϕ(Xt− + c(Xt−, y))− ϕ(Xt−)] ν(dt, dy) (124)

where L and A are the second order elliptic operator and the integro-differential operator corresponding to
the continuous and discontinuous portions of the process, respectively. More precisely,

Lϕ(.) = ϕx(.)µ(.) +
1
2
ϕxx(.)σ2(.) (125)

and

Aϕ(.) = λ(.)
∫

Y

[ϕ(. + c(., y))− ϕ(.)− ϕx(.)c(., y)] Π(dy). (126)

Then,

dX2
s = 2Xs−µ(Xs−)ds + 2Xs−σ(Xs−)dWs + σ2(Xs−)ds +

∫

Y

(
(Xs− + c)2 −X2

s−
)
ν(dt, dy)

+λ(Xs−)
∫

Y

(
(Xs− + c)2 −X2

s− − 2Xs−c(Xs−, y)
)
Π(dy)ds

= 2Xs−µ(Xs−)ds + 2Xs−σ(Xs−)dWs + σ2(Xs−)ds +
∫

Y

(
(Xs− + c)2 −X2

s−
)
ν(dt, dy)

+λ(Xs−)
∫

Y

c2(Xs−, y)Π(dy)ds, (127)
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and

X2
(i+1)∆n,T

−X2
i∆n,T

= 2
∫ (i+1)∆n,T

i∆n,T +

Xs−µ(Xs−)ds

+2
∫ (i+1)∆n,T

i∆n,T +

Xs−σ(Xs−)dWs

+
∫ (i+1)∆n,T

i∆n,T +

σ2(Xs−)ds

+
∫ (i+1)∆n,T

i∆n,T +

(∫

Y

c2(Xs−, y)Π(dy)
)

λ(Xs−)ds

+
∫ (i+1)∆n,T

i∆n,T +

∫

Y

(
(Xs− + c)2 −X2

s−
)
ν(ds, dy). (128)

Finally,

(
X(i+1)∆n,T

−Xi∆n,T

)2

= X2
(i+1)∆n,T

−X2
i∆n,T

− 2Xi∆n,T
[X(i+1)∆n,T

−Xi∆n,T
]

= 2
∫ (i+1)∆n,T

i∆n,T +

Xs−µ(Xs−)ds + 2
∫ (i+1)∆n,T

i∆n,T +

Xs−σ(Xs−)dWs +
∫ (i+1)∆n,T

i∆n,T +

σ2(Xs−)ds

+
∫ (i+1)∆n,T

i∆n,T +

(∫

Y

c2(Xs−, y)Π(dy)
)

λ(Xs−)ds +
∫ (i+1)∆n,T

i∆n,T +

∫

Y

(
(Xs− + c)2 −X2

s−
)
ν(ds, dy)

−2
∫ (i+1)∆n,T

i∆n,T +

Xi∆n,T
µ(Xs−)ds− 2

∫ (i+1)∆n,T

i∆n,T +

Xi∆n,T
σ(Xs−)dWs

−2
∫ (i+1)∆n,T

i∆n,T +

∫

Y

Xi∆n,T c(Xs−, y)ν(ds, dy)

= 2
∫ (i+1)∆n,T

i∆n,T +

(
Xs− −Xi∆n,T

)
µ(Xs−)ds + 2

∫ (i+1)∆n,T

i∆n,T +

(
Xs− −Xi∆n,T

)
σ(Xs−)dWs

−2
∫ (i+1)∆n,T

i∆n,T +

∫

Y

Xi∆n,T
c(Xs−, y)ν(ds, dy) +

∫ (i+1)∆n,T

i∆n,T +

σ2(Xs−)ds

+
∫ (i+1)∆n,T

i∆n,T +

(∫

Y

c2(Xs−, y)Π(dy)
)

λ(Xs−)ds +
∫ (i+1)∆n,T

i∆n,T +

∫

Y

(
(Xs− + c)2 −X2

s−
)
ν(ds, dy).

(129)

Now write,

M̂2
n,T (x) =

1
hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

)
2

∫ (i+1)∆n,T

i∆n,T +

(
Xs− −Xi∆n,T

)
µ(Xs−)ds

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) (130)

+
1

hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

)
2

∫ (i+1)∆n,T

i∆n,T +

(
Xs− −Xi∆n,T

)
σ(Xs−)dWs

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) (131)

−
1

hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

)
2

∫ (i+1)∆n,T

i∆n,T +

∫
Y

Xi∆n,T
c(Xs−, y)ν(ds, dy)

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) (132)
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+
1

hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) ∫ (i+1)∆n,T

i∆n,T +

(
σ2(Xs−) +

(∫
Y

c2(Xs−, y)Π(dy)
)
λ(Xs−)

)
ds

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

)

(133)

+
1

hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) ∫ (i+1)∆n,T

i∆n,T +

∫
Y

(
(Xs− + c)2 −X2

s−
)
ν(ds, dy)

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) (134)

= an,T (x) + bn,T (x) + cn,T (x) + dn,T (x) + en,T (x). (135)

Previous arguments suggest that

dn,T (x) =
1

hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) ∫ (i+1)∆n,T

i∆n,T +

(
σ2(Xs−) +

(∫
Y

c2(Xs−, y)Π(dy)
)
λ(Xs−)

)
ds

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

)

a.s.→ σ2(x) +
(∫

Y

c(x, y)Π(dy)
)

λ(x) = σ2(x) + EY

[
c2(x, y)

]
λ(x). (136)

Some of the remaining quantities (bn,T (x), cn,T (x) and en,T (x), that is) are sample averages of MDGS’s
converging to zero at some rate. As for an,T (x) note that

an,T (x) =
1

hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

)
2

∫ (i+1)∆n,T

i∆n,T +

(
Xs− −Xi∆n,T

)
µ(Xs−)ds

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

)

≤ Oa.s.

(
∆1/2

n,T

) 1
hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

)
2

∫ (i+1)∆n,T

i∆n,T +
µ(Xs−)ds

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

)

= Oa.s.

(
∆1/2

n,T

)
(µ(x) + oa.s.(1)) a.s.→ 0. (137)

Finally,

M̂2
n,T (x) a.s.→ σ2(x) + EY

[
c2(x, y)

]
λ(x). (138)

We now evaluate the limiting distribution. Write the estimation error decomposition as

[
M̂2

n,T (x)−
(

σ2(x) +
(∫

Y

c2(x, y)Π(dy)
)

λ(x)
)]

=
1

hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) ∫ (i+1)∆n,T

i∆n,T +

(
σ2(Xs−) +

(∫
Y

c(Xs−, y)Π(dy)
)
λ(Xs−)

)
ds

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

)

−
(

σ2(x) +
(∫

Y

c2(x, y)Π(dy)
)

λ(x)
)

+ an,T (x) + bn,T (x) + cn,T (x) + en,T (x)

= d
′
n,T (x) + an,T (x) + bn,T (x) + cn,T (x) + en,T (x) (139)

where

d
′
n,T (x) =

1
hn,T

∑n−1
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) ∫ (i+1)∆n,T

i∆n,T +

(
σ2(Xs−) +

(∫
Y

c(Xs−, y)Π(dy)
)
λ(Xs−)

)
ds

∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

)

−
(

σ2(x) +
(∫

Y

c2(x, y)Π(dy)
)

λ(x)
)

. (140)
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Notice that

an,T (x) = oa.s.(cn,T (x)), (141)

bn,T (x) = oa.s.(cn,T (x)), (142)

and

cn,T (x) = Oa.s.(en,T (x)). (143)

From (141), (142) and (143) the limit distribution depends on the relationship between the speeds of con-
vergence of the bias term d

′
n,T (x) and en,T (x) + cn,T (x). Under the conditions that we assumed for the

smoothing sequence hn,T , we obtain

d
′
n,T (x) = O(h2

n,T ) (144)

as in the case of (122) above. In fact,

d
′
n,T (x) = h2

n,T K⊕
1

(
1
2

(
M2(x)

)′′
+

(
M2(x)

)′ φ
′
(x)

φ(x)

)
+ oa.s.(1), (145)

where K⊕
1 was defined earlier. Now write,

(
ênum
n,T (x)

)
=

√
hn,T

(
enum
n,T (x)

)

=
1√
hn,T

n−1∑

i=1

K⊕
(

Xi∆n,T − x

hn,T

) ∫ (i+1)∆n,T

i∆n,T +

∫

Y

(
(Xs− + c)2 −X2

s−
)
ν(ds, dy). (146)

As before,

√
hn,T L

⊕
X(T, x)


 enum

n,T (x)
∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

)



⇒ N
(
0,K⊕

2

(
λ(x)EY

[(
(x + c(x, y))2 − x2

)2
]))

. (147)

Also write,

(
ĉnum
n,T (x)

)
=

√
hn,T

(
cnum
n,T (x)

)

= − 1√
hn,T

n−1∑

i=1

K⊕
(

Xi∆n,T
− x

hn,T

)
2

∫ (i+1)∆n,T

i∆n,T +

∫

Y

Xi∆n,T
c(Xs−, y)ν(ds, dy). (148)

Then,

√
hn,T L

⊕
X(T, x)


 cnum

n,T (x)
∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

)



⇒ N
(
0,K⊕

2

(
4λ(x)EY

[
c2(x, y)x2

]))
. (149)

Finally, the limiting covariance between
√

hn,T (cn,T (x)) and
√

hn,T (en,T (x)) can be characterized as
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Asicov




√
hn,T cnum

n,T (x)
∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

) ,

√
hn,T enum

n,T (x)
∆n,T

hn,T

∑n
i=1 K⊕

(
Xi∆n,T

−x

hn,T

)



a.s.→ 1

L
⊕
X(T, x)

K⊕
2

(−2λ(x)EY

[
xc(x, y)

(
(x + c)2 − x2

)])
. (150)

Hence,

√
hn,T L

⊕
X(T, x)

(
M̂2

n,T (x)−
(

σ2(x) +
(∫

Y

c(x, y)Π(dy)
)

λ(x)
))

⇒ N
(
0,K⊕

2

(
λ(x)EY

[
c4(x, y)

]))
, (151)

with K⊕
2 =

∫∞
−∞ (K⊕(s))2 ds. This proves the stated result for the second infinitesimal moment estimator.

Notation

a.s.→ almost sure convergence
p→ convergence in probability
⇒,

d→ weak convergence
:= definitional equality
op(1) tends to zero in probability
Op(1) bounded in probability
oa.s.(1) tends to zero almost surely
Oa.s.(1) bounded almost surely
=d distributional equivalence
∼d asymptotically distributed as
MN (0, V ) mixed normal distribution with variance V
1A indicator function for the set A
Ck, k = 1, 2, ... constants
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Figure 1: Mean, 75 percentile and 25 percentile of the estimates of drift, diffusive
volatility and jump intensity. The results are obtained from simulating 10000 paths, and
10000 daily observations for every path, of the jump-diffusion process d ln r = β(α −
r) + σ

√
rdW + dJ with y ∼ N

³
0,σ2

y

´
,λ = 20, β = .85837, α = .089102, σ = .3

and σy = .03630427. We employ a second order Gaussian kernel. The value of the
bandwidth parameter is set equal to .015.



Figure 2: Distributions of the estimates of the first moment for interest rate levels
equal to 6% and 7%. The dashed line is the normal distribution dictated from the
asymptotic theory while the continuous line is the real distribution of the estimates. We
employ a second order Gaussian kernel. The value of the bandwidth parameter is set
equal to .015.
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Figure 3: Distributions of the estimates of the second moment for interest rate
levels equal to 6% and 7%. The dashed line is the normal distribution dictated from the
asymptotic theory while the continuous line is the real distribution of the estimates. We
employ a second order Gaussian kernel. The value of the bandwidth parameter is set
equal to .015.
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Figure 4: Distributions of the estimates of the fourth moment for interest rate
levels equal to 6% and 7%. The dashed line is the normal distribution dictated from the
asymptotic theory while the continuous line is the real distribution of the estimates. We
employ a second order Gaussian kernel. The value of the bandwidth parameter is set
equal to .015.
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Figure 5: Distributions of the estimates of the sixth moment for interest rate levels
equal to 6% and 7%. The dashed line is the normal distribution dictated from the
asymptotic theory while the continuous line is the real distribution of the estimates. We
employ a second order Gaussian kernel. The value of the bandwidth parameter is set
equal to .015.
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