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Abstract

Multi-state models are a very useful tool to answer a wide range of questions in sur-
vival analysis that cannot, or only in a more complicated way, be answered by classical
models. They are suitable for both biomedical and other applications in which time-to-
event variables are analyzed. However, they are still not frequently applied. So far, an
important reason for this has been the lack of available software. To overcome this prob-
lem, we have developed the mstate package in R for the analysis of multi-state models.
The package covers all steps of the analysis of multi-state models, from model building
and data preparation to estimation and graphical representation of the results. It can
be applied to non- and semi-parametric (Cox) models. The package is also suitable for
competing risks models, as they are a special category of multi-state models.

This article offers guidelines for the actual use of the software by means of an elabo-
rate multi-state analysis of data describing post-transplant events of patients with blood
cancer. The data have been provided by the EBMT (the European Group for Blood
and Marrow Transplantation). Special attention will be paid to the modeling of different
covariate effects (the same for all transitions or transition-specific) and different baseline
hazard assumptions (different for all transitions or equal for some).
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1. Introduction

Recently, multi-state and competing risks models have gained considerable popularity in sur-
vival analysis. In the first place, this popularity is due to the fact that in comparison to
classical models, these models describe the disease/recovery process of patients in more de-
tail, thus yielding more insight. In the second place, these models are useful in a clinical
setting for the prediction of survival duration for specific patients. These predictions can eas-
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ily be updated if information about events later occurring to such a patient becomes available.
The influence of covariates can be taken into account.

Although the relevance of these models is clearly recognized, their application by
non-statisticians has so far been limited. An important reason for this is the lack of avail-
able software. For this reason, we have developed a software package in R (R Develop-
ment Core Team 2010), called mstate, which can be used for the different phases of the
description and analysis of competing risks and multi-state models. It is primarily de-
signed for non- and semi-parametric Cox models. However, we have paid special atten-
tion to the flexibility of the functions: they can be used independently of each other to
enable users to combine their own functions with those of mstate when considering mod-
els different from ours. mstate is available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=mstate.

The mathematics underlying the package, its philosophy and features and an example have
been discussed in our previous paper de Wreede et al. (2010). A more general introduction
into competing risks and multi-state models can be found in Putter et al. (2007). The current
article builds on these previous articles. It describes in detail how the functions work by
means of a more elaborate example. The mathematical concepts related to the functions
will only be mentioned briefly in the relevant places. The use of the package is illustrated
by the analysis of a model describing the disease/recovery process of leukemia patients, of
which model several variants will be discussed. The code for all of them will be given, and
it will be explained how this should be adapted for other models. Data, clinical questions
and model are introduced in Section 2. We consider estimation and prediction both for a
non-parametric model (Section 3) and a semi-parametric model including several relevant
clinical covariates (Section 4.1). The use of transition-specific covariates will be explained.
As a special semi-parametric model, we consider a proportional baseline hazards model, which
is useful for reducing the number of parameters in the model (Section 4.2). In Section 4.3
we discuss reduced rank models and two functions for simulation and bootstrapping in the
context of multi-state models. Finally, the analysis of competing risks models by means of
mstate is discussed briefly in Section 4.4.

2. Data, questions, and model

We consider survival after a transplant treatment of patients suffering from a blood cancer.
The data have been provided by the EBMT (the European Group for Blood and Marrow
Transplantation); they are available in mstate as ebmt4. The present data set has been com-
piled to illustrate the models and the software. To facilitate this illustration, only patients
with complete covariate information and a reasonable amount of information about interme-
diate events have been included. Although the current data set mimics a real-life situation
and although the order of magnitude of the outcomes is correct, the clinical meaning of the
results of the analyses is restricted. To avoid misinterpretation, we have abstracted from the
actual disease, covariate values and intermediate events.

Three intermediate events are included in the model: Recovery (Rec), an Adverse Event (AE)
and a combination of the two (AE and Rec). It is to be expected that recovery improves the
prognosis and an adverse event deteriorates it. The model is suitable to show the size of these
effects, and to capture the influence of their timing and of the covariates on the prognosis.
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Prognostic factor Categories n (%)
(name in data)
Donor recipient no gender mismatch 1734 (76)
(match) gender mismatch 545 (24)
Prophylaxis no 1730 (76)
(proph) yes 549 (24)
Year of transplant 1985-1989 634 (28)
(year) 1990-1994 896 (39)
1995-1998 749 (33)
Age at transplant (years) < 20 551 (24)
(agecl) 20 — 40 1213 (53)
> 40 515 (23)
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Figure 1: A six-states model for leukemia patients after bone marrow transplantation

Moreover, it shows what happens when both the positive and negative event take place, as
compared to one or none of them. The models under study here can easily be made more
specific in the case of real applications. For instance, instead of Recovery, Engraftment can
be included, and instead of Adverse Event, Acute Graft-versus-Host Disease.

We consider 2279 patients who were treated between 1985 and 1998. Four prognostic factors
are known at baseline for all patients (see Table 1). They are: donor-recipient match (where
gender mismatch is defined as female donor, male recipient), prophylaxis, year of transplant
and age at transplant in years. All these covariates are treated as time-fixed categorical
covariates. The distribution of the values of the covariates over the patients in the data set
is shown in Table 1.

A multi-state approach is particularly appropriate for these data, since it can help to model
both the disease-related and the treatment-related morbidity and mortality. These are mod-
eled here by including the intermediate events recovery and adverse event. Information about
the occurrence of these events is used to update the prognosis of the patients.

We consider the following six-states model (see Figure 1):
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1. Alive and in remission, no recovery or adverse event;
2. Alive in remission, recovered from the treatment;

3. Alive in remission, occurrence of the adverse event;
4. Alive, both recovered and adverse event occurred;

5. Alive, in relapse (treatment failure);

6. Dead (treatment failure).

All patients start in state 1. States 5 and 6 are called absorbing: once the patient has entered
one of them, she/he stays there. This leaves us with a model with 12 transitions.

The data have been made suitable for a multi-state analysis by some small adjustments. Since
the model does not allow patients to enter two states at the same time, we have set the death
indicator of patients with simultaneous relapse and death to 0, because although these events
were reported at the same time, in reality the patients must have experienced the relapse
before their death. For those with equal time to the adverse event and time to Rec we have
lowered the time to AE by half a day to avoid a transition with only very few events. Two
new variables have been created to express the time of entry in state 4 (AE and Rec) and the
accompanying status indicator: recae and recae.s respectively.

The data are available in mstate in wide format. This means that each row in the data
corresponds to a single subject.

R> library("mstate")
R> data("ebmt4")

R> ebmt <- ebmt4

R> head(ebmt)

id rec rec.s ae ae.s recae recae.s rel rel.s sSrv srv.s
1 1 22 1 995 0 995 0 995 0 995 0
2 2 29 1 12 1 29 1 422 1 579 1
3 3 1264 0 27 1 1264 0 1264 0 1264 0
4 4 50 1 42 1 50 1 84 1 117 1
5 b 22 1 1133 0 1133 0 114 1 1133 0
6 6 33 1 27 1 33 1 1427 0 1427 0

year agecl proph match

1995-1998 20-40 no no gender mismatch
1995-1998 20-40 no no gender mismatch
1995-1998 20-40 no no gender mismatch
1995-1998 20-40 no gender mismatch
1995-1998  >40 no gender mismatch
1995-1998 20-40 no no gender mismatch
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The columns rec, ae, rel and srv are time variables, indicating the time measured in days
post-transplant to recovery, AE, relapse and death respectively in case of an event, or last
follow-up otherwise. The .s-variables are the corresponding status variables (1 for an event,
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0 for censoring). For instance, patient 1 had recovered after 22 days (transition from state 1
to state 2) and was censored after 995 days without a further event. Patient 2 experienced
the adverse event after 12 days (transition from state 1 to state 3), then recovery after 29
days (transition from state 3 to state 4) and a relapse after 422 days (transition from state
4 to state 5). Finally, he/she died after 579 days, but this last event is not relevant to the
model, because the patient had already reached an absorbing state.

Diverse clinical questions can be answered by fitting this model to the data, such as: how does
age influence the different phases of the disease/recovery process? How does the occurrence
of the adverse event after 2 months change the prognosis of 10-year survival for a patient?
Which risks should be monitored most carefully for a patient who has recovered after one
month, taking into account certain covariate values?

The model can be described by means of a transition matrix, which is in this case a 6-by-6
matrix. A number at entry (g, h) of the matrix represents a possible transition from state g to
state h. These numbers range here from 1 to 12, because the model has 12 transitions. These
transition numbers are used in the various stages of the analysis. If a transition between two
states is not allowed, the entry becomes NA. The function transMat () creates the transition
matrix tmat. It has been contributed to mstate by Steven McKinney.

R> tmat <- transMat(x = list(c(2, 3, 5, 6), c(4, 5, 6), c(4, 5, 6), c(5, 6),

+ c(), c¢()), names = c("Tx", "Rec", "AE", "Rec+AE", "Rel", "Death"))
R> tmat
to

from Tx Rec AE Rec+AE Rel Death

Tx NA 1 2 NA 3 4

Rec NA NA NA 5 6 7

AE NA ©NA NA 8 9 10

Rec+AE NA NA NA NA 11 12

Rel NA ©NA NA NA NA NA

Death NA NA NA NA NA NA

All possible paths through the multi-state model can be found by the function paths().

In the present format, the data are not yet suitable for a multi-state analysis. First they have
to be recoded into ‘long format’. In this format, each subject has as many rows as transitions
for which he/she is at risk. The function msprep() transforms a data frame in wide format
into one in long format. Arguments for msprep() are a time and status vector indicating
the time of entry in every state and the accompanying status indicator. The keep argument
contains the names of the covariates that will be used in the analysis. The output is an
object of class ‘msdata’: a data frame in long format, which has the transition matrix as an
attribute. This object has its own print () method.

The call to msprep() and output for the first patient are as follows (covariate match is not
shown in the output):

R> msebmt <- msprep(data = ebmt, trans = tmat, time = c(NA, "rec", "ae",
+ "recae", "rel", "srv"), status = c(NA, "rec.s", "ae.s'", "recae.s",
+ "rel.s", "srv.s"), keep = c("match", "proph", "year", "agecl"))

R> msebmt [msebmt$id == 1, c(1:8, 10:12)]
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An object of class 'msdata’

Data:
id from to trans Tstart Tstop time status proph year agecl
1 1 1 2 1 0 22 22 1 no 1995-1998 20-40
2 1 1 3 2 0 22 22 0 no 1995-1998 20-40
3 1 1 5 3 0 22 22 0 no 1995-1998 20-40
4 1 1 6 4 0 22 22 0 no 1995-1998 20-40
5 1 2 4 5 22 995 973 0 no 1995-1998 20-40
6 1 2 5 6 22 995 973 0 no 1995-1998 20-40
7 1 2 6 7 22 995 973 0 no 1995-1998 20-40
Consider again the first subject. Starting from state 1, he/she is at risk for transitions 1, ..., 4.

This means that she/he can move to states 2, 3, 5 and 6. At time 22, the patient moves to
state 2 (Recovery), from where he/she is at risk for a further transition to state 4, 5 and 6
(i.e., transitions 5, 6 and 7). None of these occur and the patient is censored at time 995.
The patient has no rows for transitions 8-12 because he/she has never been at risk for these.
The value of time is equal to Tstop—Tstart; it is of use in ’clock reset’-models, where the

time t refers to the time spent in the current state.

The numbers of transitions, both in terms of frequencies and percentages, are given by the

function events().

R> events(msebmt)

$Frequencies
to
from Tx Rec
Tx 0 785
Rec 0] 0
AE 0 0]
Rec+AE 0 0
Rel 0 0]
Death 0 0
$Proportions
to
from Tx
Tx 0.00000000
Rec 0.00000000
AE 0.00000000
Rec+AE 0.00000000
Rel
Death
to
from Death
Tx 0.07020623
Rec 0.04968153

9

O O O O

AE Rec+AE
o7 0
227
433
0
0
0

O O O O O

Rec
.34444932
.00000000
.00000000
.00000000

no event
.14567793
.51847134

Rel Death no event total entering

95 160
112 39
56 197
107 137
0 0

0 0

AE
0.39798157
0.00000000
0.00000000
0.00000000

332
407
221
416
0
0

Rec+AE
0.00000000 0.04168495
0.28917197 0.14267516
0.47739802 0.06174201
0.00000000 0.16212121

2279
785
907
660

0
0

Rel
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AE 0.21719956 0.24366042
Rec+AE 0.20757576 0.63030303
Rel

Death

In Section 4.1, a model will be introduced in which it is assumed that the covariates have
different effects on each transition. This can be achieved by creating transition-specific co-
variates. They are derived from the covariates at baseline as follows: each covariate Z is split
up into as many covariates Z,, as there are transitions in the model. For the transition from
state g to state h, Zy, is equal to Z; for all other transitions, Zg;, = 0.

The function expand.covs() expands the covariates specified by the user on the basis of an
object of class ‘msdata’. Factors are expanded into dummy variables. The option longnames
controls whether the names of the dummy variables are based on the levels of the categorical
covariates (TRUE) or on numbers (FALSE). In our example, we obtain six new covariates for
each transition: one dummy variable each for donor-recipient match and prophylaxis, and two
each for year of transplant and age. For the coding of the dummy variables, consider agecl,
which has three values. These are coded by agecll and agecl2. For the reference category
(1985-1989) agecll and agecl2 are both 0; for 1990-1994, agecll = 1 and agecl2 = 0 and
for 1995-1998, agecll = 0 and agecl2 = 1. This results in 72 new covariates altogether.

We illustrate this process by showing a selection of the long format data for the first patient,
leaving out the values at baseline and the transition-specific counterparts of match, proph
and agecl. We also omit yearl.1 to yearl.12, because they are all 0.

R> covs <- c("match", "proph", "year", "agecl")

R> msebmt <- expand.covs(msebmt, covs, longnames = FALSE)
R> msebmt [msebmt$id == 1, -c(9, 10, 12:48, 61:84)]

An object of class 'msdata'

Data:
id from to trans Tstart Tstop time status year year2.1 year2.2
1 1 1 2 1 0 22 22 1 1995-1998 1 0
2 1 1 3 2 0 22 22 0 1995-1998 0 1
3 1 1 5 3 0 22 22 0 1995-1998 0 0
4 1 1 6 4 0 22 22 0 1995-1998 0 0
5 1 2 4 5 22 995 973 0 1995-1998 0 0
6 1 2 5 6 22 996 973 0 1995-1998 0 0
7 1 2 6 7 22 995 973 0 1995-1998 0 0
year2.3 year2.4 year2.5 year2.6 year2.7 year2.8 year2.9 year2.10
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0
5 0 0 1 0 0 0 0 0
6 0 0 0 1 0 0 0 0
7 0 0 0 0 1 0 0 0
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year2.11 year2.12
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The original covariates are maintained in the output. This makes it possible to consider
models with any mixture of basic and transition-specific covariates.

Finally, for future modeling we convert time into years.

R> msebmt[, c("Tstart", "Tstop", "time")] <- msebmt[, c("Tstart",
+  "Tstop", "time")]/365.25

All necessary preparations for estimation have now been made.

3. A non-parametric model

First we consider a non-parametric model, in which we ignore the influence of covariates. The
basic quantities of interest are the transition intensities or hazard rates. Denote by ¢ — h
a transition from state g to state h, by X(t) the state occupied at time ¢ and by ag(t) the
corresponding transition intensity. The transition intensity expresses the instantaneous risk
of a transition from state g into state h at time t. It is defined as

P(X(t+At)=h|X(t) =g)
At—0 At '

(1)

This definition makes an implicit assumption that the multi-state model is Markovian, which
implies that the probability of going to a future state depends only on the present state
and not on the history. The cumulative transition hazard for transition ¢ — h is defined
as Agp(t) = fot agn(u)du. Let A(t) be a matrix with dimensions S x S, in which S denotes
the number of states. This matrix has elements Ag,(t) (¢ # h), and diagonal elements
Agg(t) = =2 pzg Agn(t)-
For the estimation of the cumulative hazard, we assume we have data with independent
censoring. The Nelson-Aalen estimator Agp(t) of the cumulative hazard for transition g — h
is now given by

Agh(t) = Zngh(tl)/Ytl](tl) ) (2)

t; <t

where t; indicates the event times, dNyy,(;) is the observed number of transitions from state g
to state h at time ¢;, and Y, (¢;) is the number of subjects at risk for a transition from state g at
t;. The Nelson-Aalen estimator makes jumps of size AAgy(t;) = dNgy(ti)/Yy(t;) at the event
times #;. The estimates of the diagonal elements of A(t) are given by Agg(t) = — >, ., Agn(?).

We use the function coxph() from the survival package (Therneau and Lumley 2010) to
estimate the cumulative hazards.
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R> cO0 <- coxph(Surv(Tstart, Tstop, status)
+ method = "breslow")

strata(trans), data = msebmt,

This Cox model has separate baseline hazards for each of the transitions and no covariates.
In principle, the transition intensities could also be estimated separately, but the combined
use of long format data and a single stratified copxh object makes further calculations easier.

The output of coxph() is the input for mstate’s function msfit (). It estimates transition haz-
ards and their associated (co)variances. The output of msfit () is an object of class ‘msfit’.
This is a list with elements Haz (with the estimated cumulative hazard values at all event
times), varHaz (with the covariances of each pair of estimated cumulative hazards at each
event time point, i.e., C/O\V(zzl\gh(t), A (1)), and trans, in which the transition matrix is stored
for further use. The (co)variances of the estimated cumulative hazards may be computed in
two different ways: by means of the Aalen estimator or by means of the Greenwood estimator.
An advantage of the Greenwood estimator is the fact that it yields exact multinomial standard
errors for the transition probabilities when there is no censoring. The two estimators give
almost equal results in all practical applications. For details see Section 1V.4.1.3 of Andersen
et al. (1993) and de Wreede et al. (2010).

R> msfO <- msfit(object = c0, vartype = "greenwood", trans = tmat)

The ‘msfit’ class has its own summary () and plot() methods. By default, summary () prints
head and tail of the cumulative hazards of all transitions. Since there are twelve transitions
in the model, its output is not shown here in the interest of space. The head and tail of the
Haz and varHaz items look as follows (time is now given in years):

R> head (msfO$Haz)

time Haz trans
1 0.002737851 0.000000000 1
2 0.008213552 0.000000000 1
3 0.010951403 0.000000000 1
4 0.013689254 0.000000000 1
5 0.016427105 0.000443066 1
6 0.019164956 0.001333142 1

R> tail(msfO$Haz)

time Haz trans
6199 12.48460 0.3800455 12
6200 12.61602 0.3800455 12
6201 13.02396 0.3800455 12
6202 13.10609 0.3800455 12
6203 13.12799 0.4255001 12
6204 17.24572 0.4255001 12

O O O O O O

R> head(msfO$varHaz)
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time varHaz transl trans2
1 0.002737851 0.000000e+00 1 1
2 0.008213552 0.000000e+00 1 1
3 0.010951403 0.000000e+00 1 1
4 0.013689254 0.000000e+00 1 1
5 0.016427105 1.962205e-07 1 1
6 0.019164956 5.919853e-07 1 1

R> tail (msfO$varHaz)

time varHaz transl trans?2
40321 12.48460 0.002461034 12 12
40322 12.61602 0.002461034 12 12
40323 13.02396 0.002461034 12 12
40324 13.10609 0.002461034 12 12
40325 13.12799 0.004433236 12 12
40326 17.24572 0.004433236 12 12

The last time point in the list indicates the last time point in the data, either of an event or
of a censoring. The plot() function produces a graph of all estimated cumulative hazards in
different colors:

R> plot(msf0, las = 1, 1ty = rep(1:2, c(8, 4)),
+ xlab = "Years since transplantation")

When we choose the "aalen" option for the vartype argument in msfit (), the estimated
cumulative hazards are the same as before, but the standard errors are slightly different.

R> msfOa <- msfit(object = cO, vartype = "aalen", trans = tmat)
R> head(msfOa$varHaz)

time varHaz transl trans?2
1 0.002737851 0.000000e+00 1 1
2 0.008213552 0.000000e+00 1 1
3 0.010951403 0.000000e+00 1 1
4 0.013689254 0.000000e+00 1 1
5 0.016427105 1.963075e-07 1 1
6 0.019164956 5.924248e-07 1 1

R> tail (msfOa$varHaz)

time varHaz transl trans?2
40321 12.48460 0.002502928 12 12
40322 12.61602 0.002502928 12 12
40323 13.02396 0.002502928 12 12
40324 13.10609 0.002502928 12 12
40325 13.12799 0.004569044 12 12
40326 17.24572 0.004569044 12 12
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We proceed to the estimation of the transition probability matrix for which the necessary
elements are now available. Denote the transition probability matrix by P(s,t). It has
elements

Byn(s,t) = P(X(t) = h|X(s) = g), 3)

denoting the transition probability from state g tot state h in time interval (s, ¢]. The tran-
sition probability matrix is estimated as

i:\)(sa t) = Hue(s,t}(I + AK(“))? (4)

where u indicates the event times and the elements of A are estimated as in (2). Formula (4)
is called the Aalen-Johansen estimator.

The function probtrans() calculates the estimated transition probabilities, and optionally
the standard errors and/or the covariances of the transition probabilities. In the case of
non-parametric models, the user can choose between Greenwood or Aalen standard errors
in the method argument, in accordance with the choice in msfit(). Just as in the case of
the estimates of the hazards, the estimates of the transition probabilities themselves do not
depend on this choice.

The argument predt gives the starting time for prediction, that is, the starting time for
the calculation of the transition probabilities. Two directions of prediction have been imple-
mented, which can be specified by the direction argument: "forward" (the default) and
"fixedhorizon". Any string starting with "fo" or "fi" is sufficient to distinguish between
the two options. The "forward" option means that the prediction is made from predt; in
P(s,t), time s remains fixed at the value predt, while time ¢ varies from s to the last (possibly
censored) time point in the data. The "fixedhorizon" option means that the prediction is
made for predt; in P(s,t), time ¢ remains fixed at the value predt and time s varies from 0
to predt. The use of the fixed horizon option will be illustrated in Section 4.1.

The default output of probtrans() is an object of class ‘probtrans’, which is a list of (S+1)
elements, where S is the number of states. Element g of the list contains all transition
probabilities starting from state g and going to all states, and their associated standard
errors (g = 1,...,5). The last element of the list contains again the transition matrix. If the
option covariance=TRUE is chosen, an additional element is added to the list containing all
estimated covariances of the transition probabilities. The ‘probtrans’ class has two methods,
summary () and plot(). By default the summary() method prints the head and tail of the
estimated transition probabilities for each of the states g. If the transition probabilities from
a particular starting state are required, the argument from must be added. These results
show how the prognosis of a patient depends on his/her starting state and on the moment
that is taken as the starting point for prediction.

The code for probtrans() and a sample of its output look as follows:
R> pt0 <- probtrans(msfO, predt = 0, method = "greenwood")
R> ptOa <- probtrans(msfOa, predt = 0, method = "aalen")
R> summary(pt0O, from = 1)

An object of class 'probtrans'

Prediction from state 1 (head and tail):

11
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time

.000000000
.002737851
.008213552
.010951403
.013689254
.016427105

pstateb

.0000000000
.0000000000
.0000000000
.0004389816
.0013169447
.0013169447

seb

.0000000000
.0000000000
.0000000000
.0004388852
.0007598375
.0007598375

time
48460
61602
02396
13.10609
13.12799
.24572
pstate6
.2645145
.2690688
.2724013
.2779044
.2851485
.2851485
seb
.01001397
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.01001397
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13.
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.1

.1
.1
.1
.1
.1

pstatel pstate2 pstate3 pstated4 pstateb
.0000000 0.0000000000 0.0000000000 0 0
.9995610 0.0000000000 0.0004389816 0 0
.9978051 0.0000000000 0.0021949078 0 0
.9956102 0.0000000000 0.0039508341 0 0
.9907814 0.0000000000 0.0079016681 0 0
.9863916 0.0004389816 0.0118525022 0 0
sel se2 se3 se4 seb
0.0000000000 0.0000000000 0.0000000000 O O
0.0004388852 0.0000000000 0.0004388852 0 O
0.0009805148 0.0000000000 0.0009805148 0 O
0.0013851313 0.0000000000 0.0013143406 0 O
0.0020023724 0.0000000000 0.0018550683 0 O
0.0024274584 0.0004388852 0.0022674569 0 O
pstatel  pstate2 pstate3  pstate4  pstateb
366292 0.1650151 0.09331023 0.1593697 0.1811612
320749 0.1650151 0.09331023 0.1593697 0.1811612
320749 0.1650151 0.08997772 0.1593697 0.1811612
265718 0.1650151 0.08997772 0.1593697 0.1811612
265718 0.1650151 0.08997772 0.1521256 0.1811612
265718 0.1650151 0.08997772 0.1521256 0.1811612
sel se2 se3 sed
.008491577 0.009230259 0.006334163 0.01062790
.009350412 0.009230259 0.006334163 0.01062790
.009350412 0.009230259 0.006929354 0.01062790
.010455556 0.009230259 0.006929354 0.01062790
.010455556 0.009230259 0.006929354 0.01236966
.010455556 0.009230259 0.006929354 0.01236966
se6
0.01245932
0.01315637
0.01352405
0.01441637
0.01588915
0.01588915



R> summary(ptOa, from

1)
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An object of class 'probtrans'

Prediction from

O WN -
O O O O O O

O O O O O O

DOk WN -

O W
O O O O O o

513
514
515
516
517
518

513
514
515
516
517
518

513
514

state 1 (head and tail):

time  pstatel pstate2 pstate3 pstated4 pstateb
.000000000 1.0000000 0.0000000000 0.0000000000 0 0
.002737851 0.9995610 0.0000000000 0.0004389816 0 0
.008213552 0.9978051 0.0000000000 0.0021949078 0 0
.010951403 0.9956102 0.0000000000 0.0039508341 0 0
.013689254 0.9907814 0.0000000000 0.0079016681 0 0
.016427105 0.9863916 0.0004389816 0.0118525022 0 0
pstate6 sel se2 se3 se4d seb
.0000000000 0.0000000000 0.0000000000 0.0000000000 O O
.0000000000 0.0004387889 0.0000000000 0.0004387889 0O O
.0000000000 0.0009797822 0.0000000000 0.0009797822 0O O
.0004389816 0.0013838512 0.0000000000 0.0013130230 0 O
.0013169447 0.0019989382 0.0000000000 0.0018514699 0 O
.0013169447 0.0024228979 0.0004370375 0.0022626745 0 O
seb
.0000000000
.0000000000
.0000000000
.0004380161
.0007571011
.0007571011
time  pstatel  pstate2 pstate3 pstate4  pstateb
12.48460 0.1366292 0.1650151 0.09331023 0.1593697 0.1811612
12.61602 0.1320749 0.1650151 0.09331023 0.1593697 0.1811612
13.02396 0.1320749 0.1650151 0.08997772 0.1593697 0.1811612
13.10609 0.1265718 0.1650151 0.08997772 0.1593697 0.1811612
13.12799 0.1265718 0.1650151 0.08997772 0.1521256 0.1811612
17.24572 0.1265718 0.1650151 0.08997772 0.1521256 0.1811612
pstate6 sel se2 se3 sed
0.2645145 0.008402082 0.009190605 0.006308515 0.01059278
0.2690688 0.009238456 0.009190605 0.006308515 0.01059278
0.2724013 0.009238456 0.009190605 0.006879823 0.01059278
0.2779044 0.010305245 0.009190605 0.006879823 0.01059278
0.2851485 0.010305245 0.009190605 0.006879823 0.01224960
0.2851485 0.010305245 0.009190605 0.006879823 0.01224960
seb seb
0.009959111 0.01236101
0.009959111 0.01303965
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Figure 2: Stacked transition probabilities

515 0.009959111 0.01339608
516 0.009959111 0.01425796
517 0.009959111 0.01567654
518 0.009959111 0.01567654

The output shows that the "greenwood" and "aalen" options for method give identical esti-
mated transition probabilities but slightly different standard errors.

The plot () method enables the user to show the transition probabilities in several ways. The
output of probtrans() is perhaps most conveniently interpretable when plotted in a figure
with stacked transition probabilities. The argument ord is used to specify an informative
ordering of the transition probabilities to be stacked. The numbers in ord correspond to the
states specified in the transition matrix. The argument type specifies the type of plot; we ask
here for the space between adjacent curves to be filled with suitable colors (darker is more
serious). For this we used the colorspace package (Ihaka et al. 2009; Zeileis et al. 2009).

R> library("colorspace")

R> statecols <- heat_hcl(6, ¢ = c¢(80, 30), 1 = c(30, 90),

+ power = c(1/5, 2))[c(6, 5, 3, 4, 2, 1)]

R> ord <- c¢(2, 4, 3, 5, 6, 1)

R> plot(pt0, ord = ord, xlab = "Years since transplantation",
+ las = 1, type = "filled", col = statecols[ord])

Figure 2 shows the result. The distance between two adjacent curves represents the probability
of being in the corresponding state. The particular order chosen makes it possible to combine
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Figure 3: Non-parametric estimates of stacked transition probabilities at 100 days post-
transplant. On the left starting state is 1 (transplant), on the right starting state is 3 (AE).

the probabilities of recovery and recovery + AE, and of AE and recovery + AE. Similar figures
based on the situation after 100 days can be created by choosing predt=100. We compare
the prognosis of two patients, without AE (Patient 1; Figure 3 left-hand side) and with AE
(Patient 2; Figure 3 right-hand side), both 100 days after transplant.

R> pt100 <- probtrans(msf0O, predt = 100/365.25, method = "greenwood")

R> plot(pt100, ord = c(2, 4, 3, 5, 6, 1),

+ xlab = "Years since transplantation", main = "Starting from transplant"”,
+ xlim = c¢(0, 10), las = 1, type = "filled", col = statecols[ord])

R> plot(pt100, from = 3, ord = c(2, 4, 3, 5, 6, 1),

+ xlab = "Years since transplantation", main = "Starting from AE",

c(0, 10), las = 1, type = "filled", col = statecols[ord])

+ x1im

A comparison of Figure 2 and Figure 3 clearly shows that the fact that patient 1 has not
had any adverse event in the first 100 days post-transplant has improved his/her prognosis
considerably; notably, his/her probability of long-term relapse-free survival has increased
significantly. On the other hand, the long-term relapse-free survival of patient 2 is unchanged
by the fact that he/she has experienced the adverse event, its negative impact being balanced
by the good news of still being alive and relapse-free at 100 days. The relapse probability for
patient 2 is somewhat smaller than that for patient 1 and the most likely scenario for 2 is
that he/she will have no further events.

When reading the figures, one must keep in mind that we consider no further information
about the patients who have had a relapse as this is considered an absorbing state; many
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of them may die as well. Moreover, being in an intermediary state, such as AE, must be
interpreted as being alive after having experienced the entering event; this does not necessarily
mean that the patient continues to suffer from the event.

For the analysis of non-parametric multi-state models, several other R packages are also
available, but they all have some limitations. Among them are mvna (Allignol et al. 2008)
to calculate the Nelson-Aalen estimator of the cumulative hazard and etm (Allignol et al.
2011) to calculate the Aalen-Johansen estimator of the transition probability matrix and its
variance-covariance matrix. Contrary to mstate, mvna and etm cannot be applied to semi-
parametric models.

4. Semi-parametric models

4.1. A model with transition-specific covariates

Next, we will show how the prediction of the transition probabilities can be improved by
taking covariates at baseline into account. The mstate package supports the analysis of type-
specific Cox models. Events are of the same ‘type’ or ‘stratum’ if they share a baseline hazard.
In this section, we consider a model in which ‘type’ is equivalent to transition: each transition
has its own baseline hazard. In Section 4.2, we consider a so-called ‘proportional baseline
hazards model’. In both models, covariates can have the same effect for all transitions or
different effects for different transitions; in the latter case, transition-specific covariates are
needed. For details see de Wreede et al. (2010).

The model that we consider in this section is a transition-specific Cox model:

agn(t] Z) = agno(t) exp(8' Zgn) | ()

where gh indicates a transition from state g to state h, agpo(t) is the baseline hazard for this
transition, Z is the vector of covariates at baseline and Zg, is the vector of transition-specific
covariates (see page 7 for covariates expansion). This model specifies different covariate effects
for the different transitions, as well as separate baseline transition hazards for each transition.
For the estimators of the regression coefficients and baseline hazards, see de Wreede et al.
(2010). Equation (4) also holds for this model.

In our leading example, we have tested for each covariate separately whether its effect is the
same for all transitions or different across transitions by means of a likelihood ratio test. The
results suggest a model in which all covariates have transition-specific effects. We refer to
this model as the full model. In the call to coxph(), each of the expanded covariates has
to be included. To specify that each transition has its own baseline transition intensity, +
strata(trans) has to be added to the covariates.

R> cfull <- coxph(Surv(Tstart, Tstop, status) ~ match.l +
match.2 + match.3 + match.4 + match.5 + match.6 +
match.7 + match.8 + match.9 + match.10 + match.11 +
match.12 + proph.1 + proph.2 + proph.3 + proph.4 +
proph.5 + proph.6 + proph.7 + proph.8 + proph.9 +
proph.10 + proph.11 + proph.12 + yearl.1 + yearl.2 +
yearl.3 + yearl.4 + yearl1.5 + yearl.6 + yearl.7 +

+ + + + + +
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+ yearl.8 + yearl.9 + yearl1.10 + yearl.11 + yearl.12 +

+ year2.1 + year2.2 + year2.3 + year2.4 + year2.5 +

+ year2.6 + year2.7 + year2.8 + year2.9 + year2.10 +

+ year2.11 + year2.12 + agecll.1 + agecll.2 + agecll.3 +

+ agecll.4 + agecll.5 + agecll.6 + agecll.7 + agecll.8 +

+ agecl1.9 + agecl1.10 + agecll.11 + agecll.12 + agecl2.1 +
+ agecl2.2 + agecl2.3 + agecl2.4 + agecl2.5 + agecl2.6 +

+ agecl2.7 + agecl2.8 + agecl2.9 + agecl2.10 + agecl2.11 +
+

agecl2.12 + strata(trans), data = msebmt, method = "breslow")

The estimated regression coefficients of the covariates and their standard errors for each of
the transitions are shown in Table 2. For each covariate, the estimated effects are positive for
some transition hazards and negative for others. The use of transition-specific covariates is
very convenient to observe such effects. A model without transition-specific covariates could
be estimated by substituting these by the basic covariates in the function call above.

We will now illustrate the use of probtrans() to do prediction for two example patients (see
Table 3). Patient A has a (relatively) good prognosis and patient B has a bad prognosis.
The prediction will be done in two steps. First, msfit () is used to estimate the transition
intensities specific to these two patients. Similar to survfit() in the survival package, a
newdata argument can be defined, specifying the values of the covariates of the patient.
This newdata data frame looks somewhat different from newdata in survfit(). In msfit (),
newdata needs to have as many rows as the number of transitions and each row needs to
contain the values of all the (transition-specific) covariates used in the coxph object. An
additional column strata specifies to which stratum in the coxph object each transition
corresponds. In this case, the values of strata are equal to those of trans (from the ‘msdata’
object) because every transition has its own baseline hazard. The fastest way to create data
frames for these example patients is by selecting a patient from the data set with the correct
characteristics of interest. Alternatively one could specify the basic covariates and apply
expand.covs() to obtain transition-specific covariates.

For the current model, msfit() can only calculate Aalen-type standard errors, because the
Greenwood estimator is not defined for models with covariates. The code for patient A is
shown below; the code for patient B is similar. The first commands select the covariates and
inherit the factor levels of the first patient in the data set with the required characteristics.

R> whA <- which(msebmt$proph == "yes" & msebmt$match == "no gender mismatch"
+ & msebmt$year == "1995-1998" & msebmt$agecl == "<=20")

R> patA <- msebmt[rep(whA[1], 12), 9:12]

R> patA$trans <- 1:12

R> attr(patA, "trans") <- tmat

R> patA <- expand.covs(patA, covs, longnames = FALSE)

R> patA$strata <- patA$trans

R> msfA <- msfit(cfull, patA, trans = tmat)

The second step in obtaining the predictions is to use the ‘msfit’ object as input for prob-
trans (), which calculates P(s t) from A. Although usually A will have been created by a
call to msfit (), this is not necessary. Any self-created object of class ‘msfit’ which contains
the estimated cumulative hazards for all transitions and their variances (the latter only if
standard errors of P are required) can be used.

17
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Tran- Match Prophylaxis Year of transplant Age at transplant
sition 1990-1994 1995-1998 20-40 > 40
1 -0.167 (0.085) -0.366 (0.093) 0.401 (0.100) 0.521 (0.103) 0.049 (0.089)  0.199 (0.102)
2 -0.111 (0.079) -0.278 (0.083) 0.023 (0.084) -0.114 (0.091) 0.123 (0.083)  0.067 (0.101)
3 0.196 (0.224) 0.385 (0.227) 0.442 (0.245)  0.221 (0.302) -0.094 (0.232) -0.232 (0.322)
4 -0.003 (0.181) -0.056 (0.179) -0.359 (0.193) -0.476 (0.218) 0.766 (0.229) 0.934 (0.264)
5  0.190 (0.153) -0.282 (0.196) -0.095 (0.191)  -0.151 (0.190) 0.292 (0.188)  0.470 (0.205)
6  0.426 (0.214) 0.268 (0.221) -0.210 (0.263)  0.055 (0.259) -0.255 (0.223)  -0.101 (0.264)
7 0.244 (0.405) -0.008 (0.378)  -0.836 (0.398) -0.980 (0.442) 0.150 (0.491) 1.465 (0.481)
8  0.126 (0.113) 0.125 (0.125)  0.528 (0.135) 0.930 (0.141) -0.393 (0.116) -0.528 (0.142)
9 -0.414 (0.352) 0.159 (0.321) -0.311 (0.300) -0.580 (0.433) 0.173 (0.367)  0.423 (0.433)
10 0.008 (0.168) 0.324 (0.166) -0.644 (0.173) -0.213 (0.195) 0.238 (0.205)  0.495 (0.237)
11 -0.301 (0.248) 0.012 (0.247) -0.024 (0.253)  -0.390 (0.277) 0.414 (0.250)  0.256 (0.304)
12 0.572 (0.179) -0.118 (0.217) -0.362 (0.228) -0.352 (0.238)  0.760 (0.272) 1.337 (0.287)

Table 2: Regression coefficients (and standard errors) for the full model; covariate effects significant at 0.05 and 0.01 levels are shown
in italics and in boldface italics, respectively.
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Prognostic factor Patient A Patient B
Donor recipient No gender mismatch Gender mismatch
Prophylaxis Yes No
Year of transplant 1995-1998 1985-1989
Age at transplant (years) 18 43

Table 3: Covariates for patient A and patient B
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Figure 4: Stacked transition probabilities, starting from state 1 at ¢ = 0, semi-parametric
model

R> ptA <- probtrans(msfA, predt = 0)

Figure 4 shows the predictions for patients A and B from time 0, starting from the post-
transplant state. Again, the code for patient B is similar to that for patient A.

R> plot(ptA, ord = c(2, 4, 3, 5, 6, 1), main = "Patient A",
+ las = 1, xlab = "Years since transplantation", xlim = c(0, 10),
+ type = "filled", col = statecols[ord])

As was to be expected on the basis of the covariates, the prospects for patient B are indeed
worse than those for patient A, the former having a far larger probability of relapsing or
dying.

From a clinical point of view, it is worthwhile to update this prediction if more information
becomes known. Assume that both patients are in state 3 (AE, no Rec or relapse) at 100
days post-transplant (compare Figure 3, right-hand side).

R> pt100A <- probtrans(msfA, predt = 100/365.25)
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Figure 5: Stacked transition probabilities, starting from state 3 at ¢ = 100, semi-parametric
model

Their updated predictions are shown in Figure 5.

R> plot(pt100A, from = 3, ord = c(2, 4, 3, 5, 6, 1), main = "Patient A",
+ las = 1, xlab = "Years since transplantation", xlim = c(0, 10),
+ type = "filled", col = statecols[ord])

For patient A the prognosis of relapse-free survival (i.e., being in state 1, 2, 3 or 4) is about
the same as the prognosis just after transplant, but the distribution of the probabilities is
different from the previous situation. By surviving the first 100 days, the prospects of patient
B regarding relapse-free survival have somewhat improved.

The software also enables the user to make a different kind of predictions for individual pa-
tients. Suppose we are interested in dynamic prediction of 10-year relapse-free survival (RFS)
probabilities. The question is how these prediction probabilities change as more information
about intermediate events becomes known in the course of time. We consider again patient
A and we want to study how 10-year RF'S probabilities change when the patient experiences
the adverse event 60 days (0.164 years) post-transplant and is recovered from the treatment
80 days (0.219 years) post-transplant. The 10-year survival probabilities can all be calculated
by setting the direction in probtrans() to "fixedhorizon" (or in fact any string starting
with "fi“).

R> ptA10yrs <- probtrans(msfA, predt = 10, direction = "fixedhorizon")
R> head(ptA10yrs[[1]])
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time  pstatel  pstate2 pstate3  pstate4  pstateb

1 0.000000000 0.2027821 0.2011028 0.03643172 0.2243403 0.2202891
2 0.002737851 0.2028442 0.2011644 0.03642153 0.2242138 0.2203215
3 0.008213552 0.2030930 0.2014111 0.03638068 0.2237070 0.2204516
4 0.010951403 0.2033788 0.2016946 0.03634618 0.2232383 0.2206213
5 0.013689254 0.2040161 0.2023266 0.03626654 0.2221685 0.2209954
6 0.016427105 0.2046623 0.2028231 0.03618690 0.2209705 0.2212890
pstateb sel se2 se3 sed seb
1 0.1150540 0.03251177 0.03348491 0.01310601 0.03201052 0.03621101
2 0.1150345 0.03252166 0.03349510 0.01310245 0.03200975 0.03621862
3 0.1149566 0.03256129 0.03353594 0.01308821 0.03200663 0.03624914
4 0.1147208 0.03260681 0.03358284 0.01307626 0.03200914 0.03628623
5 0.1142269 0.03270819 0.03368732 0.01304868 0.03201329 0.03636863
6 0.1140682 0.03281083 0.03377366 0.01302117 0.03200179 0.03644010
se6
1 0.01778362
2 0.01778126
3 0.01777181
4 0.01776477
5 0.01774802
6 0.01772962

We can extract the dynamic predictions of 10-year RFS probabilities for this specific patient
directly. The ‘probtrans’ object ptA10yrs contains estimates of Py(s,10). For the 10-year
RF'S probabilities the quantity 1 — (Pys5(s, 10) + Pye(s, 10)) is needed, in which g indicates the
state in which the patient is at time s. For 0 < s < 0.164 (time of the AE) patient A is in state
1 and we extract 1 — (Pi5(s, 10) + Pig(s, 10)) from the first list element ptA10yrs[[1]1]. For
0.164 < s < 0.219 (time of Recovery), patient A is in state 3 and now we need 1—(Ps5(s, 10)+
Ps4(s,10)) from the third list element ptA10yrs[[31]. Finally, for 0.219 < s < 10, we extract
the relevant information from ptA10yrs[[4]]. The results of this fixed horizon prediction are
plotted in Figure 6 (s < 2 years). They show the 10-year RFS probabilities for patient A based
on his/her history as described above. The dashed lines show what the survival probabilities
would have been if the patient had not had a transition. We see that her/his prognosis
becomes worse the moment when the adverse event occurs and improves when recovery takes
place. When time progresses, the prognosis improves irrespective of the current state simply
because he/she has already survived a potentially dangerous period. Note that these curves,
although tending to increase in general, do not have to be monotonely increasing, as the shape
of the black curve shows (see also van Houwelingen and Putter 2008).

The function probtrans () only needs to be called once, since all the information from different
starting states is present in a single ‘probtrans’ object. Without further computations we
could study changes in 10-year RFS probabilities for patients with the same covariate values
but different event histories.

4.2. A proportional baseline hazards model

In the full model discussed in Section 4.1, 12 baseline hazards and 72 covariate effects have
to be estimated. These numbers can be reduced in several ways. One of them is to consider a

21
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Figure 6: Dynamic prediction of 10-year relapse-free survival for patient A, semi-parametric
model

model in which some of the baseline hazards are assumed to be proportional. Alternatively,
the number of regression parameters to be estimated can be reduced by applying reduced
rank techniques; these techniques, well known in regression theory, have been adapted to the
multi-state context. This will be explored in Section 4.3.

In the current section, we consider a model in which we assume that all transitions into the
Relapse state have a common baseline hazard and that all transitions into the Death state
have another common baseline hazard. These are reasonable assumptions from a clinical point
of view and they can be checked using standard methods. In formula, these are expressed as
agho(t) = ~gha1h70(t), g =2,3,4;h = 5,6. The transition intensities from Tx to Relapse and
to Death serve as baseline transition intensities. To estimate the gghs, we need a specific kind
of time-dependent covariates Zg (t) in the regression model, g = 2,3,4. Within a stratum or
type, this covariate distinguishes between different transitions into the same state: Zg(t) is 1
after the patient has moved to state g and 0 otherwise. These covariates may be expanded
into transition-specific covariates as before. The proportionality is then expressed by the
coefficient By;, of Zyu(t), in which Z,,(t) indicates the transition-specific covariate for the
transition g — h expanded from Z,(t) : exp(Byn) = dgn (for details see de Wreede et al.
(2010)). Each of the other transitions also determines one stratum.

Other covariates in the new model can again be analyzed both as generic covariates and as
transition-specific covariates. For clinical reasons, the last option will again be further pursued
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here. The new model has 6 baseline hazards instead of the 12 of the model of Section 4.1. The
hazard rates, transitions probabilities and their asymptotic standard errors can be calculated
as before.

The data now have to be extended with a strata column (the column name is irrelevant),
indicating which transitions are together in one type or stratum, and with the time-dependent
covariates indicating for which transition within a stratum the patient is at risk. Once the
data have been adjusted, the analysis is very similar to that shown before.

R> msebmt$strata <- msebmt$trans

R> msebmt$stratalmsebmt$trans Jinj c(6, 9, 11)] <- 3
R> msebmt$stratal[msebmt$trans JinJ, c(7, 10, 12)] <- 4
R> msebmt$stratal[msebmt$trans == 8] <- 6

R> msebmt$Z2 <- 0

R> msebmt$Z2[msebmt$trans Jjinj c(6, 7)] <- 1

R> msebmt$Z3 <- 0

R> msebmt$Z3[msebmt$trans /inj, c(9, 10)] <- 1

R> msebmt$Z4 <- 0

R> msebmt$Z4 [msebmt$trans J/inj, c(11, 12)] <- 1

R> msebmt <- expand.covs(msebmt, covs = c("Z2", "Z3", "Z4"))

In this example, the coefficient of the time-dependent transition-specific covariate Z2.6 mea-
sures the change in the relapse hazard after recovery (Z2=1, transition 6, from state 2 to state
5) compared to the relapse hazard without recovery (22=0, transition 3, from state 1 to state
5). In formula: a5 (t) = exp(B2,25)a15,0(t).

The call to coxph() now includes the same 72 transition-specific covariates as in the full
model (cfull), plus the six covariates measuring the effects of occurrences of intermediate
events on relapse and death. Instead of stratifying by transition, we stratify by strata,
which means that six baseline hazards are estimated instead of twelve. The first part of the
function call with all transition specific covariates is equal to that of cfull, the last part
becomes +Z2.6+Z2.7+23.9+Z3.10+Z4.11+Z4.12+strata(strata). The coefficients of this
Cox model are very close to those of the full model of Section 4.1. Of the new covariates
Zgh, only the coefficient of Z3.10 is significant (p = 0.0024); the hazard ratio of Z3.10 equals
2.60, which means that, adjusted for the other covariates, the occurrence of the adverse event
increases the rate of dying with a factor of 2.60. The main advantage of proportional baseline
hazards models is precisely that we obtain such a measure for the impact of intermediate
events on the final outcome.

The prediction for Patient A is very similar to the procedure discussed before. Only the
values of the strata column need to be adjusted and the time-dependent covariates Z2.6,
..., Z4.12 need to be added.

R> patAPH <- patA

R> patAPH$stratal[6:12] <- c(3, 4, 6, 3, 4, 3, 4)
R> patAPH$Z2 <- 0

R> patAPH$Z2[patAPH$trans Jinj c(6, 7)] <- 1

R> patAPH$Z3 <- 0

R> patAPH$Z3[patAPH$trans 7inj, c(9, 10)] <- 1
R> patAPH$Z4 <- 0
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R> patAPH$Z4[patAPH$trans Jinj c(11, 12)] <- 1

R> patAPH <- expand.covs(patAPH, covs = c("Z2", "Z3", "Z4"))
R> msfAPH <- msfit(coxPH, patAPH, trans = tmat)

R> ptAPH <- probtrans (msfAPH, predt = 0)

Finally, Figure 7 shows the standard errors of the transition probabilities from state 3 (AE)
at time 100 days to states 5 (Relapse) and 6 (Death), for the full Cox model (non-PH) and
for the proportional baseline hazards model (PH). It is obtained by the following code:

R> pt100APH <- probtrans (msfAPH, predt = 100/365.25)

R> ptA3 <- pt100A[[3]]

R> ptAPH3 <- pt100APH[[3]]

R> plot(ptA3$time, ptA3$se6, xlim = c(0, 2), type = "s", lwd = 2,

+ xlab = "Years since transplantation", ylab = "Standard errors", las = 1)
R> lines(ptAPH3$time, ptAPH3$se6, type = "s", lwd = 2, 1ty = 2)

R> text(2, 0.085, "Death", adj = 1)

R> lines(ptA3$time, ptA3$se5, type = "s", lwd = 2, col = 8)

R> lines(ptAPH3$time, ptAPH3$se5, type = "s", lwd = 2, 1ty = 2, col
R> text(2, 0.0425, "Relapse", adj = 1)

R> legend("topleft", c("non-PH", "PH"), lwd = 2, 1ty = c(1, 2), bty = "n")

8)

The figure shows that the proportional hazards assumption does not always decrease the
standard errors of the predictions.

4.3. Reduced rank models and simulation

In this section two more specialized functions of mstate are illustrated. The first of these is
useful to obtain a lower dimensional representation of the regression coefficients of the full
model of Section 4.1. In our example, 72 coefficients were estimated. Table 2 does not give
a clear overview of the structure of the covariate effects on the transitions. By reducing the
rank R of the matrix B of regression coefficients we reduce the number of parameters to be
estimated. The matrix B can be factorized as B = AT'T. This implies that the number of
free parameters that need to be estimated is reduced from p x K to R(p + K — R), where
p and K denote respectively the number of covariates and the number of transitions in the
model. For more details see Fiocco et al. (2005) and Fiocco et al. (2008).

We will illustrate the rank 1 model, which is formulated as
ap(t|Z) = ago(t) exp('y;faTZ) ,

for transitions numbered k = 1, ..., K. In this model all covariates have the same effect (given
by the parameter vector ) on each transition apart from the proportionality coefficients .
The factor o' Z can be seen as a prognostic score for a patient with a vector of covariates Z;
this prognostic score determines how likely a patient is to experience an event. The parameter
vt determines the size of the effect of the prognostic score on transition k. In this example,
we use a model in which each transition has its own baseline hazard, but this is not necessary.

The function redrank() estimates the parameters of a reduced rank model:

R> rr1 <- redrank(Surv(Tstart, Tstop, status) ~ match + proph +
+ year + agecl, data = msebmt, R = 1, print.level = 0)
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Figure 7: Standard errors for the transition probabilities AE — Relapse and AE — Death
(starting time: 100 days), both for the full model and the proportional baseline hazards model

R> rri$Alpha

rl
matchgender.mismatch -0.09565419
prophyes -0.19069469
year1990.1994 0.51451609
year1995.1998 0.72012922
agecl20.40 -0.24985943
agecl.40 -0.32976231

R> rri1$Gamma

Tx -> Rec Tx => AE Tx -> Rel Tx -> Death Rec -> Rec+AE

rl 0.757664 0.06114974 0.06000156 -0.6898289 -0.1808698
Rec -> Rel Rec -> Death AE -> Rec+tAE AE -> Rel AE -> Death
rl -0.03471962 -1.244175 1.016525 -0.6485648 -0.8150607
Rec+AE -> Rel Rec+AE -> Death
rl -0.4651913 -0.8487646

The prognostic index in the Alpha item of rr1 is higher for later years of transplantation and
for younger age. The coefficients for this risk score in Gamma are negative and of substantial
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size for all transitions into death (and for many into relapse). This means that in this case
lower values of Alpha (for instance higher age) correspond to higher death rates, showing
that a higher prognostic index does not necessarily imply a higher risk of an adverse event.
In contrast, the effects of Alpha on the “good” event of recovery (Tx — Rec and AE —
Rec+AE) are positive. The matrix of regression coefficients B obtained by B = AT'" is given
in rri$Beta.

R> rri$Beta

Tx -> Rec Tx -> AE Tx -> Rel Tx -> Death

matchgender.mismatch -0.07247373 -0.005849229 -0.00573940 0.06598502
prophyes -0.14448250 -0.011660931 -0.01144198 0.13154671
year1990.1994 0.38983030 0.031462526 0.03087177 -0.35492807
year1995.1998 0.54561595 0.044035715 0.04320887 -0.49676595
agecl20.40 -0.18930949 -0.015278840 -0.01499195 0.17236026
agecl.40 -0.24984902 -0.020164880 -0.01978625 0.22747958

Rec -> Rec+AE Rec -> Rel Rec -> Death
matchgender.mismatch 0.01730095 0.003321077 0.1190106
prophyes 0.03449091 0.006620848 0.2372576
year1990.1994 -0.09306041 -0.017863804 -0.6401481
year1995.1998 -0.13024961 -0.025002615 -0.8959669
agecl20.40 0.04519202 0.008675025 0.3108689
agecl.40 0.05964404 0.011449223 0.4102821

AE -> Rect+AE AE -> Rel AE -> Death
matchgender.mismatch -0.0972349 0.06203794 0.07796397
prophyes -0.1938460 0.12367786 0.15542775
year1990.1994 0.5230186 -0.33369701 -0.41936183
year1995.1998 0.7320296 -0.46705043 -0.58694900
agecl20.40 -0.2539884 0.16205002 0.20365060
agecl.40 -0.3352117 0.21387222 0.26877629

Rec+AE -> Rel Rec+AE -> Death
matchgender.mismatch 0.04449750 0.08118789
prophyes 0.08870952 0.16185491
year1990.1994 -0.23934843 -0.43670305
year1995.1998 -0.33499787 -0.61122020
agecl20.40 0.11623244 0.21207184
agecl.40 0.15340257 0.27989058

This matrix B may be compared with that of the full model shown in Table 2. Differences
between the reduced rank matrix and Table 2 may be explained both by parameter estimate
uncertainty of both models and by a possible lack of fit of the reduced rank model of rank 1.
If the rank 1 model is too simplistic, reduced rank models of higher rank may be investigated.

The standard errors of the estimates can be obtained by means of a bootstrap procedure.
The bootstrap is useful in cases where asymptotic variances of estimators are not available in
closed form or may be very complicated to compute. In mstate, a non-parametric bootstrap
procedure has been implemented through the function msboot (). Its main argument theta is
a function that should return a real-valued scalar or vector. The function theta itself should
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have an object of class ‘msdata’ as its first argument. msboot () is modeled after boot () in
the boot package, but one important difference is that in the multi-state context of msboot (),
the dataframe contains multiple rows of data for the same individual.

As an example, we calculate the standard errors of the B matrix of the reduced rank re-
gression of rank 1 illustrated above. For this purpose, we define theta as the stacked vector
representation of B. First, a function is defined that turns B into a vector:

R> rribeta <- function(data) {

+ rrl <- redrank(Surv(Tstart, Tstop, status) ~ match +

+ proph + year + agecl, data = data, R = 1, print.level = 0)
+ return(as.vector(rri$Beta))

+ }

R> th <- rribeta(msebmt)

Now msboot () is called with rribeta() as theta argument. The other arguments include
data (an object of class ‘msdata’), id (needed to identify individuals in the data), and B,
which specifies the number of bootstrap simulations.

R> set.seed(1234)
R> msb <- msboot(theta = rribeta, data = msebmt, id = "id",
+ B = 500, verbose = 0)

The result is a matrix with B columns, each of which contains the result of the theta function
applied to a bootstrap data set (see Fiocco et al. (2008) for details). It can be used to
assess the bias and compute the standard errors of B. For instance, the standard errors are
calculated as

R> sqrt(apply(msb, 1, var))

Finally, it is possible to use simulation to calculate transition probabilities. In Markov models
this is not necessary, because calculation of transition probabilities is implemented in prob-
trans (), but especially in models where the Markov assumption is not fulfilled, simulation
is very useful. In mstate, a function mssample() is provided to do this. We will illustrate
this function by recomputing transition probabilities for patient A in Section 4. The code
below uses simulation to approximate the probabilities already calculated in ptA (see p. 17).
The argument tvec indicates a vector of time points at which the probabilities are to be
calculated.

R> set.seed(1234)

R> msfAsample <- mssample(Haz = msfA$Haz, trans = tmat,
+ tvec = 1:10, M = 10000)

R> msfAsample

time pstatel pstate2 pstate3 pstate4 pstateb pstateb
1 1 0.2305 0.2353 0.0473 0.2430 0.1526 0.0913
2 2 0.2134 0.2196 0.0418 0.2324 0.1929 0.0999
3 3 0.2084 0.2150 0.0408 0.2286 0.2040 0.1032
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4 4 0.2064 0.2116 0.0393 0.2267 0.2098 0.1062
5 5 0.2045 0.2096 0.0391 0.2261 0.2137 0.1070
6 6 0.2028 0.2054 0.0391 0.2253 0.2201 0.1073
7 7 0.1977 0.2051 0.0386 0.2241 0.2252 0.1093
8 8 0.1977 0.2008 0.0378 0.2239 0.2281 0.1117
9 9 0.1973 0.2008 0.0377 0.2230 0.2282 0.1130
10 10 0.1973 0.2008 0.0377 0.2209 0.2282 0.1151

4.4. Competing risks models

The mstate package has been designed for general multi-state models. Since competing risks
models are special cases of multi-state models, all the functionality for general multi-state
models also applies to competing risks models. In particular, cumulative incidences for cause-
specific proportional hazards models may be obtained using msfit () and probtrans(). Two
functions in mstate are designed specifically for competing risks models: trans.comprisk(),
which defines a transition matrix for competing risks models, and Cuminc (), which calculates
non-parametric cumulative incidence functions and associated standard errors, possibly for
subgroups defined by a categorical covariate. The vignette of mstate contains example code
for the analysis of competing risks data using mstate; type vignette ("Tutorial", package=
"mstate") to access the vignette.

5. Discussion

Although multi-state models are a very useful tool to answer a wide range of questions in
survival analysis, they are not frequently applied. So far, an important reason for this has
been the lack of available software. For this reason we have developed a package in R that
offers the user the opportunity to explore different kinds of multi-state models and estimate
their parameters of interest on the basis of a regular data set containing the times to event
of the events of interest and optionally covariate values. The functions in the package are
flexible, which means that they can easily be combined with user-written software in cases
when models not covered by mstate are studied.

In mstate, we restrict ourselves to non- and semi-parametric models. This means that for
parametric models other software is needed, such as the R package msm developed by Christo-
pher Jackson (see Jackson 2010, 2011). In this article, we have explored the role of the mstate
functions in the different phases of a multi-state analysis: model building, data preparation,
exploration of different covariate effects and baseline assumptions, estimation of hazards,
transition probabilities and associated standard errors. In particular, it has been explained
how predictions can be updated if more information becomes known (dynamic prediction).
This possibility is an important extra feature of multi-state models compared to classical sur-
vival models. Moreover, several ways of presenting the outcomes in figures have been shown.
Finally, we have presented some functions for reduced rank modeling and for bootstrap and
simulation procedures.

In future releases of mstate we plan to implement prediction in Markov renewal models,
with and without covariates. Formulas similar to the Aalen-Johansen estimator currently
implemented in probtrans() also exist for this type of models, but are not yet available in
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any software package. Other methods are also planned to be included in mstate: dynamic
prediction using landmarking of van Houwelingen (2007), vertical modeling in competing risks
models of Nicolaie et al. (2010), the Fine-Gray regression method for competing risks with
left truncation developed by Geskus (2010) and methods for quality-of-life adjusted survival
in the context of multi-state models.
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