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Introduction 
The modelling of dependence between defaults is a key issue for the valuation and risk management 
of multi-name credit derivatives. The Gaussian copula model seems to have become an industry 
standard for pricing. It’s appeal is partly due to its ease of implementation via Monte Carlo 
simulation and the fact that the underlying dependence structure has for a long time been linked to 
equity returns correlation. Furthermore, a big driving force behind the adoption of this approach has 
been the tractability in reduced dimension, with fast (semi-)analytical calculations of prices and 
deltas of CDO tranches and basket default swaps. The simplest form of the model is the so-called one 
factor Gaussian copula.  
 
There do, however, remain some drawbacks in the applicability of the one factor Gaussian model: 
 
- There is a reported “correlation smile” in the CDO market1 similar to the well-known Black-

Scholes implied volatility smile. Whether this is due to liquidity effects or a more theoretical 
issue such as the choice of copula (e.g. fat tails in the loss distribution) remains an open question. 

- The one-factor correlation structure is rather limited, for example, we cannot have separated 
“regions” such as a highly correlated domain amongst a background of low correlation.    

- There are some practical issues with the representation and aggregation of correlation risk, for 
example calibration done at the transaction level means that a name can exist in different 
portfolios with different associated correlation parameters. It is more realistic to view risk to 
changes in underlying correlations rather than the factor(s) themselves. 

 
This paper aims to provide practical results in light of such issues. We show that in a Gaussian copula 
framework we can keep the appeal of analytical tractability and: 
 
- Provide a more intuitive correlation structure, leading itself readily to correlation risk analysis. 
- Compute correlation sensitivities either via the above structure or analytically in an extension of 

the one-factor model. 
- Introduce some dependence between recovery rates and between recovery rates and defaults. 
 
While this paper is dedicated to CDO tranches, the results can be directly applied to kth to default 
swaps and to portfolio credit risk analysis. 
 
Dependence in default times and Gaussian copula 
Default dates or default events usually exhibit positive dependence. Due to economic cycles or firm 
interactions, defaults tend to cluster together. There is a variety of approaches to tackle this 
phenomenon. For instance, one may use dependent default intensities as in Duffie and Garleanu 
(2001). A related approach is that of Jarrow and Yu (2000), where the inputs are the jumps in credit 
spreads at default times. Arvanitis and Gregory (2001), Finger (2000) and Hull and White (2001) 
have proposed a discrete time firm value approach to the valuation of multiname credit derivatives.  
 
The most widely used models in the industry are based on the copula approach initiated by Li (2000) 
and further developed by Schönbucher and Schubert (2001). The Gaussian copula also corresponds to 
CreditMetricsTM (see Gupton, Finger and Bahia (1997)). Other copulas such as Clayton (Rogge and 
Schönbucher (2003)) or Student t copula (Mashal and Naldi (2001)) have been proposed to capture 
tail dependence effects. Nevertheless, Schlögl and O’Kane (2003) show that Student t copula 
                                                           
1 The relevant implied correlation is the flat correlation implied from the market price of a particular tranche.  
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provides a worse characterisation of the correlation smile than the Gaussian approach. Further work 
thus seems to be required to assess the importance of a dependence structure.  
 
Let us introduce some notations. We consider  names with default times ni ,...,1= nττ ,...,1 . We 
denote by )()( tQtS ii >= τ  the marginal survival functions2, )()( tQtF ii ≤= τ  the marginal cdf and 
by ),...,(),...,( 11 nnin ttQttS >>= ττ  the joint survival function. For notational simplicity, we omit 
the dependence on the pricing date. We will assume that the marginal survival functions are 
calibrated from credit curves on the different names and thus that one needs only to specify the 
dependence function (or copula) for a full characterisation of the joint distribution of default times. In 
the Gaussian copula model, the default times are obtained as: 

( )( ) niVF iii ,,1   ,1 K=Φ= −τ  

where  is a Gaussian vector,  denotes the (generalised) inverse of  and Φ  is the 
Gaussian cdf. 

( nVV ,,1 K ) 1−
iF iF

 
The conditional independence approach is important in portfolio credit risk modelling (see Finger 
(1999), Crouhy, Galai and Mark (2000), Merino and Nyfeler (2002), Pykhtin and Dev (2002), Gordy 
(2003) and Frey and McNeil (2004)). This approach is often coupled with large sample 
approximation techniques in the case of homogeneous portfolios and leads to simple computations of 
loss distributions over a given time horizon. In that framework, Gordy and Jones (2003) analyse the 
risks within CDO tranches. 
 
In order to deal with numerical issues, Gregory and Laurent (2003) and Laurent and Gregory (2003) 
have described a semi-analytical approach, based on conditional independence, for the pricing and 
hedging of basket credit derivatives and CDOs. This topic is also discussed by, among others, 
Andersen, Sidenius and Basu (2003), Galiani (2003), Hull and White (2003), Mina and Stern (2003) 
and Friend and Rogge (2004). 
 
In these approaches, we deal with a low dimensional factor V  such that default times are 
independent conditionally on V . This standard framework for the modelling of loss distributions can 
be extended to consistently account for various time horizons (see Laurent and Gregory (2003) for 
more details). The factor approach makes it simple to deal with a large number of names and leads to 
very tractable pricing results. We will denote by ( )VtQp i

Vi
t ≤= τ|  and ( )VtQq i

Vi
t >= τ|  the 

conditional default and survival probabilities. Conditionally on V , the joint survival function is:  

∏
≤≤

=
ni
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tn i

qVttS
1

|
1 ),,( L  

As an example, the one factor Gaussian copula has been introduced by Vasicek (1987). In this 

setting, iiii VVV 21 ρρ −+=  and  for  where ( )( iii VF Φ= −1τ ) ni ,,1K= iVV ,  are independent 
Gaussian random variables. Then: 
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Correlation sensitivities 
We focus on sensitivities with respect to correlation parameters in the one factor Gaussian model. 
The correlation terms between names i and j are of the form  for , . We want 
to bump a specific correlation parameter say, between names k and l, around the previous one factor 
correlation structure. Of course, once bumped, the new correlation matrix does not anymore 
correspond to a one factor correlation structure. However, it is still possible to treat such a local bump 

jiρρ nji ,,1, K= ji ≠

                                                           
2 From now on, Q  denotes a pricing or risk-neutral measure. 

2 



in an analytical framework.  Let us consider the following Gaussian structure: iiii VVV 21 ρρ −+=  

for  and ki ≠ ⎟
⎠
⎞⎜

⎝
⎛ −+−+= klkkk VVVV 22 11 λλρρ , where [ ]1,0∈λ  and iVV , ,  are 

independent standard Gaussian variables. Thus, the correlation between names i and j remains 
unchanged when ( ) . The correlation between  and  is equal to 

ni ,,1K=

( )lkji ,, ≠ kV lV
22 11 lklk ρρλρρ −−+ . That correlation matrix is the initial one bumped for the couple of names 

k,l where the parameter λ  controls the magnitude of the correlation shift. This approach can readily 
be extended to bumping all pairs within a group of names, such as those in a particular sector. 
 
Let us now consider the probability generating function of the accumulated losses at time t, 

 where  is the loss given default on name i and  is the 

corresponding default indicator. We assume here that the losses given default are not stochastic. By 
conditioning on , the probability generating function of , 

∑
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n

i
ii tNMtL
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Using conditional independence upon V , we have: 
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We recall that [ ] iii MVi

t
Vi

t
tNM upqVuE +=)( . Let us now compute [ ]VuE tNMtNM llkk )()( + . This can 

also be written as: 
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This requires the computation of the joint default probabilities conditionally on the factor V . For 
instance, we can write the joint survival probability ( )VtNtNQ lk 0)(,0)( ==  as:  

 
( ) ( ) ( ) ( )( )VtFVtFVQVttQVtNtNQ llkklklk )(,)(,0)(,0)( 11 −− Φ>Φ>=>>=== ττ  

 
Let us denote by . The joint survival probability is equal to: ( ) ( )( ,)( 11 tFxtFx llkk

−− Φ=Φ= )
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Using Fubini’s theorem and integrating firstly with respect to lV , we can eventually write the joint 
survival probability ( )vtNtNQ lk 0)(,0)( ==  as: 
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where )(xϕ  denotes the Gaussian pdf and )()(1)(xΦ xx −Φ=Φ−= . Similarly, the joint default 
robability ( )vtNtNQ lk 1)(,1)( ==  p is provided by: 
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The conditional on  probabilities of one name being in default and not the other are given by: 
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As a consequence, [ ]VuE tNMtNM llkk )()( +  can be easily computed through one dimensional 
integration. The probability generating function of the accumulated losses is then provided by 
integration over the distribution of :  V

[ ] ( ) dvvupqvuEu
lki ,≠

Eventually, the distribution of )(tL  is obtained from the coefficients of the polynomial )()( utLψ . We 
refer to Laurent and Gregory (2003) for further details on the 
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computation of the CDO tranche 
remiums from the loss distributions over different time horizons. 

O stru
with 50 

sponding premium leg. We 
lustrate the sensitivities from the point of view of the protection buyer. 

it spread names where there are 
ositive and similar in magnitude to the senior tranche sensitivities. 

 

p
 
To illustrate the above approach, we consider three tranches of a euro denominated CD cture 

names and five years maturity. The attachment points for the tranches are %4=A  and 
%15=B . The credit spreads for the names are equal to 25, 30, 35,... up to 270 basis points. Recovery 

rates are assumed to be deterministic and equal to 40%. We assume that correlation coefficients are 
constant and equal to 25%. The premiums of the equity, mezzanine and senior tranches are such that 
the present value of the default leg equals the present value of the corre
il
 
We consider in Figure 1 the PV impact of a bump from 25% to 35% of each single correlation 
coefficient. Calculating pair-wise correlation sensitivities emphasises the different contributions of 
the names depending on the level of credit spreads. The equity tranche correlation sensitivities are 
negative as an increase in a given pair-wise correlation reduces the present value of the tranche since  
poorer diversification means that the expected loss on the tranche is smaller (the equity tranche has a 
“negative vega”). That effect is more pronounced for bigger spreads, which are associated to the 
names that are more likely to contribute to default first. The senior tranche has a positive sensitivity 
with respect to an increase in a single correlation coefficient due to the fact that protection buyer is 
effectively long a call option on the aggregated losses and thus has a positive vega. For the 
mezzanine tranche the effects are blurred since the protection buyer has a call spread, i.e. a long 
position in a call option with strike A and a short position in call option with strike B.  The majority 
of correlation sensitivities are close to zero, except for the high cred
p
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Figure 1. Pairwise tranche correlation sensitivities as a function of the spread of the names being 
perturbed, equity (top), mezzanine (middle) and senior (bottom). 
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Dealing with more general correlation structures 
The one factor correlation structure may seem too restrictive. Of course one may add additional 
factors albeit at exponentially increasing computational cost. Andersen, Sidenius and Basu (2003) 
propose a principal components analysis (PCA) to build a low dimensional correlation structure from 
a given correlation matrix3. However, perhaps a more obvious approach in trying to balance 

                                                           
3 Such an approach obviously may lead to some extremely time consuming calculations as many factors are required to provide 
a suitable fit to the correlation matrix. Furthermore, it does not lend itself readily to calculation and aggregation of various 
correlation risks as each sequential perturbation of the matrix would require a new PCA. 
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flexibility and computational burden is to consider a structure built from groups specifying intra and 
inter-group correlation coefficients. The grouping can be done in any arbitrary way, obvious choices 
being sector4 (which we refer to from now on) or geography. We will describe an analytical 
framework to deal with such a correlation structure, the main advantage being that we can have many 
different sectors with different intra-sector correlations. 
 
We assume that the underlying Gaussian variables  have the following correlation structure: iV

iikikiki VWV 2
)()()( 1 ρρ −+= , 

where the )(, iki WV are independent standard Gaussian variables and )(ik  otes the sector to which 
name i is related. Thus, we have an homogeneous one factor structure within a given sector. For 
simplicity, we have considered identical exposures to factor W or all names within a sector. We 
then relate the sector risk factors  through a second single factor structure: 

 den

f 
)(ikW

jjjj WWW 21 λλ −+= , 

where the ij VWW ,,  are independent standard Gaussian variables. Our purpose is to aggregate credit 
risks arising from different sectors while keeping the one factor Gaussian framework for 
homogeneous portfolios. We can write: 

iikikikikikiki VWWV 2
)()(

2
)()()()( 11 ρλρλρ −+−+= . 

For two names in the same sector, the correlation is equal to . For two names in different sectors 

, , the correlation is equal to . Normally, the parameters  
would be taken between 0 and 1 and inter-sector correlation coefficients will be smaller than intra-
sector correlation coefficients which seems a reasonable feature. The most obvious correlation 
structure we can deal with this way is where all inter-sector correlations are equal to 

2
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This is calibrated through ii βρ =  and 
i

i β
γλ =  for . Let us now compute the 

probability generating function of the cumulated losses at time t, . We assume 

here that the losses given default are not stochastic. By conditioning on W , we get: 
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We now separate the losses over the different sectors, ∑ =
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. Given W and  are independent, ∑= j j tLtL )()( )(tL j

                                                           
4 A similar approach is also taken by the rating agencies in CDO tranching models (e.g. S&P). See also Li and Skarabot 
(2003). 
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Let us now evaluate [ ]WuE tL j )( . We have: 
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where the global expectation is computed as a one dimensional integral with respect to the 
distribution of W . It can be seen that the burden of computing the probability generating function is 
similar to a two-factor Gaussian structure. The distribution of  is obtained by some inversion 
technique such as FFT (Gregory and Laurent (2003)). 

)(tL

  
We now take a practical example based on tranches of the five-year TRAC-X Europe index with 
names arbitrarily grouped into 5 sectors. We assume also that the intra-sector correlations are all 
equal and that the inter-sector correlation is %20=γ . We show in Table 1 the effect of varying the 
intra-sector correlation on the tranche pricing. As expected, an increase in intra-sector correlation 
means less diversification of credit risk and lower equity tranche premiums, while we observe an 
increase of the premiums associated with the senior and mezzanine tranches, the latter surprisingly 
showing monotonic. This illustrates that a tranche that is insensitive to parallel moves in the 
correlation structure may be rather sensitive to some local correlation risk. 
 
Table 1. Pricing (bp pa) of TRAC-X europe tranches as a function of the intra-sector correlation 
using the correlation structure described in the text. 
 

 0-3% 3-6% 6-9% 9-12% 12-22%
20% 1273.9 287.5 93.4 33.3 6.0
30% 1226.6 294.4 102.7 39.9 7.9
40% 1168.9 303.5 114.0 47.3 10.3
50% 1100.5 314.2 127.6 56.3 13.3
60% 1020.9 325.8 143.8 67.2 17.0
70% 929.1 337.5 163.6 80.8 21.6
80% 821.9 349.3 188.0 98.8 27.2
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We then calculated an implied flat correlation from each tranche premium using the one-factor model 
(with constant correlations) with the results shown in Table 2. The constant implied correlation in the 
one factor model increases with the intra-sector correlation. For a 30% level of the intra-sector 
correlation, the implied correlation structure remains flat, while it exhibits a bump for a 40% level. 
This is not surprising since the mezzanine tranches have smaller correlation sensitivities. Even more 
significantly, for higher intra-sector correlations, it is not possible to match some prices, in such a 
situation a tranche could falsely appear rather correlation neutral. 
 
Table 2. Implied flat correlation from the pricing of the TRAC-X tranches with different values of the 
intra-sector correlation parameter. An asterisk denotes that the premium could not be matched with 
the single-parameter model, due primarily to the small correlation sensitivity of the lower mezzanine 
tranches. 

 0-3% 3-6% 6-9% 9-12% 12-22%
20% 20.0% 20.0% 20.0% 20.0% 20.0%
30% 22.2% 22.6% 22.1% 22.2% 22.0%
40% 25.0% 27.6% 25.2% 24.6% 24.2%
50% 28.5% * 29.7% 27.3% 26.8%
60% 32.8% * 40.5% 30.6% 29.8%
70% 44.9% * * 34.8% 33.1%
80% 44.8% * * 41.3% 37.1%

 
Default times, recovery rates and the correlation smile 
Up to now recovery rates were deterministic or at least independent from default dates. We propose 
here an extension to the analytical Gaussian framework where default dates and recovery rates are 
dependent. We refer to Chabaane et al (2004) and the references therein for related models in 
portfolio credit risk analysis. We consider the two-factor Gaussian structure: 
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where ξ,V are the Gaussian factors and iiV ξ,  the Gaussian specific risks. We postulate that the 
specific risks are independent from the factors. We denote by η  the correlation between V and ξ  
and by γ  the correlation between iV  and iξ . We then define default dates and recovery rates from: 
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where corresponds to the nominal associated with name i. iN kδ ,  are possible values for 
the recovery rates, the  are some thresholds related to name i. The default dates are as in the usual 
one factor Gaussian copula model. Dependence between recovery rates and default dates comes both 
from factor correlation when names are different and from factor correlation and specific correlation 
for a given name. 

Kk ,,0 K=

kib ,

Let us now consider the distribution of the aggregated loss at time t, . We 

consider the probability generating function of the losses which can be written as:  
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by using the conditional independence framework. We can notice that: 
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where denotes the bivariate Gaussian distribution. To obtain the probability generating function 
of the accumulated losses at time t, we need to integrate: 
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with respect to the joint distribution of the factors ξ,V . From the probability generating function, we 
can obtain the distribution of  and eventually the CDO tranche premiums. )(tL
 
As a simple example, consider that 0== ξη  and so we have independence between default events 
and recovery rates but correlation amongst the recovery rates themselves. The possible recovery rates 
are %kk =δ ,  and we assume that their distribution has some symmetry, e.g. the 

recovery rate on name i is given by 
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probability that the recovery rate is smaller than  is 100/k )( kbΦ 5 and  is calibrated from 

, where  corresponds to a Beta distribution function with mean 40% 
and standard deviation 25%. Under these recovery rate assumptions, we then priced TRAC-X 
tranches with a flat default correlation of 25% and calculated the implied correlation corresponding to 
these prices. Some results are shown in Figure 2 for recovery rate correlations of  and 
70%. Rather interestingly, we observe a correlation smile which is qualitatively similar to that seen in 
the market. 

kb
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Figure 2. Correlation smile implied from the correlated recovery rates example.   
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The increase in the implied correlation (decrease of premium) of the equity tranche can be understood 
as arising from a decrease in its expected loss. The expected loss can be written as 

( ) ( )[ ]ltNtLEltNQ
l

=−= +∑ )()(%3)(  where N is the number of names in default at time t. Since )(t  

                                                           
5 We set  and . −∞=0b +∞=101b
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we have equal nominals, and using the independence between default events and recovery rates, 
( )[ ] ( )[ ]++ −−−==− lMMEltNtL K1%3)()( . Thus

 and to a 
E %3  increasing the correlation between the iM  
will lead to an increase in the volatility of M ++K1 decrease in the expected loss of the 
equity tranche. Since the reverse is true for the most senior tranche, the appearance of a correlation 
smile is not surprising. 

lM

 
The previous example illustrates a potential consequence of the correlation between only recovery 
rates but there are obviously many ways in which to parameterise the above model. As a simple 
example of the impact of correlation between default events and recovery rates consider the extreme 
case of perfect correlation between the latent variables driving default and recoveries, that is iiV ξ=  
for . Here, ni ,,1K= iiV ξ=  may be seen as the asset value in a Merton type firm-value model since 
that single variable will drive both default and recoveries. 
 
We assume that the recovery rates can only take values equal to zero and one (which corresponds to a 
very large volatility) and we let the recovery rate distribution be time-varying. This corresponds to 
the following model:  
 

( )
( )⎪⎩

⎪
⎨
⎧

−×=
Φ=

≤≤

−

)()(

1

11)(
)(

ttVtsii

iii

iii
NtM

VFτ
 

 
where  and  are some thresholds to be determined. The time t loss associated with name i is 
given by: 
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We assume that the expected losses  are given and calibrated on individual credit 

curves. We take . This provides  where  is provided 

by the calibrating equation . We can notice that this model is equivalent 
to:  

[ )()( tNtME ii ]
)

)
( )()( 1 tFtt ii

−Φ= )(1)()( tsViii ii
NtNtM ≤×= )(tsi

[ ] ( )()()( tsNtNtME iiii Φ=

( )
⎪⎩

⎪
⎨
⎧

=
= −

ii

iii

NM
Vs 1τ  

that is a simple one factor Gaussian model with deterministic (equal to zero) recovery rates. A perfect 
correlation between recovery rates and default events thus leads to a one factor Gaussian model with 
zero recovery rates. One can then easily assess the magnitude of the correlation effect between 
recovery rates and default events. 
 
Conclusion 
This article was dedicated to treatment of correlation for credit derivatives within a Gaussian copula 
framework. We show that we can address analytically the computation of correlation risk and 
propose a more flexible two-factor model to incorporate a realistic correlation structure. We also 
showed how to incorporate dependence between recovery rates and default times in a tractable way 
and illustrated that such an approach may match better the observed “correlation smile” across 
portfolio tranches. Despite the popularity of the Gaussian copula model, there are clear and valid 
questions over its theoretical foundations, for example, the implied dynamics of credit spreads seems 
unrealistic. However, we believe it will probably remain an industry standard for some time which is 
why we have tried to further the depth and analytical tractability around the model. Clearly, there is 
room for further analyses and comparisons between different dependence structures and 
investigations of tractable ways for incorporating reasonable credit spread dynamics. 
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