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Résumé

Dans la suite logique de la mise en place de Bâle II en 2007 pour le
secteur bancaire, les interactions croissantes entre ce secteur et celui
des assurances, ainsi que la nécessité d’une solvabilité contrôlée, fiable
et optimisée, rendent l’application de la directive Solvabilité II un
tournant important pour la profession. Etant donné que chaque assureur
et réassureur se doit de rester solvable, aux vues de ses engagements et
de son activité, le calcul de l’exigence en capital de solvabilité (SCR) est
aussi bien un moyen de contrôle des acteurs du marché par les autorités
de régulation, qu’une façon de mesurer réellement son exposition à tous
les risques grâce à cette réforme de solvabilité.

Etape préliminaire indispensable à la détermination du SCR, le calcul
du Best Estimate des engagements futurs de l’assureur doit respecter des
principes généraux propres à Solvabilité II, mais il subsiste une grande
part de liberté pour l’actuaire dans la modélisation. Le choix du modèle
est soumis à différentes contraintes, que ce soit de temps, de coût ou de
données, mais dans tous les cas il est important d’appliquer le principe
de proportionnalité avec parcimonie et en connaissance de cause.

C’est pourquoi la comparaison méthodologique peut constituer une étude
intéressante, surtout lorsque l’on parle du poste le plus conséquent du
passif, contrôlé et représentant l’estimation la plus fiable des engagements
à la date d’évaluation. De plus il est basé sur des projections de cash-
flow utilisant des hypothèses et des techniques actuarielles et financières
complexes pour un portefeuille de produits variés.

Mots clés : Solvabilité 2, Options et garanties intrinsèques (TVOG, GAO),
Monte Carlo, Générateur de variables aléatoires (Tore mélangé, algorithme de Moro),
Processus stochastiques (Vasicek, Cox-Ingersoll-Ross, Brownien), Black et
Scholes.
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Abstract

As a logical consequence of the setup of Basel II in 2007 for the banking
sector, the growing interactions between this sector and insurance, but
also the need of a solvency control, reliable and optimized, are making the
application of the reform Solvency II a turning point for the insurance
sector. Because each insurer and reinsurer has to stay solvent, viewing
of its liabilities and its business, the calculation of the solvency capital
requirement (SCR) is both a way to controlling the market by regulatory
authorities, that a way to measure the real risk exposure thanks to this
new solvency reform.

A first necessary step to the SCR calculation, is the determination of the
Best Estimate of futur insurer’s obligations, which has to respect some
general principles specific to Solvency 2, but also a free modeling choice
for actuaries. The choice of the model should consider some constraints
of time, costs and data, but in all cases it is important to respect the
principle of proportionality, sparingly and knowingly.

That is why a methodological comparison could be interessant, especially
when it concerns the most important value of liabilities, controlled, and
the most reliable estimation of futur obligation at an observation point.
Moreover it is based on projected cash flows using complex actuarial and
financial assumptions and technics for a portfolio of various products.

Keywords : Solvency 2, intrinsic options and guarantees (TVOG, GAO), Monte
Carlo, generator of random variables (mixed Tore, Moro algorithm), Stochastic
process (Vasicek, Cox-Ingersoll-Ross, Brownian), Black and Scholes.
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Chapitre 1

Introduction

Pour aborder le calcul du Best Estimate de manière opérationnelle, nous le dé-
finirons tout d’abord clairement, puis dans une première partie nous étudierons
sa mise en place dans un modèle déterministe. Nous devrons également traiter la
modélisation de la TVOG (Time Value of financial Obligation and Guarantee) et
du GAO (Guaranteed Annuity Option) qu’il faut intégrer, entre autres, au Best
Estimate en tant qu’options et garanties intrinsèques aux contrats d’assurance.
Pour ce faire nous présenterons des méthodes basées sur l’utilisation de formule
de type Black, Scholes et Merton, permettant de donner un caractère
stochastique analytique à un modèle basé sur des hypothèses déterministes. Or
ce modèle ajusté possède des inconvénients liés aux approximations nécessaires
et à l’utilisation de formules fermées. C’est pourquoi dans une seconde partie,
nous présenterons tout le processus ainsi que les outils permettant d’aboutir à
un Best Estimate purement stochastique, s’affranchissant de l’ajustement de la
TVOG. Nous pourrons donc évaluer l’impact de chaque modèle et permettre
de valider ou d’invalider l’approche déterministe ajustée pour des compagnies
d’assurances de petite et moyenne taille.

Toute la difficulté sera de garder un regard critique et objectif dans une logique
opérationnelle, c’est-à-dire en tenant compte des coûts de développement et
des temps de calcul d’un modèle plus complexe, par rapport à sa valeur ajoutée
en terme de précision. En effet le sujet de ce mémoire s’inscrit donc dans ce
contexte de préparation active et nécessaire, et débouchera sur une comparaison
méthodologique.
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Chapitre 2

Définition du Best Estimate

Pour présenter formellement l’objectif du calcul du Best Estimate, nous devons
d’abord inscrire cette exigence dans le contexte réglementaire qu’il faudra
scrupuleusement respecter et justifier auprès des autorités de contrôle. Solvency
2 est devenu une priorité dans le secteur de l’assurance, et il est primordial
que l’introduction de la nouvelle directive se passe pour le mieux, afin que sa
légitimité et son acceptation ne puisse être discutable par la suite.

Comme le sujet de la solvabilité de l’assureur est un élément de plus en plus
sensible et stratégique, la mise en place d’une préparation structurée pour
une transition efficace, se traduit dans les faits par une incitation justifiée à
participer aux QIS 1, aux formations, aux échanges et aux débats. En plus de
cette dynamique européenne, des institutions nationales exigent une préparation
supplémentaire. C’est le cas par exemple du Commissariat aux Assurances
luxembourgeois, qui ajouta au rapport actuariel de 2009, le calcul des provisions
mathématiques sous une approche conforme à Solvency 2, que nous appellerons
”Best Estimate” dans la suite de ce document.

2.1 Cadre règlementaire

Afin de définir le plus fidèlement les attentes et les contraintes imposées par le
CEIOPS 2 pour la nouvelle directive Solvency 2 prévue pour janvier 2013, inté-
ressons nous aux documents existants à ce jour 3. Sur la base des Consultation
Papers qui ont permis un échange entre les institutions et les acteurs privés du
secteur des assurances, le CEIOPS a finalement rédigé les textes ”définitifs”
de niveau 2, devant servir de base pour l’exercice du QIS 5. Cet ultime test
servant de calibrage à la formule standard définitive, est la répétition finale

1. Quantitative Impact Study
2. Committee of European Insurance and Occupational Pensions Supervisors
3. avant le début du QIS 5

8



2.1. Cadre règlementaire

pour tous les acteurs (assureurs, réassureurs, groupe, entité...) qui devront
bientôt répondre à cette attente réglementaire.

Voici des extraits fondamentaux du ”CEIOPS’ Advice for Level 2 Implementing
Measures on Solvency II : Technical provisions, Article 86 : an Actuarial and
statistical methodologies to calculate the best estimate.” qui permettent de mettre
en évidence les caractéristiques principales du Best Estimate des engagements
contractuels futurs..

(53) In order to allow insurance and reinsurance undertakings to
meet their commitments towards policyholders and beneficiaries,
Member States should require those undertakings to establish ade-
quate technical provisions. The principles and actuarial and sta-
tistical methodologies underlying the calculation of those technical
provisions should be harmonised throughout the Community
in order to achieve better comparability and transparency .

L’objectif premier est donc d’obtenir un montant comparable d’une compagnie
à l’autre et qui servira de point de départ à l’évaluation des engagements et
des risques sous-jacents pour déterminer le capital de solvabilité cible pour
répondre à une exigence prudentielle.

(55) The value of technical provisions should therefore correspond
to the amount an insurance or reinsurance undertaking would have
to pay if it transferred its contractual rights and obligations
immediately to another undertaking.

Le montant des provisions techniques s’exprime en valeur de transfert, ce qui
dans certains cas se traduit par l’ajout au Best Estimate d’une marge de risque.

(58) It is necessary that the expected present value of insurance
liabilities is calculated on the basis of current and credible in-
formation and realistic assumptions, taking account of fi-
nancial guarantees and options in insurance or reinsurance
contracts, to deliver an economic valuation of insurance or reinsu-
rance obligations.

On utilise des hypothèses de projection réalistes, sans introduire de prudence
supplémentaire explicite, mais en tenant compte de toutes les options financières
cachées, sous-jacentes aux contrats d’assurance.

3.1. The Level 1 text states that the best estimate shall
be equal to the probability weighted average of future cash-
flows taking account of the time value of money (expec-
ted present value of future cash-flows), using the relevant
risk-free interest rate term structure. This in effect ack-
nowledges that the best estimate by definition takes into
account uncertainty in the future cash-flows.

9



2.2. Mise en perspective dans Solvency 2

On mesure l’engagement de l’assureur en Best Estimate par la somme actualisée
au taux sans risque de tous les flux futurs probables induits par son portefeuille
de contrats. On se place dans une vision du portefeuille en run-off, de telle
sorte que l’on considère tous les flux futurs jusqu’à l’extinction des contrats.

On en déduit donc qu’en plus de suggérer une approche en probabilité risque-
neutre, nous sommes également très proches de la méthode financière de
l’évaluation des actifs sur un marché efficient. Comme il n’existe pas de mar-
chés liquides des passifs pour les évaluer, il faut recourir à l’utilisation d’une
espérance mathématique qui tient compte de la probabilité d’occurrence de
chaque flux futur et de l’incertitude de ceux-ci. De cette manière nous cherchons
à mesurer les engagements de l’assureur à la date d’évaluation que l’on anti-
cipe ”en moyenne”. On calcule donc la somme actualisée des moyennes
des engagements futurs pour l’assureur, ces engagements s’obtenant
par différence entre les flux sortants et entrants projetés selon des
hypothèses les plus réalistes possibles.

Mathématiquement nous pouvons définir le Best Estimate par :

BE =
∞∑

t=1

EQ




∏

s≤t

1

(1 + rs)

(
CF out

t − CF in
t

)




Avec :
Q la probabilité risque-neutre
CFt les cash-flows entrants et sortants à la date de projection t
rt le taux sans risque forward à la date t

Le calcul nécessite donc une démarche prospective et complète des engagements,
dans un cadre cohérent avec l’approche globale retenue par Solvency 2 dans la
détermination du SCR 4.

2.2 Mise en perspective dans Solvency 2

Introduisons certains termes caractéristiques de Solvency 2 faisant intervenir le
montant du Best Estimate 5. Elément essentiel, il devra être calculé séparément
et précéder le calcul permettant de déterminer le SCR.

4. Solvency Capital Requirement
5. Pour une définition plus complète nous renvoyons vers : [Article 1]Artzner P.,

Eisele K-T., Supervisory accounting : Comparison between Solvency II and coherent risk
measures (2010)
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2.2. Mise en perspective dans Solvency 2

Partons de l’égalité comptable fondamentale donnée par (voir schéma à la fin
de ce chapitre) :

Asset V alue = FreeCapital +BestEstimate+RiskMargin+ SCR

Nous définissons ensuite l’actif net ou ”Net Asset Value” (NAV) ou encore ”Risk
Bearing Capital ” dans le Swiss Solvency Test comme :

NAV = Asset V alue−BestEstimate

Rappelons synthétiquement que l’approche de Solvabilité 2 pour le calcul du
SCR consiste à mesurer la variation de l’actif net (NAV) suite à la réalisation
de certains risques à l’actif et au passif. Ces risques sont modélisés par des chocs
dont l’intensité est calibrée de sorte qu’ils se produisent avec une probabilité
inférieure ou égale à 0.5%, c’est-à-dire une fois tous les 200 ans. La mesure du
risque utilisée est la Value at Risk.

On en déduit alors le capital nécessaire supplémentaire aux provisions (SCR)
pour y faire face dans 99.5% des cas. Cela se traduit dans un modèle à une
période 6 (t=0 et t=1) par :

P
[
ÑAV1

(1 + r)
− ÑAV0 ≥ −M̃0 (A1, Z1)

]
≥ 99.5%

Avec :
At la valeur d’échange (de marché si celui-ci respecte certaines propriétés),
du portefeuille d’actif à la date t
Zt ≥ 0 les provisions techniques à la date t (Best Estimate augmenté de
la marge de risque)
ÑAV1 = A1 − Z1

r le taux sans risque pour la période considérée
M̃0 (A1, Z1) le capital de solvabilité requis pour la période

Pour conclure sur la solvabilité de l’assureur, on confronte alors ce capital sup-
plémentaire nécessaire (le SCR) avec le montant des fonds propres disponibles
pour le couvrir. Nous appelerons ”Available Capital ” ce montant qui se calcul
comme :

AvailableCapital = Asset V alue−BestEstimate−RiskMargin

= Asset V alue− Technical Provision

= FreeCapital + SCR

6. Voir à nouveau : [Article 1]
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2.2. Mise en perspective dans Solvency 2

Il se définit donc comme la différence entre la valeur de marché actuelle des
actifs et les provisions techniques, sachant que les provisions techniques sous
Solvency 2 représentent le Best Estimate auquel on ajoute la marge de risque.
On classera par la suite le”Available Capital ” par tiers, correspondant à la
qualité de couverture représentée par sa capacité d’absorption des pertes. Bien
entendu, il faudra que le”Available Capital ” soit supérieur au niveau du SCR.

2.2.1 Une approche Market Consistent homogène :

La première contrainte dans le calcul du Best Estimate puis du SCR à une
période donnée, est l’harmonisation de ce calcul. Pour obtenir une mesure
comparable des engagements et du risque de solvabilité en introduisant une
méthode de calcul répondant aux mêmes exigences au niveau européen, il faut
tout d’abord se baser sur une évaluation du bilan standardisée.

Il faut entre autre s’assurer que le montant de l’actif net représente bien la même
chose pour toutes les compagnies, et cela passe par un calcul du Best Estimate
et de la valeur des actifs le plus homogène et le plus cohérent possible. Or, on va
rapidement s’apercevoir que si les règles et concepts généraux sont bien établis,
il reste une importante marge d’interprétation laissée aux actuaires. Cette
approche permet de tenir compte de toutes les caractéristiques propres aux
types d’activité, mais peut aboutir à des montants difficilement comparables et
qui doivent donc rester le plus transparent possible.

Une approche bilantaire permet de tenir compte de l’impact de tous les risques et
de la relation actif-passif qui existe dans un bilan d’une compagnie d’assurances.
Dans le calcul du Best Estimate en assurance-vie, cette relation a un effet dans
les flux de prestation grâce à la distribution de participation aux bénéfices. Le
bilan doit être évalué en adéquation avec le marché, on parle donc d’un bilan
Market Consistent.

Une définition formelle de la notion de Market Consistent est donnée dans
[Article 1] qui reprend Cheridito et al. (2008) :

Definition. Pour toute fonction Ψ définissant la condition de solvabilité, la
provision LΨ est Market Consistent si on peut vérifier :

LΨ (Z1 + U) = LΨ (Z1) + π (U)

Avec :

Z1 les engagements

U un élément négocié sur un marché

π une fonction de prix

12



2.2. Mise en perspective dans Solvency 2

On considère donc que le marché, dans la majorité des cas, évalue à sa juste
valeur les actifs financiers. On peut faire référence ici à la ”juste valeur” selon
les normes comptables IFRS. Il faut néanmoins s’assurer que le marché sur
lequel est côté l’actif, est suffisamment liquide, profond et transparent. Si ce
n’est pas le cas, par exemple pour du Private Equity, il faut se tourner vers
une approche Mark-to-Model où l’on extrapole la valeur théorique de l’actif à
travers un modèle financier.

2.2.2 Un passif évalué en valeur de transfert :

La problématique est tout autre en ce qui concerne l’évaluation des passifs
de l’assureur. Etant donné qu’il n’existe pas de marché organisé permettant
d’évaluer au plus juste la valeur à laquelle ces passifs peuvent être cédés
et échangés, il faut mesurer différemment la valeur de transfert de ces
engagements. En effet, le fait de raisonner en valeur de transfert, intègre
explicitement le fait qu’en cas de défaut de l’assureur ou d’insuffisance de
solvabilité, il devra céder son portefeuille à un autre assureur. C’est pourquoi,
alors que la valeur de transfert d’un actif côté est égal à sa valeur de marché,
celle des passifs d’assurances peut nécessiter l’ajout d’une marge de risque.

2.2.3 Engagements réplicables et non réplicables :

Pour obtenir la valeur de transfert des provisions techniques, on distingue deux
catégories d’engagements, qu’il faudra ensuite segmenter selon l’activité :

2.2.3.1 Les engagements couvrables (hedgeables)

Lorsque les engagements de l’assureur sont parfaitement réplicables par des
instruments financiers côtés sur un marché profond et liquide, alors on peut
naturellement considérer que la valeur de marché de ces instruments représente
la meilleure valeur, également celle à laquelle les engagements pourraient être
cédés.

2.2.3.2 Les engagements non-couvrables (non-hedgeables)

Dans le cas contraire, une approche basée sur les cash-flows futurs sera nécessaire
pour mesurer le Best Estimate, auquel s’ajouterait une marge de risque.
Cette marge supplémentaire est calculée selon la méthode du coût du capital
et représente le coût de détention de la ”Supervisory Provision” future. En
cas de cession du portefeuille à un assureur tiers, celui-ci devra supporter les
engagements transférés certes, mais aussi le SCR correspondant sous l” ’Optimal
Replicating Portfolio”, ce qui a un coût pour les actionnaires supposé de 6%.
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2.2. Mise en perspective dans Solvency 2

C’est donc bien une vision économique des passifs dans une logique de valeur
de transfert.
La marge de risque RM se calcule par la méthode du coût du capital comme :

RM = 6%
∑

t≥0

SCRORP
t

(1 + rft+1)
t+1

Il faut donc projeter le SCR futur sous l’Optimal Replicating Portfolio (voir
plus loin) et l’actualiser au taux sans risque rf sans prime d’illiquidité 7.
– Nous parlons ici d” ’Optimal Replicating Portfolio” dans le calcul de la marge

de risque, car le SCR futur projeté ne correspond pas exactement au SCR
calculé dans la formule standard de Solvency 2, dans la mesure où tous les
modules de risque ne sont pas à prendre en compte. Il comprend uniquement :
– le risque de souscription
– le risque de défaut des réassureurs
– le risque opérationnel
– le risque de marché ”inévitable”
Ce dernier point signifie que l’assureur qui cèderait son portefeuille n’a
pas à anticiper le profil de risque de l’actif de la compagnie ”repreneuse”,
c’est pourquoi on mesure le SCR dans le cas d’un portefeuille d’actif qui
minimiserait le risque de marché.

– La Supervisory Provision correspond à la somme des capitaux éxigés par le
régulateur, c’est-à-dire les provisions techniques constituées du Best Esti-
mate augmenté de la marge de risque, et le SCR sous l’Optimal Replicating
Portfolio.

2.2.3.3 Classification de l’activité

D’une part, il est évident que le risque viager ne puisse pas être parfaitement
réplicable par le marché et que, par conséquent les contrats d’assurance à
garantie vie ou décès nécessitent le calcul d’une marge de risque complémentaire.
D’autre part, les contrats en unités de compte dont le risque d’investissement est
supporté par l’assuré nécessitent une étude particulière. Même si la valeur du
contrat évolue en fonction de la cotation sur le marché, elle est aussi impactée
du prélèvement des frais de gestion f . Lorsqu’ils sont prélevés mensuellement,
la variation de la valeur du contrat ne correspond pas exactement à la variation
de la valeur du fonds en date t (vnit) car on a, avec Nt le nombre d’unités de
compte en t :

V aleurContratt+1 = Nt.vnit+1 − f.Nt.vnit

= Nt+1.vnit+1

#= Nt.vnit+1

7. introduite dans le QIS 5
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2.2. Mise en perspective dans Solvency 2

2.2.4 Résumé

Finalement le bilan segmenté selon Solvency 2 peut se représenter de la façon
suivante :

 
 
 

 

Liquidités 

Immobilier 

Obligations 

Actions 

Autres actifs 

Réassurance 

ACTIF 

Marge de 
risque 

Best Estimate 

MCR 

PASSIF 

Free Capital 

 
Solvency Capital 

Requirement (SCR) 

Technical Provision 
Market- Consistent en 

valeur de transfert 

Available Capital 

Valeur de 
marché 

Net Asset Value (NAV) 

Figure 2.2.1: Bilan Market Consistent sous Solvency 2

La détermination du SCR, que nous ne traiterons pas dans ce document, tiendra
compte de l’interaction entre l’actif et le passif d’où l’intérêt d’une approche
bilantaire.

Pour qu’une société soit considérée comme solvable, son Available Capital devra
être supérieur au SCR et donc au MCR 8. S’il est compris entre le SCR et le
MCR, cela déclenchera une première alerte entrainant un plan de redressement
progressif, alors que si le seuil critique du MCR est dépassé, le retrait de
l’agrément est possible si la situation n’est pas résolvable à court terme. Afin
d’améliorer sa situation, la compagnie cherchera à augmenter son Available
Capital 9 ou à réduire son SCR 10.

8. Minimum Capital Requirement
9. Augmentation de capital, souscription de dette subordonnée...

10. Modification de la réassurance, actif avec un profil moins risqué ou effet de la réassu-
rance...
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2.3. Fonctionnement de Prophet

Nous avons effectué le calcul du Best Estimate sur un outil bien connu par les
actuaires. Nous allons donc présenter celui-ci en décrivant son fonctionnement
et ses avantages.

2.3 Fonctionnement de Prophet

La nécessité croissante pour les compagnies pratiquant l’assurance-vie, de
projeter des flux financiers futurs, à moyen et très long terme, selon certaines
hypothèses et sur la base d’une modélisation des flux du portefeuille, les amène
à se doter de logiciels spécialisés capables d’effectuer rapidement un nombre
très important de calculs. Des contextes tels que Solvency 2, avec entre autre
le calcul du Best Estimate et le SCR 11, l’Embedded Value (EEV, MCEV 12) ou
encore le Business Plan, rendent les projections indispensables, mais surtout
de plus en plus complexes.

En effet les produits à modéliser sont d’une part de nature très différente, et leurs
cash-flow dépendent de paramètres multiples, parfois eux aussi des projections.
Typiquement, la courbe des taux sans risque servant à l’actualisation et aux
rendements des actifs dans un univers risque neutre, ainsi que les participations
aux bénéfices qui en découlent, la courbe d’inflation et les taux de chute
(mortalité, rachat), sont autant de paramètres qui vont influer sur les flux
entrants et/ou sortants. Si on ajoute à cela la nécessité de modéliser les Options
et Garanties financières implicites aux contrats d’assurances, et de recourir à la
simulation de scénarios stochastiques pour appréhender le caractère aléatoire
dans le temps de tous ces paramètres, l’intérêt de tels logiciels devient évident.

Prophet est un logiciel de projection des cash-flow du bilan d’une compagnie
par modélisation des produits et polices d’assurance qu’il fait évoluer dans le
temps.

Développé par Deloitte puis racheté en 2005 par Sungard, il trouve son
utilité aussi bien dans le calcul de l’Embedded Value, que dans la gestion actif
passif lorsqu’il est couplé avec le logiciel ALS 13. Pour la même utilisation, on
pourra citer son principal concurrent, Moses créé par Towers Perrin.

Concrètement on pourrait résumer le fonctionnement général de Prophet en
se rapportant à la célèbre formule de Wald que nous rappelons :

Soit SN =
∑N

i=1Xi avec (Xi)1≤i une suite de variables aléatoires supposées
indépendantes et de même loi. Alors si N est indépendant de la suite, on a :

E(SN ) = E(N).E(X)

11. Solvency Capital Requirement
12. European Embedded Value, Market Consistent Embedded Value
13. Asset Liability Strategy
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2.3. Fonctionnement de Prophet

Bien entendu, les hypothèses du théorème n’étant pas réalisées, nous ne pouvons
donc pas l’appliquer ici, et nous l’utilisons uniquement à titre d’image (car
lorsque l’on projette (Xi)1≤i l’indépendance n’est pas envisageable et N est
fixé). En effet ce théorème illustre bien que pour obtenir l’espérance des flux
futurs, on les décompose en une intensité moyenne (le montant futur espéré
en moyenne) et une fréquence moyenne représentée par le nombre de polices
"In Force" que l’on fait évoluer selon des hypothèses réalistes de chutes. Il est
indispensable de comprendre le mécanisme qui distingue d’une part le montant
de la provision pour chaque police qui évolue selon les hypothèses du contrat,
et le nombre de polices qui s’éteint (vision run-off ) en fonction des hypothèses
de mortalité réelle et de rachat.

Nous verrons tout au long de ce document, comment les différentes interactions
sont modélisées dans Prophet, dont voici sa structure de fonctionnement :

Figure 2.3.1: Structure du fonctionnement de Prophet
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Première partie

Du déterministe au stochastique
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Chapitre 3

Hypothèses de projection

La projection des cash-flows des différents contrats d’assurance-vie nécessite :
1. La modélisation des propriétés des contrats (tarification, fractionnement,

revalorisation, durées, limites...)
2. La création des model-points qui représentent les contrats du portefeuille

en reprenant toutes les données nécessaires à la projection (âge, sexe,
primes, frais, échéances, options souscrites...)

3. Les hypothèses de projection réalistes, c’est-à-dire sans prudence sup-
plémentaire, qui permettent de faire évoluer :

a) le nombre de contrats (mortalité, rachats),
b) le montant des actifs financiers en contrepartie des provisions ma-

thématiques qui viendront déterminer la participation bénéficiaire,
c) la structure par terme des taux sans risque pour actualiser les

différents flux à la date d’évaluation.
d) la courbe de l’inflation future pour faire évoluer le montant des frais

généraux.
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3.1. Tables de mortalité

3.1 Tables de mortalité

3.1.1 Règlementation au Luxembourg

Lettre circulaire 03/5 du Commissariat aux Assurances relative aux
bases techniques en assurance-vie

4. Tables de mortalité, de morbidité, d’invalidité ou d’incapacité pour le calcul
des provisions Techniques
a) Tables de mortalité éligibles : Pour les produits nouvellement commercialisés,
il y a obligation d’adopter pour le calcul des provisions techniques une table
de mortalité européenne récente et sans abattements, basée sur la population
générale et adaptée au type de risque (risque décès, risque survie) dont la
couverture est prévue dans le contrat. [...] Par dérogation au principe de
l’utilisation de tables générales sans abattements, des tables de mortalité
d’expérience peuvent être utilisées ou des abattements sur des tables générales
peuvent être pratiqués dans les cas suivants : - pour la couverture du risque
décès pour une durée n’excédant pas un an ; - dans tous les cas, s’il est démontré
que la table proposée est plus prudente qu’une table récente et adaptée au
risque basée sur une population générale pour les tranches d’âge couvertes par
le produit d’assurance ;
[...]
b) Principe du maintien de la table de mortalité Pour un contrat déterminé,
c’est la table de mortalité qui fait partie des bases techniques communiquées
au Commissariat qui doit être utilisée tout au long de sa durée de vie pour le
calcul des provisions mathématiques correspondantes. Une table plus prudente
peut être utilisée au cas où la table d’origine serait insuffisante à couvrir les
engagements pris envers les assurés ; un tel changement de table est soumis
à l’approbation préalable du Commissariat aux assurances. L’adoption d’une
table moins prudente que celle d’origine ne sera jamais admise.

Contrairement à la France, les tables de mortalité utilisées ne sont pas imposées
et l’accord de commercialisation est donné au cas par cas. En pratique cela se
traduit par l’utilisation fréquente de tables belges, françaises, hollandaises...
Il existe depuis 2008 une table de mortalité luxembourgeoise, mais construite
sur un échantillon assez petit et peu représentatif de la population assurée en
LPS 1, son utilisation doit donc rester marginale.

Dans tous les cas, le respect des règles prudentielles en matière d’évaluation
des engagements de l’assureur, reste bien entendu la priorité au Luxembourg.
Seulement, la plus grande liberté lors de la création d’un nouveau produit dans
le choix des tables de mortalité, permet de considérer un nouveau paramètre
non négligeable.

1. Libre Prestation de Services
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3.1. Tables de mortalité

3.1.2 Des hypothèses de mortalité réalistes

Une des caractéristiques importantes de l’évaluation du Best Estimate sous
Solvency 2, est la reconnaissance explicite de la prudence comprise dans les tables
de mortalité règlementaires utilisées pour le calcul des provisions mathématiques.
C’est pourquoi dans la projection des flux futurs, l’impact de la mortalité sur
le nombre de chutes total doit être la plus réaliste possible. Cela implique donc
d’ores et déjà, le recours à des tables d’expérience qui reflètent au mieux la
population assurée et ses particularités.

Précision importante, on parle de "prudence" des tables de mortalité en se
plaçant dans le cas d’un contrat d’assurance décès, c’est-à-dire qu’une table
prudente surestime la probabilité de décès de l’assuré pour un âge donné. Un
contrat temporaire décès ou vie entière par exemple, sera donc plus coûteux
pour l’assuré en utilisant une table de mortalité dite "prudente". Mais la
tarification ne joue pas un rôle prépondérant dans Solvency 2, le calcul du Best
Estimate en est même totalement indépendant étant donné que l’on projette
un portefeuille existant en run-off dont la tarification ne change pas. On va
simplement utiliser des hypothèses de projection qui ne modifieront pas les
propriétés des polices en portefeuille.

Cet écart entre la mortalité des tables de mortalité dites "réglementaire" et
la mortalité observée sur le portefeuille assuré peut s’expliquer de différentes
façons :
– Les tables se basent sur une situation de la population à une date donnée

et fixée dans le temps. De ce fait, l’augmentation constante de l’espérance
de vie de près d’un trimestre par an grâce entre autres aux progrès de la
médecine, rendent d’anciennes tables rapidement obsolètes.

– Les tables sont construites à partir de la population globale dont les caracté-
ristiques divergent naturellement de la population assurée. Hormis les tables
pour les rentes viagères, les tables de mortalité sont statiques ou unidimen-
sionnelles, par opposition aux tables prospectives dites "générationnelles"
qui prennent en compte l’année de naissance de la personne, et permettent
donc d’anticiper la dérive de la mortalité.

– Ne pas distinguer de tables propres pour les hommes et les femmes est une
approximation grossière qui tend heureusement à disparaître.

D’éventuels décalages d’âge par rajeunissement ou vieillissement de l’assuré
permettent de pallier temporairement à ces inconvénients, mais ne consistent
qu’en une translation des taux de mortalité et non en une pentification de la
courbe des taux de mortalité (voir plus loin).

Quoi qu’il en soit, même si, par l’approche réaliste imposée par le CEIOPS,
le Best Estimate était inférieur aux provisions règlementaires d’ancien type,
l’évaluation du passif en valeur de transfert impliquera l’ajout de la marge
de risque qui viendra compenser, en partie seulement , cette suppression de
prudence explicite.
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3.1. Tables de mortalité

La création d’une véritable table d’expérience basée sur les propriétés du
portefeuille nécessite un nombre très important de données exploitables et
est donc réservée à des grandes compagnies pour avoir du sens d’un point
de vue statistique. L’étude réalisée par un actuaire indépendant agréé par la
Commission de l’Institut des Actuaires doit se baser sur des données fiables
pour mesurer le risque inhérent au portefeuille de l’assuré, en tenant compte
de phénomènes tels que l’antisélection. Cette alternative pour le calcul des
provisions peut donc être profitable pour une entreprise cherchant à fiabiliser
son risque de mortalité et donc optimiser ses provisions.

De nombreuses compagnies vont donc se retrouver dans une situation para-
doxale, où la norme prudentielle en matière de solvabilité permet à l’assureur
d’avoir plus de liberté dans une démarche market consistent et réaliste propre
à la réforme Solvency 2, mais ne pourront pas pleinement en profiter. Ce pro-
blème, transposé à une échelle plus large, se retrouve dans l’utilisation d’un
modèle interne, permettant un calcul de l’exigence en capitaux pour solvabilité
le plus fidèle au profil de risque de l’entreprise, maximisant au passage l’effet
de diversification par agrégation des modules de risque.

Dans ce contexte particulier, il est utile d’envisager des situations intermédiaires
répondant à la fois aux contraintes réglementaires fixées par la Commission Eu-
ropéenne, et des contraintes opérationnelles relatives aux besoins de l’entreprise
selon le respect du principe de proportionnalité.

L’Union Professionnelle des Entreprises d’Assurances Belges a cherché à combler
ce besoin. Fondée en 1920, Assuralia regroupe la quasi-totalité des compagnies
d’assurances belges et étrangères qui opèrent sur le marché. C’est grâce à la
collecte des données des portefeuilles de 39 assureurs représentant 98,6% de
l’encaissement belge entre 2003 et 2007, qu’elle a construit une table qualifiée
"d’expérience" car elle se base bien sur une population d’assurés. En plus
de distinguer les hommes et les femmes, ces tables permettent également de
s’adapter aux assurances individuelles ou de groupe, mais aussi aux branches
vie, décès ou autre. Si l’on avait une table unique pour la globalité du por-
tefeuille, nous courions le risque de n’être ”Best Estimate” sur aucune des
sous-populations significatives du portefeuille. Par exemple une table unisexe
sous-estimera systématiquement la mortalité des hommes et sur-estimera celle
des femmes. Il faudra avoir recours à des ajustements d’âge peu pratiques et
imprécis.

Nous possédons donc huit tables récentes estimant la mortalité d’une population
d’assurés :

Grande branche, genre décès, homme (IDH) Groupe, genre décès, homme (GDH)
Grande branche, genre décès, femme (IDF) Groupe, genre décès, femme (GDF)
Grande branche, genre vie, homme (IVH) Groupe, genre vie, homme (GVH)
Grande branche, genre vie, femme (IVF) Groupe, genre vie, femme (GVF)
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3.1. Tables de mortalité

Il est important de savoir exactement comment une telle table dite d’expérience
a été construite car il faut s’assurer de la fiabilité des données et de l’adéquation
avec la population assurée dont on cherche à modéliser la mortalité.

Le retraitement des statistiques de la population observée est indispensable pour,
d’une part réduire l’effet des aléas statistiques et s’assurer que la probabilité
de décès augmente de façon régulière avec l’âge, mais d’autre part pallier à
un nombre d’observations suffisantes pour certaines classes d’âges. On a alors
recours à des méthodes de lissage et d’ajustement sur des lois analytiques telles
que :
– les modèles paramétriques (loi de Gompertz, de Makeham, Weibull,

logistique. . . )
– les modèles relationnels (Cox, Brass, Hannerz)
utilisés en présence de petits échantillons pour extrapoler un taux de mortalité
continu entre tous âges.
– les lissages paramétriques (ajustement par des fonctions splines, Gompertz-

Makeham)
– les lissages non paramétriques (Whittaker-Henderson, moyennes mobiles

pondérées)
permettent d’obtenir une série plus régulière mais toujours compatible avec les
observations.

Un ajustement paramétrique a été utilisé ici, afin de substituer aux taux annuels
bruts de mortalité observés, une fonction continue et croissante, passant à
l’intérieur des intervalles de confiance donnés par les observations statistiques.
On suppose donc que la courbe de mortalité appartient à une certaine famille
de fonctions mathématiques dont on estime les paramètres avec la méthode
des moindres carrés pondérés 2. En l’occurrence, la formule de Makeham a été
retenue, et on postule ainsi que la probabilité de décès d’un individu à l’âge x,
qx , est modélisée de la façon suivante :

qx = 1− s.gc
x(c−1)

0 < s ≤ 1

0 < g < 1

c > 1

Pour la table Assuralia, on peut même parler de double ajustement, car la
formule de Makeham a été utilisée en distinguant les âges de 25 à 60 ans et
de 60 à 85 ans, d’où une irrégularité de la courbe.

⇒ Voir l’annexe : Ajustement pour la population de groupe et les
paramètres associés.

L’hypothèse sous-jacente à l’utilisation de cette table pour le calcul du Best
Estimate, ainsi que pour la projection de la MCEV par exemple, est l’adéquation

2. Voir Théorie et pratique de l’assurance vie de Pierre Petauton (Dunod)
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3.1. Tables de mortalité

entre la population du portefeuille et la population assurée belge. Juger cette
hypothèse réaliste doit donc, comme pour chaque paramètre, constituer la
première étape de la modélisation.

Certes avoir une activité d’assurance principalement par libre prestation de
service n’est pas aussi homogène qu’une population d’un seul et même Etat,
pourtant dans le cas du Luxembourg, cette considération est loin d’être moins
réaliste que d’utiliser une table réglementaire obsolète et bornée à une population
globale. Lorsque la taille du portefeuille ne permet pas la création d’une véritable
table d’expérience fiable, cette alternative semble à l’heure actuelle la plus
réaliste et le meilleur compromis.

Il est également facilement possible d’adapter, d’année en année, la table de
mortalité par l’utilisation d’un facteur d’ajustement obtenu par back testing
de la mortalité de la table avec celle observée. On obtient alors une courbe
de mortalité de même concavité que celle initiale, mais simplement translatée
pour l’ajuster au mieux au portefeuille.

Tester et ajuster de façon régulière la table de mortalité est indispensable,
car sous-estimer la mortalité entraîne à terme d’importantes pertes techniques
de mortalité qu’il faudra financer. La sur-estimer aurait également un impact
négatif sur les produits de rente ou de garantie en cas de vie dont la provision
serait également sous-évaluée.

Comparons différentes tables de mortalité européennes (française, belge et
hollandaise) avec la table Assuralia :

24



3.1. Tables de mortalité

Figure 3.1.1: Comparaison des tables pour les hommes

Figure 3.1.2: Comparaison des tables pour les femmes
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3.1. Tables de mortalité

Plus le taux de mortalité est faible avant les âges extrêmes (Assuralia, TH-TF),
plus on voit apparaître le phénomène de rectangularisation que l’on constate à
chaque mise à jour des tables de mortalité dans le temps. Pour les hommes,
l’utilisation de la table Assuralia conduit à projeter les flux des polices avec
une probabilité de décès nettement plus faible. Cette observation est à nuancer
chez les femmes où cette probabilité est naturellement plus faible, mais dans
ce cas, le gain de prudence est moindre et se confond à terme avec la table
française TF00-02. On constate que l’âge ultime de la table Assuralia est plus
faible que sur les tables réglementaires, car aucune observation ne concernait les
âges extrêmes, et ceux-ci n’ont pas été extrapolés pour conserver une certaine
robustesse 3 de la table.

Or, pour le calcul du Best Estimate, la mortalité "réelle" n’est utilisée que
pour projeter et faire évoluer les différents flux dans le temps. En revenant
à la méthode de calcul de Prophet, cela revient à estimer la diminution du
nombre de polices en cours avec, entre autre, une hypothèse de mortalité réaliste.
La provision mathématique par police quant à elle reste la réserve statutaire
calculée avec les tables précisées dans la note technique (et éventuellement le
correctif d’âge). L’impact du choix de la table est donc à nuancer et l’effet
réellement observé lors de la projection est une diminution plus lente du nombre
de polices.

3. Natacha Brouhns et Michel Denuit parlent de pragmatisme de l’actuaire concernant
l’âge ultime : "Nous ne tenterons pas de "fermer" les tables de mortalité, et encore moins de
projeter ces probabilités de décès dans l’avenir, jugeant l’entreprise trop hasardeuse"
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3.1. Tables de mortalité

Exemple :
Pour un assuré de 36 ans, l’extinction du nombre de polices uniquement
par cause de mortalité (et non de rachat ou de réduction), est projeté sur
12 ans (144 mois) de la manière suivante (base 100 000 000/1) :

Figure 3.1.3: Vitesse d’extinction du nombre de polices (en mois)

L’impact du choix de la table est donc à nuancer et l’effet réellement observé
lors de la projection est une diminution plus lente du nombre de polices.

Cette exigence pour les hypothèses de projection des cash-flow n’est pas ano-
dine. Certes les tables d’expérience homologuées permettent déjà d’adapter
la tarification et le provisionnement à la sinistralité réelle, mais Solvabilité 2
pointe officiellement du doigt cette différence constatée et connue, en cherchant
à imposer une estimation réaliste par le choix d’une évaluation Best Estimate.
Mais les assureurs ayant un portefeuille de taille modeste, ou des produits
encore peu développés, doivent également pouvoir déduire des lois d’expérience
adaptées sans pouvoir se baser uniquement sur leurs données personnelles.
Actuellement la meilleure réponse à apporter semble être l’utilisation de tables
d’expériences du marché, lesquelles seront pondérées pour être adaptées à la
sinistralité observée sur le portefeuille.
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3.1. Tables de mortalité

3.1.3 Crédibilité et mortalité d’expérience

On pourrait alors utiliser un modèle de crédibilité basé sur les travaux de
Bühlmann et Straub (1970) tel que repris par Hardy et Panjer (1998) 4,
afin d’obtenir une approximation de la mortalité d’expérience utilisée pour
projeter les flux des contrats.

Proposition. Soit Xij =
Sij

Pij
le ratio entre la sinistralité observée et la sinis-

tralité théorique fournie par la table.

avec Sij le montant des sinistres observés de la compagnie i l’année j, et et Pij

le montant attendu des sinistres, j = 1, 2, . . . , ni années d’observation.

3.1.3.1 Hypothèses :

1. la distribution de Xij dépend du paramètre fixé et inconnu θi et de Pij

2. les Xij sont indépendants conditionnellement à θi fixé, avec la moyenne
et la variance :

E [Xij | θi] = µ (θi)

V ar [Xij | θi] =
σ2 (θi)

Pij

3. les couples (θi;Xij) , (θk;Xkl) sont des variables aléatoires indépendantes
pour k #= i

4. θi v.a. i.i.d, donc le paramètre est identique pour le marché et toutes les
compagnies i.

3.1.3.2 Définition

On cherche donc à estimer E [Xi,n+1 | θi] = µ (θi) avec Xi,1,...,Xi,ni observés

Soit Pi =
∑ni

j=1 Pij la somme attendue des sinistres pour la compagnie i,

l’estimateur des moindres carrés donné par la théorie de la crédibilité de
Bühlmann et Straub est alors :

µ̂i = Zi.X̄i + (1− Zi).E [µ (θi)]

4. Hardy M., Panjer H. (1998), "A credibility approach to mortality risk"
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3.2. Loi de rachat

avec :

le facteur de crédibilité Zi =
Pi

Pi + φ

φ =
E
[
σ2 (θi)

]

V ar [µ (θi)]

la moyenne empirique du ratio de mortalité pour la compagnie i :

X̄i =
1

Pi

ni∑

j=1

PijXij

=

∑ni
j=1 Sij

Pi

De cette façon on utilise prudemment ses statistiques propres, tout en conservant
les taux observés sur le marché, le tout pondéré par le facteur de crédibilité en
fonction de la quantité d’information existante ainsi que sa fiabilité.

Rappelons également que pour autant que l’on retire la prudence
dans le calcul du Best Estimate, il ne faut pas oublier l’ajout de la
marge de risque, et du module de risque de provisionnement,
prévu par la nouvelle norme européenne, dont l’objectif est
toujours de sécuriser le secteur de l’assurance.

3.2 Loi de rachat

Le comportement de rachat de l’assuré est un phénomène complexe qui peut
être modélisé selon différents niveaux de complexité. Dans la pratique, on
constate que différents paramètres peuvent influencer le comportement des
assurés. On peut citer :
- la fiscalité de son pays d’imposition
- l’ancienneté du contrat
- le rendement de son contrat
- le montant de la participation aux bénéfices versé
- l’âge de l’assuré
- le type de contrat
Il faut ensuite raisonner en appliquant le principe de proportionnalité dans le
détail de la modélisation retenue.

Utiliser un comportement de rachat dynamique en fonction de la rentabilité du
contrat nécessite la génération de scénarios économiques stochastiques. Nous
reviendrons donc sur ce point dans la seconde partie.
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3.3. Structure par terme des taux sans risque

La discrimination de l’intensité de rachat par rapport à l’âge ou une caractéris-
tique fine du contrat nécessite un portefeuille important et stable, ainsi qu’un
temps de calcul plus important.

Le minimum requis est donc la distinction des types de contrats car ceux-ci
s’adressent à des assurés ayant des intérêts, des objectifs et donc des com-
portements très différents. Leur aversion au risque ainsi que le contexte pour
lequel ils souscrivent le contrat n’est pas comparable. Ici aussi il peut être
intéressant de recourir à la théorie de la crédibilité 5 pour se fier de plus en plus
aux observations du portefeuille en fonction du volume de ses données. Par
exemple pour un nouveau produit à fonds dédiés, on pourra dans un premier
temps se baser sur le taux de rachat observé sur l’intégralité des contrats en
unités de compte, puis au fur et à mesure que les données du produit deviennent
importantes et stables, on pourra affiner ce taux en tenant de plus en plus
compte du comportement observé pour ce produit en particulier.

3.3 Structure par terme des taux sans risque

La courbe est celle fournie par le CEIOPS pour le calcul du QIS 5 et reprise par
le Commissariat aux Assurances dans le cadre du rapport actuariel. Contraire-
ment à l’hypothèse utilisée par l’Institut des Actuaires, la structure par terme
retenue ici reconnait que les taux à très long terme puissent être inférieurs aux
taux moyens long terme. Nous obtenons une courbe à double inflexion comme
ceci :

Elle a été construite à partir des taux swaps, corrigés de 10bp pour tenir compte
du risque de contrepartie et extrapolé sur un horizon très long de 135 années 6 :

5. Voir section précédente.
6. Voir plus de détails sur la méthode utilisée à l’adresse :

http ://ec.europa.eu/internal_market/insurance/docs/solvency/qis5/ceiops-paper-
extrapolation-risk-free-rates_en.pdf
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3.4. Vecteur du rendement certainty-equivalent

Figure 3.3.1: Courbe moyenne des taux spots sans risque (en année)

Cette forme de courbe des taux ne peut pas être reproduite avec le modèle de
Vasicek à un facteur comme nous le verrons dans la seconde partie.

3.4 Vecteur du rendement certainty-equivalent

Ce vecteur représente le rendement moyen attendu du portefeuille de l’assureur,
en contrepartie des contrats dont le risque d’investissement n’est pas supporté
par l’assuré (hors produits d’assurance en unités de compte).

Même en hypothèse risque-neutre, ce vecteur n’est pas égal à la structure par
terme des taux sans risque, étant donné que nous tenons compte de la réalité
du portefeuille à la date d’évaluation. Tous les actifs autres que les obligations
rapportent en moyenne le taux sans-risque, mais pour le portefeuille obligataire,
on conserve les actifs jusqu’à leur échéance, puis progressivement on réinvestit
dans de nouvelles obligations qui elles vont rapporter le taux sans risque. Les
titres obligataires actuellement en portefeuille rapporteront le taux de coupon
réel jusqu’à leur échéance.
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3.4. Vecteur du rendement certainty-equivalent

Actions 

Immobilier 

Liquidités 

Obligation 3 

Achat nouvelles obligations 

Vecteur Certainty Equivalent sur toute la durée de projection 

Taux de rendem
ent estim

és 

Maturité 1 

Maturité 2 

Maturité 3 

Taux de rendement interne réel Taux sans risque

Obligation 2 

Obligation 1 

Taux sans risque

Taux sans risque

Asset-mix du portefeuilleAllocation 
initiale 

Allocation 
cible 

Figure 3.4.1: Construction du vecteur de rendement certainty equivalent sous
une hypothèse risque-neutre

L’hypothèse qu’on ne réalisera pas de plus ou moins-values latentes en vendant
un titre avant l’échéance, est justifiée par l’existence du classement en Hold to
Maturity (HTM) dans les normes IFRS.
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3.4. Vecteur du rendement certainty-equivalent

Figure 3.4.2: Rendement certainty equivalent estimé résultant de la composi-
tion du portefeuille sous une hypothèse risque-neutre

En observant la courbe résultant de l’asset-mix, on peut mettre en évidence
deux propriétés :

1. La grande majorité du portefeuille est composé d’obligations étant donné
que le vecteur certainty-equivalent est beaucoup plus proche du rendement
des obligations la première année.

2. La vitesse de convergence du vecteur certainty-equivalent vers le taux
sans risque, permet d’évaluer la duration du portefeuille obligataire.

C’est à partir de ce vecteur que l’on déterminera la participation aux bénéfices
dans le scénario moyen, utilisé dans la méthode déterministe de projection des
cash-flows.
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3.5. Courbe de l’inflation

3.5 Courbe de l’inflation

La courbe de l’inflation résulte de la moyenne de 5000 scénarios d’inflation
obtenus selon le modèle de Smith.

Figure 3.5.1: Scénario moyen du taux d’inflation (en années)

Certains modèles comme celui de Wilkie, propose un modèle complet d’évolu-
tion des actifs entièrement liés, et donc corrélés, à l’inflation comme variable
de départ.
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3.6. Estimation des frais généraux

3.6 Estimation des frais généraux

Les frais généraux sont les frais réels que subit l’assureur pour gérer son
portefeuille. Il faut donc estimer le coût de l’acquisition et de la gestion des
contrats pendant toute la durée du contrat. On tient compte aussi bien des
salaires des gestionnaires, du coût des opérations sur les fonds, ainsi que les
frais d’acquisition versés aux agents et courtiers.

Il est nécessaire de distinguer les frais fixes immuables quel que soit le contrat,
et des frais variables proportionnels à la provision mathématique du contrat.

On fait ensuite évoluer ce montant à chaque période en fonction de la courbe
d’inflation retenue précédemment. Les frais généraux du contrat i à la date t
s’obtiennent donc comme :

Fraisit =
(
Fi + fi × Provmathit

)
(1 + it)

Avec :
Fi les frais fixes du contrat i
fi les frais variabes du contrat i
Provmathit le montant de la provision du contrat i à la date t
i l’inflation à la date t
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Chapitre 4

Assurances à garantie en cas de
décès et en cas de vie

Rappelons ici la définition essentielle du Best Estimate : les engagements
contractuels de l’assureur s’évaluent comme la somme probabilisée de tous les
cash-flows futurs liés au contrat d’assurance, actualisés au taux sans risque et
en tenant compte de la valeur des options intrinsèques.

Les hypothèses précédentes vont nous permettre de faire évoluer chaque contrat
jusqu’à l’extinction du portefeuille, en distinguant chaque flux séparément pour
ensuite déterminer la somme actualisée de ces flux futurs probables.

4.1 Les primes reçues

Comme nous sommes dans une vision run-off, il n’est pas permis d’estimer
d’éventuelles primes additionnelles ou souscription de contrats futurs (ceci
est également valable pour les contrats en unités de compte et les bons de
capitalisation).

Il faut donc uniquement projeter les primes futures si le contrat respecte les
caractéristiques suivantes :
– les primes sont fixées contractuellement dès la souscription des contrats
– le contrat n’est pas résiliable par l’assureur de manière unilatéralle
– le taux technique et les chargements ne sont pas modifiables dans la suite du

contrat
Ces flux viennent donc en diminution de l’engagement de l’assureur en tant
que cash-flows entrants.
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4.2. Les flux de prestation

4.2 Les flux de prestation

On projette séparément les différentes prestations qui peuvent intervenir au
cours de la vie du contrat :

- Prestation de décès / survie - Versement en cas de rachat
- Prestations de rente - Versement à l’échéance du contrat

Les prestations vont donc augmenter l’engagement de l’assureur et on augmen-
tera donc le Best Estimate de la somme actualisée des prestations futures.
En se rappelant du fonctionnement du logiciel Prophet, on va faire décroitre
le nombre de contrats au cours du temps en fonction du taux de chute, et en
déduire les flux par la suite en fonction de l’évolution des capitaux considérés.
Exemple :

Prenons comme exemple un contrat d’assurance mixte à prime unique
sur N années.
Le capital en cas de vie est égal à celui en cas de décès égal à K.
L’individu est agé de x à la souscription et soit qx+t la probabilité de
décéder entre x+t et x+t+1 avec t l’âge du contrat.
Soit #BoP(t) et #EoP(t) le nombre de polices en début et en fin de
période t
Soit rt le taux de rachat estimé en t
Les décès et les rachats interviennent en milieu de période

On peut à présent déduire la série de flux qu’il faudra actualiser :

CF décès
t = #BoPt × qx+t × (1− rt)

=
t∏

k=1

(1− rt)
t−1∏

l=1

(1− qx+j−1) qx+t

CF rachat
t = #BoPt × rt × (1− qx+t)

=
t∏

k=1

(1− qx+k−1)
t−1∏

l=1

(1− rl) rt
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4.3. La marge administrative

4.3 La marge administrative

On appelle ”marge administrative” la différence entre les frais prélevés sur le
contrat par l’assureur, et ses frais réels pour la mise en place et la gestion du
contrat. On projette cette marge administrative future en tenant compte de
l’inflation et de l’évolution du volume des contrats. La somme actualisée au
taux sans risque de ce flux viendra en diminution (augmentation) du montant
du Best Estimate, étant donné que l’on tient compte d’un gain (perte) futur(e).

4.4 La participation aux bénéfices

Dans le calcul du Best Estimate selon le principe de Solvency 2, la participation
aux bénéfices (PB) reversée aux assurés selon les résultats financiers et tech-
niques doit être pris en compte. Que ce soit la PB règlementaire qui représente
le minimum à distribuer imposé par le code des assurances (en France), ou
la PB discrétionnaire, variable et déterminer par l’assureur selon sa stratégie,
toutes formes de bonus aux contrats doit être mesuré par le Best Estimate.

Lors de la détermination du SCR par la suite, l’assureur pourra tenir compte
de sa possibilité de diminuer la PB discrétionnaire pour amortir les chocs qui
pourraient se produire dans les différents modules de risque prévus par la
nouvelle règlementation.

4.4.1 La règlementation au Luxembourg

Dans ce domaine, les règlementations française et luxembourgeoise ne sont pas
comparables. Voici un extrait de la Lettre circulaire 10/1 du Commissariat aux
assurances relative au rapport actuariel annuel des entreprises luxembourgeoises
d’assurance-vie :

”Un contrat est éligible pour une participation aux bénéfices financiers
dès lors qu’il comporte une garantie de taux (y compris celle d’un
taux zéro) et que ses conditions générales prévoient la possibilité
d’une participation aux bénéfices financiers. Au cas où seule une
partie d’un contrat est susceptible de bénéficier d’une revalorisation,
comme c’est par exemple le cas des contrats multisupports, seule
cette partie des contrats est à inclure. Ce qui importe peu, au
contraire, est la question de savoir si un contrat a effectivement
bénéficié d’une participation aux bénéfices au cours de l’exercice :
sont donc à inclure l’ensemble des contrats ou parties de contrats
éligibles, sans considération de l’octroi ou non d’une participation.”
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4.4. La participation aux bénéfices

On parle ici d’ ”éligibilité” à la participation aux bénéfices car il n’existe pas
d’obligation règlementaire en la matière. Les conditions générales et particulières
n’imposent pas à l’assureur de verser de la PB, et donc aucun minimum
règlementaire comme c’est le cas en France.

On parle ici de participation bénéficiaire purement discrétionnaire car celle-ci
dépend intégralement de la politique de PB de l’assureur pour récompenser et
fidéliser ses assurés.

4.4.2 Les hypothèses de distribution de la participation
bénéficiaire

Etant donné qu’aucune contrainte règlementaire n’est fixée dans ce domaine, il
faudra faire des hypothèses de distribution de ce bonus pour être capable de
déterminer l’impact sur les flux futurs.

Par exemple dans notre exemple, on retiendra la méthode suivante : l’assureur
reverse comme PB à l’assuré tous les produits financiers excédant le taux
technique garanti augmenté d’une marge servant à rémunérer les actionnaires.
On obtient donc :

PBt = PMt ×max(ϕt − rt −mt; 0)

Avec :
ϕt le rendement financier en date t
rt le taux garanti en t
mt la marge actionnaire en t
PMt la provision mathématique du contrat à la date t

Le mécanisme de distribution de PB vient revaloriser les prestations, et donc
modifier la projection des flux. Comme le calcul du Best Estimate tient parfai-
tement compte de ces séquences de prestations futures, on mesure donc direc-
tement l’impact de la PB sur le Best Estimate. Il faut néanmoins remarquer
que tenir compte de la PB à travers les flux de prestation qui n’interviennent
pas au mêmes dates que la dotation, peut biaiser le résultat par l’effet de
l’actualisation. Cependant l’assureur décaissera réellement la PB au moment du
paiement de la prestation sous quelque forme que ce soit, même si légalement
il n’est plus en possession du montant de la PB au moment du versement au
contrat.
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4.5. La réassurance

4.5 La réassurance

Le Best Estimate est calculé brut de réassurance. Or l’effet de la réassurance
doit être pris en compte dans le calcul du SCR et il sera donc demandé d’évaluer
également le Best Estimate net de réassurance.

Remarque : Nous ne traitons pas la réassurance dans le cadre des contrats en
unités de compte comportant une garantie décès dont la somme sous risque est
couverte par un réassureur. Cependant la méthode est strictement identique
du moment qu’il est possible d’isoler les flux de réassurance.

4.5.1 Le profit de réassurance

Tenir compte de l’engagement du réassureur à travers tous les flux, revient
en réalité à simplement diminuer l’engagement de l’assureur, du profit de
réassurance.

"CEIOPS CP 44 : Technical provisions- Article 86 g Counterparty
default adjustment to recoverables from reinsurance contracts and
SPV’s"

3.218. For the probability-weighted average of future cash-flows of
recoverables from existing reinsurance contracts and special purpose
vehicles the following cash in- and out-flows should be taken into
account : Cash in-flows should include at least

– recoverables from reinsurance contracts and special purpose vehicles for claims
payments or benefits and recoverable for related expenses ; and

– revenues from reinsurance commission and from shares in profit from technical
sources relevant to individual reinsurance contracts. Cash out-flows should
include at least

– future premiums for reinsurance contracts and special purpose vehicles,
– if relevant, shares in profit due to the reinsurance contract.

Nous avons ainsi les flux du profit pour l’assureur du traité de réassurance qui
se calculent comme :

Signe Flux
- Primes de réassurance
+ Prestations du réassureur
+ Commissions de réassurance
+ PB de réassurance
= Profit suite à la réassurance
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4.5. La réassurance

Etant donné que ce profit vient en diminution du Best Estimate brut de
réassurance, le signe des différents flux est finalement inversé.

Mais il ne suffit pas d’isoler les flux de réassurance (prestations, PB, prime) et de
retraiter les engagements de l’assureur, car il faut également tenir compte de la
probabilité non-nulle que le réassureur fasse défaut à la date t et qu’il ne puisse
honorer ses propres engagements envers l’assureur. On parle ici d’ajustement
de réassurance.

4.5.2 L’ajustement de réassurance

L’engagement de l’assureur sera en réalité diminué d’un montant inférieur au
profit de réassurance projeté, étant donné que l’on intègre en plus le risque
de défaut du réassureur dans le calcul. Cela correspond au risque de défaut
du réassureur ”attendu” en fonction du rating 1, alors que le risque de défaut
non-anticipé sera à prendre en compte dans le module du risque de défaut des
contreparties dans le calcul du SCR.

3.200.The amounts of recoverable from reinsurance contracts and
special purpose vehicles should be adjusted in order to take account
of expected losses due to counterparty default, whether this arises
from insolvency, dispute or another reason. Further advice on how
to adjust amounts recoverable from reinsurance contracts and spe-
cial purpose vehicles, can be found in CEIOPS-DOC-38/09 Level
2 advice on counterparty defaultadjustments to recoverable from
reinsurance contract and SPV’s14.

La probabilité de défaut en fonction de la notation est donné par le CEIOPS 2

dans le tableau ci-dessous :

Rating Qualité de crédit Proba de défaut
AAA 1 0.05%
AA 1 0.10%
A 2 0.20%

BBB 3 0.50%
BB 4 2.00%

B ou moins 5 10.00%

1. on parle en anglais de ”Adjustment of recoverables due to expected default”
2. QIS5 Technical Specifications

41



4.5. La réassurance

Elle évolue au cours des périodes t de la façon suivante :

PDt = PD.(1− PD)t−1

La probabilité de défaut en t est donc la probabilité de ne pas avoir fait défaut
pendant les t-1 périodes précédentes, puis de faire défaut avec la probabilité
PD.

On suppose donc ici que le rating de l’assureur sera constant au cours du temps,

Il faut également tenir compte du taux de recouvrement ”tr”, c’est-à-dire du
pourcentage que l’assureur pourra quand même récupérer en cas de défaut du
réassureur, étant donné que la liquidation permettra quand même d’honorer
une partie des engagements envers les créanciers prioritaires.
Exemple :

Illustrons la méthode du calcul de l’ajustement Adj sur un exemple
simplifié,
soit Ct la prestation du réassureur projetée à la date t, avec t=1, 2 ou 3
soit trt = tr = 40% comme proposé par le CEIOPS

Adj = PD1 [(1− tr) . (C1 + C2 + C3)]

+ PD2 [(1− tr) . (C2 + C3)]

+ PD3 [(1− tr) .C3]

La première année, si le réassureur fait défaut avec la probabilité PD1,
la perte pour l’assureur sera tous les flux restants, excepté une partie que
le réassureur pourra quand même honorer.

En généralisant à T périodes nous avons donc :

Adj = (1− tr)
T∑

t=1

[
PD. (1− PD)t−1

T∑

u=t

Cu

]

Il existe une simplification proposée par le CEIOPS qui s’appuie sur la duration
modifiée, mais évalue grossièrement l’ajustement de réassurance comme un
pourcentage fixé à ajouter au Best Estimate.
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4.6. Conclusion

4.6 Conclusion

Si l’on récapitule tous les flux à tenir compte pour aboutir au Best Estimate
net de réassurance des contrats que l’on appelle de la ”Vie Classique” 3, nous
appliquons alors la formule présentée précédemment :

BE =
∞∑

t=1

EQ




∏

s≤t

1

(1 + rs)

(
CF out

t − CF in
t

)




Avec :
Q la probabilité risque-neutre
CFt les cash-flows entrants et sortants à la date de projection t
rt le taux sans risque forward à la date t

Dans un modèle déterministe et en faisant l’hypothèse que les cash-flows
entrants et sortants sont indépendants du marché et donc du taux d’intérêt,
nous obtenons simplement :

BE =
∞∑

t=1

{
P (0, t)× EP

(
CF out

t − CF in
t

)}

Avec :
P(0,t) le prix d’un zéro-coupon en date 0, versant 1 en date t
CFt les cash-flows entrants et sortants à la date de projection t
P la probabilité naturelle 4

3. par opposition aux contrats en Unités de Compte
4. Filipovic (2004) : en cas d’indépendance entre le marché G et les engagements

d’assurance H, la probabilité risque neutre Q sur la combinaison des deux peut se décomposer
en Q|G × P|H
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4.6. Conclusion

Résumons la prise en compte des différents flux nécessaires pour obtenir le Best
Estimate brut et net de réassurance :

Flux Détails Résultat
- Primes commerciales = Prime pure + Chargements
+ Prestations de décès (+PB)

de rachats (+PB)
de rentes (+PB)
de maturité (+PB)

+ Frais généraux = Acquisition + Gestion
+ Commissions

= BE brut de
réassurance

- Profit de réassurance - Prime de réassurance
+ Flux de réassurance
+ Commissions de réassurance
+ PB de réassurance

+ Ajustement de réassurance
= BE net de
réassurance

Ici on ne fait pas apparaitre la somme actualisée des cash-flows au taux sans
risque, pourtant elle est indispensable et s’applique sur la totalité des flux
recensés pour obtenir le Best Estimate.

Remarque importante :

"CEIOPS CP 44 : Technical provisions- Article 86 g Counterparty
default adjustment to recoverables from reinsurance contracts and
SPV’’s"

Articles 75 to 78 of the Level 1 text. Such a valuation recognise the
possibility that cash in-flow could exceed cash out-flow i.e. expected
profit during remaining periods on risk. In such circumstances the
best estimate may be negative. This is acceptable and undertakings
are not required to set to zero the value of the best estimate. The
valuation should take account of the time value of money where
risks in the remaining period would give rise to claims settlements
into the future.

C’est-à-dire qu’un résultat négatif pour un contrat ou même pour la totalité
d’un produit, est parfaitement acceptable et reflète la forte profitabilité de ce
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4.6. Conclusion

produit. On a donc la somme actualisée des cash-flows entrants est supérieure
à celle des cash-flows sortant.

En pratique on retrouve cette situation dans les produits temporaire décès ou
de solde restant dû, car on constate généralement une très faible sinistralité à
cause du jeune âge des assurés ou de la faible durée du contrat. En contrepartie
les primes et les chargements sont importants car interviennent souvent en
prime unique à la souscription du contrat : l’effet de l’actualisation n’intervient
donc pas.
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Chapitre 5

Contrats en unités de compte

5.1 Définition

Nous avons vu que contrairement à ce que l’on pouvait attendre, la grande
majorité des contrats en unités de compte ne peut pas être considérée comme
des passifs parfaitement réplicables par des instruments financiers. Cela vient
du fait que l’assureur prélève régulièrement des frais de gestion directement
sur la valeur du contrat. Une marge de risque devra donc être calculée en
complément des engagements Best Estimate pour ce type de contrats.
L’existence de frais de gestion et de garanties décès complémentaires impliquent
également que l’évaluation Best Estimate des contrats en unités de compte est
différente du montant de la valeur du contrat à la date d’évaluation.
Raisonnons progressivement.
Tout d’abord nous avons la valeur de rachat qui est égale à la valeur instantanée
du portefeuille en unités de compte hors pénalités et frais de rachat.
Comme nous sommes en probabilité risque-neutre, quel que soit le fonds, on
capitalise et actualise le portefeuille au même taux sans risque r, c’est-à-dire
que la valeur projetée et actualisée (VAP) de la valeur du contrat Vt reste
toujours égale à sa valeur initiale D, égale aux primes nettes de frais d’entrée
versées au contrat :

V AP (V0) = D

V AP (V1) =
D.(1 + r1)

(1 + r1)
= D

...

On fait donc juste s’éteindre la valeur de cet engagement en fonction des
hypothèses sur le taux de chute (mortalité, rachat).
Ajoutons ensuite les frais de gestion.
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5.2 Projection des frais

Ces frais sont prélevés sur la valeur du contrat et viennent en contrepartie
de frais réels nécessaires à la tenue des contrats. Mais pour une raison de
rentabilité, les frais de gestion sont généralement supérieurs aux frais généraux
de la société.

Nous avons d’une part la projection des frais de gestion, et d’autre part en face,
la projection des frais généraux.

La valeur du contrat évolue comme suit :

V0 = D

V1 = D(1− g)(1 + r1)

V2 = D(1− g)2(1 + r1)(1 + r2)

Ce qui, du point de vue de l’assureur donne en termes de flux Ft actualisés :

V AP (F0) = D

V AP (F1) =
D(1 + g)(1 + r1)

(1 + r1)
− f

(1 + i1)

(1 + r1)

= D +Dg − f
(1 + i1)

(1 + r1)

V AP (F2) = D(1 + g)2 − f
(1 + i1)(1 + i2)

(1 + r1)(1 + r2)
...

V AP (Ft) = D + ϕ(g,D)− ψ(f, it, rt)︸ ︷︷ ︸
#= 0

Avec :
f les frais réels
i l’inflation
rt le taux sans risque en t
D le montant initial du contrat

Nous avons donc isolé :
- la composante D qui ne varie qu’en fonction de la loi de chute,
- la composante ϕ qui représente les frais de gestion projetés qui évoluent

également en fonction du taux de chute. Ce montant vient en diminution
de l’engagement de l’assureur car c’est un flux entrant.

- la composante ψ qui représente les frais généraux. Ce montant vient en
augmentation de l’engagement de l’assureur.
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D’ores et déjà nous pouvons dire que ces flux, à cause de la marge administrative,
ne sont pas réplicables et il faudra donc ajouter la marge de risque à ce
Best Estimate. Ajoutons enfin la prise en compte des garanties décès dans
l’engagement de l’assureur.

5.3 Modélisation de la garantie décès

Devant l’aversion au risque de certains investisseurs désirant effectuer des
placements sur des actifs risqués tout en préservant l’objectif de transfert
de leur patrimoine, les assureurs proposent aujourd’hui toute un gamme de
garanties financières en cas de décès de l’assuré. Ainsi le capital versé aux
bénéficiaires sera majoré du montant prévu par la garantie décès, en cas
d’évolution défavorable des fonds.

5.3.1 Présentation des garanties

Les types de garanties peuvent être très variables mais on peut citer les formes
les plus connues :

5.3.1.1 la garantie plancher :

On garantit un montant minimum, souvent égal à la somme des primes versées
par l’assuré. En cas de décès en t l’engagement se calcule comme :

Et = max(vnit.Nt; plancher)

Avec :

vnit la valeur d’un actif à la date t
Nt le nombre d’unités de compte à la date t
plancher la valeur du capital garanti
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Graphiquement cela se représente par :

Figure 5.3.1: Schéma de fonctionnement de la garantie plancher dans un
contrat en unités de compte

Elles peuvent être aussi indexées pour que le plancher soit revalorisé par rapport
à l’inflation par exemple.

5.3.1.2 la garantie cliquet :

Le capital garanti est automatiquement réhaussé dès lors que la valeur du fonds
atteint un nouveau maximum :

Figure 5.3.2: Schéma de fonctionnement de la garantie cliquet dans un contrat
en unités de compte

5.3.1.3 la garantie majorée :

On garantit un montant supérieur à la totalité des primes versées, soit fixé à la
souscription, soit exprimé en pourcentage supplémentaire de la réserve.
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Figure 5.3.3: Schéma de fonctionnement de la garantie majorée dans un
contrat en unités de compte

5.3.2 Evaluation

Comment évaluer les engagements en Best Estimate induits par cette garantie
décès de la part de l’assureur ?

Continuons le raisonnement par entrée et sortie des flux actualisés liés au
contrat.

Le coût de cette garantie pour l’assuré est calculé de la façon suivante :
1. on détermine la somme sous risque, égale à la différence entre le capital

garanti et la valeur du contrat.
2. si la somme sous risque est positive, on lui applique un taux de prime

de risque obtenu à partir de la probabilité de décès durant l’année. On
utilise pour ceci la table de mortalité tarifaire.

3. on prélève cette prime de risque sur le nombre d’unités de compte en
réserve.

Il faut donc projeter les primes de risque futures prélevées, en contrepartie du
coût réel de la garantie pour l’assureur.

On obtient finalement :

V AP (Ft) = D+ϕ(g,D)−ψ(f, it, rt)+θ(Nt, vnit, Gt, qxt)−γ(Nt, vnit, Gt, q
∗
xt
)

- La fonction θ représente la prime de risque en fonction de la valeur du fonds,
du capital garanti Gt et du taux de prime de risque en t représenté ici
simplement par la probabilité de décès de la table de mortalité tarifaire.

- La fonction γ représente la valeur de la garantie pour l’assureur en date t.
Pour la calculer on la représente par une option de vente qui serait offert
à l’assuré.

50



5.3. Modélisation de la garantie décès

- qxt représente la probabilité de décès selon la table de mortalité tarifaire.
- q∗xt

représente la probabilité de décès réaliste selon la table de mortalité
d’expérience.

Etant donné que le prélèvement de la prime de risque est mensuel, il faut garder
le même pas temporel et donc considérer une série d’option de vente de prix
d’exercice égal au montant garanti, de sous-jacent égal à la valeur du contrat
et d’échéance un mois.

Cette option est évaluée par la formule de Black et Scholes (voir section 6.3
page 58 pour la signification de d1 et d2).

Nous avons alors, avec Φ la fonction de répartition de la loi normale :

γ(Nt, vnit, Gt, q
∗
xt
) = q∗xt

×P (Nt.vnit, Gt, σ) = q∗xt
×
[
Gt.e

−r.Φ(−d2)−Nt.vnit.Φ(−d2)
]

On multiplie par la probabilité de décéder le mois t, car elle représente la
probabilité que l’assuré exerce son option de vente. Or cette probabilité de
décès est cette fois-ci obtenue à partir de la table de mortalité d’expérience.

La valeur intrinsèque de cette option est naturellement égale à la somme sous
risque en date t.

Sur une durée d’un mois, la valeur spéculative n’étant pas très élevée, cela
revient donc approximativement à considérer la somme sous risque, déjà utilisée
pour calculer la prime de risque.

Nous pouvons donc dire que la marge technique sur les garanties décès est
représentée par :

θ(Nt, vnit, Gt, qxt)− γ(Nt, vnit, Gt, q
∗
xt
) ' max(Gt −Nt.vnit; 0)× (qxt − q∗xt

)

L’impact le plus élevé est donc celui de la différence de mortalité entre la table
tarifaire et la table d’expérience, d’où l’importance dans le choix de celle-ci.

Notons au passage qu’il est très compliqué de calculer la volatilité des fonds
sous-jacents aux contrats en unités de compte, car la composition des actifs
est variable et très variée. En pratique c’est impossible de raisonner fonds par
fonds ou police par police. On peut alors faire l’hypothèse que, si les fonds sont
nombreux et variés, la volatilité globale devrait être proche de celle de l’indice
de référence qui est supposé être l’Eurostoxx 50. On utilise alors la volatilité
implicite de l’Eurostoxx 50 1.

1. http ://www.stoxx.com/download/indices/factsheets/v2tx_fs.pdf
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5.3. Modélisation de la garantie décès

5.3.3 Conclusion

C’est une manière simple et compréhensible de tenir compte de la marge
technique dans le calcul des engagements de l’assureur en Best Estimate. Par
contre on comprend bien que dans un modèle déterministe, la projection des
primes de risques peut sembler imparfaite car une police n’ayant pas de somme
sous-risque au moment de l’évaluation ne pourra pas en avoir par la suite, et les
sommes sous risque existantes vont diminuer à la vitesse du taux sans risque.

Finalement le Best Estimate obtenu sera inférieur au montant de la valeur de
rachat, de par la projection actualisée de la marge technique (sur les garanties
décès), et de la marge administrative (sur les frais de gestion) que l’on anticipe
en diminution des engagements.

Cela est uniquement acceptable car nous cherchons à représenter une valeur
théorique pour représenter au plus juste les engagements. La provision mathé-
matique réellement au bilan reste calculée de manière statutaire et actuarielle.
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Chapitre 6

Options et Garanties
intrinsèques aux contrats
d’assurance

La présence et l’importance du calcul de ces éléments se justifient à nouveau par
la lecture du : ”CEIOPS’ Advice for Level 2 Implementing Measures on Solvency
II : Technical provisions, Article 86 : a Actuarial and statistical methodologies
to calculate the best estimate.”

3.119.Embedded options and guarantees are important components
of technical provisions which need to be continuously monitored by
the insurer. The potential for non-linear behaviour, existence of
path dependencies and inherent complexity and uncertainty requires
the use of relatively sophisticated valuation methodologies to deliver
accurate results.
3.130.The best estimate of contractual options and financial guaran-
tees must capture the uncertainty of cash-flows, taking into account
the likelihood and severity of outcomes from multiple scenarios
combining the relevant risk drivers.
3.131.The best estimate of contractual options and financial gua-
rantees should reflect both the intrinsic value and the time
value.
3.132.Without prejudice to the advice in CEIOPS-DOC-21/09 re-
ferred to previously in this paper, the best estimate of contractual
options and financial guarantees may be valued by using one or
more of the following three methodologies :
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6.1. Définition des Options cachées

- a stochastic approach using for instance a market-consistent asset
model (includes both closed form and stochastic simulation ap-
proaches) ;
- a series of deterministic projections with attributed probabilities ;
and
- a deterministic valuation based on expected cash-flows in cases
where this delivers a market-consistent valuation of the technical
provision, including the cost of options and guarantees.

6.1 Définition des Options cachées

L’évaluation des Options et Garanties incluses implicitement dans les contrats
d’assurance, peut s’avérer complexe et souvent réductrice. Elle est néanmoins
indispensable, que ce soit dans l’évaluation des engagements Best Estimate de
Solvabilité 2, du Swiss Solvency Test, ou dans les projections de la MCEV 1.

La non-prise en compte de ces risques, aujourd’hui biens connus des assureurs,
a déjà eu dans le passé des conséquences extrêmement importantes. On peut
citer à titre d’exemple la garantie du taux de conversion des rentes viagères
différées, qui engendra de sérieux risques non anticipés pour des compagnies
britanniques à partir des années 1970-1980 (Voir : Modélisation du GAO).

On peut définir les options dites cachées de la façon suivante : ”Les options
cachées sont des garanties ou des droits variés conférés aux assurés par la
règlementation ou par des clauses contractuelles et destinés à rendre les contrats
d’assurance plus souples et plus attractifs. Ces options se caractérisent par
l’absence d’un provisionnement distinct dans les comptes de l’assureur.”

Généralement il n’existe pas de provisions comptables pour ces risques complexes
pourtant identifiés. Elles sont généralement difficiles à évaluer avec précision
car dépendent fortement des particularités des contrats d’assurance-vie. Le
Best Estimate doit les intégrer au mieux pour tenir compte de la meilleure
estimation des engagements réels à la date d’évaluation.

A titre d’exemple l’on peut citer les options cachées suivantes :
- l’option de rachat : lorsque le comportement de rachat est modélisé de

façon dynamique, il peut être vu comme une option de vente américaine
ou européenne accordée à l’assuré, de prix d’exercice égal à la valeur
de rachat nette de frais, et dont le sous-jacent peut dépendre des condi-
tions fiscales de l’assuré, intégrer l’offre de la concurrence ou d’autres
produits d’investissement. Le rachat peut être total ou partiel. Il impacte
directement la gestion actif-passif de la compagnie.

1. Market Consistent Embedded Value
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6.1. Définition des Options cachées

- l’option d’arbitrage : dans un contrat multi-supports, l’assuré peut
céder sa position sur un fonds ou un support, pour investir dans un
autre en fonction de son profil d’investissement et de la conjoncture
économique. L’engagement de l’assureur n’est pas le même que l’assuré
choisisse un fonds en unités de compte ou transfère son contrat sur un
support à taux minimum garanti. Ces arbitrages entrainent des frais
qui sont éventuellement facturés au souscripteur. L’arbitrage impacte
également la gestion actif-passif.

- l’option d’avance : l’assuré peut demander une avance pour une partie
de la valeur de son contrat. C’est équivalent à un prêt de l’assureur
avec le contrat comme caution. Cela permet à l’assuré d’avoir accès
ponctuellement à son capital sans pour autant perdre les avantages de
son contrat en le rachetant.

- l’option de réduction : le souscripteur peut arrêter le versement des
primes périodiques prévues par le contrat. La garantie du contrat sera
donc réduite au prorata des paiements effectués.

- l’option de versement additionnel : le souscripteur peut verser une
prime complémentaire, avec des conditions éventuellement garanties,
quelle que soit l’évolution de l’offre.

- l’option de transformation en rente : le souscripteur peut décider de
sortir en capital ou en rente à l’échéance de son contrat. Les arrérages
viagers qu’il va pouvoir obtenir peuvent être garantis et calculés selon
des hypothèses définies à la souscription (voir GAO).

Il existe d’autres options indépendantes du comportement des assurés et qui
relèvent intégralement des garanties financières du contrat et dépendent du
comportement des actifs financiers.
- le taux minimum garanti : le taux de revalorisation garanti à l’assuré qui

est susceptible d’être supérieur aux rendements financiers observés.
- La participation bénéficiaire : elle peut être règlementaire (imposée),

contractuelle (promise), discrétionnaire (possible selon décision de l’assu-
reur).

- les garanties sur les risqués 2 : aussi appelé variable annuities, l’assureur
offre une prestation garantie sur un support risqué, en cas de chute des
marchés sur lesquels ces fonds sont investis. Ces garanties, éventuellement
avec un effet « cliquet », peuvent être exercées en cas de décès (GMDB), en
cas de vie (GMAB), de rentes viagère (GMIB) ou de retraits périodiques
(GMWB).

Pour finir sur la présentation des options cachées, notons aussi qu’il existe des
options que possède l’assureur, mais qui ne sont néanmoins pas plus faciles à
modéliser. On connait entre autres :

2. Non proposé à la Bâloise vie Luxembourg
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- l’option de distribuer ou de doter la provision pour participation aux
excédents (PPE) 3 pour réguler la distribution de participation aux
bénéfices.

- l’option de réaliser ses plus ou moins-values latentes sur les actifs
obligataires et d’impacter la réserve de capitalisation 4. Celle-ci permet
de lisser dans le temps le résultat des ventes prématurées d’obligations et
n’engendre pas de distribution de PB.

- l’option d’avoir une politique d’investissement plus ou moins risquée pour
améliorer ponctuellement son rendement ou diminuer son profil de risque.

Nous allons développer en détail la modélisation de la valeur temps de la
garantie du taux minimum et de la participation aux bénéfices, ainsi que
l’option de transformation en rente à un taux garanti. Ces deux éléments sont
déjà valorisés à la Bâloise pour le calcul de la MCEV.

6.2 Insuffisance du modèle déterministe

Lorsque le cash-flow n’est pas une fonction linéaire de la réalisation d’un
scénario, l’asymétrie qui en résulte rend l’espérance de ce flux dépendant de la
trajectoire qu’il a suivi 5. Dans notre cas, c’est la PB qui crée cette asymétrie
car elle ne peut être que positive ou nulle quel que soit les produits financiers.
Le scénario moyen projeté diverge donc de la moyenne des scénarios dès lors
que l’on ajoute de la variabilité au sous-jacent. Modéliser de façon déterministe
une option ne permettrait que de capter la valeur intrinsèque de celle-ci. Il faut
donc encore ajouter la valeur temps de cette même option, car nous savons
qu’en réalité la volatilité du sous-jacent est loin d’être nulle.

La valeur temps d’une option représente le prix de l’incertitude liée à l’évolu-
tion du sous-jacent. Pour ceci, il faut avoir recours aux techniques courantes
d’évaluation d’options financières qui, elles, vont tenir compte du caractère
stochastique du processus de prix du sous-jacent.

Voici le schéma des pay-off à maturité de ces deux types d’option, sachant qu’ils
ne représentent que la valeur intrinsèque de celles-ci avant l’échéance. La valeur
supplémentaire est égale à la valeur temps de l’option, et c’est exactement ce
que l’on cherchera à valoriser avec des formules fermées dans le calcul de la
TVOG 6.

3. ou réserve pour PB future au Luxembourg, mais avec une législation plus souple sur sa
distribution

4. en France
5. valeur path-depending
6. Time Value of financial Option and Garantee
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Figure 6.2.1: Représentation de la valeur intrinsèque et de la valeur temps
d’une option d’achat et de vente

La valeur temps est donc la différence entre la valeur de l’option à la date t
et sa valeur intrinsèque, égale à ce que serait son pay-off si l’option était à
maturité. La convexité de la valeur de l’option d’achat par exemple, n’est pas
mesurable par un modèle purement déterministe qui se base uniquement sur le
pay-off futur, estimé dans un univers sans variabilité.

Rappelons que la valeur temps d’une option converge au cours du temps vers
zéro, toute chose égale par ailleurs, jusqu’à l’échéance de l’option où le pay-off
n’est plus égal qu’à sa valeur intrinsèque.
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6.3 Evaluation des options financières

6.3.1 La méthode usuelle de Black et Scholes

Depuis les travaux de Black, Scholes et Merton (1973) qui aboutirent à
la fameuse théorie d’évaluation des options européennes qui reçut le « Prix
Nobel d’Economie » en 1997, de nombreux développements et améliorations
ont été découverts, mais les hypothèses sur lesquelles s’appuie le modèle restent
identiques.
- Le prix de l’actif sous-jacent à la date t, 0 ≤ t ≤ T , suit un mouvement

brownien géométrique tel que :

dSt

St
= µ.dt+ σ.dBt

Avec :
µ l’espérance de rentabilité de l’actif (le drift), constante
σ sa volatilité, constante
Bt un mouvement brownien standard (processus de Wiener), tel que
les accroissements disjoints Bt −Bs ∼ N (0, t− s) sont indépendants et
stationnaires, 0 ≤ s ≤ t

T la maturité de l’option
On déduit de cette équation différentielle stochastique, grâce au lemme d’Itò
que :

St = exp

[
σBt +

(
µ− 1

2
σ2

)
t

]

C’est-à-dire que le rendement de l’actif sous-jacent est log-normal car on a :

ln

(
St

Ss

)
= ln (St)− ln (Ss) =

{
µ− 1

2
σ2

}
(t− s) + σ (Bt −Bs)

dont le dernier terme suit une loi normale comme indiqué précédemment.
- Le sous-jacent est donc côté en continu sur les marchés.
- Il n’y a aucun coût de transaction et d’impôts.
- Le marché est complet : on parle de complétude du marché lorsque toutes

les flux (et donc les options) peuvent être répliqués avec un portefeuille
d’actifs.

- L’absence d’opportunité d’arbitrage : il est impossible d’obtenir, grâce à un
montage financier à coût nul, un pay-off positif avec certitude. Un marché
parfait à l’équilibre, peut présenter ponctuellement des opportunités
d’arbitrage mais il se réajuste très rapidement par la loi de l’offre et de la
demande avec des agents parfaitement rationnels, d’où l’unicité des prix
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sur le marché. Cette hypothèse implique également que deux contrats
ayant des cash-flows identiques aux mêmes périodes, doivent avoir le
même prix. On peut donc évaluer une option financière en la répliquant
par un portefeuille composé d’actifs dont la valeur de marché est connue.

- La neutralité des agents face au risque : on peut démontrer qu’en l’absence
d’opportunité d’arbitrage et si le marché est supposé complet, il existe
une unique probabilité risque-neutre Q telle que le processus des prix
actualisés au taux sans risque des actifs soit une martingale sous cette
probabilité :

P̃s = EQ [Pt | Fs]

Avec :
Fs la filtration de toute l’information disponible à la date s
P̃s le prix actualisé adapté à la filtration Fs

0 ≤ s ≤ t ≤ T

On peut donc obtenir le prix d’un actif, en actualisant simplement au taux
sans risque, l’espérance de ses flux futurs sous une probabilité risque-neutre.
Cela revient alors à résoudre pour un call C à la date t :

C(t) = EQ
[
e−
´ T
t rf (s)ds (ST −K)+ | Fs

]

Avec :
rf (s) le taux sans risque instantané à la date s
T l’échéance de l’option
St le prix du sous-jacent de l’option à la date t
K le prix d’exercice de l’option

La valeur d’une option ne dépend donc plus de l’attitude des agents face au
risque, par conséquent tous les actifs possèdent le même rendement égal au
taux sans risque r

µ = r

L’univers dans lequel se produisent ces hypothèses est appelé univers risque-
neutre où les probabilités ainsi que le rendement espéré des actifs et le taux
d’actualisation sont déformés.

Raisonner dans cet univers n’est qu’un artifice de calcul qui permet de résoudre
plus facilement l’équation de Black et Scholes. Pourtant le résultat obtenu
est parfaitement valable dans l’univers réel.
- Les unités de sous-jacents sont parfaitement divisibles.
- Les ventes à découvert sont autorisées et illimitées.
- Le taux d’intérêt sans risque est constant et connu.
- On peut emprunter et prêter au même taux.
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Nous ne démontrerons pas ici la façon d’obtenir la formule finale de Black et
Scholes pour évaluer les options européennes (sans dividendes), car celle-ci a
été exposée dans de nombreux ouvrages 7.

Voici le résultat pour le prix d’une option d’achat européenne de prix d’exercice
K, de sous-jacent S, de maturité T, de volatilité constante σ et N la fonction
de répartition de la loi Normale centrée réduite :

C (S, T,K, σ, rf ) = S0.N (d1)−K exp (−rfT ) .N (d2)

Avec :

d1 =
ln

(
S
K

)
+ T

(
rf + σ2

2

)

σ
√
T

d2 = d1 − σ
√
T

De même pour une option de vente européenne :

P (S, T,K, σ, rf ) = −S0.N (−d1) +K exp (−rfT ) .N (−d2)

Ces résultats vont être largement utilisés par la suite.

6.3.2 Limites

L’évaluation des options cachées par des options financières évaluées par des
formules fermées dérivées de Black et Scholes, possède de nombreuses limites
et hypothèses qu’il ne faut pas perdre de vue. En effet, il n’est pas évident que
les hypothèses nécessaires à l’évaluation d’options financières soient acceptables
dans le cas des options du contrat d’assurance, même si leur pay-off peut-être
répliqué par des combinaisons d’options standards. On peut s’interroger sur
la réalité de ces hypothèses connaissant les particularités des options cachées
suivantes :
- l’absence d’un marché organisé et liquide pour ce type d’options.
- l’absence d’opportunité d’arbitrage et de parfaite liquidité, modifiée par

l’existence de contraintes fiscales et de frais d’arbitrage. Les contrats
d’assurance vie ne peuvent pas être arbitrés facilement et à n’importe
quel moment, d’où des comportements de rachat qui ne dépendent pas
uniquement de la valeur du contrat, et donc l’exercice d’une option qui
n’est pas uniquement fonction du sous-jacent.

- l’absence de rationalité parfaite des assurés, où l’aversion au risque en ma-
tière de mortalité n’est pas comparable à celle du risque financier dû à la
volatilité des marchés financiers. En particulier le contrat d’assurance est

7. Voir Hull, J.C. (1989). Options futures and other derivative securities par exemple.
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un produit complexe, dont la valeur réelle n’est pas toujours évaluable ou
connue par l’assuré. Celui-ci devrait connaitre parfaitement les politiques
financières et commerciales de l’entreprise pour ajuster son comporte-
ment, mais celles-ci dépendent du comportement de l’assuré lui-même.
Même dans un univers risque-neutre où tous les actifs possèdent le même
rendement 8, la réalité du portefeuille à une date donnée ne permet pas à
l’assuré, détenteur de l’option, d’évaluer parfaitement sa valeur.

- Les participations aux bénéfices discrétionnaires 9 déconnectent la rentabilité
financière de la rentabilité du contrat et ne sont pas anticipables par
l’assuré.

6.3.3 Conclusion

L’adéquation entre une option financière et une option implicite à un contrat
d’assurance n’est donc pas parfaite, et les hypothèses nécessaires à son évaluation
amplifient encore les divergences. Certaines études auraient montré que si l’on
évalue la valeur d’une garantie par réplication de celle-ci par un portefeuille
d’obligation, il serait plus juste de se situer dans un contexte où cette couverture
est réellement mise en place et donc ajustée également régulièrement.

C’est pourquoi dans la seconde partie, nous chercherons à nous affranchir de ces
formules fermées. En effet, le fait de générer des scénarios stochastiques pour
ensuite appliquer la méthode de Monte-Carlo, permet d’intégrer directement
dans la projection des cash-flows la valeur spéculative de ces garanties, tout en
restant facilement décomposable en valeur intrinsèque et valeur temps.

Toutefois, dans un contexte opérationnel où le coût et le temps de calcul prennent
une part non négligeable, l’utilisation de méthodes certes simplificatrices mais
reconnues, reste justifiée pour intégrer facilement un caractère stochastique
indispensable pour ce type d’évaluation.

8. Correspondant à la courbe des taux sans risque (que l’on suppose connue par l’assuré)
9. Qui ne sont pas règlementaires ou contractuels mais dépendent de la politique de

l’assureur en fonction de nombreux paramètres financiers, concurrentiels. . .
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6.4 Time Value of financial Option and Guarantee

L’une des garanties implicites au contrat d’assurance est celle relative à la
revalorisation des contrats d’assurance vie et décès. Que ce soit le taux technique
pour les contrats de type décès ou survie, ou le Taux Minimum Garanti (TMG)
pour les bons de capitalisation, c’est le taux contractuel auquel la réserve est
revalorisée. Ce taux peut être fixé jusqu’à l’échéance, sur une durée fixée, ou
varier annuellement. A cela s’ajoute l’effet éventuel de la participation aux
bénéfices (PB). La projection de la PB discrétionnaire 10 future nécessite une
hypothèse supplémentaire pour déterminer le pourcentage complémentaire des
rendements qui sera reversé à l’assuré. On appellera « Marge actionnaire » la
partie des produits financiers non redistribués 11. La participation bénéficiaire
future est alors obtenue par différence entre le rendement financier attendu
donné par le vecteur certainty-equivalent, et la somme de la revalorisation
garantie et de la marge actionnaire.

10. Rappel : au Luxembourg la PB règlementaire n’existe pas, elle est purement discrétion-
naire mais pourtant incitée par la concurrence.

11. Car dans le cas du calcul de la MCEV, on valorise les profits futurs espérés redistri-
buables aux actionnaires, dans une logique de run-off qui ne nécessite pas de dotation à
la réserve pour autofinancement futur. Toutefois, le rendement réel pour l’actionnaire est
supérieur car il faut tenir compte de l’effet de levier important dû au fait qu’il n’a pas décaissé
le montant des provisions investies.
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Perte financière 
Pas de PB 
Pas de marge actionnaire 

Pas de PB 
Marge actionnaire partielle 

Produits financiers excédentaires 
Distribution de PB 
Marge actionnaire complète 

Figure 6.4.1: Représentation des seuils de revalorisation des contrats par
rapport au rendement moyen attendu du portefeuille d’actifs

La modélisation du scénario moyen dans Prophet ne tient compte que de la
valeur intrinsèque d’une option qui répliquerait ou couvrirait le coût de la reva-
lorisation des contrats, et par différence déduirait celui de la PB. Par contre
on ne valorise pas encore la valeur spéculative d’une telle garantie,
qui représente l’incertitude sur l’évolution future, et donc une opportunité
supplémentaire de profit.

On va donc isoler : valeur spéculative = prix de l’option - valeur intrinsèque

De cette manière on améliore la lacune majeure d’un scénario déterministe,
qui est de considérer que la volatilité des résultats est nulle. En captant cette
volatilité du taux d’intérêt, on mesure donc une partie du caractère aléatoire
du rendement attendu. Plus la volatilité est élevée, et plus la possibilité pour
le sous-jacent d’évoluer favorablement est élevée, donc toute chose égale par
ailleurs, la valeur spéculative sera importante et donc également le prix de
l’option.

La Time Value of financial Option and Guarantee (TVOG) doit comprendre la
valeur spéculative de cette garantie. On verra plus tard que la valeur spéculative
de la Guaranted Annuity Option (GAO) est aussi à inclure dans la TVOG.
Cependant dans le calcul du Best Estimate, nous n’avons pas besoin
de faire cette distinction et nous traiterons donc séparément le calcul
du GAO.
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6.4.1 Rappel sur les options de taux

Lorsque le sous-jacent n’est pas directement un actif mais un taux d’intérêt, la
terminologie des options est différente, même si le principe des options d’achat
et de vente reste identique.

6.4.1.1 Cap et Caplet

Un Caplet est une option d’achat sur la réalisation future d’un taux sous-jacent
rt (souvent Libor ou Euribor). A maturité T, il paye l’écart entre la réalisation
de ce sous-jacent et du prix d’exercice K (le strike).

Pay − off(T ) = max(rT −K; 0)

Un Cap est une séquence de même prix d’exercice et de même sous-jacent.
On retrouve ainsi la structure d’un swap car il verse des flux réguliers dans le
temps, en fonction de la valeur d’un taux financier (on parle parfois de Cap
Vanille tout comme les Swap Vanilla). Les Cap permettent donc de se couvrir
contre une hausse des taux.
Exemple :

Prenons l’exemple d’un emprunt à taux variable. Il bénéficiera d’une
éventuelle baisse des taux puisque sa dette est indexée sur celui-ci, et le
risque pour l’emprunteur est donc une hausse des taux.
Pour se couvrir il va donc acheter un Cap dont l’échéancier sera le même
que le remboursement de son emprunt. En cas de hausse, son option sera
dans la monnaie, d’autant que son coût supplémentaire sur l’emprunt, si
sa couverture est parfaitement efficace : on dit qu’il est ”cappé”.

6.4.1.2 Floor et Floorlet

Un Floorlet est une option de vente sur la réalisation future d’un taux sous-
jacent rt. Le pay-off à la maturité T est dans ce cas :

pay − off(T ) = max(K − rT ; 0)

De même, un Floor est une séquence de Floorlets de même prix d’exercice et
de même sous-jacent. A l’inverse du Cap, il permet donc de se couvrir contre
une baisse des taux.
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6.4.2 Modélisation de la revalorisation par le taux garanti et
par la participation bénéficiaire

On fait ici l’hypothèse que l’assureur conserve son mode de calcul de la PB
avec une marge actionnaire cible fixe dans le temps.

Dans un premier temps, on va chercher à répliquer le mécanisme de revalorisa-
tion avec un portefeuille d’options dont l’évaluation stochastique est possible.
On évalue donc ces options avec la formule usuelle de Black et Scholes sous
les hypothèses sous-jacentes nécessaires à son utilisation. Il faut donc admettre
que le scénario projeté par une seule trajectoire peut bouger en réalité, par
l’existence d’une volatilité, qui ne peut pas être captée de façon déterministe.
On extrait ensuite la valeur temps de l’obligation qui constituera un élément
supplémentaire dans le calcul du Best Estimate, étant donné que l’engagement
s’en voit augmenté.

Tout le comportement de revalorisation d’un contrat est donc scindé entre la par-
tie intrinsèque du scénario moyen projeté, et la valeur spéculative appartenant
à la TVOG.

6.4.2.1 Revalorisation par le taux garanti

Pour un taux de revalorisation garanti fixé g, le coût de cette garantie dépend
de l’évolution du taux de rendement rt (égal au vecteur certainty-equivalent
dans notre cas). Le taux garanti étant variable pour chaque contrat en fonction
de sa date de souscription, il faut donc raisonner par poche de taux, et répéter
l’opération pour chaque gamme de taux.

Lorsque rt est inférieur au taux garanti, la valeur de l’option doit modéliser
le fait que l’assureur devra compenser par ses fonds propres l’insuffisance de
rentabilité financière obtenue (limitée à g), afin d’honorer sa garantie. Par
contre si ce rendement est supérieur au taux garanti, alors il n’aura rien à
ajouter et son coût sera nul. Le coût de cette garantie se résume donc comme :

CoG =






g si rt ≤ 0

rt − g si 0 < rt < g

0 sinon

Le pay-off de l’option représente le coût de la garantie pour un euro de réserve
mathématique, et correspond donc à la vente d’un Floor dont le prix d’exercice
est égal au taux garanti g, avec rt le rendement attendu comme sous-jacent.

On décompose ces flux en une série d’options de maturités croissantes. Le
pas de cette série doit être suffisamment petit pour que l’hypothèse que l’on
puisse couvrir cet engagement avec des options européennes, et donc pouvoir les
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évaluer en utilisant Black et Scholes, ne soit pas réductrice. En l’occurrence
un pas mensuel permet d’être cohérent avec le pas de projection des cash-flows
dans Prophet.

Pour une maturité t croissante de 1 à T on a donc le coût de la garantie :

CoGt = Mathres(t) [g.N (−d2)− rt.N (−d1)]

12

d1 =
ln (rt/g) + σ2

2 t

σ
√
t

d2 = d1 − σ
√
t

On en déduit le coût global de la garantie par la somme actualisée de la valeur
des options futures estimée donnée par :

CoG =
T∑

t=1

CoGt.P (0, t)

Avec :
Mathres(t) la réserve mathématique projetée entre t-1 et t
σ la volatilité du sous-jacent supposée constante
N la fonction de répartition d’une loi normale centrée réduite
P (0, t) le prix d’une obligation zéro-coupon au taux sans risque de ma-
turité t, celle-ci représente l’actualisation entre t et la date d’évaluation
actuelle.
T la durée de la projection

Pour extraire la valeur intrinsèque et ne conserver que la valeur spéculative, on
retranche à l’option pour chaque date t : Mathres(t). (g − rt)

+

On obtient finalement la valeur temps pour une poche de taux garanti g :

CoGspec =
T∑

t=1

P (0, t).
[
CoGt −Mathres(t). (g − rt)

+]

6.4.2.2 Revalorisation par la participation bénéficiaire
discrétionnaire

On réplique maintenant les flux de participation aux bénéfices, qui dépendent
directement de l’hypothèse de distribution de la marge actionnaire SHM. Celle-ci
est supposée connue et fixée dans le temps.

12. on n’actualise pas le prix d’exercice comme dans la formule standard avec exp(−rT )
car c’est ici un pourcentage de la réserve mathématique à maturité.
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On va donc redistribuer tout le rendement dépassant g+SHM. Du point de vue
des flux finaux perçus par l’assureur, seule la partie de la marge actionnaire
est conservée au maximum. Ce schéma peut être reproduit par l’achat d’un
bull-spread, c’est-à-dire la combinaison de l’achat d’un Caplet de prix d’exercice
g, et la vente d’un second Caplet de prix d’exercice g+SHM. Le portefeuille
constitué devient alors :

Figure 6.4.2: Construction d’un Bull Spread à partir d’options d’achat et de
vente

Notons qu’en général, un bull spread est utilisé lorsque l’on anticipe des mou-
vements neutres ou haussiers. En théorie l’achat d’un bull spread est débiteur
car le prix d’une option d’achat est inversement proportionnelle à son prix
d’exercice. On peut donc construire le même schéma de flux avec des options
de vente, qui sera créditeur, mais dans notre cas ces options fictives existent
déjà et leurs primes d’acquisition sont nulles.
- Le prix du call 1 acheté est obtenu à nouveau avec :

C1(r, g, t, σ) = rt.N(d1)− g.N(d2)

- La valeur temps au global pour ce call s’exprime donc par :

CoPB1 =
T∑

t=1

P (0, t).
[
Mathres(t).C1(r, g, t, σ)−Mathres(t).(rt − g)+

]

=
T∑

t=1

P (0, t).Mathres(t).
[
C1(r, g, t, σ)− (rt − g)+

]
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- De même pour le call 2 vendu, de prix d’exercice g+SHM, on obtient :

CoPB2 =
T∑

t=1

P (0, t).Mathres(t).
[
C2(r, g + SHM, t, σ)− (rt − (g + SHM))+

]

- On fabrique ensuite le bull spread et on en déduit sa valeur temps par :

CoPB = CoPB2 − CoPB1

6.4.2.3 Revalorisation totale

Finalement si l’on agrège les deux mécanismes de revalorisation (taux garanti
et PB), on obtient une valeur temps finale qui constituera la TVOG relative à
la revalorisation comme :

CoRevalorisation = CoG+ CoPB

Le portefeuille de réplication ainsi constitué se représente de la manière suivante :

Figure 6.4.3: Pay-off du portefeuille de réplication de la revalorisation des
contrats

Le flux final pour l’assureur est donc borné par −g.Mathres(t) et SHM.Mathres(t).
On reconnait également que ce pay-off peut aussi être répliqué par une position
longue sur un contrat à terme et une position courte sur une option d’achat de
prix d’exercice g+SHM.

Cela se démontre rapidement à partir de la relation de parité call/put en t = 0 :

P (S,K, T, σ) + S0 = C(S,K, T, σ) +K.e−rfT
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Avec :
P le prix du put
St le prix du sous-jacent en date t
K le prix d’exercice
T la maturité des options
σ la volatilité du sous-jacent
C le prix du call
rf le taux sans risque

Si l’on combine la vente du put de prix d’exercice g, avec l’achat du call de
même prix d’exercice, la relation de parité en t nous retourne :

Ct(S, g, T, σ)− Pt(S, g, T, σ) = St − g.e−rf (T−t)

c’est-à-dire le pay-off à maturité T d’une position longue sur un contrat à
terme de prix d’exercice g :

ST − g

Comme la valeur temps d’un contrat à terme est nulle étant donné que l’on
s’engage à un prix d’achat dès la souscription de ce contrat, on pourrait simplifier
tout le calcul en ne mesurant que la valeur spéculative de la vente de l’option
d’achat de prix d’exercice g+SHM. On a vérifié qu’en pratique les valeurs temps
du put et du call de même prix d’exercice se compensent parfaitement période
par période.

6.4.3 Résultats et sensibilités

Voici les résultats par poches de taux que nous obtenons. Pour gommer l’effet
volume des différentes poches et étudier les sensibilités de la TVOG en fonction
de la variation du taux garanti (ainsi que pour des raisons de confidentialité),
nous l’exprimons en pourcentage des provisions mathématiques.

Poche de taux garanti TVOG (en % des PM)
4% 0.21%

3.5% 0.31%
3.25% 2.65%
2.75% 2.11%
2.5% 0.89%
2.25% 2.17%
1.75% 0.35%
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Les résultats ne paraissent pas homogènes et intègrent à la fois l’effet de la
revalorisation et celui de la participation bénéficiaire. Faisons donc de même
avec plus de précisions sur les résultats.

Poche de taux garanti CoG CoPB1 CoPB2
4% 0.41% -0.41% 0.21%

3.5% 0.13% -0.13% 0.31%
3.25% 1.17% -1.17% 2.65%
2.75% 0.51% -0.51% 2.11%
2.5% 0.11% -0.11% 0.89%
2.25% 0.18% -0.18% 2.17%
1.75% 0.0037% -0.0037% 0.35%

On pourrait s’attendre à ce que le coût de la garantie due à la revalorisation
au taux garanti (CoG) soit croissante avec celui-ci. Or on observe des valeurs
plus importantes pour les taux 3.25% et 2.75%, avec respectivement 1.17% et
0.51%.

Une composante que nous avons ignoré jusqu’ici et qui explique ce phénomène,
est la duration des provisions mathématiques. En effet plus les provisions vont
s’éteindre rapidement et moins la valeur spéculative sera élevée. En effet, la
valeur spéculative d’une option est une fonction croissante de la maturité de
celle-ci. Le montant de la TVOG est donc plus sensible aux options les plus
longues. Le volume des provisions mathématiques que l’on applique sur des
maturités longues est donc déterminant. Comme les maturités des options
sont croissantes, plus la provision sera encore importante à long terme, plus la
TVOG sera élevée. Comme les poches de taux regroupent différents types de
produits, la duration de la provision mathématique n’est pas du tout homogène
entre les poches.
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Voici l’exemple pour trois poches de taux :

Figure 6.4.4: Evolution par année des provisions mathématiques selon les
différentes poches de taux technique

On comprend bien pourquoi la TVOG de la poche à 3.5% est anormalement
basse par rapport aux deux autres : la décroissance de sa réserve mathématique
est bien plus rapide que les deux autres poches.

En revenant au tableau des résultats, on constate également que l’option qui
réplique le taux garanti (CoG) et celle qui réplique une partie de la participation
bénéficiaire (CoPS1) se compensent parfaitement comme nous l’attendions. Au
final il ne reste plus que l’effet de la dernière option (CoPS2). Pour celle-ci on
devrait constater le phénomène inverse que pour CoG, c’est-à-dire que plus le
taux garanti est faible, plus la distribution de PB sera élevée (proportionnelle-
ment également la TVOG). Or l’effet de la duration va également s’appliquer
ici et venir bouleverser les résultats.

On peut également, à titre d’information, avoir une approximation du montant
de la participation aux bénéfices distribuée dans le scénario moyen, donnée par
la valeur intrinsèque de CoPS2 qui réplique le pay-off des PB de l’assuré. Mais
ce montant est inexact car d’une part il ne tient pas compte parfaitement de
l’effet sur les prestations futures, et d’autre part on sait que le scénario central
capte mal l’asymétrie de la participation aux bénéfices.

71



6.4. Time Value of financial Option and Guarantee

6.4.4 Conclusion :

Cette méthode reste néanmoins assez approximative et ne constitue qu’un
aménagement de la méthode déterministe. En effet l’utilisation de la formule
fermée de type Black et Scholes reste dépendante de nombreuses hypothèses,
et est extrêmement sensible à l’estimation de la volatilité.

De plus, pour la participation bénéficiaire, on ne corrige ici que la valeur temps.
La valeur intrinsèque est supposée être mesurée correctement. Or ne considérer
qu’un scénario moyen ne permet pas de capter l’asymétrie, c’est-à-dire le fait
que si l’on tenait compte de la volatilité du processus de taux de rendement, on
ne verserait pas du tout de participation aux bénéfices dans certains cas. Seul
un générateur stochastique de scénario serait une estimation plus exacte, et
intégrerait dans chaque scénario, la valeur intrinsèque et la valeur spéculative
de toute les formes de revalorisation.

C’est pourquoi dans la seconde partie nous allons mettre en place un
modèle stochastique utilisant la méthode de Monte-Carlo, ce qui
nous permettra à la fois de mesurer les deux approches et, comme
on s’affranchit du calcul de la TVOG de la revalorisation, d’évaluer
la précision de cette dernière. On espère ainsi valider le modèle dé-
terministe utilisé en pratique dans la société pour le calcul du Best
Estimate, de la MCEV et du Swiss Solvency Test .

Notons au passage que dans le cas du Swiss Solvency Test, il faudra être prudent
lors du calcul de la TVOG. En effet le calcul de la marge de solvabilité appliqué
aux compagnies suisses ne reconnait pas la distribution de la participation aux
bénéficies discrétionnaires. Dans ce cas il est nécessaire de modifier le calcul
de la TVOG de manière à ne tenir compte que de la revalorisation au taux
garanti 13.

13. répliqué par la simple vente d’une option de vente de prix d’exercice égal à ce taux
garanti.
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6.5 Guaranteed Annuity Option

6.5.1 Définitions et théorie

On assiste actuellement à un essor de la complémentaire retraite et du recours
au 3e pilier (épargne privée) basée sur le principe de capitalisation pure. Soutenu
par des avantages fiscaux, la rente viagère différée devient un produit essentiel
pour anticiper une retraite confortable et décorréler sa rente de l’impact de la
démographie qui met à mal le premier pilier de la Sécurité Sociale, généralement
basé sur la répartition (pure ou échelonnée) dans les pays dit ”Bismarckiens” 14.

On peut anticiper une hausse probable de ce type de produits, historiquement
en assurances de groupes, mais également de plus en plus sur l’assurance vie
individuelle. Jusqu’à récemment au Royaume-Uni, il était souvent préférable de
sortir en capitaux qu’en rente au taux garanti, étant donné que les taux longs
restaient très élevés et que les investisseurs n’anticipaient pas une baisse dans
le futur. Mais depuis une dizaine d’années (surtout depuis 1998), la baisse des
taux d’intérêt a inversé la tendance et l’option accordée à l’assuré est devenue
fortement dans la monnaie. A cela s’ajoute le phénomène d’allongement de la
durée de vie, qui n’est certes pas nouveau, mais qui a été mis en évidence par
une actualisation et une adaptation bien meilleure des tables de mortalité. Par
conséquent la prise en compte de ce risque entraine une dotation supplémentaire
des réserves et une surveillance toute particulière de ces garanties.

Or proposer une rente viagère différée comporte des risques exogènes bien
connus des assureurs, mais sous une forme assez différente, ce qui implique une
méthode de modélisation de ce risque propre aux rentes viagères. Rappelons
que le calcul du Best Estimate, tel que nous l’avons présenté précédemment,
nécessite la prise en compte de toutes les Options et Garanties comprises dans
les polices commercialisées. Une rente différée en phase de constitution, contient
du risque pour l’assureur qui s’est engagé sur un taux de rente garanti au
moment de la souscription. Attention, il faut donc distinguer les produits où
le taux de la rente n’est pas garanti, par exemple un contrat d’épargne avec
possibilité de sortir en rente au taux du marché au moment de la conversion,
avec les produits de rente différée où les arrérages futurs sont connus dès la
souscription, sous réserve que la police ne soit pas réduite 15 à la maturité du
différé, et pour autant qu’il n’y ait pas de PB en cours de rente.

Boyle et Hardy modélisent la valeur d’une telle option à maturité par :

G(T ) =
S(T ). (aR(T )− ḡ)+

ḡ
1τx>T−t

14. Pays où l’Etat a une part importante dans le régime de retraite.
15. Une police est réduite lorsque les paiements périodiques prévus par le contrat n’ont pas

été honorés par le souscripteur. L’engagement de l’assureur envers le bénéficiaire du contrat
s’en voit donc diminué, généralement au prorata de la partie des primes versées au contrat.
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6.5. Guaranteed Annuity Option

Avec :
t la date actuelle,
T la date de fin du différé,
τx variable aléatoire de la durée de vie future d’un individu d’âge x
en t avec P (τ ∈]k − 1; k]) =k−1 px.qx+k−1 i.e la probabilité de survivre
jusqu’à x+k-1 et de décéder avant x+k,
S(T ) la valeur du capital constitutif de la rente à l’échéance,
aR(T ) le taux de conversion de la rente calculée en T (hypothèses de
mortalité et taux technique) d’un individu d’âge R,
R l’âge de l’assuré à la date T,
ḡ la valeur du taux de conversion de la rente garantie à la souscription
(t=0),

Hors frais et fractionnement de la rente, g correspond, pour une rente à terme
échu à T |ax−t la valeur actuelle probable d’une rente viagère différée de T
années pour un individu d’âge x-t.

Expliquons pourquoi l’on peut modéliser ce flux de la sorte.

La partie du numérateur (aR(T )− g)+ = max(aR(T ) − g; 0) est le pay-off
d’une option d’achat de prix d’exercice g et de sous-jacent aR(T ). Ce pay-off
représente alors le gain que lui procure cette option fictive par unité monétaire
d’arrérage.

Avec l’hypothèse de rationalité parfaite, l’assuré va exercer son option fictive,
si et seulement si la rente avec le taux garanti est plus avantageuse pour lui,
c’est-à-dire si aR(T ) > g.

En effet, toute chose égale par ailleurs, plus le taux de conversion est élevé et
plus l’arrérage est petit. Il existe bien une relation inverse entre les deux qui se
traduit simplement par :

S(T )

g
= M

Avec M le montant de l’arrérage annuel.
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On se rappelle en effet que la prime pure unique nécessaire pour obtenir une
rente viagère immédiate à terme échu pour un individu d’âge x se calcule
comme :

PPU = M.ax

= M.
ω∑

k=1

(
1

1 + i

)k

kpx

= M.
Nx+1

Dx

Avec :
i le taux technique appliqué à la rente
ω l’âge ultime la table de mortalité
N et D les nombres de commutation

Le taux de conversion diminue bien en fonction de l’âge, étant donnée que la
durée probable de versement de la rente diminue, et diminue également en
fonction du taux technique car la revalorisation du capital à distribuer sera plus
importante et il faudra un capital plus faible pour obtenir le même arrérage.

Le GAO peut donc augmenter à cause de trois facteurs :
- une baisse du taux technique par rapport à celui garanti,
- une baisse de la mortalité qui entraine une augmentation de la longévité et

donc du nombre d’arrérage espéré non anticipé,
- une augmentation du rendement des actifs qui augmente l’assiette sur laquelle

est calculée la rente. Si la transformation en rente présente déjà un
avantage comparatif pour l’assuré, le coût supplémentaire pour l’assureur
n’est qu’amplifié.

Si la garantie est profitable à l’assuré, par l’hypothèse de rationalité des individus
il exercera cette option et son gain sera donc de (aR(T )− g) euros par arrérage.

L’arrérage garanti étant de
S(T )

g
, on obtient alors le pay-off total de l’option à

maturité :

G(T ) =
S(T ). (aR(T )− g)+

g
1τx>T−t

Exemple :

- Capital disponible à l’échéance : S(T) = 1000 euros
- Taux de conversion garanti g = 5
- Taux de conversion avec hypothèses actuelles sur le marché : aR(T ) = 10
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6.5. Guaranteed Annuity Option

S’il pouvait transformer son capital en rente aujourd’hui, il aurait le choix
entre le taux garanti par son assureur qui nécessite 5 euros pour 1 euro
d’arrérage viager, ou sortir du contrat avec son capital et le transformer
au taux du marché chez un assureur concurrent qui demandera une prime
unique correspondant à 10 euros pour 1 euro d’arrérage.
L’assuré fait donc un gain de (10-5) euros par euro d’arrérage, c’est-à-dire

(10−5).
1000

5
= 1000 euros car une rente équivalente lui aurait coûté 2000

euros de prime unique sur le marché.
Pour son capital de 1000 euros cela représente un arrérage annuel supplé-

mentaire de
1000

5
−

1000

10
= 100 euros.

Pour avoir un ordre de grandeur, avec un taux technique de 3.5% et une
mortalité suivant la table belge HS68-72, on obtient a60 = 10.78811 et
a70 = 6.94373.

Il faut maintenant évaluer G (t) la valeur de cette même option en date t :

⇒ voir annexe : démonstration du GAO. La démonstration étant complexe
mais claire, l’article : ”Boyle P., Hardy M., Guaranteed Annuity Options,
2003” n’est repris qu’en annexe.

6.5.2 Mise en pratique

Le résultat de la démonstration, citée en annexe, est donc finalement :

G(t) = T−t
px.S(t)

g

∑J
j=1 jpR.C [D (t, T + j) ,Kj , t]

D (t, T )

Avec :

T−tpx la probabilité de survivre entre x et x+T-t

g le taux de conversion garanti
J = ω −R et ω l’âge ultime de la table de mortalité, R l’âge en T
S(t) le capital constitutif de la rente en t
D(t,T) le prix en t d’une obligation zéro-coupon qui payera un euro en
date T
C [D(t, T ),Kj , t] le prix en t d’une option d’achat sur le coupon d’une
obligation de maturité T, de prix d’exercice Kj

Ce type d’option d’achat s’évalue par une formule explicite simple si l’on se
place dans un modèle de Vasicek 16 pour le processus de taux qui régit le prix
de l’obligation sous-jacente.

16. Voir : Partie 2, simulation de processus stochastiques
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6.5. Guaranteed Annuity Option

Comme expliqué dans l’article, cette formule nécessite l’estimation des para-
mètres du modèle de Vasicek. Pour ceci on essaye tout d’abord de reproduire
la structure par terme des taux sans risque, en minimisant le carré des écarts
avec la courbe théorique donnée par Vasicek.

On calcule donc les prix de cette série d’option que l’on actualise à la date
d’observation. On mesure ainsi la valeur intrinsèque et la valeur temps de
cette garantie pour chaque police. On peut scinder les deux pour proprement
intégrer la valeur spéculative dans le montant de la TVOG. Pour ceci on refait
tourner le même programme en fixant la volatilité à zéro, isolant ainsi la valeur
intrinsèque de cette option complexe.

6.5.3 Résultats sur le portefeuille

Sur l’ensemble des polices concernées, qui ne représentent pas une part impor-
tante du portefeuille, nous obtenons les résultats suivants :

Cout global (en % des PM) 9.22%
Maximum par police (en % des PM) 24.67%
Minimun par police (en % des PM) 1.10%

La valeur de l’option ici va dépendre à la fois du taux de conversion garanti, du
montant du capital à convertir et de la durée du différé. Ces trois effets n’ayant
rien en commun il faudrait vraiment étudier les résultats police par police.

Ce qu’il est important d’en déduire, c’est que cette option est donc loin d’être
négligeable à la vue des montants obtenus.

6.5.4 Conclusion

Même si la méthode est un peu lourde à mettre en place du fait qu’elle nécessite
de devoir calibrer le modèle de Vasicek, la prise en compte de cette garantie
s’avère nécessaire pour les produits de rente à taux de conversion garanti sur
du long terme.

Cependant les résultats obtenus sont à nuancer car toute la méthode est basée
sur une hypothèse importante : la rationnalité de l’assuré à convertir sa rente
lorsque la sortie en capital est défavorable. Or un paramètre essentiel qui impacte
cette rationnalité est la fiscalité du contrat. Pour bénéficier d’avantages fiscaux,
un pourcentage minimum de conversion en rente est exigé, indépendament de
l’optimisation de son capital constitutif. Sans compter qu’un assuré peut ne
pas être parfaitement rationnel, ne serait-ce que pour la simple raison qu’il ne
connait pas toute l’information au moment de la conversion, ou qu’il ne prend
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6.5. Guaranteed Annuity Option

pas la peine de la rechercher et de l’analyser rationnellement, influencé par son
contexte social et économique.

De plus le modèle de Vasicek à un facteur ne permet pas de reproduire toutes
les structures par terme des taux. En effet, il est impossible d’obtenir une
courbe avec deux points d’inflexion par exemple. Or c’est ce que l’on observe
ces derniers temps avec une diminution des taux à très long terme 17.

17. Mais l’Institut des Actuaires publie une courbe des taux qui, par convention, ne peut
avoir ce type de forme. Ils précisent : ”La commission "Indices et références de marchés" de
l’Institut des Actuaires a décidé de continuer à publier une courbe dont les taux à très long
terme ne soient pas inférieurs aux taux à long terme en prolongeant le maximun atteint,
même si ce maximum est situé avant 30 ans.”
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Chapitre 7

Conclusion du calcul du Best
Estimate avec une méthode
déterministe

La méthode déterministe a l’avantage d’être facile et moins coûteuse à mettre
en place, aussi bien au niveau des hypothèses que du temps de calcul néces-
saire. Cependant à la logique purement basée sur la projection des cash-flows,
s’ajoute la prise en compte des options cachées. Cette dernière repose sur des
simplifications liées à l’utilisation de formules fermées selon Black et Scholes,
et donne ainsi un caractère stochastique analytique à ce modèle.

Le second objectif de ce mémoire sera de comparer cette approche avec une
méthode purement stochastique, qui permettra de s’affranchir du calcul ap-
proximatif de la TVOG.

Nous allons donc chercher à mesurer la nature de cette simplification :

∆ = BEdeterministe + TV OG−BEstochastique

Il sera donc possible d’accepter et de valider le modèle déterministe si + ≈ 0.
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Deuxième partie

Modélisation stochastique
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La projection des cash-flows selon un modèle déterministe, notamment dans le
calcul du Best Estimate, est acceptable lorsque le scénario moyen est équivalent
à la moyenne des scénarios. La différence est causée soit :
- Par un jeu d’hypothèses calibrées sur un échantillon statistique trop petit.
- Un portefeuille trop petit où la mutualisation n’est pas complète et la variabi-

lité trop forte, dont la taille ne permet pas d’appliquer raisonnablement la
loi des grands nombres. Dans ce cas seule la génération de scénarios per-
met d’observer certaines valeurs extrêmes 1 et d’aboutir à une distribution
probabiliste du risque.

- Par l’existence d’asymétrie des cash-flows en fonction de la réalisation d’un
scénario par rapport à un autre. Le scénario moyen ne peut capter la
convexité ou la concavité du résultat car l’on raisonne uniquement par
les moments d’ordre un.

C’est typiquement ce dernier point qui rend impossible l’évaluation des options
ainsi que la participation aux bénéfices uniquement à travers un scénario déter-
ministe. C’est pourquoi l’utilisation de scénarios stochastiques est recommandé

La base de toute simulation stochastique consiste à créer l’aléa du modèle. Une
attention toute particulière doit donc être accordée à cette étape car la qualité
du générateur va entièrement dépendre du caractère aléatoire de ces nombres.

On va donc chercher à reproduire des tirages de variables aléatoires suivant
certaines lois de probabilité. Une série de tirage va donc permettre, grâce au
modèle, de créer un scénario à T périodes.

En reproduisant cette étape un très grand nombre de fois, nous pourrons
appliquer la loi des grands nombres. Cette technique s’appelle la méthode de
Monte-Carlo.

Figure 7.0.1: Processus mis en place pour générer des scénarios financiers
stochastiques de T périodes

1. Qui suivent des lois de probabilité différentes, par exemple de type Pareto

81



En modélisation, il est usuel et surtout très commode de faire l’hypothèse que
l’aléa est gaussien : par exemple on fait souvent l’hypothèse que les rendements
des actifs financiers sont log-normaux.

On devra au final obtenir un nombre important de réalisations de variables
aléatoires de loi normale centrée réduite. Il n’est pas possible de générer di-
rectement des réalisations de loi normale acceptables, et cela nécessite tout
d’abord de passer par la simulation de variables de loi uniforme U(0,1).

La contrainte du temps de calcul qui peut paraître futile dans certains cas, prend
ici tout son sens car on parle de milliers de scénarios qui devront faire évoluer
chaque police en tenant compte des interactions entre l’actif et le passif et des
impacts sur les comportements de l’assuré. Dans une logique opérationnelle il
faut donc optimiser et simplifier le processus théorique idéal.
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Chapitre 8

Générateur de variables
aléatoires

8.1 Générer un nombre aléatoire entre 0 et 1

Il existe différentes façons d’obtenir la réalisation d’une variable aléatoire de
loi uniforme U(0,1). Toutes ces méthodes ne sont pourtant pas équivalentes et
il faudra choisir celle qui offrira le meilleur rapport qualité/temps calcul. On
évoquera la technique la plus simple et la plus rapide, que l’on confrontera avec
une méthode plus complexe.

8.1.1 La fonction ”Aléa” d’Excel

Cette fonction utilise un générateur congruentiel pseudo-aléatoire qui se définit
par :
– L’initialisation de la suite : X0 ∈ N∗

– Xn+1 = k.Xn + p mod m avec k, p, m des entiers positifs.
Il est donc pseudo-aléatoire car l’aléa va ensuite dépendre du choix de la valeur
initiale X0 appelé « la graine » pour k, p et m fixé.
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8.1. Générer un nombre aléatoire entre 0 et 1

Prenons volontairement un petit échantillon de 400 réalisations et regardons ce
que nous obtenons :

Figure 8.1.1: Simulation de 400 nombres aléatoires grâce à la fonction Alea()

Ce graphique représente la réalisation de chaque variable aléatoire en fonction
de la simulation correspondante. On obtient bien une distribution aléatoire
comprise entre [0 ;1].

8.1.2 La translation irrationnelle du Tore

On parle ici de générateur quasi-aléatoire, qui fait intervenir très facilement
une suite des nombres premiers pour obtenir des simulations de vecteur à d
dimensions :

un = n
√
pd − -n√pd.

Avec :
pd le dième nombre premier
- . l’opérateur de la partie entière
n l’indice de la simulation, n=1...N
d l’indice du nombre premier qui représentera la période, d=1...D
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8.1. Générer un nombre aléatoire entre 0 et 1

Donc pour N simulations de vecteurs à D dimensions on simulera NxD variables
aléatoires. On fera donc varier n de 1 à N et pour chaque n on aura une valeur
pour les D périodes en faisant varier d de 1 à D.

Il nous faut donc tout d’abord la liste des D premiers nombres premiers.

Pour le même échantillon que précédemment, nous calculons la suite un pour
n=1. . . 400, avec la première valeur propre (soit 2) car la dimension n’est que
de 1. Nous obtenons alors :

Figure 8.1.2: Simulation de 400 nombres aléatoires grâce à la translation
irrationnelle du Tore en utilisant le nombre premier 2

On constate immédiatement que la discrépance de ce générateur est très faible.

8.1.2.1 La discrépance

La discrépance permet de mesurer l’équirépartition d’une suite de
points sur [0, 1]n. Plus celle-ci est faible et plus l’échantillon sera
uniformément distribué.

Definition. Discrépance locale

Soit x = (xn)n≥1 ∈ [0, 1]n, λn la mesure de Lebesgue sur [0, 1]n et A un
sous-ensemble de [0, 1]n.
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8.1. Générer un nombre aléatoire entre 0 et 1

La discrépance locale d’ordre k de x par rapport à A est donné par :

Dk (A, x) =
1

k
Card {i ∈ (1 . . . k) , xi ∈ A} − λn(A)

On en déduit la discrépance totale :

Definition. Discrépance

Soit P l’ensemble des sous-pavés de [0, 1]n. La discrépance d’ordre k de la suite
x est donnée par :

D∞
k (x) = sup {|Dk (A, x)| , A ∈ P}

Dans notre cas on s’en sert pour mesurer la qualité de l’équirépartition.

Definition. La suite est équirépartie si :

∀A ∈ P : lim
k→∞

Dk (A, x) = 0

Cette méthode qui permet d’avoir une équirépartition semblable entraine
d’autres inconvénients que l’on peut mettre en évidence en étudiant ce que l’on
obtient d’une période à l’autre. C’est-à-dire que pour un n donné, on représente
les résultats obtenus pour deux nombres premiers successifs.

Figure 8.1.3: Mise en évidence de la corrélation entre les simulations utilisant
la translation irrationnelle du Tore
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On observe ainsi qu’il n’y a certainement pas indépendance entre les périodes 1,
or dans la suite du simulateur, nous aurons besoin de générer des réalisations
de loi normale indépendantes à partir de ces données.

8.1.2.2 Evaluation de la corrélation

Voici le corrélogramme entre deux simulations pour un nombre premier fixé, et
celui terme à terme dans une même simulation. On les obtient par le calcul
suivant :

ρh =
cov (uk, uk+h)√

s2
√
s2

=

∑N
k=1 (uk − u) (uk+h − u)

∑N
k=1 (uk − u)2

Avec :

s2 la variance empirique
cov la covariance empirique
u la moyenne empirique de l’échantillon (ui)i=1...N

h ∈ [1, N − 1]

1. Une quantification de la corrélation est disponible dans : Planchet F., Therond P.,
Jacquemin J. : Modèles financiers en assurance p127-129.
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8.1. Générer un nombre aléatoire entre 0 et 1

- Entre deux périodes p et p+h de la même simulation n : précisément on
prend ici n=1 et p=1 (le premier nombre premier i.e 2)

Figure 8.1.4: Mesure de la corrélation entre deux mêmes éléments de suites
basées sur des valeurs propres différentes
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8.1. Générer un nombre aléatoire entre 0 et 1

- Entre deux simulations n et n+h pour un nombre premier fixé, précisément
on prend ici n=1 et p=1 (le premier nombre premier i.e 2)

Figure 8.1.5: Mesure de la corrélation entre deux éléments de la suite basée
sur une même valeur propre

Ces deux corrélogrammes sont donc bien insuffisants en terme d’indépendance.
Il faut donc trouver une alternative entre la qualité de la simulation de la
translation irrationnelle du Tore et la nécessité d’indépendance.

On va donc tout simplement mélanger les simulations afin de casser l’ordre qui
créait cette dépendance.

8.1.3 L’algorithme du Tore mélangé

Pour résoudre ce problème il suffit de modifier l’ordre dans lequel on va tirer les
réalisations de variables aléatoires. Au lieu d’avoir un nous avons maintenant um
avec m une variable aléatoire dans N. Pour obtenir m nous utilisons simplement
la fonction « Alea() » comme :

m = γ (N) = Alea ()×N + 1
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8.1. Générer un nombre aléatoire entre 0 et 1

Avec :
N le nombre total de simulations
Alea(), la fonction Excel retournant un nombre aléatoire compris entre 0
et 1

Pour le même échantillon que précédemment nous obtenons maintenant :

Figure 8.1.6: Simulation de 400 nombres aléatoires grâce à la translation
irrationnelle du Tore mélangé en utilisant le nombre premier 2
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8.1. Générer un nombre aléatoire entre 0 et 1

8.1.3.1 Etude de la corrélation

Voici les mêmes corrélogrammes que précédemment :
- Entre deux périodes p et p+h de la même simulation n, précisément on prend

ici n=1 et p=1 (le premier nombre premier i.e 2)

Figure 8.1.7: Mesure de la corrélation entre deux mêmes éléments de suites
mélangées basées sur des valeurs propres différentes
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8.1. Générer un nombre aléatoire entre 0 et 1

- Entre deux simulations n et n+h pour un nombre premier fixé, précisément
on prend ici n=1 et p=1 (le premier nombre premier i.e 2)

Figure 8.1.8: Mesure de la corrélation entre deux éléments de la suite mélangée
basée sur une même valeur propre

Ceux-ci sont donc beaucoup plus satisfaisants que pour la méthode non mélan-
gée.

Pour la dépendance période par période il n’est pas possible de la réduire en
effectuant un second mélange sur le choix de la valeur propre.
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8.1. Générer un nombre aléatoire entre 0 et 1

En effet nous obtenons un corrélogramme assez similaire :

Figure 8.1.9: Mesure de la corrélation avec le mélange du terme de la suite et
de la valeur propre utilisée

On fera l’hypothèse que la dépendance linéaire entre les variables générées
est quasi-nulle et que nous générons bien des termes acceptables pour une
simulation stochastique.

8.1.4 Conclusion

Certes la mise en place de la translation irrationnelle du Tore et sa version
mélangée est plus longue et complexe. Cependant cette technique va s’avérer
plus efficace pour des échantillons plus restreints, ce qui va au final permettre
de raccourcir la durée totale de calcul.

Les tests du poker ainsi que le test sur la valorisation d’un call européen 2 per-
mettent de conclure que l’erreur d’estimation est plus faible et plus rapidement
correcte avec l’utilisation de l’algorithme de Tore. On utilisera donc des généra-
teurs quasi-aléatoires pour appliquer la méthode de ”Quasi”-Monte-Carlo.

Nous pouvons aussi déduire que la discrépance des générateurs quasi-aléatoires
est généralement plus faible que celle des générateurs pseudo-aléatoires.

2. Voir Planchet F., Therond P., Jacquemin J. : Modèles financiers en assurance
p131-135.
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8.2. Simuler une réalisation de variable aléatoire de loi Normale centrée réduite

8.2 Simuler une réalisation de variable aléatoire de
loi Normale centrée réduite

Il est courant, voir systématique en finance, que l’on fasse des hypothèses gaus-
siennes concernant l’évolution des actifs financiers. Cette hypothèse a l’avantage
de créer des processus que l’on maitrise bien pour ensuite les discrétiser et les
programmer en pratique.

Nous chercherons donc dans cette partie à aboutir à la simulation de réalisations
de variables aléatoires indépendantes, suivant une loi normale centrée réduite.
Le but sera par la suite de simuler des mouvements browniens géométriques
pour appliquer la méthode de Monte-Carlo sur ces simulations de scénarios
financiers.

Nous évoquerons deux méthodes très courantes puis nous expliquerons le choix
de l’une d’entre-elle. Reprenons U, la variable aléatoire suivant une loi uniforme,
générée précédemment par l’algorithme du Tore mélangé.

8.2.1 Méthode de Box-Muller

C’est la méthode de simulation de la distribution de la loi Normale centrée
réduite la plus utilisée. Elle permet de produire des couples réalisation de loi
N(0,1), de corrélation nulle, et ceci très simplement.

Soient U1 et U2 deux v.a de loi uniforme U(0,1). Alors :

X1 =
√
−2 ln (U1) cos (2πU2) (8.2.1)

X2 =
√

−2 ln (U1) sin (2πU2) (8.2.2)

suivent une loi N(0,1) et corr (X1, X2) = 0

Démonstration. Nous avons

{
8.2.1

8.2.2
⇔






X1 ⇔ U1 = e−
1
2(X

2
1+X2

2)

X2 ⇔ U2 =
1

2π
tan−1

(
X2

X1

)

Calculons le Jacobien :

det(J) = det

∣∣∣∣∣∣∣∣

δU1

δX1

δU2

δX1
δU1

δX2

δU2

δX2

∣∣∣∣∣∣∣∣
=

1
√
2π

exp

(
−
1

2
X2

1

)
1

√
2π

exp

(
−
1

2
X2

2

)

94



8.2. Simuler une réalisation de variable aléatoire de loi Normale centrée réduite

Comme la fonction de densité conjointe fU1,U2(u1, u2) = 1.I(0,1)(u1)I(0,1)(u2)
et que

fX1,X2(x1, x2) = fU1,U2(g
−1
1 (x1, x2), g

−1
2 (x1, x2)).det(J)

= fU1,U2(u1, u2).det(J)

Nous avons bien X1 et X2 qui suivent une loi N(0,1) avec corr (X1, X2) = 0

Cette technique est propre à la loi Normale, cependant il existe des méthodes
plus générales qui s’appliquent à des distributions continues (Normale, Exponen-
tielle, Pareto, Weibull. . . ) dès lors que l’inversion de la fonction de répartition
est possible. C’est le cas de l’algorithme de Moro pour les pour la loi Normale.

8.2.2 L’algorithme de Moro

L’inversion des fonctions de répartition est une méthode permettant de simuler
une distribution continue à partir de réalisations de variables aléatoire de loi
Uniforme U(0,1).

Proposition. Si la fonction de répartition F est continue et strictement crois-
sante sur [0,1], alors elle admet une fonction réciproque que l’on notera F−1.

Pour la loi uniforme nous avons aussi :

Proposition. Soit U une variable aléatoire suivant une loi Uniforme sur l’in-
tervalle [0,1]. Alors la variable aléatoire F−1(U) a pour fonction de répartition
F.

C’est-à-dire que pour simuler N réalisations de variables aléatoires gaussiennes
centrées réduites, il suffit de générer F−1(U), avec F la fonction de répartition
de la loi Normale et U la variable aléatoire générée par la méthode du Tore
mélangé décrite précédemment. Comme la loi de probabilité d’une variable
aléatoire réelle est caractérisée par sa fonction de répartition, si F−1(U) a la
même fonction de répartition que la loi, alors cette variable aléatoire doit suivre
cette même loi.
Exemple : X ∼ Exp(θ)

FX(x) = 1− e−θx

⇔ x = −
1

θ
ln (1− FX(x))

⇔ F−1(u) = −
1

θ
ln(1− u) := Y (u)

⇒ Y ∼ Exp(θ)

95



8.2. Simuler une réalisation de variable aléatoire de loi Normale centrée réduite

Pour la loi Normale centrée réduite N(0,1) nous avons alors :

Z ∼ N(0, 1)

fZ(z) =
1

√
2π

exp

(
−
z2

2

)

FZ(z) =

z
ˆ

−∞

fZ(z) =
1

√
2π

z
ˆ

−∞

exp

(
−
t2

2

)
dt

Finalement l’algorithme va permettre d’approcher le résultat de l’inverse de
la fonction de répartition de la loi Normale par une méthode numérique très
précise.

Moro (1995), utilise pour la première fois la combinaison de deux algorithmes,
pour créer un algorithme hybride, de plus en plus considéré comme la méthode
la plus efficace pour générer des réalisations de variables aléatoires gaussiennes
centrées réduites à partir de simulations de loi uniforme.

Beasley et Springer (1997) présentent un algorithme d’inversion pour la loi
Normale, mais qui s’avère finalement peu efficace pour la queue de distribution
de cette loi. C’est pourquoi Moro va donc distinguer deux régions et appliquer
l’algorithme de Beasley et Springer uniquement sur la région centrale. La
partie des extrêmes quant à elle sera modélisée à l’aide des polynômes de
Tchebychev tronqués.

Voici la méthode :

Soit u la valeur de la loi uniforme générée et posons z = u−0, 5. Nous cherchons
à approcher x tel que y = Φ(x) avec Φ la fonction de répartition de la loi
N(0,1).

1. La région centrale de la distribution : |z| ≤ 0, 42

x = z

∑3
i=0 aiz

2i

∑4
j=0 bjz

2j

Avec :

i a(i) b(i)
0 2.50662823884 1
1 -18.61500062529 -8.4735109309
2 41.39119773534 23.08336743743
3 -25.44106049637 -21.06224101826
4 3.13082909833

2. Les queues de la distribution : |z| > 0, 42

x =






∑8
i=0 ciTi(t)−

c0
2

si z ≥ 0

c0
2
−
∑8

i=0 ciTi(t) si z < 0
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8.3. Validation de la normalité de l’échantillon simulé

Avec : t = k1

{
2 ln

(
− ln

(
1

2
− |z|

))
− k2

}

et
∑8

i=0 ciTi(t)−
c0
2

qui peut être approché par l’algorithme :

t.d1 − d2 +
c0
2

Avec : di = 2.t.di+1 − di+2 + ci pour i=8,7,...,1 et d10 = d9 = 0

et les paramètres suivant :

i c(i) k(i)
0 7.7108870705487895
1 2.7772013533685169 0.4179886424926431
2 0.3614964129261002 4.2454686881376569
3 0.0373418233434554
4 0.0028297143036967
5 0.0001625716917922
6 0.0000080173304740
7 0.0000003840919865
8 9.9999999129707170

8.3 Validation de la normalité de l’échantillon
simulé

Afin de valider l’adéquation de cet échantillon (xi)i=1...n généré à la loi Normale,
nous allons effectuer certains tests sur un échantillon de n=1000 réalisations de
variables aléatoires.

8.3.1 Moyenne et écart-type empirique

Nous obtenons :

x =
1

n

n∑

i=1

xi = 0, 0040

s =

√√√√ 1

n− 1

n∑

i=1

(xi − x)2 = 1, 0226

Ces premiers résultats respectent bien les paramètres de la loi Normale centrée
réduite.
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8.3. Validation de la normalité de l’échantillon simulé

8.3.2 Test de Shapiro-Wilk

Ce test d’hypothèse permet de rejeter ou non l’hypothèse de mortalité selon un
certain risque. Il est particulièrement puissant, même pour les petits effectifs.

La statistique de test W de l’échantillon (xi)i=1...n est donnée par :

W =
(
∑n

i=1 aixi)
2

∑n
i=1 (xi − x)2

Avec :

(ai)i=1...n des constantes générées à partir de la moyenne et de la matrice
de variance co-variance des quantiles d’un échantillon de taille n
suivant une loi normale. Elles sont fournies par des tables spécifiques

x la moyenne empirique de l’échantillon

Il suffit ensuite de comparer cette statistique avec la valeur critique Wcrit de
cette statistique pour un seuil de risque, donné par la table de Shapiro et
Wilk.
– Si W > Wcrit on ne peut pas rejetter l’hypothèse de normalité
– Si W < Wcrit on rejette l’hypothèse de normalité
On peut également produire la probabilité critique du test : la p-value
Résultats :

Statistique seuil 1% seuil 5%
Wcrit 0,930 0,947

W 0,999037
P-value 0,8916

La conclusion est donc de ne pas rejetter l’hypothèse de normalité, même au
seuil de risque de 1%.

8.3.3 Test de Lilliefors

Ce test est une variante du test de Kolmogorov-Smirnov où les paramètres
de la loi sont estimés à partir des données.

La statistique D du test est donnée par :

D = max
i=1...n

(
Fi −

i− 1

n
,
i

n
− Fi

)
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8.3. Validation de la normalité de l’échantillon simulé

Avec :

Fi la fréquence théorique de la loi de répartition normale centrale réduite

Comme pour le test précédent, nous concluons sur l’acceptation du test en
comparant D avec sa valeur critique Dcrit qui dépend du seuil de risque. Cette
valeur est approchée à partir de formules simples.

La région critique est cette fois-ci D > Dcrit et permet de rejeter l’hypothèse
de normalité.
Résultats :

Statistique seuil 1% seuil 5%
Dcrit 1,031√

n
= 0, 0326 0,886√

n
= 0, 02802

D 0,0169

Nous avons bien D < Dcrit donc on ne peut pas rejeter cette hypothèse de
normalité.

8.3.4 Test d’Anderson-Darling

Cette autre variante de Kolmogorov-Smirnov donne plus d’importance aux
queues de distribution. La statistique A est donnée par :

A = −n−
1

n

n∑

i=1

(2i− 1) [ln (Fi) + ln (1− Fn−i+1)]

Avec :

Fi est la fréquence théorique de la loi de répartition normale centrée et
réduite

La région critique est à nouveau donnée par A > Acrit

Résultats :

Statistique seuil 1% seuil 5%
Acrit 1,035 0,752

A 0,167940

Etant donné que A < Acrit on ne peut pas rejetter l’hypothèse de normalité.

8.3.5 Test d’Agostino (K-squared)

Sans rentrer dans les détails, ce test est basé sur les coefficients du kurtosis et
du skewness. Si ceux-ci diffèrent simultanément de 0, on rejette l’hypothèse de
normalité.

Ici aussi on accepte l’hypothèse de Normalité, avec une P-value=0,7726.

99



8.3. Validation de la normalité de l’échantillon simulé

8.3.6 Conclusion

On accepte donc sans hésiter l’hypothèse que notre générateur de nombres
aléatoires permet bien de simuler la réalisation de loi Normale centrée réduite.
Nous pouvons donc passer à la modélisation des processus stochastiques du
rendement des différents actifs.
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Chapitre 9

Simulation de processus
stochastiques

Nous pouvons à présent nous intéresser à la simulation stochastique de l’évo-
lution des actifs, afin d’obtenir des scénarios financiers qui permettront de
modéliser la revalorisation des contrats d’assurance, et donc le Best Estimate,
par la méthode de Monte-Carlo.

Présentons tout d’abord deux théorèmes essentiels dans la manipulation des
équations différentielles stochastiques.

Méthode : on simule N trajectoires de T périodes pour chaque type
d’actif, avec T étant un multiple de 12 car on choisit un pas men-
suel pour la modélisation. La pondération des rendements selon l’al-
location de l’actif nous donnera les produits financiers et donc la
revalorisation des passifs d’assurances.

9.1 Eléments fondamentaux

Nous utiliserons par la suite ces deux notions mathématiques lors de la discré-
tisation des processus que nous présenterons.

9.1.1 Lemme d’Ito pour les processus stochastiques

Si X est la solution de l’équation différentielle stochastique (EDS) :

X(t) = X(0) +

ˆ t

0
m (X(s), s) ds+

ˆ t

0
σ (X(s), s) dB(s)

101



9.1. Eléments fondamentaux

ou encore de :

dX(t) = m (X(t), t) dt+ σ (X(t), t) dB(t)

Avec :
B un mouvement brownien
m la moyenne, le drift du processus
σ l’intensité de la volatilité

Si f(t, x) est une fonction de classe C1,2 (R+,R) alors :

df (X(t), t) =

(
∂f

∂t
+m (X(t), t)

∂f

∂x
+

1

2
σ (X(t), t)2

∂2f

∂x2

)
dt+σ (X(t), t)

∂f

∂x
dB(t)

9.1.2 Décomposition de Cholesky

Theorem. Soit Γn×n une matrice symétrique définie positive. Il existe une
unique matrice triangulaire inférieure An×n à diagonale positive telle que Γ =
AA′. On appelle A la “racine carrée” de Γ ou la décomposée de Cholesky, de
termes αi,j.

La construction de A se fait en quatre étapes :

Le premier terme :

α1,1 =
√
Γ1,1

Les termes de la diagonale : i = 2, . . . , n

αi,i =

√√√√Γi,i −
i−1∑

k=1

α2
i,k

Les termes du triangle inférieur : ∀i = 2, . . . , n et ∀j = 1, . . . , i− 1

αi,j =
1

αj,j

(
Γi,j −

j−1∑

k=1

αi,kαj,k

)

Comme A est une matrice triangulaire inférieure on a donc :

∀i = 1, . . . , n− 1 et ∀j = i+ 1, . . . , n on a αi,j = 0

Proposition. Soit X iid∼ N (0d, Idd), alors si nous posons Y = m+AX, nous
avons Y ∼ N (m,Γ).

102



9.1. Eléments fondamentaux

Démonstration. Nous avons

E (Y ) = E (m+AX)

= m+AE (X)︸ ︷︷ ︸
= m+A× 0 = m

ainsi que

ΓY = E
(
(Y − E (Y )) (Y − E (Y ))′

)

= E
(
AX (AX)′

)

= E
(
AXX ′A′)

= A.E
(
XX ′)A′

= AA′

= Γ

Toute combinaison linéaire des composantes de Y est combinaison linéaire des
composantes de X qui sont des lois gaussiennes indépendantes. Donc Y suit
une loi gaussienne N (m,Γ).

Exemple :

Soit la matrice de corrélation Γ3×3 =




1 0.3 0.7
0.3 1 0.5
0.7 0.5 1





En appliquant l’algorithme de la décomposition de Cholesky nous
obtenons :

A =




1 0 0
0.3 0.9539 0
0.7 0.3040 0.6462





Nous pouvons rapidement vérifier qu’il y a bien :

AA′ = Γ

9.1.3 Probabilité risque neutre et probabilité historique

L’hypothèse selon laquelle les agents seraient neutres face au risque, est lar-
gement utilisée pour le pricing instantané des options. Elle permet en effet
de simplifier les calculs de valorisation des produits dérivés, car sous cette
probabilité, les prix des actifs sont des martingales et l’on peut appliquer le
principe de l’AOA 1 sous sa forme forte 2. Black, Scholes et Merton ont

1. Absence d’Opportunité d’Arbitrage
2. En plus de ne pas pouvoir obtenir sûrement un gain positif avec un portefeuille de

valeur nulle, car deux actifs procurant le même flux doivent avoir le même prix, on peut ici
dire aussi qu’il est impossible d’obtenir une espérance de gain positive en arbitrant n’importe
quels actifs.
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9.1. Eléments fondamentaux

ainsi démontré que le prix théorique d’une option est indépendant de l’espérance
du gain de l’actif sous-jacent.

Or ces modèles stochastiques ne permettent pas de mesurer les risques, ni
d’effectuer une allocation stratégique d’actifs. En effet, si un investissement
obligataire sur 20 ans rapporterait en moyenne autant qu’un placement mo-
nétaire, l’allocation optimale serait systématiquement de placer la totalité en
monétaire.

Dans notre cas, l’allocation stratégique des actifs n’est pas à déterminer car l’on
part d’un portefeuille existant dont l’asset-mix est connu et stable à chaque
période.

La structure de la directive Solvency 2 nécessite deux approches en termes de
simulation lors de la construction d’un modèle interne :
– Estimer la distribution de l’actif net dont on va évaluer la sensibilité aux

différents chocs pour obtenir le SCR (la VaR à 99.5% à 1 an). Ceci ne peut
être fait qu’avec une probabilité historique pour tenir compte des risques à
l’actif.

– Calculer le Best Estimate avec une logique Market-Consistent, en actualisant
les différents flux au taux sans risque. Market-Consistent signifie que les
engagements sont homogènes à un prix observable sur le marché, c’est-à-dire
au coût de la couverture financière que l’on pourrait mettre en place pour un
passif couvrable. On adopte ici une approche risque-neutre pour modéliser
l’impact de l’actif risqué.

Pour passer d’un univers à l’autre et pour rester cohérent dans les deux types de
projection 3, on se tournera vers des modèles à déflateurs pour mesurer le prix de
marché du risque. Le déflateur est une fonction d’actualisation stochastique qui
intègre une composante temps. Elle permet d’obtenir la valeur de marché à une
date, à partir de la projection des flux de trésorerie dans l’univers historique.

Pour notre outil, nous resterons donc en probabilité risque-neutre, car le but
est uniquement de déterminer les engagements Market-Consistent de l’assureur.
Nous ne développerons donc pas ce sujet, largement documenté 4.

Il faudra porter une attention particulière au calibrage des généra-
teurs de scénario, de sorte qu’en moyenne, tous les actifs aient le
même rendement égal au taux sans risque.

9.1.4 Remarques

– L’une des difficultés principales de la simulation de ces processus est l’es-
timation des paramètres, ainsi que des matrices de corrélations entre les

3. Par exemple la projection en univers risque neutre sera effectué en utilisant une volatilité
implicite, alors que la projection en probabilité historique utilisera la volatilité historique.

4. Toutes les sources sont disponibles sur : http ://actudactuaires.typepad.com/laboratoire/2010/04/calibrage-
des-primes-de-risque.html
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9.2. Processus des taux d’intérêt

différentes classes d’actifs. A noter également que le nombre de paramètres
à estimer doit rester raisonnable dans un modèle sous peine de perdre en
robustesse.
Mais l’objectif ici n’est pas de calibrer le modèle aux données du marché, et
on souhaite uniquement comparer l’approche déterministe et stochastique.
C’est pourquoi ces estimations ne sont pas déterminantes, la seule contrainte
étant que la moyenne des scénarios générés soit représentée par le scénario
central que l’on utilisera dans le modèle déterministe sur Prophet.

– On fait ici abstraction des dividendes des actions car l’estimation du taux
continu de dividende est sensible à estimer sur la base d’un historique.

9.2 Processus des taux d’intérêt

On fait l’hypothèse que les taux d’intérêt suivent un processus d’Ornstein-
Uhlenbeck, comme c’est le cas dans le fameux modèle de Vasicek.

9.2.1 Modèle de Vasicek

9.2.1.1 Définition

Le taux instantané en t, rt est alors donné par l’équation différentielle stochas-
tique :

drt = a (b− rt) dt+ σdBt

Avec :
b le taux moyen de long terme, b ∈ R+

a la vitesse de retour à la moyenne, a ∈ R+

σ l’intensité instantanée du bruit qui suit un mouvement brownien B

Ce modèle intègre donc un effet de retour à la moyenne, c’est-à-dire que le taux
va revenir plus ou moins rapidement vers sa moyenne, en évoluant selon un
processus de Wiener autour de celle-ci. Si a=0 on est alors dans le cas d’une
marche aléatoire sans phénomène de mean-reverting.
En appliquant le lemme d’Ito présenté précédemment, la solution de cette
EDS s’écrit alors :

rt = r0e
−at + b

(
1− e−at

)
+ σe−at

t
ˆ

0

easdBs

Pour u < t nous pouvons écrire :

rt = rue
−a(t−u) + b

(
1− e−a(t−u)

)
+ σ

t
ˆ

u

ea(t−s)dBs
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9.2. Processus des taux d’intérêt

Comme dBs = Bs+1 −Bs est gaussien de loi N (0, 1), alors rt l’est également,
de moyenne et de variance :

µr (u, t) = rue
−a(t−u) + b

(
1− e−a(t−u)

)

σ2
r (u, t) = E







σ

t
ˆ

u

ea(t−s)dBs




2




= σ2

t
ˆ

u

e−2a(t−s)ds

=
σ2

2a

(
1− e−2a(t−s)

)

9.2.1.2 Discrétisation

Pour implémenter ce processus, il faut tout d’abord le discrétiser. Heureusement
le processus d’Ornstein-Uhlenbeck admet une discrétisation exacte, c’est-
à-dire que l’on peut simuler directement le processus d’Ito sans erreur de
discrétisation. Cela revient à résoudre explicitement l’EDS associée.

La discrétisation exacte de rt peut alors être exprimée récursivement comme :

rt+δ = µr (t, t+ δ) + σr (t, t+ δ)Zt+δ

= rte
−aδ + b

(
1− e−aδ

)
+ σ

√
1

2a
(1− e−2aδ)Zt+δ

Avec :
δ > 0 représentant la période de discrétisation
Zi ∼ N (0, 1)

9.2.1.3 Calibrage

L’une des difficultés principales de la simulation de ces processus est l’estimation
des paramètres ainsi que des matrices de corrélation entre les différentes classes
d’actifs. A noter également que le nombre de paramètres à estimer doit rester
raisonnable dans un modèle sous peine de perdre en robustesse (principe de
parcimonie en statistique). Encore une fois, l’objectif ici n’est pas de calibrer le
modèle aux données du marché, et on souhaite uniquement comparer l’approche
déterministe (scénario moyen dans Prophet) et stochastique (moyenne des
scénarios dans le nouvel outil).
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Il faudra porter une attention particulière au calibrage des géné-
rateurs de scénario, de sorte qu’en moyenne, tous les actifs aient
le même rendement égal au taux sans risque. En réalité il faudrait
retrouver la courbe moyenne donnée par le CEIOPS.

Voici les paramètres utilisés lors de la modélisation des taux sans risque.

Paramètres Valeurs Origine
a 0.28
b 0.0404 taux sans risque 20 ans fourni par le CEIOPS
σ 0.06
r0 0.012 taux sans risque un an fourni par le CEIOPS

La volatilité est volontairement importante car nous cherchons à mesurer les
effets de la prise en compte explicite de cette volatilité dans la mesure de la
revalorisation.

9.2.1.4 Observations

Après discrétisation exacte du modèle de Vasicek nous obtenons :

 

Figure 9.2.1: Evolution (en mois) du taux d’intérêt annuel dans cinq scénarios
stochastiques générées grâce au modèle de Vasicek
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9.2. Processus des taux d’intérêt

Et finalement la moyenne de 10 000 scénarios est représentée par :

 

Figure 9.2.2: Moyenne de 10 000 scénarios du taux d’intérêt annuel (en mois)
simulés par le modèle de Vasicek

Nous avons donc simulé l’évolution des taux instantanés sans risque sur la
période de projection T, cela représente en quelque sorte N courbes de taux
forward. Cependant il existe une formule pour déterminer la courbe des taux
spot en fonction du taux initial et des paramètres du modèle de Vasicek.

9.2.1.5 Courbe d’actualisation

Cette courbe est nécessaire dans notre cas pour obtenir la courbe d’actualisation.

Le prix P (t) en date t=0 d’un zéro coupon versant 1 en date t est donné par :

P (t) = exp

{
−t×

[
b−

σ2

2a
−

1

at

((
b−

σ2

2a
− r0

)
(
1− e−at

)
−

σ2

4a

(
1− e−at

)2
)]}

La courbe d’actualisation ne variera donc pas en fonction du scénario car tous
les paramètres de la formule sont fixés lors de la modélisation.
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9.2.1.6 Limites du modèle

Or le choix de ce modèle peut être remis en cause pour diverses raisons :
- On constate empiriquement que la volatilité n’est pas constante quel que soit

le niveau des taux d’intérêt. En effet, plus le taux est élevé (faible) et
plus la volatilité est importante (basse).

- Le modèle de Vasicek peut retourner des taux négatifs ce qui est impossible
dans la réalité.

On peut alors utiliser la littérature abondante pour se tourner vers un autre
modèle, et l’alternative la plus courante est celle du CIR.

9.2.2 Modèle de Cox, Ingersoll et Ross

9.2.2.1 Définition

Cox, Ingersoll et Ross (C.I.R. 1985) proposent ainsi un modèle qui répond
à ces problèmes tout en restant très proche de celui de Vasicek.

Le taux instantané est alors modélisé par :

drt = a (b− rt) dt+ σ
√
rtdBt

Ce modèle garantit donc que le processus de taux soit toujours positif dans le
cas continu car :

rt = 0 ⇒ drt = ab dt

où ab ≥ 0

C’est-à-dire que seule la volatilité σ est remplacée par σ
√
rt et dépend donc

maintenant du niveau du taux d’intérêt et donc du temps. Posons σ̃ = σ
√
rt

9.2.2.2 Discrétisation

Le problème se situe au niveau de la discrétisation car cette fois-ci une dis-
crétisation exacte facilement programmable n’existe pas (car numériquement
trop coûteux). Il faut donc avoir recours à une technique de discrétisation
approximative telle que le schéma d’Euler ou de Milstein. Pour plus de
détails nous renvoyons à [Article 3b]
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9.2. Processus des taux d’intérêt

9.2.2.2.1 Le schéma d’Euler

Soit (Xt)t=δ...T δ un processus continu sur T périodes δ (par exemple δ = 1/12)

L’idée de la discrétisation d’Euler est simplement de poser :

Xt+δ = Xt +

t+δ
ˆ

t

β (Xs) ds+

t+δ
ˆ

t

α (Xs) dBs

' Xt + β (Xt) δ + α (Xt) (Bt+δ −Bt)

où α () et β () sont deux fonctions intégrables de Xt.

Pour le processus du CIR, le développement d’Ito-Taylor au premier ordre
nous donne :

rt = r0 + µ (X0, 0)

t
ˆ

0

ds+ σ̃ (X0, 0)

t
ˆ

0

dBs +R1 (0, t)

Par simplification et en négligeant le résidu R1 (0, t) nous obtenons alors :

rt+δ = rt + µ (rt, t) δ + σ̃ (rt, t) (Bt+δ −Bt)

= rt + µ (rt, t) δ + σ̃ (rt, t)
√
δZ

= rt + a (b− rt) δ + σ
√

rtδZ

Avec :
Z ∼ N (0, 1)

δ le pas de projection (dans notre cas 1/12)
µ et σ respectivement la moyenne et l’écart type, qui dépendent du niveau
de taux d’intérêt de la période précédente et donc du temps.

Pour la qualité et la vitesse de convergence de ce schéma de discrétisation nous
renvoyons de nouveau à [Article 3b].
9.2.2.2.2 Le schéma de Milstein

Le principe est le même sauf que le développement est d’ordre 2 et c’est le
résidu d’ordre 3 qui est cette fois-ci négligé. Dans le schéma d’Euler, nous
faisions l’approximation :

t+δ
ˆ

t

a (Xs) dBs ' a (Xt) (Bt+δ −Bt)
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9.2. Processus des taux d’intérêt

Alors que maintenant nous utilisons :

t+δ
ˆ

t

a (Xs) dBs ' a (Xt) (Bt+δ −Bt) +
1

2
a′ (Xt) a (Xt) {(Bt+δ −Bt)− δ}

Dans ce cas on obtient au final pour le CIR :

rt+δ = rt + a (b− rt) δ + σ
√
rtδZ +

σ2

4
δ
(
Z2 − 1

)

On obtient alors une meilleure approximation du processus continu, et ceci
sans avoir à simuler une seconde réalisation de variable aléatoire 5.
9.2.2.2.3 Remarque
L’une des raisons pour laquelle nous sommes amenés à préférer le modèle de
Cox, Ingersoll et Ross à celui de Vasicek, est la positivité stricte du
taux pour b suffisamment grand. Or la discrétisation de ce processus continu
basé sur un mouvement brownien, que l’on opte pour le schéma d’Euler ou
de Milstein, peut dans l’absolu générer des taux négatifs. Ce cas est alors
plus grave car comme on procède par récurrence et que la condition rt ≥ 0
est imposée par l’utilisation de la racine carrée, le calcul est alors simplement
impossible.

Nous avons :
– σ > 0
– 0 < δ ≤ 1
– a ∈ R+et b ∈ R+

– Z ∼ N (0, 1)

Il est donc possible d’avoir un taux négatif par exemple lorsque Z ≤
a (rt − b) δ − rt

σ
√
rtδ

.

Cela dépend beaucoup du calibrage des paramètres, et on observe en pratique
que pour des paramètres “non extrêmes”, ce cas n’est jamais réalisé. Plus for-
mellement on peut démontrer en applicant le lemme d’Itò, qu’une condition
nécessaire pour que le CIR discrétisé n’engendre pas des taux négatifs est :

b ≥
σ2

2a
> 0 ce qui est vérifié ici.

9.2.2.3 Limites

Les modèles de Cox, Ingersoll et Ross ainsi que celui de Vasicek possèdent
néanmoins des limites biens connus comme celle de ne reposer que sur une seule
variable explicative : le taux instantané r0. Or en pratique cette hypothèse de
corrélation parfaite entre r0 et rt n’est pas observée.

5. Pour plus d’information nous renvoyons à [Article 3b] et [Ouvrage 4]
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9.2. Processus des taux d’intérêt

9.2.2.4 Observations

Comme précédemment nous observons donc 10 000 trajectoires comme par
exemple :

 

Figure 9.2.3: Evolution (en mois) du taux d’intérêt annuel dans cinq scénarios
stochastiques générées grâce au modèle de Cox, Ingersoll, Ross

A première vue, le problème important de négativité du taux est réglé ou du
moins contenu sur l’ensemble des simulations pour ces hypothèses données 6.

6. Idem que celles du modèle de Vasicek
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9.2. Processus des taux d’intérêt

Et la moyenne de ces scénarios est maintenant représentée par :

 

Figure 9.2.4: Moyenne de 10 000 scénarios du taux d’intérêt annuel (en mois)
simulés par le modèle de Vasicek

Le taux initial, le taux long terme et la pente de la courbe sont similaires au
modèle de Vasicek, car les paramètres sont restés inchangés. Or on constate
que la courbe est plus lisse, et surtout plus stable sur les dernières années. Ceci
est certainement dû au fait que nous avons réussi à éviter la simulation de
taux négatifs, et que l’écart-type entre les scénarios est réduit car ceux-ci sont
cantonnés à la partie positive pour obtenir en moyenne le même rendement.

9.2.2.5 Courbe d’actualisation

Comme pour le modèle de Vasicek, nous simulons ici l’évolution des taux
courts, mais la courbe d’actualisation doit être mesurée à partir de la courbe
de taux spot qui en résulte. Pour le CIR il est également possible de calculer
explicitement le prix d’un zéro-coupon en fonction des paramètres du modèle
et du taux instantané 7.

7. Pour plus de détails nous renvoyons à [Article 3a]
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9.3. Processus du rendement des actions : le mouvement brownien géométrique

Proposition. Pour tout t ≤ τ ≤ T , le prix en date t, P (t, τ), d’une obligation
zéro-coupon versant 1 en dans τ années est donné par :

P (t, τ) = At (τ) e
−rtCt(τ)

où

At (τ) :=

[
2ρe

ρ+a
2 (τ−t)

(ρ+ a)
(
eρ(τ−t) − 1

)
+ 2ρ

] 2ab
σ2

Ct (τ) :=
2
(
eρ(τ−t) − 1

)

(ρ+ a)
(
eρ(τ−t) − 1

)
+ 2ρ

ρ :=
√
a2 + 2σ2

Nous chercherons donc à calculer (P (0, τ))τ=1...P

Le facteur d’actualisation à la date t ne dépend plus maintenant uniquement
du taux instantané en t=0 comme pour le modèle de Vasicek. La courbe
d’actualisation va donc ici varier à chaque scénario de taux ce qui semble plus
cohérent avec la logique de Monte-Carlo.

9.3 Processus du rendement des actions : le
mouvement brownien géométrique

9.3.1 Définition

On modélise l’évolution du cours des actions St par un mouvement brownien
géométrique Bt comme utilisé dans le modèle de Black, Scholes et Merton :

dSt

St
= µdt + σdBt

Avec :
µ la tendance, constante
σ l’écart type par unité de temps, constant lui aussi

9.3.2 Discrétisation du processus continu

Pour ce processus, il existe également une discrétisation exacte donnée par :

St = S0 exp

{(
µ−

σ2

2

)
t+ σ (Bt −B0)

}
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9.3. Processus du rendement des actions : le mouvement brownien géométrique

Avec :

(Bt −B0) ∼ N (0, t) deux mouvements browniens géométriques

Pour un pas de discrétisation de δ (dans notre cas 1/12), on modélise le processus
par récurrence grâce à :

St+δ = St exp

{(
µ−

σ2

2

)
δ + σZ

√
δ

}

Avec :
Z la réalisation d’une variable aléatoire gaussienne centrée réduite
0 ≤ t ≤ t+ P × δ pour une simulation sur P périodes.

9.3.3 Corrélation entre les actifs

Tous les actifs évoluent sur des marchés (de taux, d’action, immobilier...) régis
par des variables financières communes comme l’inflation, le taux de chomage...
et possédant des intéractions évidentes. L’hypothèse d’indépendance ne peut
raisonnablement pas être faite car le comportement du marché impacte tous
les actifs.

Au passage nous pouvons évoquer le modèle de Wilkie (1986). Dans ce modèle
intégré, le taux d’inflation joue le rôle central, car de celui-ci découle l’évolution
des taux d’intérêt, des actions et de l’immobilier. Cependant l’articulation d’un
modèle autour d’une seule variable nécessite une estimation très pointue de
celle-ci, sous peine de créer un biais important dans tout le modèle.

Nous avons présenté un théorème important pour l’utilisation de matrices de
corrélations, la décomposition de Cholesky. Nous verrons son application
à notre portefeuille pour aboutir à la nouvelle discrétisation du processus du
rendement des actifs sur le marché action.

9.3.3.1 Présentation

On suppose un portefeuille composé uniquement d’actions et d’obligations
dans une proportion α et 1− α. L’évolution de ces actifs est modélisé par les
processus que nous avons présentés précédemment.

On ajoute maintenant l’hypothèse que toutes les actions du portefeuille sont
corrélées avec le marché des actions, corrélé lui-même avec le marché des taux
d’intérêt. Il suffit donc juste pour chaque titre, d’estimer le rendement espéré,
sa volatilité et son lien de corrélation avec le marché, sans estimer la corrélation
des titres entre eux.
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9.3. Processus du rendement des actions : le mouvement brownien géométrique

(source : Planchet F., Thérond P., Jacquemin J. : Modèles
financiers en assurance, Analyses de risque dynamiques [Economica
2005])

Voici schématiquement l’intéraction entre le marché des titres et celui des taux :

 

Figure 9.3.1: Hypothèses sur les liens de corrélation existants entre le rende-
ment des actions et le niveau des taux d’intérêt

Nous pourrions très bien complexifier la modélisation en générant un scé-
nario à d dimensions non-indépendantes, simulant le cours des d actions en
portefeuille. Cela nécessiterait la simulation de B = (B1, B2, . . . , Bd) un mou-
vement brownien de dimension d, avec sa matrice de corrélation telle que
Corr (B1 (t) , B2 (t)) = ρ1,2. On utiliserait alors à nouveau la décomposition de
Cholesky.

9.3.3.2 Intégration dans le processus

Revenons à l’hypothèse qu’il n’existe qu’une corrélation avec le marché. Nous
supposons toujours que le titre i, en l’absence de dividendes, a la dynamique
suivante, basée sur le mouvement brownien Bi

t :

dSt

St
= µidt+ σidB

i
t

116



9.3. Processus du rendement des actions : le mouvement brownien géométrique

Nous avons décrit la corrélation entre ce titre et l’ensemble du marché des
actions (voir la figure précédente) par :

dBi
t ⊗ dB̃a

t = ρidt

Nous pouvons alors dire qu’il existe un mouvement brownien B̃i indépendant
de B̃a tel que :

dSt

St
= µidt+ σiρidB̃

a
t + σi

√
1− ρ2i dB̃

i
t

Démonstration. Soit la matrice Γ2×2 =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, alors la décompo-

sition de Cholesky que nous avons présenté nous permet d’écrire :

Γ2×2 =

(
σ1 0

ρσ2 σ2
√
1− ρ2

)
.

(
σ1 0

ρσ2 σ2
√
1− ρ2

)′
= AA′

Le théorème de Kolmogorov (“Kolmogorov extension theorem” ou “Kolmo-
gorov existence theorem”) nous dit que pour décrire un processus stochastique,
en l’occurence un mouvement brownien, il suffit de décrire les lois conjointes
des marginales finies.

Si l’on suppose encore que le titre i est dépendant de l’évolution des taux
instantanés uniquement par le lien avec le marché action, et que cette corrélation
entre le marché action et le marché des taux d’intérêt est donnée par :

dB̃a
t ⊗ dB̃r

t = ρadt

La dynamique devient alors :

dSt

St
= µidt+ σiρiρadB̃

r
t + σiρi

√
1− ρ2adB̃

a
t + σi

√
1− ρ2i dB̃

i
t

où
Br

t , B
a
t , B

i
t sont des mouvements browniens indépendants

σi la volatilité du titre i

En appliquant le lemme d’Ito à l’équation différentielle stochastique précédente
il vient alors :

St = S0 exp






t
ˆ

0

((
µi −

σ2
i

2

)
du+ σiρiρa dBt + σiρi

√
1− ρ2a dB

a
t + σi

√
1− ρ2i dB

i
t

)




Il faut ensuite discrétiser ce processus, et l’on obtient finalement :

St+δ − St

St
= µiδ + σiρiρa

√
δZ + σiρi

√
1− ρ2a

√
δZa + σi

√
1− ρ2i

√
δZi
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9.3. Processus du rendement des actions : le mouvement brownien géométrique

où :
Z,Za, Zi sont des réalisations de variables aléatoires indépendantes de
loi normale centrée réduite
δ le pas de discrétisation qui vaut 1/12 dans notre cas

9.3.4 Calibrage

Nous faisons l’hypothèse que le portefeuille d’action n’est composé que du
même titre. Cela évite de modéliser, inutilement dans notre cas, des milliers de
scénarios supplémentaires où le drift, la volatilité ainsi que la corrélation avec
le marché seraient différents. Nous prenons comme paramètres :

Variable Valeur Origine
µi 0.03539 Rendement moyen des taux sans risque générés
σi 33.59% Indice de volatilité de l’Eurostoxx 50
ρi 0.8
ρa 0.2

Il est important de choisir µi après avoir simulé les scénarios des taux d’intérêt,
afin de s’assurer qu’en moyenne les deux types d’actifs ont le même rendement,
ce qui respecte bien l’hypothèse de l’univers risque-neutre dans lequel nous
évoluons.
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9.3. Processus du rendement des actions : le mouvement brownien géométrique

9.3.5 Observations

Nous ne modélisons que le rendement des actions et non leur prix. Celui-ci
est volontairement très volatile et le rendement moyen sur toute la période
correspond bien à celui observé sur la moyenne des scénarios de taux.

 

Figure 9.3.2: Exemple d’un scénario de rendement des actions sur 10 ans
obtenu par simulation.
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Chapitre 10

Description de l’outil

Cet outil développé sous Excel doit permettre de répliquer le modèle détermi-
niste pour un scénario donné. On lui ajoute ensuite un générateur de scénario
qui va reproduire le calcul pour chaque police et pour chaque scénario : le mo-
dèle devient ainsi stochastique. En appliquant la méthode de Monte-Carlo
nous pourrons ensuite mesurer la différence sur le Best Estimate calculé avec
le scénario moyen et la moyenne des Best Estimate de chaque scénario.

Une des premières contraintes était donc de pouvoir reproduire les différentes
variables de Prophet. Cela permet également de faire un outil qui correspond
parfaitement au fonctionnement de produits réels.

10.1 Projection du portefeuille

Concernant le sous-ensemble du portefeuille considéré, nous avons créé des
contrats fictifs d’assurance mixte à primes mensuelles. Cela permet d’une part
d’avoir un horizon temporel fini et ainsi restreindre la durée de projection pour
diminuer le temps de calcul. D’autre part ce type de contrat représente une part
significative du portefeuille et nous pouvons ainsi reproduire le fonctionnement
d’une assurance à capital différé, d’une temporaire décès, et le système de reva-
lorisation est finalement assez proche d’un bon d’assurance à durée déterminée.
L’évolution de la réserve mathématique est croissante, et dépend de l’âge de
l’assuré. Il sera donc possible de jouer sur l’âge de l’assuré pour obtenir des
profils de réserve mathématique différents, ce qui impactera le calcul de la
TVOG.

Pour des raisons de confidentialité, toutes les hypothèses utilisées
ici sont fictives mais réalistes.
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10.1. Projection du portefeuille

10.1.1 Description des polices

- Toutes les polices ont un capital en cas de vie ou de décès égal à 10 000 euros
- Toutes les polices sont souscrites à la date d’évaluation t = 0.
- Les frais réels d’acquisition sont fixes égaux à 200 euros, et les frais réels de

gestion sont égaux à 150 euros par an.
- Les primes sont payées mensuellement avec des frais de 2% à la charge du

souscripteur.
- Il n’y a pas de frais de gestion supplémentaires selon la valeur du contrat.
- Le rachat est possible à n’importe quelle date avec une pénalité de rachat de

10%
- Le capital ainsi que la valeur de rachat sont revalorisés par la participation

aux bénéfices
- Le taux technique varie de 1.5% à 4%
- La durée des contrats varie de 10 à 20 ans
- L’âge de l’assuré varie de 40 à 50 ans

En composant toutes les combinaisons par tranche de 5 ans pour la durée et de
0.5% pour le taux technique, nous obtenons ainsi 54 polices aux caractéristiques
strictement différentes.

Pour chaque police il sera donc nécessaire de calculer le Best Estimate sous
les 1000 scénarios pour ensuite mesurer la moyenne de ces scénarios par la
méthode de Monte-Carlo. Il est donc compréhensible que le tableur d’Excel
n’est pas le plus approprié pour effectuer de tels calculs.

10.1.2 Hypothèses de projection des cash-flows

- La marge actionnaire est de 1%
- La courbe des taux d’inflation est la même que le modèle déterministe présenté

précédemment
- Le taux de rachat est fixé à 6% par an
- La table de mortalité utilisée pour le calcul de la provision mathématique est

la table belge HS6872
- La table d’expérience utilisée pour la projection est la table Assuralia IDH

sans ajustement d’âge.
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10.1. Projection du portefeuille

10.1.3 Hypothèses simplificatrices

- Les rachats partiels ne sont pas modélisés.
- La réserve pour PB future n’est pas gérée, elle est supposée nulle en date 0

et on distribue l’excédent de produit financier dans sa globalité.
- La mortalité n’est pas stochastique
- La police ne peut pas être réduite lorsque l’assuré arrête de payer ses primes.
- Au départ, l’actif n’est constitué que de liquidités, sans plus-ou-moins values

latentes. On investit dans deux types d’actifs composés à 70% d’obligations
et 30% d’actions (sans dividendes). Cette allocation est constante au
cours du temps.

- Les obligations sont des obligations perpétuelles à taux variable, dont le
rendement est donné par le taux sans risque instantané.

- Le drift est constant, ce qui nous assure de calibrer les processus de telle
sorte que tous les actifs rapportent en moyenne le même taux égal au
taux sans risque moyen.

- Le portefeuille considéré n’intègre pas de réassurance
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Chapitre 11

Résultats et comparaison

Après avoir fait tourné l’outil pour un jeu de 1000 scénarios, nous obtenons donc
un montant du Best Estimate pour chaque contrat et pour chaque scénario,
soit 1000 × 54 = 54000 résultats. Nous appliquons ensuite la méthode de
Monte-Carlo pour déduire un montant du Best Estimate comparable avec celui
obtenu dans le modèle déterministe.

11.1 Principe de Monte-Carlo

Une définition formelle de la méthode pourrait être donné par 1 :

Definition. Méthode de Monte-Carlo
Soit (Ω,A, P ) un espace probabilisé, X une variable aléatoire à valeurs dans
Rs muni de la tribu borélienne BRs et h : Rs 2→ R une application mesurable.
Le problème est d’évaluer numériquement l’intégrale :

I
def
= E [h (X)] =

ˆ

Ω
h (X) dP

lorsque h (X) est P-intégrable, i.e. h (X) ∈ L1 (Ω,A, P )

Les méthodes de Monte-Carlo sont basées sur un théorème fondamental qui
permet l’approximation de l’espérance : la loi des grands nombres.

Theorem. Loi (forte) des grands nombres :
Soit (Yn)n≥1 une suite de v.a. réelles intégrables i.i.d. Alors pour N grand,

ÎN =
1

N

N∑

n=1

Yn −→
N→∞

E [Y1] p.s. et dans L1

1. Patard P-A. : Outils numériques pour la simulation Monte Carlo des produits dérivés
complexes (2007)
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11.1. Principe de Monte-Carlo

On simule donc un grand nombre N de variables aléatoires indépendantes
(Yn)n=1...N et de même loi que Y, puis on obtient une approximation de
l’espérance de Y grâce à la moyenne empirique (estimateur sans biais de la
moyenne). Tout l’objectif de cette méthode est donc de comparer le résultat
de la moyenne des scénarios (modèle stochastique) avec le résultat du scénario
moyen (modèle déterministe).

Dans notre cas (Yn)n représente les scénarios, et chaque scénario est le résultat
de la somme des Best Estimate sur tout le portefeuille.

Soit (c1 . . . cP ) le portefeuille composé de P polices, nous obtenons finalement
un montant total du Best Estimate qui n’est rien d’autre qu’une espérance
mathématique estimée :

BEstoch =
1

N

N∑

n=1

Yn

=
1

N

N∑

n=1

P∑

p=1

BE (cp, n)

où BE(cp, n) est le résultat obtenus pour le contrat p avec le scénario financier n.
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11.2. Sensibilités du Best Estimate

11.2 Sensibilités du Best Estimate

Avant d’exposer les résultats, nous allons tout d’abord étudier plus en détail les
résultats obtenus, profitant du fait que le portefeuille fictif a été construit de
telle sorte que les différents paramètres varient de façon régulière et maitrisée.

11.2.1 Aux caractéristiques du contrat

Commençons par étudier l’impact des caractéristiques de la police sur le montant
du Best Estimate pour un scénario simulé fixé.

 

Figure 11.2.1: Montant du Best Estimate obtenu par le modèle stochastique
pour toutes les polices et pour un scénario donné. Exemple pour 3 scénarios
différents

La forme particulière que l’on obtient suggère déjà une influence très importante
des caractéristiques du contrats. Comme elle dépend uniquement de l’ordre
dans lequel nous avons disposé nos polices, donnons tout d’abord plus de détails
sur la construction des polices du portefeuille.
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11.2. Sensibilités du Best Estimate

N° Age Durée Taux technique
1 40 20 1.5%
2 40 20 2%
3 40 20 2.5%
4 40 20 3%
5 40 20 3.5%
6 40 20 4%
7 40 15 1.5%
8 40 15 2%
...

...
...

...
15 40 10 1.5%→4%
...

...
...

...
19→24 45 20 1.5%→4%

...
...

...
...

31→36 45 10 1.5%→4%
37→42 50 20 1.5%→4%

...
...

...
...

49→54 50 10 1.5%→4%

On peut donc tirer les conclusions suivantes qui respectent bien les résultats
attendus à priori :

1. Observation : Les pics correspondent aux taux techniques extrêmes, le
Best Estimate est croissant en fonction du taux technique.
⇒ Le taux technique du contrat a une influence majeure sur le Best
Estimate, étant donné qu’il est garanti pour toute la durée du contrat
quel que soit les produits financiers. La participation aux bénéfices ne
provient que de la partie résiduelle éventuelle après avoir retiré la marge
actionnaire.

2. Observation : Pour un taux technique équivalent, on constate une légère
décroissance du Best Estimate.
⇒L’âge augmente donc la prime pure également car :

Px:n =
Ax:n

äx:n

↗ pour x′ > x

↘ pour x′ > x
⇒ Px′:n > Px:n

ce qui, toute chose égale par ailleurs, réduit l’engagement de l’assureur.
Cet effet prend le dessus sur le flux de mortalité qui augmente avec l’âge
et aura donc l’effet inverse sur le Best Estimate. On fait ici abstraction
de l’effet temps puisque la prime est payée en début de période alors que
le décès a lieu en milieu de période.

126



11.2. Sensibilités du Best Estimate

3. Les scénarios plus ou moins favorables translatent cette structure en
dents de scie à la hausse comme à la baisse, mais pas dans les mêmes
proportions pour tous les contrats.

11.2.2 Aux scénarios simulés

Vérifions également ensuite que l’impact du scénario financier sur le montant
final du Best Estimate est aussi loin d’être négligeable et que l’on peut mettre
en évidence certains scénarios extrêmes qui vont modifier considérablement les
flux projetés.

 

Figure 11.2.2: Exemple du Best Estimate pour 100 scénarios et pour une
police donnée. Le résultat est minoré mais non-majoré

L’écart maximal constaté est d’environ 35% entre la réalisation des deux
scénarios les plus extrêmes à la hausse et à la baisse. En réalité, les scénarios
très favorables vont engendrer une forte participation bénéficiaire et donc
un Best Estimate élevé. Or comme la PB n’est pas symétrique, un scénario
défavorable ou très défavorable aura le même impact sur le Best Estimate, car
la PB sera nulle. C’est exactement ce caractère asymétrique qui provoque un
écart entre le scénario moyen et la moyenne des scénarios.
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11.2. Sensibilités du Best Estimate

Notation. Soit :

PFt : taux de rendement financier en date t

α : marge actionnaire

rt taux technique en date t

PBt le taux des provisions mathématiques reversé comme PB en t

Alors :

PBt = max (PFt − α− rt; 0) ⇒ PBt ∈ [0; +∞[

∃ (PF '
t , α

', r't ) : PBt = 0 ⇒ BEt ∈ [BE (PF '
t , α

', r't ) ; +∞[

C’est pourquoi on constate graphiquement que le montant du Best Estimate est
minoré par cette valeur, en quelque sorte le Best Estimate sous les hypothèses du
tarif. Mais il n’est pas majoré et nous observons des montants ponctuellement
très élevés. Comme nous prenons ensuite la moyenne de ces réalisations il
devient important de simuler un grand nombre de scénarios afin que les scénarios
extrêmes ne faussent pas le résultat.

C’est finalement un mélange de liens complexes entre les données du portefeuille
et les hypothèses de rendements financiers futurs, qui va permettre d’obtenir
un montant du Best Estimate des engagements futurs de l’assureur. La partici-
pation aux bénéfices est l’unique actrice de cette interaction entre l’actif et le
passif dans ce calcul, mais celle-ci va également dépendre du taux technique du
contrat.
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11.3 Résultats

11.3.1 Méthode de comparaison

Rappelons que le but est de mesurer ∆ tel que :

BEstochastique +∆ = BEdéterministe + TV OG

Afin de gommer les approximations causées par l’outil, nous n’avons pas du
tout utilisé Prophet, mais effectué le calcul avec le scénario moyen dans l’outil
Excel répliquant les calculs de Prophet.

En ce qui concerne le calcul de la TVOG, nous avons mensualisé le calcul
utilisant des options évaluées avec la formule fermée de Black et Scholes, car
nous possédons déjà une projection des provisions mathématiques mensuelles
et le calcul sera d’autant plus précis. La volatilité utilisée est la moyenne de
celles utilisées dans les simulations, pondérées par l’allocation d’actif supposée
constante dans le temps.

11.3.2 Montant du Best Estimate obtenu pour les deux
modèles

Voici les résultats obtenus grâce à l’outil, après l’avoir fait tourner sur le
portefeuille composé de 54 polices. Nous appellerons :
– ”BEstochastique” le résultat de la méthode de Monte Carlo pour 1000 scénarios

financiers
– ”BEdéterministe” le résultat obtenu grâce à l’outil pour le scénario moyen
– ”TVOG” le montant de la valeur temps retourné par la méthode décrite à la

section [ 6.4 page 62]

BEstochastique 46854.09
BEdéterministe 40069.80

TVOG 5702
BEdéterministe + TV OG 45771.80

Le Best Estimate selon la méthode stochastique est donc légèrement inférieur
à celui que nous obtenons avec un scénario unique augmenté de la TVOG.
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11.3. Résultats

Evaluons maintenant l’importance de ces écarts constatés :

Ecart sur BE total
∆ =

(
BEdéterministe + TV OG

)
−BEstochastique -1082.29

% Différence -2.31%

Ecart sur estimation de la TVOG
TimeV alue = BEstochastique −BEdéterministe 6784.29

% Erreur de la TVOG -15.95%

Nous pouvons donc conclure, pour cet exemple, que la méthode utili-
sée pour ajouter la TVOG sous-évalue d’environ 16% la valeur temps
”réelle” du système de revalorisation par le taux garanti et la partici-
pation aux bénéfices. Ici cela ne représente finalement que 2.31% du
Best Estimate, et uniquement des produits prévoyant la distribution
de participation aux bénéfices. Néanmoins il faut également rappe-
ler que la méthode de Monte Carlo est aussi une approximation, qui
ne devient très fiable qu’à partir d’un nombre important de simula-
tions. Mais nous supposons ici que c’est un bien meilleur estimateur
de la valeur temps réelle qu’une réplication financière par des actifs
dérivés évalués par une formule fermée de Black et Scholes.

Quoi qu’il en soit, le fait que BEstochastique ≥ BEdéterministe était attendu car
le phénomène d’asymétrie est causé par la minoration de la participation aux
bénéfices. Par exemple on peut imaginer une situation où le scénario moyen
n’entrainerait pas de distribution de PB lorsque :

max (r1, r2, . . . , rT ) ≤ taux technique+marge actionnaire

Avec :
rt le taux de rendement moyen à la date t avec t = 1 . . . T

Or si ce taux de rendement était simulé, nous obtiendrions des scénarios plus
favorables et d’autres moins favorables afin d’avoir celui-ci en moyenne. Pour
les scénarios moins favorables, il n’y aurait aucun changement car la PB serait
toujours nulle, mais des scénarios plus favorables pourraient en engendrer et le
Best Estimate serait alors supérieur. Au global la moyenne pour Monte Carlo
serait également supérieure, et l’ajout du caractère stochastique de la TVOG
sera donc indispensable.
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11.3. Résultats

Dans la dernière version des ”Technical Specifications” pour le QIS5, nous
trouvons cette conclusion concernant les ”Financial options and guarantees” :

TP.7.46. The possible simplification for financial options and gua-
rantees is to approximate them by assuming a Black-Scholes type
of environment, although its scope should be carefully limited to
those cases where the underlying assumptions of such model are
tested. Additionally, even stochastic modelling may require some
simplifications when facing extremely complex features. This latter
may be developed as part of level 3 guidance.
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Chapitre 12

Modélisation d’un taux de
rachat dynamique

Un des avantages à utiliser un modèle stochastique est de pouvoir faire varier
des paramètres de projection, selon l’évolution des marchés financiers. En effet
il est évident que la rentabilité du contrat pour l’assuré aura une incidence non
négligeable sur son comportement de rachat. Pour finir nous aborderons donc
la question de la modélisation du taux de rachat.

12.1 Modélisation

La modélisation de la dynamique de rachat, admet comme souvent, différents
niveaux de complexité. Usuellement le taux de rachat est scindé en deux
dynamiques, influencées par des paramètres bien distincts :

12.1.1 Le rachat structurel

Il est déterminé par le type de contrat, les caractéristiques de la population
assurée, l’âge du contrat, la fiscalité. . . mais est indépendant de l’évolution des
marchés financiers. Un modèle stochastique n’est donc pas indispensable pour
le mesurer.

12.1.2 Le rachat conjoncturel

Il vient augmenter l’intensité du rachat structurel, et constitue une partie
variable entièrement déterminée par la revalorisation ou le rendement du
contrat.
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12.1. Modélisation

Une modélisation usuelle du taux de rachat global en date t τt et donnée par
[Document 2] :

τt = τ structurelt ×
[
1 + α

(
rciblet−1 − reffectift−1

)]

Avec :
rciblet le taux de rendement en date t attendu par l’assuré
reffectift−1 le taux de rendement en date t effectivement servi à l’assuré
α la sensibilité du taux de rachat à la sur(sous)-performance du contrat

Afin d’obtenir des taux cohérents quel que soit le rendement effectif, nous
ajoutons à cela un taux plancher et plafond.

τt = min
{
max

{
τ structurelt ×

[
1 + α

(
rciblet−1 − reffectift−1

)]
; τmin

}
; τmax

}

Le taux de rachat total va donc augmenter (diminuer) lorsque le rendement
effectif du contrat va être inférieur (supérieur) au taux de rendement attendu.
Dans notre cas, le taux cible sera égal au taux spot sans risque long terme, que
l’assuré aurait pu attendre s’il avait investi dans une obligation d’Etat dont
l’échéance est égale à celle du contrat. Ici cela représente 4.04% sur 20 ans.

On utilise donc la notion de satisfaction par rapport au rendement du contrat.
Si le taux attendu est réellement servi le taux conjoncturel n’a pas d’incidence
sur le taux de rachat global.

Remarque : Le rachat pour les contrats d’assurance en cas de vie ou de décès
sont nettement moins sensibles à la revalorisation et à l’âge du contrat qu’un
contrat de capitalisation standard à taux garanti ou d’investissement en unités
de compte par exemple. En effet la motivation lors de la souscription de ces
derniers est principalement basée sur le rendement financier et l’avantage fiscal.

Modéliser le rachat conjoncturel n’est donc pas indispensable voir incorrect,
dans le cas des assurances mixtes, car souvent l’assuré n’a pas réellement
conscience de cette revalorisation avant la prestation en cas de décès, de survie,
ou lors de la demande de rachat. C’est pourquoi, si nous voulons évaluer l’impact
de l’intégration du rachat dynamique sur le Best Estimate, et la conclusion sera
donc valable pour l’Embedded Value également, nous négligerons cette réalité.
Il sera ainsi possible d’évaluer dans quelle proportion, le passage d’un taux de
rachat ”flat” constant à un modèle de rachat dynamique, va impacter le Best
Estimate, et quel est sa sensibilité aux différents paramètres.
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12.2. Calibrage

12.2 Calibrage

Nous partons d’une estimation des taux de rachat structurel donné par :

Ancienneté Taux de rachat structurel
] 0 ; 4 ] 2%
] 4 ; 8 ] 5%

] 8 ; +∞ [ 8%

Nous faisons l’hypothèse que, si ces taux sont pertinents pendant les premières
années du contrat, comme nous considérons des contrats avec une échéance
fixe (20 ans pour l’exemple) le taux de rachat devrait décroître les dernières
années du contrat. Car racheter très près de l’échéance est peu avantageux si
le contrat prévoit des pénalités de rachat par exemple, sans parler de l’effet de
fidélité qui augmente. Nous ajoutons donc l’hypothèse que ce taux structurel
retombe progressivement vers 5% la dernière année. Pour lisser l’évolution du
taux de rachat et obtenir une évolution mensuelle nous utilisons une fonction
polynomiale d’ordre 2.

 

Figure 12.2.1: Hypothèse d’évolution du taux de rachat structurel selon une
fonction polynomiale (en années)
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12.3. Résultats

Il faut ensuite déterminer le coefficient α tel que la moyenne des taux de rachat
correspondent au taux ”flat” utilisé dans le modèle déterministe. Le taux cible
correspond au taux sans risque en fonction de la maturité du contrat et nous
utilisons le taux moyen simulé comme taux effectif. Ces taux sont constants
sur toute la durée du contrat, par contre le taux structurel utilisé évolue selon
la fonction :

y = −0.0005x2 + 0.0129x− 0.0072

Nous obtenons ainsi un coefficient α différent pour chaque échéance :

Echéance rcible α

10 3.54% 9.818826684
15 3.95% 7.743401704
20 4.04% 8.800098917

12.3 Résultats

Pour ne pas obtenir un taux de rachat structurel négatif la première année,
nous minorons celui-ci par 2%.
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Figure 12.3.1: Variations du taux de rachat obtenu pour un scénario et une
police donné, comparé au taux flat précédemment utilisé et aux nouvelles
hypothèses sur le taux de rachat structurel (en mois)
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12.3. Résultats

L’impact est donc important sur un scénario isolé et l’impact sur les flux de
rachat sont non-négligeables.

Globalement on constate également une augmentation significative du Best
Estimate et ceci s’explique facilement. Etant donné que les flux de rachat sont le
résultat d’un taux de rachat que l’on applique à la valeur de rachat, l’évolution
de cette dernière est également à considérer. Comme la valeur de rachat évolue
de la même façon que les provisions mathématiques (modulo les pénalités de
rachat), c’est à dire de manière croissante, nous avons deux effets antagonistes
qui s’appliquent sur les prestations de rachat suite à l’introduction de ce taux
de rachat dynamique :

1. Le taux de rachat ”flat” était globalement supérieur que le nouveau
taux de rachat sur les sept premières années puis inférieur. L’effet de
l’actualisation jouant moins sur les premières années, les flux de rachats
devraient être moins importants donc le Best Estimate également plus
petit 1.

2. Comme la valeur de rachat est croissante, on appliquera les taux de rachat
les plus élevés sur un montant supérieur. Les flux de rachats seront donc
plus importants qu’avec le taux ”flat” et le Best Estimate sera de même
plus grand.

On peut donc en conclure que le second effet prend le dessus sur le premier, et
que notre exemple ne nous permet pas de mesurer de façon efficace l’impact de
l’introduction d’un taux de rachat dynamique. D’autant plus qu’une modifica-
tion du taux de rachat va également modifier toutes les autres prestations car
toute la projection du nombre de contrats est modifiée.

Il faudrait reproduire les mêmes mesures sur un capital constant dans le temps,
mais de toute évidence il est probable que seul l’effet de l’actualisation viendrait
différencier les deux modèles. Toutefois un modèle dynamique est beaucoup plus
flexible et permet, s’il est bien calibré, de projeter plus fidèlement l’évolution
des rachats pour tous les types de contrats.

1. Tout ceci n’est biensûr vrai que si en moyenne nous retrouvons bien le taux ”flat”
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Chapitre 13

Conclusion

La nouvelle réforme de solvabilité qui devrait s’appliquer à partir de l’exercice
comptable au 31 décembre 2012, s’appliquera à tous les acteurs du secteur de
l’assurance, sans distinction de taille et de moyens. Les études quantitatives
d’impact (QIS) ont un double intérêt dans la mise en place de cette réforme :
permettre de calibrer au mieux les scénarios à considérer, mais aussi permettre
aux compagnies de se préparer à son application.

La complexité croissante de la formule standard et des exigences à la mise en
place d’un modèle interne comme alternative à la méthode proposée, va sans
aucun doute engendrer un coût supplémentaire important pour les compagnies.
Le risque principal est que ce coût devienne disproportionné par rapport
à l’intérêt initial du projet qui est de fournir une mesure plus fiable des
risques de l’assureur et donc une solvabilité mieux adaptée. Le principe de
proportionnalité est donc au cœur des échanges entre les propositions de la
Commission européenne et les avis des acteurs du secteur de l’assurance via les
Consultation Papers notamment.

Si le calcul du Best Estimate n’est qu’une étape dans l’ensemble du processus
de calcul permettant de déboucher sur le montant du SCR et du MCR requis,
il reste la première pierre indispensable et déterminante pour la suite. Les
différents niveaux de complexité que le régulateur admettra, seront fonction
de la capacité de l’assureur ou du réassureur à développer une méthode plus
précise, ainsi que de l’ampleur de l’approximation effectuée. En effet, même si
l’évaluation du Best Estimate ne doit pas contenir de prudence supplémentaire
comme nous l’avons expliqué dans le 3.1.2 par exemple, en cas de doute sur la
méthode il faudra toujours privilégier la solution la plus prudente. Le problème
est que dans notre cas, il semblerait que, dans cet exemple, se restreindre à un
modèle déterministe corrigé de la TVOG soit une approximation contraire à ce
principe.
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Or le régulateur ne serait pas en mesure d’imposer le recours à un modèle
stochastique, tant le coût financier et humain ne pourrait pas être supporté par
les petites et moyennes compagnies, qui invoqueraient le principe de proportion-
nalité. Et les résultats que nous présentons ici tendent à valider l’utilisation d’un
modèle déterministe ajusté, tant au niveau de l’ampleur de l’implémentation,
qu’à l’impact réduit de cette approximation, tout en permettant une analyse ra-
pide et fine. Un modèle stochastique quant à lui, nécessite des outils complexes
et adaptés qu’il faudra maîtriser et calibrer parfaitement, mais aussi un temps
de calcul bien plus important, pour finalement une valeur ajoutée nuancée.
On constate un écart d’approximation peu important, qui ne se retrouvera
que dans les produits prévoyant de la participation aux bénéfices, car ce flux
est le seul à dépendre de la réalisation de l’actif et n’est pas symétrique selon
celle-ci. Cette différence est donc acceptable, à condition que l’on ajuste le
Best Estimate de la TVOG par une méthode ad-hoc testée, et que les volumes
restent raisonnables et maîtrisés.

Cependant il est évident que l’estimation de Monte Carlo sur un modèle stochas-
tique bien calibré est plus précis et plus flexible que tout autre approximation.
Surtout que ces avantages sont ensuite transposables au calcul de la MCEV
entre autre. Cette méthode permet de faire varier des hypothèses et des para-
mètres selon différents scénarios financiers, comme nous l’avons présenté au
chapitre 12, et il est donc également possible d’envisager une gestion dynamique
de l’actif, où l’allocation varierait au cours du temps selon un taux cible et le
versement des prestations.
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Liste des symboles

Available Capital = Actif - BE - MVM

BE Best Estimate des engagements futurs

CEIOPS Committee of European Insurance and Occupational Pensions Super-
visors

CoG Cost of Guarantee

GAO Guaranted Annuity Option

MCEV Market Consistent Embedded Value

MCR Minimun Capital Requirement

MVM Market Value Margin ou Marge de Risque

NAV Net Asset Value ou Risk Bearing Capital
= Actif - BE

PB Participation aux bénéfices

PM Provisions mathématiques

QIS Quantitative Impact Study

SCR Solvency Capital Requirement

TMG Taux Minimum Garanti

TVOG Time Value of financial Obligation and Guarantee
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Annexe A

Table d’expérience Assuralia :

145



Annexe B

Code VBA de simulation des
scénarios

Sub s imu la t i on s ( )
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

I n i t i a l i s a t i o n des paramètres de p r o j e c t i o n
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Dim N As In t eg e r ’ l e nombre de s imu la t i on s
N = Sheets ( " Input " ) . Ce l l s (2 , 3) . Value
Dim T As In t eg e r ’ l e nombre de pé r i ode s par s imu la t i on
T = Sheets ( " input " ) . Ce l l s (3 , 3) . Value
Dim P As Double ’ l a durée en année d ’ une pér iode s o i t P=1/12 pour

un mois
P = Sheets ( " input " ) . Ce l l s (4 , 3) . Value
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

I n i t i a l i s a t i o n des paramètres des modèles f i n a n c i e r s
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Dim Z , Za , Zi As Double ’ s imu la t i on s de l o i normale N(0 ,1)
Dim j1 , j2 , j 3 As In t eg e r
Dim s igmai As Double ’ v o l a t i l i t é de l ’ ac t i on
Dim mui As Double ’ d r i f t de l ’ ac t i on
Dim r o i As Double ’ c o r r é l a t i o n t i t r e −marché
Dim roa As Double ’ c o r r é l a t i o n act ion−taux
Dim a , b , sigma , r0 , s igmaold As Double
a = Sheets ( " Input " ) . C e l l s (20 , 3) . Value
b = Sheets ( " Input " ) . Ce l l s (21 , 3) . Value
r0 = Sheets ( " Input " ) . Ce l l s (23 , 3) . Value
s igmaold = Sheets ( " Input " ) . Ce l l s (22 , 3) . Value
s igmai = Sheets ( " Input " ) . C e l l s (28 , 3) . Value
mui = Sheets ( " Input " ) . Ce l l s (27 , 3) . Value
r o i = Sheets ( " Input " ) . C e l l s (33 , 3) . Value
roa = Sheets ( " Input " ) . Ce l l s (34 , 3) . Value
Dim k As In t eg e r ’ compteur pour l e nombre de pér i ode s
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Dim i As In t eg e r ’ compteur pour l e nombre de s imu la t i on s
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Début de l a s imu la t i on
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

For i = 1 To N
For k = 1 To T

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Réa l i s a t i o n s de l o i normale N(0 , 1 ) par Moro appl iqué au Tore
mélangé

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Randomize
Z = moro ( torenmel ( i , k , N) )
Za = moro ( torenmel ( i , k , N) )
Zi = moro ( torenmel ( i , k , N) )

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Simulat ion du rendement des a c t i on s
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Sheets ( " Scénar io ␣ ac t i on " ) . Ce l l s (1 + i , 2 + k) . Value = mui ∗ P
+ sigmai ∗ r o i ∗ roa ∗ Z ∗ P ^ 0 .5
+ sigmai ∗ r o i ∗ Za ∗ ( (1 − roa ^ 2) ^ 0 . 5 ) ∗ P ^ 0 .5
+ sigmai ∗ Zi ∗ ( (1 − r o i ^ 2) ^ 0 . 5 ) ∗ P ^ 0 .5
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Simulat ion des taux d ’ i n t é r ê t s e l on Cox−I n g e r s o l l −Ross
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Sheets ( "CoxIRoss" ) . Ce l l s ( i + 1 , 2) . Value = r0
Sheets ( "CoxIRoss" ) . Ce l l s ( i + 1 , 2 + k) . Value =
Sheets ( "CoxIRoss" ) . Ce l l s ( i + 1 , 2 + k − 1) . Value
+ a ∗ (b − Sheets ( "CoxIRoss" ) . Ce l l s ( i + 1 , 2 + k − 1) . Value ) ∗ P
+ sigmaold ∗ Z ∗ ( Sheets ( "CoxIRoss" ) . Ce l l s ( i + 1 , 2 + k − 1) . Value

∗ P) ^ 0 .5
Next k

Next i
End Sub
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Annexe C

Démonstration pour le calcul du
GAO

selon l’article : Boyle P., Hardy M. : Guaranteed Annuity
Options, (2003).
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