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Résumé

Dans la suite logique de la mise en place de BALE II en 2007 pour le
secteur bancaire, les interactions croissantes entre ce secteur et celui
des assurances, ainsi que la nécessité d’une solvabilité controlée, fiable
et optimisée, rendent l'application de la directive SOLVABILITE II un
tournant important pour la profession. Etant donné que chaque assureur
et réassureur se doit de rester solvable, aux vues de ses engagements et
de son activité, le calcul de I’exigence en capital de solvabilité (SCR) est
aussi bien un moyen de controle des acteurs du marché par les autorités
de régulation, qu'une fagon de mesurer réellement son exposition & tous
les risques grace a cette réforme de solvabilité.

Etape préliminaire indispensable a la détermination du SCR, le calcul
du Best Estimate des engagements futurs de 'assureur doit respecter des
principes généraux propres & SOLVABILITE II, mais il subsiste une grande
part de liberté pour I'actuaire dans la modélisation. Le choix du modéle
est soumis & différentes contraintes, que ce soit de temps, de cotlit ou de
données, mais dans tous les cas il est important d’appliquer le principe
de proportionnalité avec parcimonie et en connaissance de cause.

C’est pourquoi la comparaison méthodologique peut constituer une étude
intéressante, surtout lorsque ’on parle du poste le plus conséquent du
passif, controlé et représentant ’estimation la plus fiable des engagements
a la date d’évaluation. De plus il est basé sur des projections de cash-
flow utilisant des hypothéses et des techniques actuarielles et financiéres
complexes pour un portefeuille de produits variés.

Mots clés : Solvabilité 2, Options et garanties intrinseéques (TVOG, GAO),
Monte Carlo, Générateur de variables aléatoires (Tore mélangé, algorithme de MORO),
Processus stochastiques (VASICEK, COX-INGERSOLL-ROsS, Brownien), BLACK et
SCHOLES.



Abstract

As a logical consequence of the setup of BASEL II in 2007 for the banking
sector, the growing interactions between this sector and insurance, but
also the need of a solvency control, reliable and optimized, are making the
application of the reform SOLVENCY II a turning point for the insurance
sector. Because each insurer and reinsurer has to stay solvent, viewing
of its liabilities and its business, the calculation of the solvency capital
requirement (SCR) is both a way to controlling the market by regulatory
authorities, that a way to measure the real risk exposure thanks to this
new solvency reform.

A first necessary step to the SCR calculation, is the determination of the
Best Estimate of futur insurer’s obligations, which has to respect some
general principles specific to SOLVENCY 2, but also a free modeling choice
for actuaries. The choice of the model should consider some constraints
of time, costs and data, but in all cases it is important to respect the
principle of proportionality, sparingly and knowingly.

That is why a methodological comparison could be interessant, especially
when it concerns the most important value of liabilities, controlled, and
the most reliable estimation of futur obligation at an observation point.
Moreover it is based on projected cash flows using complex actuarial and
financial assumptions and technics for a portfolio of various products.

Keywords : Solvency 2, intrinsic options and guarantees (TVOG, GAO), Monte
Carlo, generator of random variables (mixed Tore, MORO algorithm), Stochastic
process (VASICEK, COX-INGERSOLL-ROsS, Brownian), BLACK and SCHOLES.



Remerciements

Je tiens & remercier tout particuliérement, et parmi tant d’autres, Brigitte
KOERNER responsable du département actuariat a la BALOISE VIE LUXEM-
BOURG, Lionel TEXIER, Audrey LISON et Amélie MOULART, qui m’ont accueilli,
aidé et soutenu pendant mon stage et la rédaction de ce mémoire.

Je remercie également beaucoup KARL-THEODOR EISELE, chercheur et profes-
seur & 'TRMA, au CNRS et a I’Université de Strasbourg, qui a encadré mon
mémoire en passant du temps a le lire, me conseiller et me corriger tout au
long de la rédaction, et en cherchant & m’inculquer la rigueur indispensable &
I’écriture d’'un document scientifique.

Un dernier mot pour les lecteurs, que j'encourage & ne pas hésiter & me faire
part de leurs avis, remarques ou corrections concernant ce document, avec
I'indulgence nécessaire & un mémoire.



Table des matiéres

Table des matiéres
1 Introduction

2 Définition du Best Estimate
2.1 Cadre réglementaire . . . . . . . ... Lo
2.2 Mise en perspective dans Solvency 2 . . . . . . . . .. .o
2.3 Fonctionnement de PROPHET . . . . . . . . . . . . ... . o

I Du déterministe au stochastique

3 Hypothéses de projection
3.1 Tables de mortalité . . . . . . . . ... L e
3.2 Loiderachat . . . . . . . . . . e
3.3 Structure par terme des taux sans risque . . . . . ... Lo
3.4 Vecteur du rendement certainty-equivalent . . . . . . . . .. ...
3.5 Courbe de Vinflation . . . . . . . . .. .. L L
3.6 Estimation des frais généraux . . . . . . . .. ... Lo

4 Assurances a garantie en cas de décés et en cas de vie
4.1 Les primes recues . . . . . . .. Lo e e e e e
4.2 Les flux de prestation . . . . . . . . . . . ...
4.3 La marge administrative . . . . .. ... .00 L L L oo
4.4 La participation aux bénéfices . . . . . . . . . . . ... ...
4.5  Laréassurance . . . . . . . . ... i i e e
4.6 Conclusion . . . . . . .. . e

5 Contrats en unités de compte
5.1 Définition . . . . . . L L
5.2 Projection des frais . . . . . . . .. .. L
5.3 Modélisation de la garantie décés . . . . . . . .. ... oL

6 Options et Garanties intrinséques aux contrats d’assurance
6.1 Définition des Options cachées . . . . . . . . . . . ... L o
6.2 Insuffisance du modéle déterministe . . . . . . . .. ... L Lo
6.3 Evaluation des options financiéres . . . . . . . . . ... ... Lo 0oL
6.4 Time Value of financial Option and Guarantee . . . . . . . . ... ... ......
6.5 Guaranteed Annuity Option . . . . . .. . ... L oL o

7 Conclusion du calcul du Best Estimate avec une méthode déterministe

19

29
30
31
34
35

36
36
37
38
38
40
43

46
46
47
48

53
54
56
58
62
73

79



Table des matiéres

II Modélisation stochastique

8 Générateur de variables aléatoires
8.1 Générer un nombre aléatoire entre O et 1 . . . . . . . .. ... ...
8.2 Simuler une réalisation de variable aléatoire de loi Normale centrée réduite
8.3 Validation de la normalité de I’échantillon simulé . . . . . . . . . . ... ... ...

9 Simulation de processus stochastiques
9.1 Eléments fondamentaux . . . . . . . ..o
9.2 Processus des taux d’intérét . . . . . . . ..o

9.3 Processus du rendement des actions : le mouvement brownien géométrique

10 Description de ’outil
10.1 Projection du portefeuille . . . . . . . . . .. Lo

11 Reésultats et comparaison
11.1 Principe de Monte-Carlo . . . . . . . . .. .. L
11.2  Sensibilités du Best Estimate . . . . . . . . . . . e e
11.3 Résultats . . . . . . . L e

12 Modélisation d’un taux de rachat dynamique
12.1  Modélisation . . . . . . . .. oL e e
12.2 Calibrage . . . . . . . . oL e
12.3 Résultats . . . . . . L e e

13 Conclusion

Table des figures

Bibliographie

A Table d’expérience Assuralia :

B Code VBA de simulation des scénarios

C Démonstration pour le calcul du GAO

80

83
83
94
97

101
101
105
114

120
120

123
123
125
129

132
132
134
135
137
139
142
145

146

148



Chapitre 1

Introduction

Pour aborder le calcul du Best Estimate de maniére opérationnelle, nous le dé-
finirons tout d’abord clairement, puis dans une premiére partie nous étudierons
sa mise en place dans un modéle déterministe. Nous devrons également traiter la
modélisation de la TVOG (Time Value of financial Obligation and Guarantee) et
du GAO (Guaranteed Annuity Option) qu’il faut intégrer, entre autres, au Best
Estimate en tant qu’options et garanties intrinséques aux contrats d’assurance.
Pour ce faire nous présenterons des méthodes basées sur 'utilisation de formule
de type BLACK, SCHOLES et MERTON, permettant de donner un caractére
stochastique analytique & un modéle basé sur des hypothéses déterministes. Or
ce modéle ajusté posséde des inconvénients liés aux approximations nécessaires
et & l'utilisation de formules fermées. C’est pourquoi dans une seconde partie,
nous présenterons tout le processus ainsi que les outils permettant d’aboutir a
un Best FEstimate purement stochastique, s’affranchissant de I'ajustement de la
TVOG. Nous pourrons donc évaluer I'impact de chaque modéle et permettre
de valider ou d’invalider I’approche déterministe ajustée pour des compagnies
d’assurances de petite et moyenne taille.

Toute la difficulté sera de garder un regard critique et objectif dans une logique
opérationnelle, c’est-a-dire en tenant compte des cotits de développement et
des temps de calcul d’'un modéle plus complexe, par rapport a sa valeur ajoutée
en terme de précision. En effet le sujet de ce mémoire s’inscrit donc dans ce
contexte de préparation active et nécessaire, et débouchera sur une comparaison
méthodologique.



Chapitre 2

Définition du Best Estimate

Pour présenter formellement I'objectif du calcul du Best Estimate, nous devons
d’abord inscrire cette exigence dans le contexte réglementaire qu’il faudra
scrupuleusement respecter et justifier auprés des autorités de controle. Solvency
2 est devenu une priorité dans le secteur de ’assurance, et il est primordial
que l'introduction de la nouvelle directive se passe pour le mieux, afin que sa
légitimité et son acceptation ne puisse étre discutable par la suite.

Comme le sujet de la solvabilité de 'assureur est un élément de plus en plus
sensible et stratégique, la mise en place d’une préparation structurée pour
une transition efficace, se traduit dans les faits par une incitation justifiée a
participer aux QIS !, aux formations, aux échanges et aux débats. En plus de
cette dynamique européenne, des institutions nationales exigent une préparation
supplémentaire. C’est le cas par exemple du Commissariat aux Assurances
luxembourgeois, qui ajouta au rapport actuariel de 2009, le calcul des provisions
mathématiques sous une approche conforme & Solvency 2, que nous appellerons
”Best Estimate” dans la suite de ce document.

2.1 Cadre réglementaire

Afin de définir le plus fidélement les attentes et les contraintes imposées par le
CEIOPS ? pour la nouvelle directive Solvency 2 prévue pour janvier 2013, inté-
ressons nous aux documents existants a ce jour . Sur la base des Consultation
Papers qui ont permis un échange entre les institutions et les acteurs privés du
secteur des assurances, le CEIOPS a finalement rédigé les textes "définitifs”
de niveau 2, devant servir de base pour 'exercice du QIS 5. Cet ultime test
servant de calibrage a la formule standard définitive, est la répétition finale

1. Quantitative Impact Study
2. Committee of European Insurance and Occupational Pensions Supervisors
3. avant le début du QIS 5



2.1. Cadre réglementaire

pour tous les acteurs (assureurs, réassureurs, groupe, entité...) qui devront
bientét répondre a cette attente réglementaire.

Voici des extraits fondamentaux du "CEIOPS’ Advice for Level 2 Implementing
Measures on Solvency II : Technical provisions, Article 86 : an Actuarial and
statistical methodologies to calculate the best estimate.” qui permettent de mettre
en évidence les caractéristiques principales du Best Estimate des engagements
contractuels futurs..

(53) In order to allow insurance and reinsurance undertakings to
meet their commitments towards policyholders and beneficiaries,
Member States should require those undertakings to establish ade-
quate technical provisions. The principles and actuarial and sta-
tistical methodologies underlying the calculation of those technical
provisions should be harmonised throughout the Community
in order to achieve better comparability and transparency.

L’objectif premier est donc d’obtenir un montant comparable d’'une compagnie
a lautre et qui servira de point de départ & I’évaluation des engagements et
des risques sous-jacents pour déterminer le capital de solvabilité cible pour
répondre a une exigence prudentielle.

(55) The value of technical provisions should therefore correspond

to the amount an insurance or reinsurance undertaking would have

to pay if it transferred its contractual rights and obligations

immedziately to another undertaking.

Le montant des provisions techniques s’exprime en valeur de transfert, ce qui
dans certains cas se traduit par I’ajout au Best Estimate d’'une marge de risque.
(58) It is necessary that the expected present value of insurance
liabilities is calculated on the basis of current and credible in-
formation and realistic assumptions, taking account of fi-
nancial guarantees and options in insurance or reinsurance
contracts, to deliver an economic valuation of insurance or reinsu-

rance obligations.
On utilise des hypothéses de projection réalistes, sans introduire de prudence
supplémentaire explicite, mais en tenant compte de toutes les options financiéres
cachées, sous-jacentes aux contrats d’assurance.

3.1. The Level 1 text states that the best estimate shall
be equal to the probability weighted average of future cash-
flows taking account of the time value of money (expec-
ted present value of future cash-flows), using the relevant
risk-free interest rate term structure. This in effect ack-
nowledges that the best estimate by definition takes into
account uncertainty in the future cash-flows.



2.2. Mise en perspective dans Solvency 2

On mesure I'engagement de I'assureur en Best Fstimate par la somme actualisée
au taux sans risque de tous les flux futurs probables induits par son portefeuille
de contrats. On se place dans une vision du portefeuille en run-off, de telle
sorte que 'on considére tous les flux futurs jusqu’a 'extinction des contrats.

On en déduit donc qu’en plus de suggérer une approche en probabilité risque-
neutre, nous sommes également trés proches de la méthode financiére de
I’évaluation des actifs sur un marché efficient. Comme il n’existe pas de mar-
chés liquides des passifs pour les évaluer, il faut recourir a l'utilisation d’une
espérance mathématique qui tient compte de la probabilité d’occurrence de
chaque flux futur et de 'incertitude de ceux-ci. De cette maniére nous cherchons
a mesurer les engagements de ’assureur a la date d’évaluation que 'on anti-
cipe "en moyenne”. On calcule donc la somme actualisée des moyennes
des engagements futurs pour 1’assureur, ces engagements s’obtenant
par différence entre les flux sortants et entrants projetés selon des
hypothéses les plus réalistes possibles.

Mathématiquement nous pouvons définir le Best FEstimate par :

s<t

Avec :
Q la probabilité risque-neutre
CF; les cash-flows entrants et sortants a la date de projection t

r¢ le taux sans risque forward a la date t

Le calcul nécessite donc une démarche prospective et compléte des engagements,
dans un cadre cohérent avec ’approche globale retenue par Solvency 2 dans la
détermination du SCR 4.

2.2 Mise en perspective dans Solvency 2

Introduisons certains termes caractéristiques de Solvency 2 faisant intervenir le
montant du Best Estimate®. Elément essentiel, il devra étre calculé séparément
et précéder le calcul permettant de déterminer le SCR.

4. Solvency Capital Requirement

5. Pour une définition plus compléte nous renvoyons vers : [ARTICLE 1|ARTZNER P.,
EiseLE K-T., Supervisory accounting : Comparison between Solvency II and coherent risk
measures (2010)

10



2.2. Mise en perspective dans Solvency 2

Partons de 1’égalité comptable fondamentale donnée par (voir schéma a la fin
de ce chapitre) :

Asset Value = Free Capital + Best Estimate + Risk Margin + SCR

Nous définissons ensuite 1'actif net ou ” Net Asset Value” (NAV) ou encore ” Risk
Bearing Capital” dans le Swiss Solvency Test comme :

NAV = Asset Value — Best Estimate

Rappelons synthétiquement que ’approche de Solvabilité 2 pour le calcul du
SCR consiste & mesurer la variation de lactif net (NAV) suite a la réalisation
de certains risques a l'actif et au passif. Ces risques sont modélisés par des chocs
dont l'intensité est calibrée de sorte qu’ils se produisent avec une probabilité
inférieure ou égale a 0.5%, c’est-a-dire une fois tous les 200 ans. La mesure du
risque utilisée est la Value at Risk.

On en déduit alors le capital nécessaire supplémentaire aux provisions (SCR)
pour y faire face dans 99.5% des cas. Cela se traduit dans un modéle & une
période® (t=0 et t=1) par :

NAV, ——
T NAV, > —My (A1, Z1)| > 99.5%

Avec :

Ay la valeur d’échange (de marché si celui-ci respecte certaines propriétés),
du portefeuille d’actif a la date t

Zy > 0 les provisions techniques a la date t (Best Estimate augmenté de
la marge de risque)
NAV, = Ay — 73

r le taux sans risque pour la période considérée

]\% (A1, Z1) le capital de solvabilité requis pour la période

Pour conclure sur la solvabilité de ’assureur, on confronte alors ce capital sup-
plémentaire nécessaire (le SCR) avec le montant des fonds propres disponibles
pour le couvrir. Nous appelerons ” Available Capital” ce montant qui se calcul
comme :

Awvailable Capital = Asset Value — Best Estimate — Risk Margin
= Asset Value — Technical Provision
= FreeCapital + SCR

6. Voir a nouveau : [ARTICLE 1]

11



2.2. Mise en perspective dans Solvency 2

Il se définit donc comme la différence entre la valeur de marché actuelle des
actifs et les provisions techniques, sachant que les provisions techniques sous
Solvency 2 représentent le Best Estimate auquel on ajoute la marge de risque.
On classera par la suite le” Available Capital” par tiers, correspondant & la
qualité de couverture représentée par sa capacité d’absorption des pertes. Bien
entendu, il faudra que le” Available Capital” soit supérieur au niveau du SCR.

2.2.1 Une approche Market Consistent homogéne :

La premiére contrainte dans le calcul du Best Estimate puis du SCR & une
période donnée, est I’harmonisation de ce calcul. Pour obtenir une mesure
comparable des engagements et du risque de solvabilité en introduisant une
méthode de calcul répondant aux mémes exigences au niveau européen, il faut
tout d’abord se baser sur une évaluation du bilan standardisée.

Il faut entre autre s’assurer que le montant de ’actif net représente bien la méme
chose pour toutes les compagnies, et cela passe par un calcul du Best Estimate
et de la valeur des actifs le plus homogéne et le plus cohérent possible. Or, on va
rapidement s’apercevoir que si les régles et concepts généraux sont bien établis,
il reste une importante marge d’interprétation laissée aux actuaires. Cette
approche permet de tenir compte de toutes les caractéristiques propres aux
types d’activité, mais peut aboutir & des montants difficilement comparables et
qui doivent donc rester le plus transparent possible.

Une approche bilantaire permet de tenir compte de 'impact de tous les risques et
de la relation actif-passif qui existe dans un bilan d’une compagnie d’assurances.
Dans le calcul du Best Estimate en assurance-vie, cette relation a un effet dans
les flux de prestation grace a la distribution de participation aux bénéfices. Le
bilan doit étre évalué en adéquation avec le marché, on parle donc d’un bilan
Market Consistent.

Une définition formelle de la notion de Market Consistent est donnée dans
[Article 1] qui reprend CHERIDITO et al. (2008) :

Definition. Pour toute fonction ¥ définissant la condition de solvabilité, la
provision Ly est Market Consistent si on peut vérifier :

Ly (Z1+U) =Ly (Z1) +m(U)

Avec :
Z1 les engagements
U un élément négocié sur un marché

7 une fonction de prix

12



2.2. Mise en perspective dans Solvency 2

On considére donc que le marché, dans la majorité des cas, évalue a sa juste
valeur les actifs financiers. On peut faire référence ici a la ”juste valeur” selon
les normes comptables IFRS. Il faut néanmoins s’assurer que le marché sur
lequel est coté actif, est suffisamment liquide, profond et transparent. Si ce
n’est pas le cas, par exemple pour du Private FEquity, il faut se tourner vers
une approche Mark-to-Model ou 'on extrapole la valeur théorique de 'actif &
travers un modéle financier.

2.2.2 Un passif évalué en valeur de transfert :

La problématique est tout autre en ce qui concerne ’évaluation des passifs
de 'assureur. Etant donné qu’il n’existe pas de marché organisé permettant
d’évaluer au plus juste la valeur a laquelle ces passifs peuvent étre cédés
et échangés, il faut mesurer différemment la valeur de transfert de ces
engagements. En effet, le fait de raisonner en valeur de transfert, intégre
explicitement le fait qu’en cas de défaut de ’assureur ou d’insuffisance de
solvabilité, il devra céder son portefeuille & un autre assureur. C’est pourquoi,
alors que la valeur de transfert d’un actif c6té est égal a sa valeur de marché,
celle des passifs d’assurances peut nécessiter ’ajout d’une marge de risque.

2.2.3 Engagements réplicables et non réplicables :

Pour obtenir la valeur de transfert des provisions techniques, on distingue deux
catégories d’engagements, qu’il faudra ensuite segmenter selon I'activité :

2.2.3.1 Les engagements couvrables (hedgeables)

Lorsque les engagements de ’assureur sont parfaitement réplicables par des
instruments financiers c6tés sur un marché profond et liquide, alors on peut
naturellement considérer que la valeur de marché de ces instruments représente
la meilleure valeur, également celle & laquelle les engagements pourraient étre
cédés.

2.2.3.2 Les engagements non-couvrables (non-hedgeables)

Dans le cas contraire, une approche basée sur les cash-flows futurs sera nécessaire
pour mesurer le Best Estimate, auquel s’ajouterait une marge de risque.
Cette marge supplémentaire est calculée selon la méthode du cotit du capital
et représente le cotit de détention de la ”Supervisory Provision” future. En
cas de cession du portefeuille & un assureur tiers, celui-ci devra supporter les
engagements transférés certes, mais aussi le SCR correspondant sous "’ Optimal
Replicating Portfolio”, ce qui a un cott pour les actionnaires supposé de 6%.

13



2.2. Mise en perspective dans Solvency 2

C’est donc bien une vision économique des passifs dans une logique de valeur
de transfert.

La marge de risque RM se calcule par la méthode du cotit du capital comme :

SCROEP
t>0 t+1

Il faut donc projeter le SCR futur sous I’Optimal Replicating Portfolio (voir

plus loin) et I'actualiser au taux sans risque 7 f sans prime d’illiquidité ”.

— Nous parlons ici d”’ Optimal Replicating Portfolio” dans le calcul de la marge

de risque, car le SCR futur projeté ne correspond pas exactement au SCR
calculé dans la formule standard de Solvency 2, dans la mesure ou tous les
modules de risque ne sont pas a prendre en compte. Il comprend uniquement :
— le risque de souscription
— le risque de défaut des réassureurs
— le risque opérationnel
— le risque de marché "inévitable”
Ce dernier point signifie que 'assureur qui céderait son portefeuille n’a
pas & anticiper le profil de risque de 'actif de la compagnie "repreneuse”,
c’est pourquoi on mesure le SCR dans le cas d’un portefeuille d’actif qui
minimiserait le risque de marché.

— La Supervisory Provision correspond a la somme des capitaux éxigés par le
régulateur, c’est-a-dire les provisions techniques constituées du Best Esti-
mate augmenté de la marge de risque, et le SCR sous I’ Optimal Replicating
Portfolio.

2.2.3.3 Classification de ’activité

D’une part, il est évident que le risque viager ne puisse pas étre parfaitement
réplicable par le marché et que, par conséquent les contrats d’assurance &
garantie vie ou décés nécessitent le calcul d'une marge de risque complémentaire.

D’autre part, les contrats en unités de compte dont le risque d’investissement est
supporté par ’assuré nécessitent une étude particuliére. Méme si la valeur du
contrat évolue en fonction de la cotation sur le marché, elle est aussi impactée
du prélévement des frais de gestion f. Lorsqu’ils sont prélevés mensuellement,
la variation de la valeur du contrat ne correspond pas exactement & la variation
de la valeur du fonds en date t (vni;) car on a, avec V; le nombre d’unités de
compte en t :

ValeurContrati1, = Npwvnigpr — f.Neonig
= Nyyp1.onig
# Nyonigg

7. introduite dans le QIS 5
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2.2. Mise en perspective dans Solvency 2

2.2.4 Résumé

Finalement le bilan segmenté selon Solvency 2 peut se représenter de la fagon
suivante :

— —
S -
Free Capital
Obligations > Available Capital
e?
> Net Asset Value (NAV)
Solvency Capital
| Requirement (SCR)
Valeur Qe MCR
marché —
e
Marge de
risque
Actions
A
|
Autres actifs
Technical Provision
i . e Market- Consistent en
mmobilier est Estimate valeur de transfert
|
Liquidités
Réassurance
-
ACTIF PASSIF

FIGURE 2.2.1: Bilan Market Consistent sous Solvency 2

La détermination du SCR, que nous ne traiterons pas dans ce document, tiendra
compte de l'interaction entre l'actif et le passif d’ot I'intérét d’une approche
bilantaire.

Pour qu’une société soit considérée comme solvable, son Available Capital devra
étre supérieur au SCR et donc au MCR 8. Sil est compris entre le SCR et le
MCR, cela déclenchera une premiére alerte entrainant un plan de redressement
progressif, alors que si le seuil critique du MCR est dépassé, le retrait de
I’agrément est possible si la situation n’est pas résolvable & court terme. Afin
d’améliorer sa situation, la compagnie cherchera & augmenter son Available
Capital® ou & réduire son SCR 0.

8. Minimum Capital Requirement
9. Augmentation de capital, souscription de dette subordonnée...
10. Modification de la réassurance, actif avec un profil moins risqué ou effet de la réassu-
rance...
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2.3. Fonctionnement de PROPHET

Nous avons effectué le calcul du Best Estimate sur un outil bien connu par les
actuaires. Nous allons donc présenter celui-ci en décrivant son fonctionnement
et ses avantages.

2.3 Fonctionnement de PROPHET

La nécessité croissante pour les compagnies pratiquant 1’assurance-vie, de
projeter des flux financiers futurs, & moyen et trés long terme, selon certaines
hypothéses et sur la base d’une modélisation des flux du portefeuille, les améne
a se doter de logiciels spécialisés capables d’effectuer rapidement un nombre
trés important de calculs. Des contextes tels que Solvency 2, avec entre autre
le calcul du Best Estimate et le SCR Y, I’ Embedded Value (EEV, MCEV '2) ou
encore le Business Plan, rendent les projections indispensables, mais surtout
de plus en plus complexes.

En effet les produits & modéliser sont d’une part de nature trés différente, et leurs
cash-flow dépendent de paramétres multiples, parfois eux aussi des projections.
Typiquement, la courbe des taux sans risque servant & ’actualisation et aux
rendements des actifs dans un univers risque neutre, ainsi que les participations
aux bénéfices qui en découlent, la courbe d’inflation et les taux de chute
(mortalité, rachat), sont autant de parameétres qui vont influer sur les flux
entrants et/ou sortants. Si on ajoute a cela la nécessité de modéliser les Options
et Garanties financiéres implicites aux contrats d’assurances, et de recourir a la
simulation de scénarios stochastiques pour appréhender le caractére aléatoire
dans le temps de tous ces paramétres, 'intérét de tels logiciels devient évident.

PROPHET est un logiciel de projection des cash-flow du bilan d’une compagnie
par modélisation des produits et polices d’assurance qu’il fait évoluer dans le
temps.

Développé par DELOITTE puis racheté en 2005 par SUNGARD, il trouve son
utilité aussi bien dans le calcul de 'Embedded Value, que dans la gestion actif
passif lorsqu’il est couplé avec le logiciel ALS 3. Pour la méme utilisation, on
pourra citer son principal concurrent, MOSES créé par TOWERS PERRIN.

Concrétement on pourrait résumer le fonctionnement général de PROPHET en
se rapportant a la célébre formule de WALD que nous rappelons :

Soit Sy = fo\il X, avec (X;)1<; une suite de variables aléatoires supposées
indépendantes et de méme loi. Alors si N est indépendant de la suite, on a :

E(Sy) = B(N).E(X)

11. Solvency Capital Requirement
12. FEuropean Embedded Value, Market Consistent Embedded Value
13. Asset Liability Strategy
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2.3. Fonctionnement de PROPHET

Bien entendu, les hypothéses du théoréme n’étant pas réalisées, nous ne pouvons
donc pas l'appliquer ici, et nous l'utilisons uniquement a titre d’image (car
lorsque l'on projette (X;)i1<; l'indépendance n’est pas envisageable et N est
fixé). En effet ce théoréme illustre bien que pour obtenir I'espérance des flux
futurs, on les décompose en une intensité moyenne (le montant futur espéré
en moyenne) et une fréquence moyenne représentée par le nombre de polices
"In Force" que 'on fait évoluer selon des hypothéses réalistes de chutes. Il est
indispensable de comprendre le mécanisme qui distingue d’une part le montant
de la provision pour chaque police qui évolue selon les hypothéses du contrat,
et le nombre de polices qui s’éteint (vision run-off ) en fonction des hypothéses
de mortalité réelle et de rachat.

Nous verrons tout au long de ce document, comment les différentes interactions
sont modélisées dans PROPHET, dont voici sa structure de fonctionnement :

- impdts

- inflation
- rendement
financier

- fruis

- taux e rachat

- participation aux
béncfices

- table de mortalié

- fraus

- taux de rachat

- participation aux
benefices

- table de moralieg

Paramitres
1

- fge de |'assuré - dge de |"assuré - f@ge de 'assuré - @ge de "assuré - fdge de |'assuré - a,gc de |'assuré

- capital assuré - capital assuré - capital assuré - capital assuré - capital assuré - capital assuré
- maturité - maturité - maturité - maturité - maturité - maturité
.\-primcs - primes - primes - primes - primes - primes
| Model Point | Mode] Point | l Model Point | | Model Point | | Muodel Point I I Muodel Point |
{ 1. ] [ [ [ I r
Py ﬁﬁf.’/ 2
= e
A7 A

k

FIGURE 2.3.1: Structure du fonctionnement de Prophet
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Premiére partie

Du déterministe au stochastique
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Chapitre 3

Hypothéses de projection

La projection des cash-flows des différents contrats d’assurance-vie nécessite :

1. La modélisation des propriétés des contrats (tarification, fractionnement,

revalorisation, durées, limites...)

2. La création des model-points qui représentent les contrats du portefeuille
en reprenant toutes les données nécessaires a la projection (age, sexe,
primes, frais, échéances, options souscrites...)

3. Les hypothéses de projection réalistes, c’est-a-dire sans prudence sup-
plémentaire, qui permettent de faire évoluer :

a)
b)

le nombre de contrats (mortalité, rachats),

le montant des actifs financiers en contrepartie des provisions ma-
thématiques qui viendront déterminer la participation bénéficiaire,

la structure par terme des taux sans risque pour actualiser les
différents flux a la date d’évaluation.

la courbe de I'inflation future pour faire évoluer le montant des frais
généraux.
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3.1. Tables de mortalité

3.1 Tables de mortalité

3.1.1 Reéglementation au Luxembourg

Lettre circulaire 03/5 du Commissariat aux Assurances relative aux
bases techniques en assurance-vie

4. Tables de mortalité, de morbidité, d’invalidité ou d’incapacité pour le calcul
des provisions Techniques

a) Tables de mortalité éligibles : Pour les produits nouvellement commercialisés,
il y a obligation d’adopter pour le calcul des provisions techniques une table
de mortalité européenne récente et sans abattements, basée sur la population
générale et adaptée au type de risque (risque déces, risque survie) dont la
couverture est prévue dans le contrat. [...] Par dérogation au principe de
P’utilisation de tables générales sans abattements, des tables de mortalité
d’expérience peuvent étre utilisées ou des abattements sur des tables générales
peuvent étre pratiqués dans les cas suivants : - pour la couverture du risque
décés pour une durée n’excédant pas un an ; - dans tous les cas, s’il est démontré
que la table proposée est plus prudente qu’une table récente et adaptée au
risque basée sur une population générale pour les tranches d’age couvertes par
le produit d’assurance ;

b) Principe du maintien de la table de mortalité Pour un contrat déterminé,
c’est la table de mortalité qui fait partie des bases techniques communiquées
au Commissariat qui doit étre utilisée tout au long de sa durée de vie pour le
calcul des provisions mathématiques correspondantes. Une table plus prudente
peut étre utilisée au cas ou la table d’origine serait insuffisante a couvrir les
engagements pris envers les assurés; un tel changement de table est soumis
a approbation préalable du Commissariat aux assurances. L’adoption d’une
table moins prudente que celle d’origine ne sera jamais admise.

Contrairement a la France, les tables de mortalité utilisées ne sont pas imposées
et 'accord de commercialisation est donné au cas par cas. En pratique cela se
traduit par I'utilisation fréquente de tables belges, francaises, hollandaises...
Il existe depuis 2008 une table de mortalité luxembourgeoise, mais construite
sur un échantillon assez petit et peu représentatif de la population assurée en
LPS!, son utilisation doit donc rester marginale.

Dans tous les cas, le respect des régles prudentielles en matiére d’évaluation
des engagements de l'assureur, reste bien entendu la priorité au Luxembourg.
Seulement, la plus grande liberté lors de la création d’un nouveau produit dans
le choix des tables de mortalité, permet de considérer un nouveau paramétre
non négligeable.

1. Libre Prestation de Services
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3.1. Tables de mortalité

3.1.2 Des hypothéses de mortalité réalistes

Une des caractéristiques importantes de 1’évaluation du Best Estimate sous
Solvency 2, est la reconnaissance explicite de la prudence comprise dans les tables
de mortalité réglementaires utilisées pour le calcul des provisions mathématiques.
C’est pourquoi dans la projection des flux futurs, I'impact de la mortalité sur
le nombre de chutes total doit étre la plus réaliste possible. Cela implique donc
d’ores et déja, le recours a des tables d’expérience qui reflétent au mieux la
population assurée et ses particularités.

Précision importante, on parle de "prudence" des tables de mortalité en se
plagant dans le cas d’un contrat d’assurance décés, c’est-a-dire qu’une table
prudente surestime la probabilité de décés de I'assuré pour un age donné. Un
contrat temporaire décés ou vie entiére par exemple, sera donc plus cotiteux
pour l'assuré en utilisant une table de mortalité dite "prudente". Mais la
tarification ne joue pas un role prépondérant dans Solvency 2, le calcul du Best
Estimate en est méme totalement indépendant étant donné que I’on projette
un portefeuille existant en run-off dont la tarification ne change pas. On va
simplement utiliser des hypothéses de projection qui ne modifieront pas les
propriétés des polices en portefeuille.

Cet écart entre la mortalité des tables de mortalité dites "réglementaire" et
la mortalité observée sur le portefeuille assuré peut s’expliquer de différentes
facgons :

— Les tables se basent sur une situation de la population & une date donnée
et fixée dans le temps. De ce fait, 'augmentation constante de I’espérance
de vie de prés d’un trimestre par an grace entre autres aux progrés de la
médecine, rendent d’anciennes tables rapidement obsolétes.

— Les tables sont construites & partir de la population globale dont les caracté-
ristiques divergent naturellement de la population assurée. Hormis les tables
pour les rentes viagéres, les tables de mortalité sont statiques ou unidimen-
sionnelles, par opposition aux tables prospectives dites "générationnelles"
qui prennent en compte l’année de naissance de la personne, et permettent
donc d’anticiper la dérive de la mortalité.

— Ne pas distinguer de tables propres pour les hommes et les femmes est une
approximation grossiére qui tend heureusement & disparaitre.

D’éventuels décalages d’age par rajeunissement ou vieillissement de I’assuré

permettent de pallier temporairement & ces inconvénients, mais ne consistent

qu’en une translation des taux de mortalité et non en une pentification de la
courbe des taux de mortalité (voir plus loin).

Quoi qu’il en soit, méme si, par 'approche réaliste imposée par le CEIOPS,
le Best Estimate était inférieur aux provisions réglementaires d’ancien type,
I’évaluation du passif en valeur de transfert impliquera I'ajout de la marge
de risque qui viendra compenser, en partie seulement , cette suppression de
prudence explicite.
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3.1. Tables de mortalité

La création d’une véritable table d’expérience basée sur les propriétés du
portefeuille nécessite un nombre trés important de données exploitables et
est donc réservée a des grandes compagnies pour avoir du sens d’un point
de vue statistique. L’étude réalisée par un actuaire indépendant agréé par la
Commission de I'Institut des Actuaires doit se baser sur des données fiables
pour mesurer le risque inhérent au portefeuille de I'assuré, en tenant compte
de phénomeénes tels que 'antisélection. Cette alternative pour le calcul des
provisions peut donc étre profitable pour une entreprise cherchant & fiabiliser
son risque de mortalité et donc optimiser ses provisions.

De nombreuses compagnies vont donc se retrouver dans une situation para-
doxale, ot la norme prudentielle en matiére de solvabilité permet a ’assureur
d’avoir plus de liberté dans une démarche market consistent et réaliste propre
a la réforme Solvency 2, mais ne pourront pas pleinement en profiter. Ce pro-
bléme, transposé a une échelle plus large, se retrouve dans l'utilisation d’un
modéle interne, permettant un calcul de I’exigence en capitaux pour solvabilité
le plus fidéle au profil de risque de I'entreprise, maximisant au passage |’effet
de diversification par agrégation des modules de risque.

Dans ce contexte particulier, il est utile d’envisager des situations intermédiaires
répondant & la fois aux contraintes réglementaires fixées par la Commission Eu-
ropéenne, et des contraintes opérationnelles relatives aux besoins de ’entreprise
selon le respect du principe de proportionnalité.

L’Union Professionnelle des Entreprises d’Assurances Belges a cherché & combler
ce besoin. Fondée en 1920, Assuralia regroupe la quasi-totalité des compagnies
d’assurances belges et étrangéres qui opérent sur le marché. C’est grace a la
collecte des données des portefeuilles de 39 assureurs représentant 98,6% de
I’encaissement belge entre 2003 et 2007, qu’elle a construit une table qualifiée
"d’expérience" car elle se base bien sur une population d’assurés. En plus
de distinguer les hommes et les femmes, ces tables permettent également de
s’adapter aux assurances individuelles ou de groupe, mais aussi aux branches
vie, décés ou autre. Si 'on avait une table unique pour la globalité du por-
tefeuille, nous courions le risque de n’étre ” Best Estimate” sur aucune des
sous-populations significatives du portefeuille. Par exemple une table unisexe
sous-estimera systématiquement la mortalité des hommes et sur-estimera celle
des femmes. Il faudra avoir recours & des ajustements d’age peu pratiques et
imprécis.

Nous possédons donc huit tables récentes estimant la mortalité d’une population
d’assurés :

Grande branche, genre décés, homme (IDH) | Groupe, genre décés, homme (GDH)
Grande branche, genre déces, femme (IDF) | Groupe, genre déces, femme (GDF)
Grande branche, genre vie, homme (IVH) Groupe, genre vie, homme (GVH)
Grande branche, genre vie, femme (IVF) Groupe, genre vie, femme (GVF)
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3.1. Tables de mortalité

Il est important de savoir exactement comment une telle table dite d’expérience
a été construite car il faut s’assurer de la fiabilité des données et de ’adéquation
avec la population assurée dont on cherche & modéliser la mortalité.

Le retraitement des statistiques de la population observée est indispensable pour,

d’une part réduire 'effet des aléas statistiques et s’assurer que la probabilité

de décés augmente de fagon réguliére avec ’dge, mais d’autre part pallier &

un nombre d’observations suffisantes pour certaines classes d’ages. On a alors

recours & des méthodes de lissage et d’ajustement sur des lois analytiques telles

que :

— les modéles paramétriques (loi de GOMPERTZ, de MAKEHAM, WEIBULL,
logistique. . .)

— les modéles relationnels (CoX, BrRASS, HANNERZ)

utilisés en présence de petits échantillons pour extrapoler un taux de mortalité

continu entre tous ages.

— les lissages paramétriques (ajustement par des fonctions splines, GOMPERTZ-
MAKEHAM)

— les lissages non paramétriques (WHITTAKER-HENDERSON, moyennes mobiles
pondérées)

permettent d’obtenir une série plus réguliére mais toujours compatible avec les

observations.

Un ajustement paramétrique a été utilisé ici, afin de substituer aux taux annuels
bruts de mortalité observés, une fonction continue et croissante, passant a
I'intérieur des intervalles de confiance donnés par les observations statistiques.
On suppose donc que la courbe de mortalité appartient & une certaine famille
de fonctions mathématiques dont on estime les paramétres avec la méthode
des moindres carrés pondérés 2. En l'occurrence, la formule de MAKEHAM a été
retenue, et on postule ainsi que la probabilité de décés d’un individu a ’age x,
qz , est modélisée de la fagon suivante :

gz =1—15.g¢°"D

0<s<1
0<gxl1
c>1

Pour la table Assuralia, on peut méme parler de double ajustement, car la
formule de MAKEHAM a été utilisée en distinguant les ages de 25 a 60 ans et
de 60 a 85 ans, d’oil une irrégularité de la courbe.

= Voir Uannexe : Ajustement pour la population de groupe et les
parameétres associés.

L’hypothése sous-jacente a 1'utilisation de cette table pour le calcul du Best
Estimate, ainsi que pour la projection de la MCEV par exemple, est ’adéquation

2. Voir Théorie et pratique de l’assurance vie de PIERRE PETAUTON (Dunod)
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3.1. Tables de mortalité

entre la population du portefeuille et la population assurée belge. Juger cette
hypothése réaliste doit donc, comme pour chaque paramétre, constituer la
premiére étape de la modélisation.

Certes avoir une activité d’assurance principalement par libre prestation de
service n’est pas aussi homogéne qu’une population d’un seul et méme Etat,
pourtant dans le cas du Luxembourg, cette considération est loin d’étre moins
réaliste que d’utiliser une table réglementaire obsoléte et bornée & une population
globale. Lorsque la taille du portefeuille ne permet pas la création d’une véritable
table d’expérience fiable, cette alternative semble & ’heure actuelle la plus
réaliste et le meilleur compromis.

Il est également facilement possible d’adapter, d’année en année, la table de
mortalité par I'utilisation d’un facteur d’ajustement obtenu par back testing
de la mortalité de la table avec celle observée. On obtient alors une courbe
de mortalité de méme concavité que celle initiale, mais simplement translatée
pour 'ajuster au mieux au portefeuille.

Tester et ajuster de fagon réguliére la table de mortalité est indispensable,
car sous-estimer la mortalité entraine & terme d’importantes pertes techniques
de mortalité qu’il faudra financer. La sur-estimer aurait également un impact
négatif sur les produits de rente ou de garantie en cas de vie dont la provision
serait également sous-évaluée.

Comparons différentes tables de mortalité européennes (frangaise, belge et
hollandaise) avec la table Assuralia :
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3.1. Tables de mortalité

Evolution d’'une cohorte de 100000 hommes selon différentes tables

100000
80000
60000
40000
20000
0

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105

— HS68-72 — THO00-02 Assuralia IDH — GBM85-90

FIGURE 3.1.1: Comparaison des tables pour les hommes

Evolution d'une cohorte de 100000 femmes selon différentes tables
100000
80000
60000
40000
20000
0

0 7 14 21 28 35 42 49 56 63 70 77 84 951 98 105

— HS68-72 — TF00-02 Assuralia IDF — GBV85-90

FIGURE 3.1.2: Comparaison des tables pour les femmes

25



3.1. Tables de mortalité

Plus le taux de mortalité est faible avant les dges extrémes (Assuralia, TH-TF),
plus on voit apparaitre le phénoméne de rectangularisation que 1’on constate a
chaque mise & jour des tables de mortalité dans le temps. Pour les hommes,
I'utilisation de la table Assuralia conduit & projeter les flux des polices avec
une probabilité de décés nettement plus faible. Cette observation est & nuancer
chez les femmes ou cette probabilité est naturellement plus faible, mais dans
ce cas, le gain de prudence est moindre et se confond & terme avec la table
frangaise TF00-02. On constate que I’Age ultime de la table Assuralia est plus
faible que sur les tables réglementaires, car aucune observation ne concernait les
ages extrémes, et ceux-ci n’ont pas été extrapolés pour conserver une certaine
robustesse? de la table.

Or, pour le calcul du Best Estimate, la mortalité "réelle" n’est utilisée que
pour projeter et faire évoluer les différents flux dans le temps. En revenant
4 la méthode de calcul de PROPHET, cela revient & estimer la diminution du
nombre de polices en cours avec, entre autre, une hypothése de mortalité réaliste.
La provision mathématique par police quant a elle reste la réserve statutaire
calculée avec les tables précisées dans la note technique (et éventuellement le
correctif d’age). L'impact du choix de la table est donc & nuancer et leffet
réellement observé lors de la projection est une diminution plus lente du nombre
de polices.

3. NATACHA BROUHNS et MICHEL DENUIT parlent de pragmatisme de ’actuaire concernant
I'age ultime : "Nous ne tenterons pas de "fermer" les tables de mortalité, et encore moins de
projeter ces probabilités de décés dans l'avenir, jugeant l’entreprise trop hasardeuse"
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3.1. Tables de mortalité

Exemple :
Pour un assuré de 36 ans, I'extinction du nombre de polices uniquement
par cause de mortalité (et non de rachat ou de réduction), est projeté sur
12 ans (144 mois) de la maniére suivante (base 100 000 000/1) :

Evolution du nombre de polices au cours du temps

100000000

99600000

99200000

98800000
0 12 24 36 48 60 72 84 96 108 120 132 144

Assuralia IDH — GBMS85-90

FIGURE 3.1.3: Vitesse d’extinction du nombre de polices (en mois)

L’impact du choix de la table est donc & nuancer et 'effet réellement observé
lors de la projection est une diminution plus lente du nombre de polices.

Cette exigence pour les hypothéses de projection des cash-flow n’est pas ano-
dine. Certes les tables d’expérience homologuées permettent déja d’adapter
la tarification et le provisionnement a la sinistralité réelle, mais Solvabilité 2
pointe officiellement du doigt cette différence constatée et connue, en cherchant
& imposer une estimation réaliste par le choix d’une évaluation Best Estimate.
Mais les assureurs ayant un portefeuille de taille modeste, ou des produits
encore peu développés, doivent également pouvoir déduire des lois d’expérience
adaptées sans pouvoir se baser uniquement sur leurs données personnelles.
Actuellement la meilleure réponse a apporter semble étre 1'utilisation de tables
d’expériences du marché, lesquelles seront pondérées pour étre adaptées a la
sinistralité observée sur le portefeuille.
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3.1. Tables de mortalité

3.1.3 Crédibilité et mortalité d’expérience

On pourrait alors utiliser un modéle de crédibilité basé sur les travaux de
BUHLMANN et STRAUB (1970) tel que repris par HARDY et PANJER (1998) 4,
afin d’obtenir une approximation de la mortalité d’expérience utilisée pour
projeter les flux des contrats.

S..

Proposition. Soit X;; = = le ratio entre la sinistralité observée et la sinis-
ij

tralité théorique fournie par la table.

avec S;; le montant des sinistres observés de la compagnie ¢ I'année j, et et P;;
le montant attendu des sinistres, 7 = 1,2,...,n; années d’observation.

3.1.3.1 Hypotheéses :

1. la distribution de X;; dépend du parameétre fixé et inconnu 0; et de P;;

2. les X;; sont indépendants conditionnellement a 6; fixé, avec la moyenne
et la variance :
E[Xq5 | 0] = 1 (0)
a* (6;)
P

Var [Xij ‘ 91] =
3. les couples (0;; Xij) , (Or; Xj) sont des variables aléatoires indépendantes

pour k # i

4. 0; v.a. i.i.d, donc le paramétre est identique pour le marché et toutes les
compagnies 1.

3.1.3.2 Définition

On cherche donc & estimer E [X; ;41 | 6;] = 1 (0;) avec X; 1. X n, observés
Soit P; = 271:1 P;; la somme attendue des sinistres pour la compagnie 1,

I’estimateur des moindres carrés donné par la théorie de la crédibilité de
BUHLMANN et STRAUB est alors :

fi = Z;. Xi + (1 — Z;).E [ (6;)]

4. HARDY M., PANJER H. (1998), "A credibility approach to mortality risk"
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3.2. Loi de rachat

_ E [0‘2 (91)]
Var [p(6;)]

le facteur de crédibilité Z; =

la moyenne empirique du ratio de mortalité pour la compagnie i :

_ 1 &
Xi = Ez Pij Xij
7=1

Doty Sij
P;

De cette fagon on utilise prudemment ses statistiques propres, tout en conservant
les taux observés sur le marché, le tout pondéré par le facteur de crédibilité en
fonction de la quantité d’information existante ainsi que sa fiabilité.

Rappelons également que pour autant que 1’on retire la prudence
dans le calcul du Best Estimate, il ne faut pas oublier ’ajout de la
marge de risque, et du module de risque de provisionnement,
prévu par la nouvelle norme européenne, dont ’objectif est
toujours de sécuriser le secteur de ’assurance.

3.2 Loi de rachat

Le comportement de rachat de ’assuré est un phénoméne complexe qui peut
étre modélisé selon différents niveaux de complexité. Dans la pratique, on
constate que différents paramétres peuvent influencer le comportement des
assurés. On peut citer :

la fiscalité de son pays d’imposition

- I'ancienneté du contrat

- le rendement de son contrat

- le montant de la participation aux bénéfices versé

- lage de l'assuré

- le type de contrat

Il faut ensuite raisonner en appliquant le principe de proportionnalité dans le

détail de la modélisation retenue.

Utiliser un comportement de rachat dynamique en fonction de la rentabilité du
contrat nécessite la génération de scénarios économiques stochastiques. Nous
reviendrons donc sur ce point dans la seconde partie.
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3.3. Structure par terme des taux sans risque

La discrimination de I'intensité de rachat par rapport a I’age ou une caractéris-
tique fine du contrat nécessite un portefeuille important et stable, ainsi qu’un
temps de calcul plus important.

Le minimum requis est donc la distinction des types de contrats car ceux-ci
s’adressent & des assurés ayant des intéréts, des objectifs et donc des com-
portements trés différents. Leur aversion au risque ainsi que le contexte pour
lequel ils souscrivent le contrat n’est pas comparable. Ici aussi il peut étre
intéressant de recourir & la théorie de la crédibilité ® pour se fier de plus en plus
aux observations du portefeuille en fonction du volume de ses données. Par
exemple pour un nouveau produit a fonds dédiés, on pourra dans un premier
temps se baser sur le taux de rachat observé sur l'intégralité des contrats en
unités de compte, puis au fur et & mesure que les données du produit deviennent
importantes et stables, on pourra affiner ce taux en tenant de plus en plus
compte du comportement observé pour ce produit en particulier.

3.3 Structure par terme des taux sans risque

La courbe est celle fournie par le CEIOPS pour le calcul du QIS 5 et reprise par
le Commissariat aux Assurances dans le cadre du rapport actuariel. Contraire-
ment & 'hypothése utilisée par 'Institut des Actuaires, la structure par terme
retenue ici reconnait que les taux & trés long terme puissent étre inférieurs aux
taux moyens long terme. Nous obtenons une courbe & double inflexion comme
ceci :

Elle a été construite a partir des taux swaps, corrigés de 10bp pour tenir compte
du risque de contrepartie et extrapolé sur un horizon trés long de 135 années© :

5. Voir section précédente.

6. Voir plus de détails sur la  méthode utiliste &  D’adresse
http ://ec.europa.eu/internal _market/insurance/docs/solvency/qis5/ceiops-paper-
extrapolation-risk-free-rates _en.pdf
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3.4. Vecteur du rendement certainty-equivalent

Structure par terme des taux sans risque
4 50% -

4,00% -

350% 4
3,00% 4
250% 4
2,00% A
150%
1.00% -

050% 4

0,00% -

1T 8 15 22 23 36 43 50 57 64 71 78 85 32 33 106 113 120 127 134

FIGURE 3.3.1: Courbe moyenne des taux spots sans risque (en année)

Cette forme de courbe des taux ne peut pas étre reproduite avec le modéle de
VASICEK & un facteur comme nous le verrons dans la seconde partie.

3.4 Vecteur du rendement certainty-equivalent

Ce vecteur représente le rendement moyen attendu du portefeuille de 1'assureur,
en contrepartie des contrats dont le risque d’investissement n’est pas supporté
par Passuré (hors produits d’assurance en unités de compte).

Méme en hypothése risque-neutre, ce vecteur n’est pas égal a la structure par
terme des taux sans risque, étant donné que nous tenons compte de la réalité
du portefeuille & la date d’évaluation. Tous les actifs autres que les obligations
rapportent en moyenne le taux sans-risque, mais pour le portefeuille obligataire,
on conserve les actifs jusqu’a leur échéance, puis progressivement on réinvestit
dans de nouvelles obligations qui elles vont rapporter le taux sans risque. Les
titres obligataires actuellement en portefeuille rapporteront le taux de coupon
réel jusqu’a leur échéance.
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3.4. Vecteur du rendement certainty-equivalent

Achat nouvelles obligations

Maturité 1
Obligation 1 aturité
M: ité 2
Obligation 2 aturité

Maturité 3
Obligation 3 aturité

Taux de rendement interne réel Taux sans risque

Actions
Immobilier
Liquidités
Il

A!“??“‘““;{ Asset-mix du portefeuille _, Allocation
initiale cible

Vecteur Certainty Equivalent sur toute la durée de projection

Taux sans risque

SQUWINSA JUSWAPUSI 9P XNB ],

Taux sans risque

FI1GURE 3.4.1: Construction du vecteur de rendement certainty equivalent sous
une hypothése risque-neutre

L’hypothése qu’on ne réalisera pas de plus ou moins-values latentes en vendant
un titre avant I’échéance, est justifiée par 'existence du classement en Hold to
Maturity (HTM) dans les normes IFRS.
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3.4. Vecteur du rendement certainty-equivalent

Construction du vecteur certainty equivalent
6.00%
5.00%
4,00% -
e
..,0'-'-’*:-' i
x . v
s 300% =g
2,00%
1.00%
G‘DOD/D T T T T T T T T T T T T T T T T T T T 1
I U T T ST PR SO . N S A VR SN -SR-S L S VR S
ST ST T TTELT LTI
maturités
|—o—vecteur certainty equivalent —rendement des obligations taux sans risque |

FIGURE 3.4.2: Rendement certainty equivalent estimé résultant de la composi-
tion du portefeuille sous une hypothése risque-neutre

En observant la courbe résultant de I’asset-mix, on peut mettre en évidence
deux propriétés :
1. La grande majorité du portefeuille est composé d’obligations étant donné
que le vecteur certainty-equivalent est beaucoup plus proche du rendement
des obligations la premiére année.

2. La vitesse de convergence du vecteur certainty-equivalent vers le taux
sans risque, permet d’évaluer la duration du portefeuille obligataire.

C’est a partir de ce vecteur que 'on déterminera la participation aux bénéfices
dans le scénario moyen, utilisé dans la méthode déterministe de projection des
cash-flows.
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3.5. Courbe de l'inflation

3.5 Courbe de 'inflation

La courbe de l'inflation résulte de la moyenne de 5000 scénarios d’inflation
obtenus selon le modéle de SMITH.

Evolution moyenne des prix attendue
25 -
2 //.
15
1 1000
a5
O T T T T T T T T T T 7T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
1 3 8§ 7 9 11 13 16 17 19 21 23 25 27 29 3 33 35 37 39 M

FIGURE 3.5.1: Scénario moyen du taux d’inflation (en années)

Certains modéles comme celui de WILKIE, propose un modéle complet d’évolu-
tion des actifs entiérement liés, et donc corrélés, a l'inflation comme variable
de départ.
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3.6. Estimation des frais généraux

3.6 Estimation des frais généraux

Les frais généraux sont les frais réels que subit I'assureur pour gérer son
portefeuille. Il faut donc estimer le cotit de "acquisition et de la gestion des
contrats pendant toute la durée du contrat. On tient compte aussi bien des
salaires des gestionnaires, du cotit des opérations sur les fonds, ainsi que les
frais d’acquisition versés aux agents et courtiers.

Il est nécessaire de distinguer les frais fixes immuables quel que soit le contrat,
et des frais variables proportionnels & la provision mathématique du contrat.

On fait ensuite évoluer ce montant & chaque période en fonction de la courbe
d’inflation retenue précédemment. Les frais généraux du contrat i a la date t
s’obtiennent donc comme :

Fmisi = (E + fi X Provmathi) (1+ 1)

Avec :
F; les frais fixes du contrat i
fi les frais variabes du contrat i
Provmath! le montant de la provision du contrat i & la date t

1 Vinflation a la date t
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Chapitre 4

Assurances a garantie en cas de
déceés et en cas de vie

Rappelons ici la définition essentielle du Best Estimate : les engagements
contractuels de I'assureur s’évaluent comme la somme probabilisée de tous les
cash-flows futurs liés au contrat d’assurance, actualisés au taux sans risque et
en tenant compte de la valeur des options intrinséques.

Les hypotheéses précédentes vont nous permettre de faire évoluer chaque contrat
jusqu’a 'extinction du portefeuille, en distinguant chaque flux séparément pour
ensuite déterminer la somme actualisée de ces flux futurs probables.

4.1 Les primes regues

Comme nous sommes dans une vision run-off, il n’est pas permis d’estimer
d’éventuelles primes additionnelles ou souscription de contrats futurs (ceci
est également valable pour les contrats en unités de compte et les bons de
capitalisation).

Il faut donc uniquement projeter les primes futures si le contrat respecte les

caractéristiques suivantes :

— les primes sont fixées contractuellement dés la souscription des contrats

— le contrat n’est pas résiliable par ’assureur de maniére unilatéralle

— le taux technique et les chargements ne sont pas modifiables dans la suite du
contrat

Ces flux viennent donc en diminution de ’engagement de I'assureur en tant

que cash-flows entrants.
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4.2. Les flux de prestation

4.2 Les flux de prestation

On projette séparément les différentes prestations qui peuvent intervenir au
cours de la vie du contrat :

- Prestation de décés / survie - Versement en cas de rachat
- Prestations de rente - Versement a 1’échéance du contrat

Les prestations vont donc augmenter I’engagement de I’assureur et on augmen-
tera donc le Best Estimate de la somme actualisée des prestations futures.

En se rappelant du fonctionnement du logiciel PROPHET, on va faire décroitre
le nombre de contrats au cours du temps en fonction du taux de chute, et en
déduire les flux par la suite en fonction de I’évolution des capitaux considérés.
Exemple :
Prenons comme exemple un contrat d’assurance mixte & prime unique
sur N années.
Le capital en cas de vie est égal a celui en cas de déces égal a K.
L’individu est agé de x a la souscription et soit ¢,4; la probabilité de
décéder entre x+t et x+t+1 avec t ’age du contrat.
Soit #BoP(t) et #EoP(t) le nombre de polices en début et en fin de
période t
Soit r; le taux de rachat estimé en t
Les déceés et les rachats interviennent en milieu de période

Evolution du nombre de contrats et déduction des flux

Période 1 Période t Echéance

#BDF’('] =1 #EDPM\ #BoP(2) #BoP(t) #EoP(t) #EoP(N)
Prestatlon Rachat |

déces Sit=N, on reverse Flux de

#EoP(1) — maturite

On peut a présent déduire la série de flux qu’il faudra actualiser :

CFtdéCés = #BOPt X Qe+t X (1 — T’t)
t—1
= H 1_Tt H 1_Qm+j—1)Qm+t

k=1 =1

CFtraChat = #BOPt X1y X (1 — Q$+t)

t t—1
= ] - gere) [J =)
k=1 =1
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4.3. La marge administrative

4.3 La marge administrative

On appelle "marge administrative” la différence entre les frais prélevés sur le
contrat par I'assureur, et ses frais réels pour la mise en place et la gestion du
contrat. On projette cette marge administrative future en tenant compte de
Iinflation et de I’évolution du volume des contrats. La somme actualisée au
taux sans risque de ce flux viendra en diminution (augmentation) du montant
du Best Estimate, étant donné que l'on tient compte d’un gain (perte) futur(e).

4.4 La participation aux bénéfices

Dans le calcul du Best Estimate selon le principe de Solvency 2, la participation
aux bénéfices (PB) reversée aux assurés selon les résultats financiers et tech-
niques doit étre pris en compte. Que ce soit la PB réglementaire qui représente
le minimum & distribuer imposé par le code des assurances (en France), ou
la PB discrétionnaire, variable et déterminer par ’assureur selon sa stratégie,
toutes formes de bonus aux contrats doit étre mesuré par le Best Estimate.

Lors de la détermination du SCR par la suite, I’assureur pourra tenir compte
de sa possibilité de diminuer la PB discrétionnaire pour amortir les chocs qui
pourraient se produire dans les différents modules de risque prévus par la
nouvelle réglementation.

4.4.1 La réglementation au Luxembourg

Dans ce domaine, les réglementations francaise et luxembourgeoise ne sont pas
comparables. Voici un extrait de la Lettre circulaire 10/1 du Commissariat auz
assurances relative au rapport actuariel annuel des entreprises luxembourgeoises
d’assurance-vie :

"Un contrat est éligible pour une participation auzx bénéfices financiers
des lors qu’il comporte une garantie de tauz (y compris celle d’un
taux zéro) et que ses conditions générales prévoient la possibilité
d’une participation aur bénéfices financiers. Au cas ot seule une
partie d’un contrat est susceptible de bénéficier d’une revalorisation,
comme c’est par exemple le cas des contrats multisupports, seule
cette partie des contrats est a inclure. Ce qui importe peu, au
contraire, est la question de savoir si un contrat a effectivement
bénéficié d’une participation aux bénéfices au cours de ['exercice :
sont donc a inclure [’ensemble des contrats ou parties de contrats
éligibles, sans considération de [’octroi ou non d’une participation.”
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4.4. La participation aux bénéfices

On parle ici d’ "¢éligibilité” a la participation aux bénéfices car il n’existe pas
d’obligation réglementaire en la matiére. Les conditions générales et particuliéres
n’imposent pas & 'assureur de verser de la PB, et donc aucun minimum
réglementaire comme c’est le cas en France.

On parle ici de participation bénéficiaire purement discrétionnaire car celle-ci
dépend intégralement de la politique de PB de I'assureur pour récompenser et
fidéliser ses assurés.

4.4.2 Les hypothéses de distribution de la participation
bénéficiaire

Etant donné qu’aucune contrainte réglementaire n’est fixée dans ce domaine, il
faudra faire des hypothéses de distribution de ce bonus pour étre capable de
déterminer I'impact sur les flux futurs.

Par exemple dans notre exemple, on retiendra la méthode suivante : ’assureur
reverse comme PB & D'assuré tous les produits financiers excédant le taux
technique garanti augmenté d’une marge servant a rémunérer les actionnaires.
On obtient donc :

PB; = PM; x max(p; — ry —my; 0)

Avec :
¢ le rendement financier en date t
r¢ le taux garanti en t
my la marge actionnaire en t

P M, la provision mathématique du contrat a la date t

Le mécanisme de distribution de PB vient revaloriser les prestations, et donc
modifier la projection des flux. Comme le calcul du Best Estimate tient parfai-
tement compte de ces séquences de prestations futures, on mesure donc direc-
tement I'impact de la PB sur le Best Estimate. Il faut néanmoins remarquer
que tenir compte de la PB a travers les flux de prestation qui n’interviennent
pas au mémes dates que la dotation, peut biaiser le résultat par l'effet de
I’actualisation. Cependant ’assureur décaissera réellement la PB au moment du
paiement de la prestation sous quelque forme que ce soit, méme si légalement
il n’est plus en possession du montant de la PB au moment du versement au
contrat.
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4.5. La réassurance

4.5 La réassurance

Le Best Estimate est calculé brut de réassurance. Or 'effet de la réassurance
doit étre pris en compte dans le calcul du SCR et il sera donc demandé d’évaluer
également le Best Estimate net de réassurance.

Remarque : Nous ne traitons pas la réassurance dans le cadre des contrats en
unités de compte comportant une garantie décés dont la somme sous risque est
couverte par un réassureur. Cependant la méthode est strictement identique
du moment qu’il est possible d’isoler les flux de réassurance.

4.5.1 Le profit de réassurance

Tenir compte de I'engagement du réassureur a travers tous les flux, revient
en réalité a simplement diminuer I’engagement de ’assureur, du profit de
réassurance.

"CEIOPS CP 44 : Technical provisions- Article 86 g Counterparty
default adjustment to recoverables from reinsurance contracts and
SPV’s"

8.218. For the probability-weighted average of future cash-flows of
recoverables from existing reinsurance contracts and special purpose
vehicles the following cash in- and out-flows should be taken into
account : Cash in-flows should include at least

— recoverables from reinsurance contracts and special purpose vehicles for claims
payments or benefits and recoverable for related expenses; and

— revenues from reinsurance commission and from shares in profit from technical
sources relevant to individual reinsurance contracts. Cash out-flows should
include at least

— future premiums for reinsurance contracts and special purpose vehicles,

— if relevant, shares in profit due to the reinsurance contract.

Nous avons ainsi les flux du profit pour I'assureur du traité de réassurance qui
se calculent comme :

’ Signe ‘ Flux

- Primes de réassurance

Prestations du réassureur

Commissions de réassurance

|+

PB de réassurance

= Profit suite a la réassurance
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4.5. La réassurance

Etant donné que ce profit vient en diminution du Best Estimate brut de
réassurance, le signe des différents flux est finalement inversé.

Mais il ne suffit pas d’isoler les flux de réassurance (prestations, PB, prime) et de
retraiter les engagements de I'assureur, car il faut également tenir compte de la
probabilité non-nulle que le réassureur fasse défaut a la date t et qu’il ne puisse
honorer ses propres engagements envers l'assureur. On parle ici d’ajustement
de réassurance.

4.5.2 L’ajustement de réassurance

L’engagement de I’assureur sera en réalité diminué d’un montant inférieur au
profit de réassurance projeté, étant donné que l'on intégre en plus le risque
de défaut du réassureur dans le calcul. Cela correspond au risque de défaut
du réassureur "attendu” en fonction du rating!, alors que le risque de défaut
non-anticipé sera a prendre en compte dans le module du risque de défaut des
contreparties dans le calcul du SCR.

8.200. The amounts of recoverable from reinsurance contracts and
special purpose vehicles should be adjusted in order to take account
of expected losses due to counterparty default, whether this arises
from insolvency, dispute or another reason. Further advice on how
to adjust amounts recoverable from reinsurance contracts and spe-
cial purpose vehicles, can be found in CEIOPS-DOC-38/09 Level
2 advice on counterparty defaultadjustments to recoverable from
reinsurance contract and SPV’s14.

La probabilité de défaut en fonction de la notation est donné par le CEIOPS 2
dans le tableau ci-dessous :

Rating H Qualité de crédit H Proba de défaut ‘

AAA 1 0.05%
AA 1 0.10%

A 2 0.20%
BBB 3 0.50%
BB 4 2.00%

B ou moins 5 10.00%

1. on parle en anglais de "Adjustment of recoverables due to expected default”
2. QIS5 Technical Specifications
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4.5. La réassurance

Elle évolue au cours des périodes t de la fagon suivante :

PD; = PD.(1— PD)"!

La probabilité de défaut en t est donc la probabilité de ne pas avoir fait défaut
pendant les t-1 périodes précédentes, puis de faire défaut avec la probabilité
PD.

On suppose donc ici que le rating de ’assureur sera constant au cours du temps,

Il faut également tenir compte du taux de recouvrement ”tr”, c’est-a-dire du
pourcentage que l'assureur pourra quand méme récupérer en cas de défaut du
réassureur, étant donné que la liquidation permettra quand méme d’honorer
une partie des engagements envers les créanciers prioritaires.
Exemple :
Illustrons la méthode du calcul de l'ajustement Adj sur un exemple
simplifié,
soit Cy la prestation du réassureur projetée a la date t, avec t=1, 2 ou 3
soit try = tr = 40% comme proposé par le CEIOPS

Adj = PDi[(1—tr).(Cy+ Cy+ C3)]
+ PDy [(1 — t?“) . (CQ + 03)]
+ PD3 [(1 — t?“) 03]

La premiére année, si le réassureur fait défaut avec la probabilité PD1,
la perte pour l'assureur sera tous les flux restants, excepté une partie que
le réassureur pourra quand méme honorer.

En généralisant & T périodes nous avons donc :

T
Adj = (1 —tr) Z PD.(1—PD)"~ 120

t=1 u=t
11 existe une simplification proposée par le CEIOPS qui s’appuie sur la duration

modifiée, mais évalue grossiérement ’ajustement de réassurance comme un
pourcentage fixé & ajouter au Best Estimate.
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4.6. Conclusion

4.6 Conclusion

Si 'on récapitule tous les flux & tenir compte pour aboutir au Best Estimate
net de réassurance des contrats que I'on appelle de la "Vie Classique”3, nous
appliquons alors la formule présentée précédemment :

BE:;EQ Hm(thOt—CFt )

s<t

Avec :
Q la probabilité risque-neutre
CF; les cash-flows entrants et sortants a la date de projection t

r¢ le taux sans risque forward a la date t

Dans un modéle déterministe et en faisant I'hypothése que les cash-flows
entrants et sortants sont indépendants du marché et donc du taux d’intérét,
nous obtenons simplement :

BE =) {P(0,t) x Ep (CF* — CF{")}
t=1

Avec :
P(0,t) le prix d'un zéro-coupon en date 0, versant 1 en date t
CF; les cash-flows entrants et sortants a la date de projection t

P la probabilité naturelle *

3. par opposition aux contrats en Unités de Compte

4. FiLipovic (2004) : en cas d’indépendance entre le marché G et les engagements
d’assurance H, la probabilité risque neutre Q sur la combinaison des deux peut se décomposer
en Q|G X P|H
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4.6. Conclusion

Résumons la prise en compte des différents flux nécessaires pour obtenir le Best
Estimate brut et net de réassurance :

’ H Flux H Détails H Résultat
- Primes commerciales = Prime pure 4+ Chargements
+ Prestations de déces (+PB)

de rachats (+PB)

de rentes (+PB)

de maturité (+PB)

+ Frais généraux = Acquisition + Gestion
+ Commissions
— BE brut de
réassurance
- Profit de réassurance - Prime de réassurance

+ Flux de réassurance

4+ Commissions de réassurance

+ PB de réassurance

+ || Ajustement de réassurance

— BE net de
réassurance

Ici on ne fait pas apparaitre la somme actualisée des cash-flows au taux sans
risque, pourtant elle est indispensable et s’applique sur la totalité des flux
recensés pour obtenir le Best Estimate.

Remarque importante :

"CEIOPS CP 44 : Technical provisions- Article 86 g Counterparty
default adjustment to recoverables from reinsurance contracts and

SPVHSH

Articles 75 to 18 of the Level 1 text. Such a valuation recognise the
possibility that cash in-flow could exceed cash out-flow i.e. expected
profit during remaining periods on risk. In such circumstances the
best estimate may be negative. This is acceptable and undertakings
are not required to set to zero the value of the best estimate. The
valuation should take account of the time value of money where
risks in the remaining period would give rise to claims settlements
into the future.

C’est-a-dire qu’un résultat négatif pour un contrat ou méme pour la totalité
d’un produit, est parfaitement acceptable et refléte la forte profitabilité de ce
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4.6. Conclusion

produit. On a donc la somme actualisée des cash-flows entrants est supérieure
a celle des cash-flows sortant.

En pratique on retrouve cette situation dans les produits temporaire décés ou
de solde restant dii, car on constate généralement une trés faible sinistralité a
cause du jeune age des assurés ou de la faible durée du contrat. En contrepartie
les primes et les chargements sont importants car interviennent souvent en
prime unique & la souscription du contrat : I'effet de I'actualisation n’intervient
donc pas.
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Chapitre 5

Contrats en unités de compte

5.1 Définition

Nous avons vu que contrairement & ce que l'on pouvait attendre, la grande
majorité des contrats en unités de compte ne peut pas étre considérée comme
des passifs parfaitement réplicables par des instruments financiers. Cela vient
du fait que I'assureur préléve réguliérement des frais de gestion directement
sur la valeur du contrat. Une marge de risque devra donc étre calculée en
complément des engagements Best FEstimate pour ce type de contrats.

L’existence de frais de gestion et de garanties décés complémentaires impliquent
également que ’évaluation Best Estimate des contrats en unités de compte est
différente du montant de la valeur du contrat a la date d’évaluation.

Raisonnons progressivement.

Tout d’abord nous avons la valeur de rachat qui est égale a la valeur instantanée
du portefeuille en unités de compte hors pénalités et frais de rachat.

Comme nous sommes en probabilité risque-neutre, quel que soit le fonds, on
capitalise et actualise le portefeuille au méme taux sans risque r, ¢’est-a-dire
que la valeur projetée et actualisée (VAP) de la valeur du contrat V; reste
toujours égale & sa valeur initiale D, égale aux primes nettes de frais d’entrée
versées au contrat :

VAP(V,) = D
VAP(V)) = D('l(lﬁsl):D

On fait donc juste s’éteindre la valeur de cet engagement en fonction des
hypotheéses sur le taux de chute (mortalité, rachat).

Ajoutons ensuite les frais de gestion.
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5.2 Projection des frais

Ces frais sont prélevés sur la valeur du contrat et viennent en contrepartie
de frais réels nécessaires a la tenue des contrats. Mais pour une raison de
rentabilité, les frais de gestion sont généralement supérieurs aux frais généraux
de la société.

Nous avons d’une part la projection des frais de gestion, et d’autre part en face,
la projection des frais généraux.

La valeur du contrat évolue comme suit :

Vo = D
Vi = D(1-g)(1+m)
Vo = D(1—g)*(1+7r)(1+72)

Ce qui, du point de vue de I'assureur donne en termes de flux F; actualisés :

VAP(Fy) = D

D(1+g)(T+mr) ,(1+11)
VAP(F) = Tt _f(1+r1)
(1+i1)
(1—1—7‘1)
(I +141)(1 +1d9)

(1 + 7’1)(1 + 7’2)

= D+Dg—f

VAP(Fy) = D(1+g)?—f

VAP(Ft) — D+Q0(Q,D) _ﬂ)(fv itart)
£0

Avec :
f les frais réels
i I'inflation
r; le taux sans risque en t

D le montant initial du contrat

Nous avons donc isolé :
- la composante D qui ne varie qu’en fonction de la loi de chute,

- la composante ¢ qui représente les frais de gestion projetés qui évoluent
également en fonction du taux de chute. Ce montant vient en diminution
de I'engagement de I'assureur car c¢’est un flux entrant.

- la composante ¥ qui représente les frais généraux. Ce montant vient en
augmentation de I’engagement de 1’assureur.
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5.3. Modélisation de la garantie déces

D’ores et déja nous pouvons dire que ces flux, & cause de la marge administrative,
ne sont pas réplicables et il faudra donc ajouter la marge de risque a ce
Best Estimate. Ajoutons enfin la prise en compte des garanties déces dans
I’engagement de l’assureur.

5.3 Modélisation de la garantie décés

Devant ’aversion au risque de certains investisseurs désirant effectuer des
placements sur des actifs risqués tout en préservant l'objectif de transfert
de leur patrimoine, les assureurs proposent aujourd’hui toute un gamme de
garanties financiéres en cas de décés de l'assuré. Ainsi le capital versé aux
bénéficiaires sera majoré du montant prévu par la garantie décés, en cas
d’évolution défavorable des fonds.

5.3.1 Présentation des garanties

Les types de garanties peuvent étre trés variables mais on peut citer les formes
les plus connues :

5.3.1.1 la garantie plancher :

On garantit un montant minimum, souvent égal & la somme des primes versées
par 'assuré. En cas de décés en t 'engagement se calcule comme :

E; = max(vniy. Ng; plancher)

Avec :

vni; la valeur d’un actif & la date t
N; le nombre d’unités de compte a la date t

plancher la valeur du capital garanti
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5.3. Modélisation de la garantie décés

Graphiquement cela se représente par :

GARANTIE PLANCHER
I A e O e s i
120 — i -
100 N_{_ - — 7_dﬁ =
CAPITAL
g0 SOuUsS
B0 RISQUE
ent=38
40
PLANCHER = CAPITAL GARANTI
20
[u] L e e e e I B e e e e L B s e e e LA B e e e e e e e
1 3 5 7F 9 11 131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Milliers s
d'e Mois

FIGURE 5.3.1: Schéma de fonctionnement de la garantie plancher dans un
contrat en unités de compte

Elles peuvent étre aussi indexées pour que le plancher soit revalorisé par rapport
a l'inflation par exemple.

5.3.1.2 la garantie cliquet :

Le capital garanti est automatiquement réhaussé dés lors que la valeur du fonds
atteint un nouveau maximum :

GARANTIE CLIQUET
190 T BLUS HAUT NIVEAUX —__— = z 1
— HISTORIQUES -
TOR 5= CAPITAL
1 S0OuUs
£a RISQUE
0 ent=38
an 4
z0 +
04— T T T
1 3 5 F 9 141131517 19 21 2353 25 27 29 31 353 35 37 39 41 4353 435 47 43
Milliers A
e Mois

FIGURE 5.3.2: Schéma de fonctionnement de la garantie cliquet dans un contrat
en unités de compte

5.3.1.3 la garantie majorée :

On garantit un montant supérieur a la totalité des primes versées, soit fixé a la
souscription, soit exprimé en pourcentage supplémentaire de la réserve.
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GARANTIE MAJOREE

140

120 4

100

CAPRPITAL
SouUs
RISQUE
ent=38 \

80 1 Souscription

a la garantie

=]

a0 -] MAJORATION DE L'EPARGNE

|

|

|

a = CAPITAL DECES GARANTI E
1

|

a
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Mi‘ldlliéers Mois

FIGURE 5.3.3: Schéma de fonctionnement de la garantie majorée dans un
contrat en unités de compte

5.3.2 Evaluation

Comment évaluer les engagements en Best Estimate induits par cette garantie
déces de la part de Iassureur ?

Continuons le raisonnement par entrée et sortie des flux actualisés liés au
contrat.
Le cotit de cette garantie pour 'assuré est calculé de la facon suivante :

1. on détermine la somme sous risque, égale a la différence entre le capital
garanti et la valeur du contrat.

2. si la somme sous risque est positive, on lui applique un taux de prime
de risque obtenu & partir de la probabilité de décés durant 'année. On
utilise pour ceci la table de mortalité tarifaire.

3. on préléve cette prime de risque sur le nombre d’unités de compte en
réserve.
Il faut donc projeter les primes de risque futures prélevées, en contrepartie du

colit réel de la garantie pour l'assureur.

On obtient finalement :
VAP(Ft) = D-I-gO(g, D) _1/}(]07 ita Tt) +9(Nt7 ’Unit’ Gta q.’xt) _’Y(Ntv vnita Gta q;t)

- La fonction 6 représente la prime de risque en fonction de la valeur du fonds,
du capital garanti Gy et du taux de prime de risque en t représenté ici
simplement par la probabilité de décés de la table de mortalité tarifaire.

- La fonction v représente la valeur de la garantie pour ’assureur en date t.
Pour la calculer on la représente par une option de vente qui serait offert
a lassuré.
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5.3. Modélisation de la garantie déces

- ¢z, représente la probabilité de décés selon la table de mortalité tarifaire.

- q,, représente la probabilité de décés réaliste selon la table de mortalité
d’expérience.

Etant donné que le prélévement de la prime de risque est mensuel, il faut garder
le méme pas temporel et donc considérer une série d’option de vente de prix
d’exercice égal au montant garanti, de sous-jacent égal a la valeur du contrat
et d’échéance un mois.

Cette option est évaluée par la formule de BLACK et SCHOLES (voir section 6.3
page 58 pour la signification de d1 et d2).

Nous avons alors, avec ® la fonction de répartition de la loi normale :

Y(Ni,vniy, G, @3,) = @z, X P(Ny.vniy, Gy, 0) = g, ¥ [Gt.e_T.é(fdg) — Nt.vnit@(fdg)]

On multiplie par la probabilité de décéder le mois t, car elle représente la
probabilité que ’assuré exerce son option de vente. Or cette probabilité de
décés est cette fois-ci obtenue a partir de la table de mortalité d’expérience.

La valeur intrinséque de cette option est naturellement égale & la somme sous
risque en date t.

Sur une durée d’un mois, la valeur spéculative n’étant pas trés élevée, cela
revient donc approximativement a considérer la somme sous risque, déja utilisée
pour calculer la prime de risque.

Nous pouvons donc dire que la marge technique sur les garanties décés est
représentée par :

O(N¢, vnig, Gy, qz,) — ¥(Ng, vnig, Gy, q,) ~ max(Gy — Ny.onig; 0) X (Gz, — 4, )

L’impact le plus élevé est donc celui de la différence de mortalité entre la table
tarifaire et la table d’expérience, d’otu 'importance dans le choix de celle-ci.

Notons au passage qu’il est trés compliqué de calculer la volatilité des fonds
sous-jacents aux contrats en unités de compte, car la composition des actifs
est variable et trés variée. En pratique c’est impossible de raisonner fonds par
fonds ou police par police. On peut alors faire ’hypothése que, si les fonds sont
nombreux et variés, la volatilité globale devrait étre proche de celle de I'indice
de référence qui est supposé étre I’Eurostoxx 50. On utilise alors la volatilité
implicite de I’ Eurostoxz 50°.

1. http ://www.stoxx.com/download/indices/factsheets/v2tx fs.pdf
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5.3. Modélisation de la garantie déces

5.3.3 Conclusion

C’est une maniére simple et compréhensible de tenir compte de la marge
technique dans le calcul des engagements de ’assureur en Best Estimate. Par
contre on comprend bien que dans un modéle déterministe, la projection des
primes de risques peut sembler imparfaite car une police n’ayant pas de somme
sous-risque au moment de ’évaluation ne pourra pas en avoir par la suite, et les
sommes sous risque existantes vont diminuer & la vitesse du taux sans risque.

Finalement le Best Estimate obtenu sera inférieur au montant de la valeur de
rachat, de par la projection actualisée de la marge technique (sur les garanties
déces), et de la marge administrative (sur les frais de gestion) que I'on anticipe
en diminution des engagements.

Cela est uniquement acceptable car nous cherchons & représenter une valeur
théorique pour représenter au plus juste les engagements. La provision mathé-
matique réellement au bilan reste calculée de maniére statutaire et actuarielle.
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Chapitre 6

Options et Garanties
intrinséques aux contrats
d’assurance

La présence et I'importance du calcul de ces éléments se justifient & nouveau par
la lecture du : "CEIOPS’ Advice for Level 2 Implementing Measures on Solvency
II : Technical provisions, Article 86 : a Actuarial and statistical methodologies
to calculate the best estimate.”

3.119. Embedded options and guarantees are important components
of technical provisions which need to be continuously monitored by
the insurer. The potential for non-linear behaviour, existence of
path dependencies and inherent complezity and uncertainty requires
the use of relatively sophisticated valuation methodologies to deliver
accurate results.

3.130.The best estimate of contractual options and financial guaran-
tees must capture the uncertainty of cash-flows, taking into account
the likelihood and severity of outcomes from multiple scenarios
combining the relevant risk drivers.

3.131.The best estimate of contractual options and financial gua-
rantees should reflect both the intrinsic value and the time
value.

3.132. Without prejudice to the advice in CEIOPS-DOC-21/09 re-
ferred to previously in this paper, the best estimate of contractual
options and financial guarantees may be valued by using one or
more of the following three methodologies :
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6.1. Définition des Options cachées

- a stochastic approach using for instance a market-consistent asset
model (includes both closed form and stochastic simulation ap-
proaches) ;

- a series of deterministic projections with attributed probabilities ;
and

- a deterministic valuation based on expected cash-flows in cases
where this delivers a market-consistent valuation of the technical
provision, including the cost of options and guarantees.

6.1 Définition des Options cachées

L’évaluation des Options et Garanties incluses implicitement dans les contrats
d’assurance, peut s’avérer complexe et souvent réductrice. Elle est néanmoins
indispensable, que ce soit dans ’évaluation des engagements Best Estimate de
Solvabilité 2, du Swiss Solvency Test, ou dans les projections de la MCEV .

La non-prise en compte de ces risques, aujourd’hui biens connus des assureurs,
a déja eu dans le passé des conséquences extrémement importantes. On peut
citer a titre d’exemple la garantie du taux de conversion des rentes viagéres
différées, qui engendra de sérieux risques non anticipés pour des compagnies
britanniques a partir des années 1970-1980 (Voir : Modélisation du GAO).

On peut définir les options dites cachées de la fagon suivante : “Les options
cachées sont des garanties ou des droits variés conférés auxr assurés par la
reglementation ou par des clauses contractuelles et destinés a rendre les contrats
d’assurance plus souples et plus attractifs. Ces options se caractérisent par
l’absence d’un provisionnement distinct dans les comptes de [’assureur.”

Généralement il n’existe pas de provisions comptables pour ces risques complexes
pourtant identifiés. Elles sont généralement difficiles a évaluer avec précision
car dépendent fortement des particularités des contrats d’assurance-vie. Le
Best Estimate doit les intégrer au mieux pour tenir compte de la meilleure
estimation des engagements réels a la date d’évaluation.

A titre d’exemple 'on peut citer les options cachées suivantes :

- L’OPTION DE RACHAT : lorsque le comportement de rachat est modélisé de
fagon dynamique, il peut étre vu comme une option de vente américaine
ou européenne accordée a l'assuré, de prix d’exercice égal & la valeur
de rachat nette de frais, et dont le sous-jacent peut dépendre des condi-
tions fiscales de I'assuré, intégrer 'offre de la concurrence ou d’autres
produits d’investissement. Le rachat peut étre total ou partiel. Il impacte
directement la gestion actif-passif de la compagnie.

1. Market Consistent Embedded Value
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6.1. Définition des Options cachées

- L’OPTION D’ARBITRAGE : dans un contrat multi-supports, ’assuré peut
céder sa position sur un fonds ou un support, pour investir dans un
autre en fonction de son profil d’investissement et de la conjoncture
économique. L’engagement de 1’assureur n’est pas le méme que 'assuré
choisisse un fonds en unités de compte ou transfére son contrat sur un
support & taux minimum garanti. Ces arbitrages entrainent des frais
qui sont éventuellement facturés au souscripteur. L’arbitrage impacte
également la gestion actif-passif.

- L’OPTION D’AVANCE : 'assuré peut demander une avance pour une partie
de la valeur de son contrat. C’est équivalent & un prét de l'assureur
avec le contrat comme caution. Cela permet a I'assuré d’avoir accés
ponctuellement & son capital sans pour autant perdre les avantages de
son contrat en le rachetant.

L’OPTION DE REDUCTION : le souscripteur peut arréter le versement des
primes périodiques prévues par le contrat. La garantie du contrat sera
donc réduite au prorata des paiements effectués.

- L’OPTION DE VERSEMENT ADDITIONNEL : le souscripteur peut verser une
prime complémentaire, avec des conditions éventuellement garanties,
quelle que soit I'évolution de l'offre.

- L’OPTION DE TRANSFORMATION EN RENTE : le souscripteur peut décider de
sortir en capital ou en rente & 1’échéance de son contrat. Les arrérages
viagers qu’il va pouvoir obtenir peuvent étre garantis et calculés selon
des hypothéses définies & la souscription (voir GAO).

Il existe d’autres options indépendantes du comportement des assurés et qui
relévent intégralement des garanties financiéres du contrat et dépendent du
comportement des actifs financiers.

- LE TAUX MINIMUM GARANTI : le taux de revalorisation garanti a ’assuré qui
est susceptible d’étre supérieur aux rendements financiers observés.

- LA PARTICIPATION BENEFICIAIRE : elle peut étre réglementaire (imposée),
contractuelle (promise), discrétionnaire (possible selon décision de 'assu-
reur).

- LES GARANTIES SUR LES RISQUES 2 : aussi appelé variable annuities, 'assureur
offre une prestation garantie sur un support risqué, en cas de chute des
marchés sur lesquels ces fonds sont investis. Ces garanties, éventuellement
avec un effet « cliquet », peuvent étre exercées en cas de décés (GMDB), en
cas de vie (GMAB), de rentes viagére (GMIB) ou de retraits périodiques
(GMWB).

Pour finir sur la présentation des options cachées, notons aussi qu’il existe des
options que posséde 'assureur, mais qui ne sont néanmoins pas plus faciles a
modéliser. On connait entre autres :

2. Non proposé a la BALOISE VIE LUXEMBOURG
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6.2. Insuffisance du modéle déterministe

- loption de distribuer ou de doter la PROVISION POUR PARTICIPATION AUX
EXCEDENTS (PPE) 3 pour réguler la distribution de participation aux
bénéfices.

- l'option de REALISER SES PLUS OU MOINS-VALUES LATENTES sur les actifs
obligataires et d’impacter la réserve de capitalisation . Celle-ci permet
de lisser dans le temps le résultat des ventes prématurées d’obligations et
n’engendre pas de distribution de PB.

- l'option d’avoir une politique d’investissement plus ou moins risquée pour
améliorer ponctuellement son rendement ou diminuer son profil de risque.

Nous allons développer en détail la modélisation de la valeur temps de la
garantie du taux minimum et de la participation aux bénéfices, ainsi que
I'option de transformation en rente & un taux garanti. Ces deux éléments sont
déja valorisés & la BALOISE pour le calcul de la MCEV.

6.2 Insuffisance du modéle déterministe

Lorsque le cash-flow n’est pas une fonction linéaire de la réalisation d’un
scénario, I’asymétrie qui en résulte rend l'espérance de ce flux dépendant de la
trajectoire qu’il a suivi®. Dans notre cas, c’est la PB qui crée cette asymétrie
car elle ne peut étre que positive ou nulle quel que soit les produits financiers.
Le scénario moyen projeté diverge donc de la moyenne des scénarios dés lors
que 'on ajoute de la variabilité au sous-jacent. Modéliser de facon déterministe
une option ne permettrait que de capter la valeur intrinséque de celle-ci. Il faut
donc encore ajouter la valeur temps de cette méme option, car nous savons
qu’en réalité la volatilité du sous-jacent est loin d’étre nulle.

La valeur temps d’une option représente le prix de I'incertitude liée a 1’évolu-
tion du sous-jacent. Pour ceci, il faut avoir recours aux techniques courantes
d’évaluation d’options financiéres qui, elles, vont tenir compte du caractére
stochastique du processus de prix du sous-jacent.

Voici le schéma des pay-off & maturité de ces deux types d’option, sachant qu’ils
ne représentent que la valeur intrinséque de celles-ci avant 1’échéance. La valeur
supplémentaire est égale a la valeur temps de l'option, et c’est exactement ce
que l'on cherchera & valoriser avec des formules fermées dans le calcul de la

TVOGS.

3. ou réserve pour PB future au Luxembourg, mais avec une législation plus souple sur sa
distribution

4. en France

5. valeur path-depending

6. Time Value of financial Option and Garantee
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Valeur intrinséque

Payaf f

Valeur temps

Dans la monnaie

T
Strike (K} Sous — jacent (5]

L |'_;:-I 100 d'achat | all)
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Piyo

A la moifnaig

Dans la monnaie Hors de T4 arronmaie. .

y
Strilke (K Ses jacent  [5)

Option de vente (put)

FIGURE 6.2.1: Représentation de la valeur intrinséque et de la valeur temps
d’une option d’achat et de vente

La valeur temps est donc la différence entre la valeur de I'option a la date t
et sa valeur intrinséque, égale & ce que serait son pay-off si I'option était &
maturité. La convexité de la valeur de 'option d’achat par exemple, n’est pas
mesurable par un modéle purement déterministe qui se base uniquement sur le
pay-off futur, estimé dans un univers sans variabilité.

Rappelons que la valeur temps d’une option converge au cours du temps vers
zéro, toute chose égale par ailleurs, jusqu’a 1’échéance de 'option ou le pay-off
n’est plus égal qu’a sa valeur intrinseéque.
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6.3. Evaluation des options financiéres

6.3 Evaluation des options financiéres

6.3.1 La méthode usuelle de BLACK et SCHOLES

Depuis les travaux de BLACK, SCHOLES et MERTON (1973) qui aboutirent a

la fameuse théorie d’évaluation des options européennes qui regut le « Prix

Nobel d’Economie » en 1997, de nombreux développements et améliorations

ont été découverts, mais les hypothéses sur lesquelles s’appuie le modéle restent

identiques.

- Le prix de 'actif sous-jacent a la date ¢, 0 < ¢t < T, suit un mouvement
brownien géométrique tel que :

dS;
St
Avec :
u Vespérance de rentabilité de lactif (le drift), constante
o sa volatilité, constante

B¢ un mouvement brownien standard (processus de WIENER), tel que
les accroissements disjoints By — Bs ~ N (0,t — s) sont indépendants et
stationnaires, 0 < s <t

T la maturité de 'option

On déduit de cette équation différentielle stochastique, grace au lemme d’ITO

que :
1
S; = exp [JBt + <u — 202) t]

C’est-a-dire que le rendement de I'actif sous-jacent est log-normal car on a :

St
In (S) =In(S;) —In(Ss) = {,u - ;(72} (t—s)+o (B — Bs)

S

dont le dernier terme suit une loi normale comme indiqué précédemment.

Le sous-jacent est donc c6té en continu sur les marchés.
- Il n’y a aucun coit de transaction et d’impots.

- Le marché est complet : on parle de complétude du marché lorsque toutes
les flux (et donc les options) peuvent étre répliqués avec un portefeuille
d’actifs.

L’absence d’opportunité d’arbitrage : il est impossible d’obtenir, grace & un
montage financier a cotit nul, un pay-off positif avec certitude. Un marché
parfait a I’équilibre, peut présenter ponctuellement des opportunités
d’arbitrage mais il se réajuste trés rapidement par la loi de l'offre et de la
demande avec des agents parfaitement rationnels, d’ott I'unicité des prix
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sur le marché. Cette hypothése implique également que deux contrats
ayant des cash-flows identiques aux mémes périodes, doivent avoir le
méme prix. On peut donc évaluer une option financiére en la répliquant
par un portefeuille composé d’actifs dont la valeur de marché est connue.

- La neutralité des agents face au risque : on peut démontrer qu’en ’absence
d’opportunité d’arbitrage et si le marché est supposé complet, il existe
une unique probabilité risque-neutre Q telle que le processus des prix
actualisés au taux sans risque des actifs soit une martingale sous cette
probabilité :

P, =Eq[P; | Fi

Avec :

Fs la filtration de toute I'information disponible & la date s

P, le prix actualisé adapté a la filtration F,

0<s<t<T
On peut donc obtenir le prix d’un actif, en actualisant simplement au taux
sans risque, 'espérance de ses flux futurs sous une probabilité risque-neutre.
Cela revient alors & résoudre pour un call C a la date ¢ :

C(t) = Bg [e i me@)ds (8, — K)* | F,

Avec :
r#(s) le taux sans risque instantané a la date s
T 1’échéance de 'option
St le prix du sous-jacent de I'option & la date t
K le prix d’exercice de 'option

La valeur d’une option ne dépend donc plus de I'attitude des agents face au
risque, par conséquent tous les actifs possédent le méme rendement égal au
taux sans risque r

=T
L’univers dans lequel se produisent ces hypothéses est appelé univers risque-

neutre ol les probabilités ainsi que le rendement espéré des actifs et le taux
d’actualisation sont déformés.

Raisonner dans cet univers n’est qu’un artifice de calcul qui permet de résoudre
plus facilement I’équation de BLACK et SCHOLES. Pourtant le résultat obtenu
est parfaitement valable dans 'univers réel.

Les unités de sous-jacents sont parfaitement divisibles.

Les ventes & découvert sont autorisées et illimitées.

Le taux d’intérét sans risque est constant et connu.

On peut emprunter et préter au méme taux.
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Nous ne démontrerons pas ici la fagon d’obtenir la formule finale de BLACK et
SCHOLES pour évaluer les options européennes (sans dividendes), car celle-ci a
été exposée dans de nombreux ouvrages ”.

Voici le résultat pour le prix d’une option d’achat européenne de prix d’exercice
K, de sous-jacent S, de maturité T, de volatilité constante o et N la fonction
de répartition de la loi Normale centrée réduite :

C(S,T,K,o,r¢) = 50.N (di) — Kexp (—rfT).N (d2)
Avec : ,
In (%) +T (rf + %)
oVT
d2 = d1 - Uﬁ

dy =

De méme pour une option de vente européenne :

P(S,T,K,o,rf) = —=50.N (—=dy) + K exp (—r;T) .N (—d>)

Ces résultats vont étre largement utilisés par la suite.
6.3.2 Limites

L’évaluation des options cachées par des options financiéres évaluées par des
formules fermées dérivées de BLACK et SCHOLES, posséde de nombreuses limites
et hypothéses qu’il ne faut pas perdre de vue. En effet, il n’est pas évident que
les hypothéses nécessaires a ’évaluation d’options financiéres soient acceptables
dans le cas des options du contrat d’assurance, méme si leur pay-off peut-étre
répliqué par des combinaisons d’options standards. On peut s’interroger sur
la réalité de ces hypothéses connaissant les particularités des options cachées
suivantes :

- I’absence d’un marché organisé et liquide pour ce type d’options.

- I'absence d’opportunité d’arbitrage et de parfaite liquidité, modifiée par
Iexistence de contraintes fiscales et de frais d’arbitrage. Les contrats
d’assurance vie ne peuvent pas étre arbitrés facilement et & n’importe
quel moment, d’ot des comportements de rachat qui ne dépendent pas
uniquement de la valeur du contrat, et donc ’exercice d’une option qui
n’est pas uniquement fonction du sous-jacent.

- I'absence de rationalité parfaite des assurés, ou I’aversion au risque en ma-
tiére de mortalité n’est pas comparable a celle du risque financier di a la
volatilité des marchés financiers. En particulier le contrat d’assurance est

7. Voir HuLr, J.C. (1989). Options futures and other derivative securities par exemple.
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un produit complexe, dont la valeur réelle n’est pas toujours évaluable ou
connue par 'assuré. Celui-ci devrait connaitre parfaitement les politiques
financiéres et commerciales de ’entreprise pour ajuster son comporte-
ment, mais celles-ci dépendent du comportement de "assuré lui-méme.
Meéme dans un univers risque-neutre oil tous les actifs possédent le méme
rendement 8, la réalité du portefeuille a une date donnée ne permet pas a
I'assuré, détenteur de I'option, d’évaluer parfaitement sa valeur.

- Les participations aux bénéfices discrétionnaires® déconnectent la rentabilité
financiére de la rentabilité du contrat et ne sont pas anticipables par
I'assuré.

6.3.3 Conclusion

L’adéquation entre une option financiére et une option implicite & un contrat
d’assurance n’est donc pas parfaite, et les hypothéses nécessaires a son évaluation
amplifient encore les divergences. Certaines études auraient montré que si 'on
évalue la valeur d’une garantie par réplication de celle-ci par un portefeuille
d’obligation, il serait plus juste de se situer dans un contexte oil cette couverture
est réellement mise en place et donc ajustée également réguliérement.

C’est pourquoi dans la seconde partie, nous chercherons a nous affranchir de ces
formules fermées. En effet, le fait de générer des scénarios stochastiques pour
ensuite appliquer la méthode de MONTE-CARLO, permet d’intégrer directement
dans la projection des cash-flows la valeur spéculative de ces garanties, tout en
restant facilement décomposable en valeur intrinséque et valeur temps.

Toutefois, dans un contexte opérationnel ot le cotit et le temps de calcul prennent
une part non négligeable, I'utilisation de méthodes certes simplificatrices mais
reconnues, reste justifiée pour intégrer facilement un caractére stochastique
indispensable pour ce type d’évaluation.

8. Correspondant & la courbe des taux sans risque (que 1'on suppose connue par I'assuré)
9. Qui ne sont pas réglementaires ou contractuels mais dépendent de la politique de
I’assureur en fonction de nombreux paramétres financiers, concurrentiels. . .
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6.4 Time Value of financial Option and Guarantee

L’une des garanties implicites au contrat d’assurance est celle relative a la
revalorisation des contrats d’assurance vie et décés. Que ce soit le taux technique
pour les contrats de type décés ou survie, ou le Taux Minimum Garanti (TMG)
pour les bons de capitalisation, c’est le taux contractuel auquel la réserve est
revalorisée. Ce taux peut étre fixé jusqu’a I’échéance, sur une durée fixée, ou
varier annuellement. A cela s’ajoute 'effet éventuel de la participation aux
bénéfices (PB). La projection de la PB discrétionnaire '° future nécessite une
hypothése supplémentaire pour déterminer le pourcentage complémentaire des
rendements qui sera reversé a ’assuré. On appellera « Marge actionnaire » la
partie des produits financiers non redistribués !'. La participation bénéficiaire
future est alors obtenue par différence entre le rendement financier attendu
donné par le vecteur certainty-equivalent, et la somme de la revalorisation
garantie et de la marge actionnaire.

10. Rappel : au Luxembourg la PB réglementaire n’existe pas, elle est purement discrétion-
naire mais pourtant incitée par la concurrence.

11. Car dans le cas du calcul de la MCEV, on valorise les profits futurs espérés redistri-
buables aux actionnaires, dans une logique de run-off qui ne nécessite pas de dotation a
la réserve pour autofinancement futur. Toutefois, le rendement réel pour ’actionnaire est
supérieur car il faut tenir compte de 'effet de levier important di au fait qu’il n’a pas décaissé

le montant des provisions investies.
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Construction du vecteur certainty equivalent
6.00%
Produits financiers excédentaires
5 0ot Distribution de PB
500% - A Marge actionnaire compléte Taux technique +
marge
actlonnaire
400% ﬁ Pas de PB \\
Marge actionnaire partielle ey
. s T —
5 300% + Ba oo
B
200% +
200% Perte financiére
Pas de PB
Pas de marge actionnaire
1,00%
0,00% T T T T T T T T T T — T T T T T T T
O O 0 8 D AN A D AD D AL DA AP D L G D B
BN A R U N N USRS U RSO SR SRS TS N s
[ A £ S R R S o " i A A S i A A VA
maturités
—s—vecteur certainty equivalent — rendement des obligations ftaux sans risque

FIGURE 6.4.1: Représentation des seuils de revalorisation des contrats par
rapport au rendement moyen attendu du portefeuille d’actifs

La modélisation du scénario moyen dans PROPHET ne tient compte que de la
valeur intrinséque d’une option qui répliquerait ou couvrirait le cotit de la reva-
lorisation des contrats, et par différence déduirait celui de la PB. Par contre
on ne valorise pas encore la valeur spéculative d’une telle garantie,
qui représente l'incertitude sur I’évolution future, et donc une opportunité
supplémentaire de profit.

On va donc isoler : valeur spéculative = prix de 'option - valeur intrinséque

De cette maniére on améliore la lacune majeure d’un scénario déterministe,
qui est de considérer que la volatilité des résultats est nulle. En captant cette
volatilité du taux d’intérét, on mesure donc une partie du caractére aléatoire
du rendement attendu. Plus la volatilité est élevée, et plus la possibilité pour
le sous-jacent d’évoluer favorablement est élevée, donc toute chose égale par
ailleurs, la valeur spéculative sera importante et donc également le prix de
I’option.

La Time Value of financial Option and Guarantee (TVOG) doit comprendre la
valeur spéculative de cette garantie. On verra plus tard que la valeur spéculative
de la Guaranted Annuity Option (GAO) est aussi & inclure dans la TVOG.
Cependant dans le calcul du Best Estimate, nous n’avons pas besoin
de faire cette distinction et nous traiterons donc séparément le calcul
du GAO.
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6.4.1 Rappel sur les options de taux

Lorsque le sous-jacent n’est pas directement un actif mais un taux d’intérét, la
terminologie des options est différente, méme si le principe des options d’achat
et de vente reste identique.

6.4.1.1 Cap et Caplet

Un Caplet est une option d’achat sur la réalisation future d’un taux sous-jacent
r¢ (souvent Libor ou Euribor). A maturité T, il paye 'écart entre la réalisation
de ce sous-jacent et du prix d’exercice K (le strike).

Pay — of f(T) = max(rp — K;0)

Un Cap est une séquence de méme prix d’exercice et de méme sous-jacent.
On retrouve ainsi la structure d’un swap car il verse des flux réguliers dans le
temps, en fonction de la valeur d’un taux financier (on parle parfois de Cap
Vanille tout comme les Swap Vanilla). Les Cap permettent donc de se couvrir
contre une hausse des taux.

Exemple :

Prenons I'exemple d’un emprunt a taux variable. Il bénéficiera d’une
éventuelle baisse des taux puisque sa dette est indexée sur celui-ci, et le
risque pour 'emprunteur est donc une hausse des taux.

Pour se couvrir il va donc acheter un Cap dont I’échéancier sera le méme
que le remboursement de son emprunt. En cas de hausse, son option sera
dans la monnaie, d’autant que son cotit supplémentaire sur ’emprunt, si
sa couverture est parfaitement efficace : on dit qu’il est "cappé”.

6.4.1.2 Floor et Floorlet

Un Floorlet est une option de vente sur la réalisation future d’un taux sous-
jacent r;. Le pay-off & la maturité T est dans ce cas :

pay — of f(T) = max(K — rp;0)

De méme, un Floor est une séquence de Floorlets de méme prix d’exercice et
de méme sous-jacent. A 'inverse du Cap, il permet donc de se couvrir contre
une baisse des taux.
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6.4.2 Modélisation de la revalorisation par le taux garanti et
par la participation bénéficiaire

On fait ici I'hypothése que ’assureur conserve son mode de calcul de la PB
avec une marge actionnaire cible fixe dans le temps.

Dans un premier temps, on va chercher & répliquer le mécanisme de revalorisa-
tion avec un portefeuille d’options dont ’évaluation stochastique est possible.
On évalue donc ces options avec la formule usuelle de BLACK et SCHOLES sous
les hypothéses sous-jacentes nécessaires & son utilisation. Il faut donc admettre
que le scénario projeté par une seule trajectoire peut bouger en réalité, par
I’existence d’une volatilité, qui ne peut pas étre captée de facon déterministe.
On extrait ensuite la valeur temps de I'obligation qui constituera un élément
supplémentaire dans le calcul du Best Estimate, étant donné que I’engagement
s’en voit augmenteé.

Tout le comportement de revalorisation d’un contrat est donc scindé entre la par-
tie intrinséque du scénario moyen projeté, et la valeur spéculative appartenant

ala TVOG.

6.4.2.1 Revalorisation par le taux garanti

Pour un taux de revalorisation garanti fixé g, le cotlit de cette garantie dépend
de I’évolution du taux de rendement 7, (égal au vecteur certainty-equivalent
dans notre cas). Le taux garanti étant variable pour chaque contrat en fonction
de sa date de souscription, il faut donc raisonner par poche de taux, et répéter
I’opération pour chaque gamme de taux.

Lorsque 74 est inférieur au taux garanti, la valeur de 'option doit modéliser
le fait que 'assureur devra compenser par ses fonds propres l'insuffisance de
rentabilité financiére obtenue (limitée & g), afin d’honorer sa garantie. Par
contre si ce rendement est supérieur au taux garanti, alors il n’aura rien a
ajouter et son cott sera nul. Le coiit de cette garantie se résume donc comme :

g sty <0
CoG=<r—g si0<r<g

0 sinon

Le pay-off de l'option représente le cotit de la garantie pour un euro de réserve
mathématique, et correspond donc a la vente d'un Floor dont le prix d’exercice
est égal au taux garanti g, avec 74 le rendement attendu comme sous-jacent.

On décompose ces flux en une série d’options de maturités croissantes. Le
pas de cette série doit étre suffisamment petit pour que ’hypothése que 'on
puisse couvrir cet engagement avec des options européennes, et donc pouvoir les
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évaluer en utilisant BLACK et SCHOLES, ne soit pas réductrice. En 'occurrence
un pas mensuel permet d’étre cohérent avec le pas de projection des cash-flows
dans PROPHET.

Pour une maturité ¢ croissante de 1 & T on a donc le coiit de la garantie :

CoGy = Mathres(t) [g.N (—d2) — r¢.N (—dy)]
12
o I+
oVt
dy =dy — oVt

On en déduit le cotit global de la garantie par la somme actualisée de la valeur
des options futures estimée donnée par :

T
CoG = CoG,;.P(0,t)

t=1

Avec :
Mathres(t) la réserve mathématique projetée entre t-1 et t
o la volatilité du sous-jacent supposée constante
N la fonction de répartition d’une loi normale centrée réduite

P(0,t) le prix d’une obligation zéro-coupon au taux sans risque de ma-
turité t, celle-ci représente ’actualisation entre t et la date d’évaluation
actuelle.

T la durée de la projection

Pour extraire la valeur intrinséque et ne conserver que la valeur spéculative, on
retranche a option pour chaque date t : Mathres(t). (g — ;)"

On obtient finalement la valeur temps pour une poche de taux garanti g :

T
CoG°¢ = Z P(0,1). [C’oGt — Mathres(t). (g — Tt)+]
t=1

6.4.2.2 Revalorisation par la participation bénéficiaire
discrétionnaire

On réplique maintenant les flux de participation aux bénéfices, qui dépendent
directement de I’hypothése de distribution de la marge actionnaire SHM. Celle-ci
est supposée connue et fixée dans le temps.

12. on n’actualise pas le prix d’exercice comme dans la formule standard avec exp(—rT)
car c’est ici un pourcentage de la réserve mathématique a maturité.
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On va donc redistribuer tout le rendement dépassant g+SHM. Du point de vue
des flux finaux pergus par I'assureur, seule la partie de la marge actionnaire
est conservée au maximum. Ce schéma peut étre reproduit par l'achat d’un
bull-spread, c’est-a-dire la combinaison de ’achat d’un Caplet de prix d’exercice
g, et la vente d’'un second Caplet de prix d’exercice g+SHM. Le portefeuille
constitué devient alors :

Pay-off
A
g Achat caplet de prix
» d’execrcice g
’
’
’
4 z
GESHM:  —e— /— 7’— — = = = —— = Pay-off du bull spread
Lo
anv
— A 4
/
- -
- o : p Taux certainty
7 \ equivalent
P Y
__________ g
g g+SHM
Vente caplet de prix
d'exercice g+SHM

FIGURE 6.4.2: Construction d’un Bull Spread a partir d’options d’achat et de
vente

Notons qu’en général, un bull spread est utilisé lorsque ’on anticipe des mou-
vements neutres ou haussiers. En théorie 'achat d’un bull spread est débiteur
car le prix d’'une option d’achat est inversement proportionnelle & son prix
d’exercice. On peut donc construire le méme schéma de flux avec des options
de vente, qui sera créditeur, mais dans notre cas ces options fictives existent
déja et leurs primes d’acquisition sont nulles.

- Le prix du call 1 acheté est obtenu & nouveau avec :
Cl(r’gvtvg) = Tt'N(dl) - gN(d2)

- La valeur temps au global pour ce call s’exprime donc par :

B

CoPB; = P(0,t). [Mathres(t).Cy(r, g,t,0) — Mathres(t).(re — g)*]

~~
Il

1

P(0,t).Mathres(t). [Cy(r,g,t,0) — (r¢ — g)ﬂ

I
[M]=

o~
Il
—
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- De méme pour le call 2 vendu, de prix d’exercice g+SHM, on obtient :
T
CoPBy =Y P(0,t).Mathres(t). [Ca(r,g + SHM,t,0) — (ry — (g + SHM))"|
t=1
- On fabrique ensuite le bull spread et on en déduit sa valeur temps par :

CoPB = CoPBy — CoPB;

6.4.2.3 Revalorisation totale

Finalement si 'on agrége les deux mécanismes de revalorisation (taux garanti
et PB), on obtient une valeur temps finale qui constituera la TVOG relative &
la revalorisation comme :

CoRevalorisation = CoG + CoPB

Le portefeuille de réplication ainsi constitué se représente de la maniére suivante :

np

Pay-off
A
SHM _| o mam mas s w1
7
2
0 'lrl I » Certainty equivalent
P gt SHM
V4
g ¢

FIGURE 6.4.3: Pay-off du portefeuille de réplication de la revalorisation des
contrats

Le flux final pour 'assureur est donc borné par —g.Mathres(t) et SHM.Mathres(t).
On reconnait également que ce pay-off peut aussi étre répliqué par une position
longue sur un contrat a terme et une position courte sur une option d’achat de
prix d’exercice g+SHM.

Cela se démontre rapidement a partir de la relation de parité call/put ent =0 :

P(S,K,T,0)+ Sy =C(5K,T,0)+ K.e 7T
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Avec :
P le prix du put
St le prix du sous-jacent en date t
K le prix d’exercice
T la maturité des options
o la volatilité du sous-jacent
C le prix du call

r¢ le taux sans risque

Si I'on combine la vente du put de prix d’exercice g, avec 'achat du call de
méme prix d’exercice, la relation de parité en t nous retourne :

Ct(s,g,T,O') - Pt(S,g,T, O’) =S5 — g_e_rf(T_t)

c’est-a-dire le pay-off & maturité T d’une position longue sur un contrat a
terme de prix d’exercice g :
St —g

Comme la valeur temps d’un contrat a terme est nulle étant donné que 1’on
s’engage & un prix d’achat dés la souscription de ce contrat, on pourrait simplifier
tout le calcul en ne mesurant que la valeur spéculative de la vente de ’option
d’achat de prix d’exercice g+SHM. On a vérifié qu’en pratique les valeurs temps
du put et du call de méme prix d’exercice se compensent parfaitement période
par période.

6.4.3 Reésultats et sensibilités

Voici les résultats par poches de taux que nous obtenons. Pour gommer 'effet
volume des différentes poches et étudier les sensibilités de la TVOG en fonction
de la variation du taux garanti (ainsi que pour des raisons de confidentialité),
nous ’exprimons en pourcentage des provisions mathématiques.

Poche de taux garanti | TVOG (en % des PM) |

4% 0.21%
3.5% 0.31%
3.25% 2.65%
2.75% 2.11%
2.5% 0.89%
2.25% 2.17%
1.75% 0.35%
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Les résultats ne paraissent pas homogénes et intégrent & la fois l'effet de la
revalorisation et celui de la participation bénéficiaire. Faisons donc de méme
avec plus de précisions sur les résultats.

Poche de taux garanti ‘ CoG ‘ CoPB1 ‘ CoPB2 ‘

4% 0.41% -0.41% 0.21%
3.5% 0.13% -0.13% 0.31%
3.25% 1.17% -1.17% 2.65%
2.75% 0.51% -0.51% 2.11%
2.5% 0.11% -0.11% 0.89%
2.25% 0.18% -0.18% 2.17%
1.75% 0.0037% | -0.0037% | 0.35%

On pourrait s’attendre a ce que le cotit de la garantie due a la revalorisation
au taux garanti (CoG) soit croissante avec celui-ci. Or on observe des valeurs
plus importantes pour les taux 3.25% et 2.75%, avec respectivement 1.17% et
0.51%.

Une composante que nous avons ignoré jusqu’ici et qui explique ce phénoméne,
est la duration des provisions mathématiques. En effet plus les provisions vont
s’éteindre rapidement et moins la valeur spéculative sera élevée. En effet, la
valeur spéculative d’une option est une fonction croissante de la maturité de
celle-ci. Le montant de la TVOG est donc plus sensible aux options les plus
longues. Le volume des provisions mathématiques que ’on applique sur des
maturités longues est donc déterminant. Comme les maturités des options
sont croissantes, plus la provision sera encore importante a long terme, plus la
TVOG sera élevée. Comme les poches de taux regroupent différents types de
produits, la duration de la provision mathématique n’est pas du tout homogéne
entre les poches.
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Voici 'exemple pour trois poches de taux :

40000000 -

Ak
35000000 Wt sulion '\

P
i &
P sikad "
30000000 —

25000000 =
/I’ L] —+—350%

20000000 47 0N —=—325%

\\ —4—2.75%
15000000 Y

10000000 1% \b\*\\
5000000 \\ 2,
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FIGURE 6.4.4: Evolution par année des provisions mathématiques selon les
différentes poches de taux technique

On comprend bien pourquoi la TVOG de la poche a 3.5% est anormalement
basse par rapport aux deux autres : la décroissance de sa réserve mathématique
est bien plus rapide que les deux autres poches.

En revenant au tableau des résultats, on constate également que 'option qui
réplique le taux garanti (CoG) et celle qui réplique une partie de la participation
bénéficiaire (CoPS1) se compensent parfaitement comme nous I'attendions. Au
final il ne reste plus que leffet de la derniére option (CoPS2). Pour celle-ci on
devrait constater le phénomeéne inverse que pour CoG, c’est-a-dire que plus le
taux garanti est faible, plus la distribution de PB sera élevée (proportionnelle-
ment également la TVOG). Or leffet de la duration va également s’appliquer
ici et venir bouleverser les résultats.

On peut également, a titre d’information, avoir une approximation du montant
de la participation aux bénéfices distribuée dans le scénario moyen, donnée par
la valeur intrinseque de CoPS2 qui réplique le pay-off des PB de I'assuré. Mais
ce montant est inexact car d’une part il ne tient pas compte parfaitement de
leffet sur les prestations futures, et d’autre part on sait que le scénario central
capte mal I’asymétrie de la participation aux bénéfices.
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6.4.4 Conclusion :

Cette méthode reste néanmoins assez approximative et ne constitue qu’un
aménagement de la méthode déterministe. En effet 'utilisation de la formule
fermée de type BLACK et SCHOLES reste dépendante de nombreuses hypothéses,
et est extrémement sensible a ’estimation de la volatilité.

De plus, pour la participation bénéficiaire, on ne corrige ici que la valeur temps.
La valeur intrinséque est supposée étre mesurée correctement. Or ne considérer
qu’un scénario moyen ne permet pas de capter 'asymétrie, c’est-a-dire le fait
que si I'on tenait compte de la volatilité du processus de taux de rendement, on
ne verserait pas du tout de participation aux bénéfices dans certains cas. Seul
un générateur stochastique de scénario serait une estimation plus exacte, et
intégrerait dans chaque scénario, la valeur intrinséque et la valeur spéculative
de toute les formes de revalorisation.

C’est pourquoi dans la seconde partie nous allons mettre en place un
modéle stochastique utilisant la méthode de MONTE-CARLO, ce qui
nous permettra a la fois de mesurer les deux approches et, comme
on s’affranchit du calcul de la TVOG de la revalorisation, d’évaluer
la précision de cette derniére. On espére ainsi valider le modéle dé-
terministe utilisé en pratique dans la société pour le calcul du Best
Estimate, de la MCEV et du Swiss Solvency Test.

Notons au passage que dans le cas du Swiss Solvency Test, il faudra étre prudent
lors du calcul de la TVOG. En effet le calcul de la marge de solvabilité appliqué
aux compagnies suisses ne reconnait pas la distribution de la participation aux
bénéficies discrétionnaires. Dans ce cas il est nécessaire de modifier le calcul
de la TVOG de maniére & ne tenir compte que de la revalorisation au taux
garanti 3.

13. répliqué par la simple vente d’une option de vente de prix d’exercice égal & ce taux
garanti.
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6.5. Guaranteed Annuity Option

6.5 Guaranteed Annuity Option

6.5.1 Définitions et théorie

On assiste actuellement & un essor de la complémentaire retraite et du recours
au 3¢ pilier (épargne privée) basée sur le principe de capitalisation pure. Soutenu
par des avantages fiscaux, la rente viagére différée devient un produit essentiel
pour anticiper une retraite confortable et décorréler sa rente de I'impact de la
démographie qui met & mal le premier pilier de la Sécurité Sociale, généralement
basé sur la répartition (pure ou échelonnée) dans les pays dit "Bismarckiens” 4.

On peut anticiper une hausse probable de ce type de produits, historiquement
en assurances de groupes, mais également de plus en plus sur 'assurance vie
individuelle. Jusqu’a récemment au Royaume-Uni, il était souvent préférable de
sortir en capitaux qu’en rente au taux garanti, étant donné que les taux longs
restaient trés élevés et que les investisseurs n’anticipaient pas une baisse dans
le futur. Mais depuis une dizaine d’années (surtout depuis 1998), la baisse des
taux d’intérét a inversé la tendance et ’option accordée a ’assuré est devenue
fortement dans la monnaie. A cela s’ajoute le phénoméne d’allongement de la
durée de vie, qui n’est certes pas nouveau, mais qui a été mis en évidence par
une actualisation et une adaptation bien meilleure des tables de mortalité. Par
conséquent la prise en compte de ce risque entraine une dotation supplémentaire
des réserves et une surveillance toute particuliére de ces garanties.

Or proposer une rente viagére différée comporte des risques exogénes bien
connus des assureurs, mais sous une forme assez différente, ce qui implique une
méthode de modélisation de ce risque propre aux rentes viagéres. Rappelons
que le calcul du Best Estimate, tel que nous 'avons présenté précédemment,
nécessite la prise en compte de toutes les Options et Garanties comprises dans
les polices commercialisées. Une rente différée en phase de constitution, contient
du risque pour l'assureur qui s’est engagé sur un taux de rente garanti au
moment de la souscription. Attention, il faut donc distinguer les produits ou
le taux de la rente n’est pas garanti, par exemple un contrat d’épargne avec
possibilité de sortir en rente au taux du marché au moment de la conversion,
avec les produits de rente différée ou les arrérages futurs sont connus dés la
souscription, sous réserve que la police ne soit pas réduite '* & la maturité du
différé, et pour autant qu’il n’y ait pas de PB en cours de rente.

BOYLE et HARDY modélisent la valeur d’une telle option & maturité par :

G(T) = =~ st

14. Pays ou I’Etat a une part importante dans le régime de retraite.

15. Une police est réduite lorsque les paiements périodiques prévus par le contrat n’ont pas
été honorés par le souscripteur. L’engagement de I’assureur envers le bénéficiaire du contrat
s’en voit donc diminué, généralement au prorata de la partie des primes versées au contrat.
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6.5. Guaranteed Annuity Option

Avec :
t la date actuelle,
T la date de fin du différé,

T, variable aléatoire de la durée de vie future d’un individu d’age x
ent avec P (7 €]k — 1;k]) =k—1 Pz-Gz+k—1 1.€ la probabilité de survivre
jusqu’a x+k-1 et de décéder avant x+k,

S(T) la valeur du capital constitutif de la rente a I’échéance,

ar(T) le taux de conversion de la rente calculée en T (hypothéses de
mortalité et taux technique) d’un individu d’age R,

R T'age de l'assuré a la date T,
g la valeur du taux de conversion de la rente garantie a la souscription

(t=0),
X R

I I I Age
I I I Période du
0 t T contrat
- >4 >

Phase de constitution Versement des

arrérages

Hors frais et fractionnement de la rente, g correspond, pour une rente a terme
échu a pjaz—t la valeur actuelle probable d’une rente viagere différée de T
années pour un individu d’age x-t.

Expliquons pourquoi 'on peut modéliser ce flux de la sorte.

La partie du numérateur (ag(T) — g)* = max(ar(T) — g;0) est le pay-off
d’une option d’achat de prix d’exercice g et de sous-jacent ar(7T"). Ce pay-off

représente alors le gain que lui procure cette option fictive par unité monétaire
d’arrérage.

Avec ’hypothése de rationalité parfaite, I’assuré va exercer son option fictive,
si et seulement si la rente avec le taux garanti est plus avantageuse pour lui,
c’est-a-dire si ar(T) > g.

En effet, toute chose égale par ailleurs, plus le taux de conversion est élevé et
plus I'arrérage est petit. Il existe bien une relation inverse entre les deux qui se
traduit simplement par :

Avec M le montant de I'arrérage annuel.
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6.5. Guaranteed Annuity Option

On se rappelle en effet que la prime pure unique nécessaire pour obtenir une
rente viagére immédiate & terme échu pour un individu d’age x se calcule

comme :
PPU = M.a,
w 1 k
= M.
> ()
k=1
Nerl
= M.
D,
Avec :

i le taux technique appliqué a la rente
w l’age ultime la table de mortalité
N et D les nombres de commutation

Le taux de conversion diminue bien en fonction de ’Age, étant donnée que la
durée probable de versement de la rente diminue, et diminue également en
fonction du taux technique car la revalorisation du capital & distribuer sera plus
importante et il faudra un capital plus faible pour obtenir le méme arrérage.

Le GAO peut donc augmenter a cause de trois facteurs :
- une baisse du taux technique par rapport & celui garanti,

- une baisse de la mortalité qui entraine une augmentation de la longévité et
donc du nombre d’arrérage espéré non anticipé,

- une augmentation du rendement des actifs qui augmente 1’assiette sur laquelle
est calculée la rente. Si la transformation en rente présente déja un
avantage comparatif pour 'assuré, le cotlit supplémentaire pour ’assureur
n’est qu’amplifié.

Si la garantie est profitable a ’assuré, par ’hypothése de rationalité des individus

il exercera cette option et son gain sera donc de (ar(7T) — g) euros par arrérage.

L’arrérage garanti étant de , on obtient alors le pay-off total de 'option &

maturité :

Exemple :

- Capital disponible a ’échéance : S(T) = 1000 euros
- Taux de conversion garanti g = 5

- Taux de conversion avec hypothéses actuelles sur le marché : ar(7T") = 10
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6.5. Guaranteed Annuity Option

S’il pouvait transformer son capital en rente aujourd’hui, il aurait le choix
entre le taux garanti par son assureur qui nécessite 5 euros pour 1 euro
d’arrérage viager, ou sortir du contrat avec son capital et le transformer
au taux du marché chez un assureur concurrent qui demandera une prime
unique correspondant & 10 euros pour 1 euro d’arrérage.

L’assuré fait donc un gain de (10-5) euros par euro d’arrérage, c’est-a-dire

(10— 5)T = 1000 euros car une rente équivalente lui aurait cotté 2000
euros de prime unique sur le marché.

Pour son capital de 1000 euros cela représente un arrérage annuel supplé-

1000 1000
5 — Y = euros.

Pour avoir un ordre de grandeur, avec un taux technique de 3.5% et une
mortalité suivant la table belge HS68-72, on obtient agy = 10.78811 et
a7o = 6.94373.

mentaire de

Il faut maintenant évaluer G (t) la valeur de cette méme option en date t :

= voir annexe : démonstration du GAO. La démonstration étant complexe
mais claire, 'article : "BOYLE P., HARDY M., Guaranteed Annuity Options,

2003”

n’est repris qu’en annexe.

6.5.2 Mise en pratique

Le résultat de la démonstration, citée en annexe, est donc finalement :

e S Y jprC D (T + ), Kj, 1]

) g D7)

Avec :

7_+pz la probabilité de survivre entre x et x+T-t

g le taux de conversion garanti

J =w — R et w I'dge ultime de la table de mortalité, R I'age en T

S(t) le capital constitutif de la rente en t

D(t,T) le prix en t d’une obligation zéro-coupon qui payera un euro en
date T

C[D(t,T), K;,t] le prix en t d’'une option d’achat sur le coupon d’'une
obligation de maturité T, de prix d’exercice Kj;

Ce type d’option d’achat s’évalue par une formule explicite simple si I'on se

place

dans un modéle de VASICEK '6 pour le processus de taux qui régit le prix

de I'obligation sous-jacente.

16. Voir : Partie 2, simulation de processus stochastiques
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6.5. Guaranteed Annuity Option

Comme expliqué dans Darticle, cette formule nécessite ’estimation des para-
métres du modéle de VASICEK. Pour ceci on essaye tout d’abord de reproduire
la structure par terme des taux sans risque, en minimisant le carré des écarts
avec la courbe théorique donnée par VASICEK.

On calcule donc les prix de cette série d’option que 'on actualise a la date
d’observation. On mesure ainsi la valeur intrinséque et la valeur temps de
cette garantie pour chaque police. On peut scinder les deux pour proprement
intégrer la valeur spéculative dans le montant de la TVOG. Pour ceci on refait
tourner le méme programme en fixant la volatilité a zéro, isolant ainsi la valeur
intrinséque de cette option complexe.

6.5.3 Reésultats sur le portefeuille

Sur ’ensemble des polices concernées, qui ne représentent pas une part impor-
tante du portefeuille, nous obtenons les résultats suivants :

Cout global (en % des PM) 9.22%
Maximum par police (en % des PM) | 24.67%
Minimun par police (en % des PM) | 1.10%

La valeur de 'option ici va dépendre & la fois du taux de conversion garanti, du
montant du capital & convertir et de la durée du différé. Ces trois effets n’ayant
rien en commun il faudrait vraiment étudier les résultats police par police.

Ce qu’il est important d’en déduire, c’est que cette option est donc loin d’étre
négligeable a la vue des montants obtenus.

6.5.4 Conclusion

Méme si la méthode est un peu lourde & mettre en place du fait qu’elle nécessite
de devoir calibrer le modéle de VASICEK, la prise en compte de cette garantie
s’avere nécessaire pour les produits de rente & taux de conversion garanti sur
du long terme.

Cependant les résultats obtenus sont & nuancer car toute la méthode est basée
sur une hypothése importante : la rationnalité de ’assuré a convertir sa rente
lorsque la sortie en capital est défavorable. Or un parameétre essentiel qui impacte
cette rationnalité est la fiscalité du contrat. Pour bénéficier d’avantages fiscaux,
un pourcentage minimum de conversion en rente est exigé, indépendament de
I’optimisation de son capital constitutif. Sans compter qu’un assuré peut ne
pas étre parfaitement rationnel, ne serait-ce que pour la simple raison qu’il ne
connait pas toute I'information au moment de la conversion, ou qu’il ne prend
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6.5. Guaranteed Annuity Option

pas la peine de la rechercher et de ’analyser rationnellement, influencé par son
contexte social et économique.

De plus le modéle de VASICEK & un facteur ne permet pas de reproduire toutes
les structures par terme des taux. En effet, il est impossible d’obtenir une
courbe avec deux points d’inflexion par exemple. Or c’est ce que 'on observe

ces derniers temps avec une diminution des taux & trés long terme 7.

17. Mais I'Institut des Actuaires publie une courbe des taux qui, par convention, ne peut
avoir ce type de forme. Ils précisent : “"La commission "Indices et références de marchés" de
I'Institut des Actuaires a décidé de continuer a publier une courbe dont les taux a trés long
terme ne soient pas inférieurs aux taux a long terme en prolongeant le maximun atteint,
méme si ce maximum est situé avant 30 ans.”
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Chapitre 7

Conclusion du calcul du Best
Estimate avec une méthode
déterministe

La méthode déterministe a I’avantage d’étre facile et moins coliteuse & mettre
en place, aussi bien au niveau des hypothéses que du temps de calcul néces-
saire. Cependant & la logique purement basée sur la projection des cash-flows,
s’ajoute la prise en compte des options cachées. Cette derniére repose sur des
simplifications liées a 'utilisation de formules fermées selon BLACK et SCHOLES,
et donne ainsi un caractére stochastique analytique a ce modéle.

Le second objectif de ce mémoire sera de comparer cette approche avec une
méthode purement stochastique, qui permettra de s’affranchir du calcul ap-
proximatif de la TVOG.

Nous allons donc chercher a mesurer la nature de cette simplification :

A = BEdetermim'ste +TVOG — BEstochastique

Il sera donc possible d’accepter et de valider le modéle déterministe si A = 0.
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Deuxiéme partie

Modélisation stochastique
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La projection des cash-flows selon un modéle déterministe, notamment dans le
calcul du Best Estimate, est acceptable lorsque le scénario moyen est équivalent
a la moyenne des scénarios. La différence est causée soit :

- Par un jeu d’hypothéses calibrées sur un échantillon statistique trop petit.

- Un portefeuille trop petit ot la mutualisation n’est pas compléte et la variabi-
lité trop forte, dont la taille ne permet pas d’appliquer raisonnablement la
loi des grands nombres. Dans ce cas seule la génération de scénarios per-
met d’observer certaines valeurs extrémes ' et d’aboutir a une distribution
probabiliste du risque.

- Par l'existence d’asymétrie des cash-flows en fonction de la réalisation d’un
scénario par rapport & un autre. Le scénario moyen ne peut capter la
convexité ou la concavité du résultat car ’on raisonne uniquement par
les moments d’ordre un.

C’est typiquement ce dernier point qui rend impossible I’évaluation des options
ainsi que la participation aux bénéfices uniquement & travers un scénario déter-
ministe. C’est pourquoi 'utilisation de scénarios stochastiques est recommandé

La base de toute simulation stochastique consiste & créer 1’aléa du modéle. Une
attention toute particuliére doit donc étre accordée & cette étape car la qualité
du générateur va entiérement dépendre du caractére aléatoire de ces nombres.

On va donc chercher a reproduire des tirages de variables aléatoires suivant
certaines lois de probabilité. Une série de tirage va donc permettre, grace au
modéle, de créer un scénario & T périodes.

En reproduisant cette étape un trés grand nombre de fois, nous pourrons

appliquer la loi des grands nombres. Cette technique s’appelle la méthode de

MONTE-CARLO.

Scénarioa T
périodes

»

Lyl Scénarioa T
Générateur Simulation périodes
de nombres Réalisation Modéle financier
aléatoires de v.a Processus stochastique
U(0,1) N(0,1) Brownien géométrique Ly Scéflarrio aT
périodes

Scénarioa T
périodes

FIGURE 7.0.1: Processus mis en place pour générer des scénarios financiers
stochastiques de T périodes

1. Qui suivent des lois de probabilité différentes, par exemple de type PARETO
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En modélisation, il est usuel et surtout trés commode de faire 'hypothése que
I’aléa est gaussien : par exemple on fait souvent ’hypothése que les rendements
des actifs financiers sont log-normaux.

On devra au final obtenir un nombre important de réalisations de variables
aléatoires de loi normale centrée réduite. Il n’est pas possible de générer di-
rectement des réalisations de loi normale acceptables, et cela nécessite tout
d’abord de passer par la simulation de variables de loi uniforme U(0,1).

La contrainte du temps de calcul qui peut paraitre futile dans certains cas, prend
ici tout son sens car on parle de milliers de scénarios qui devront faire évoluer
chaque police en tenant compte des interactions entre l'actif et le passif et des
impacts sur les comportements de 1’assuré. Dans une logique opérationnelle il
faut donc optimiser et simplifier le processus théorique idéal.
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Chapitre 8

(GGénérateur de variables
aléatoires

8.1 Générer un nombre aléatoire entre 0 et 1

Il existe différentes fagons d’obtenir la réalisation d’une variable aléatoire de
loi uniforme U(0,1). Toutes ces méthodes ne sont pourtant pas équivalentes et
il faudra choisir celle qui offrira le meilleur rapport qualité/temps calcul. On
évoquera la technique la plus simple et la plus rapide, que 'on confrontera avec
une méthode plus complexe.

8.1.1 La fonction ”Aléa” d’Excel

Cette fonction utilise un générateur congruentiel pseudo-aléatoire qui se définit
par :

— L’initialisation de la suite : Xy € N*

— Xp41 = k. X, +pmodm avec k, p, m des entiers positifs.

Il est donc pseudo-aléatoire car I'aléa va ensuite dépendre du choix de la valeur
initiale Xy appelé « la graine » pour k, p et m fixé.
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8.1. Générer un nombre aléatoire entre 0 et 1

Prenons volontairement un petit échantillon de 400 réalisations et regardons ce

que nous obtenons :

1 A . a8 & LN 2 - [ ]
BN W . . = B E oy
° o ° ° * ‘e ¢ e, ° P
o . e .o °~ oo-. ..o ¢ &° N ” ..:
2 ) -‘.$ L] * ‘s e * :.‘ ’ o .o .. : ...
v .o. o* .... ° % ... '... e ®e o
o. .. P ™ 2 s . . 2 " °, e
° e = - -” ° =
0;5 - - [ ] a - : = = 'y
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o® ° e o ® o * e ¢« & . % o o
. . = . see ® o5 % *
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O :l : T .l 2 1. T T [.‘ T 1
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FIGURE 8.1.1: Simulation de 400 nombres aléatoires grace a la fonction Alea()

Ce graphique représente la réalisation de chaque variable aléatoire en fonction
de la simulation correspondante. On obtient bien une distribution aléatoire

comprise entre [0;1].

8.1.2 La translation irrationnelle du Tore

On parle ici de générateur quasi-aléatoire, qui fait intervenir trés facilement
une suite des nombres premiers pour obtenir des simulations de vecteur & d

dimensions :

Up, = Nn/Pd — | N~\/Dd]

Avec :
pq le d*™¢ nombre premier
| | Vopérateur de la partie entiére
n 'indice de la simulation, n=1...N
d l'indice du nombre premier qui représentera la période, d=1...D
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8.1. Générer un nombre aléatoire entre 0 et 1

Donc pour N simulations de vecteurs & D dimensions on simulera NxD variables
aléatoires. On fera donc varier n de 1 & N et pour chaque n on aura une valeur
pour les D périodes en faisant varier d de 1 & D.

Il nous faut donc tout d’abord la liste des D premiers nombres premiers.

Pour le méme échantillon que précédemment, nous calculons la suite u,, pour
n=1...400, avec la premiére valeur propre (soit 2) car la dimension n’est que
de 1. Nous obtenons alors :

400 simulations pour le nombre premier p1=2

FIGURE 8.1.2: Simulation de 400 nombres aléatoires grace a la translation
irrationnelle du Tore en utilisant le nombre premier 2

On constate immédiatement que la discrépance de ce générateur est trés faible.

8.1.2.1 La discrépance

La discrépance permet de mesurer I’équirépartition d’une suite de
points sur [0,1]". Plus celle-ci est faible et plus I’échantillon sera
uniformément distribué.

Definition. Discrépance locale

Soit z = (xp),»; € [0,1]", Ay la mesure de Lebesgue sur [0,1]" et A un
sous-ensemble de [0, 1]".
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8.1. Générer un nombre aléatoire entre 0 et 1

La discrépance locale d’ordre k de x par rapport & A est donné par :

1

Card{ie (1...k),z; € A} — A\, (A)

On en déduit la discrépance totale :

Definition. Discrépance

Soit P I’ensemble des sous-pavés de [0, 1],,. La discrépance d’ordre k de la suite
x est donnée par :

Dif (x) = sup{| Dy (A, z)[ , A € P}

Dans notre cas on s’en sert pour mesurer la qualité de I’équirépartition.

Definition. La suite est équirépartie si :

VAe P : lim Dy (A,z)=0
k—ro0

Cette méthode qui permet d’avoir une équirépartition semblable entraine
d’autres inconvénients que I'on peut mettre en évidence en étudiant ce que 1'on
obtient d’une période & ’autre. C’est-a-dire que pour un n donné, on représente
les résultats obtenus pour deux nombres premiers successifs.

400 simulations pour les nombres premiers 2et3,3et5

® {(2,3)
o % 44 ® {(3,5)

054

0 0.2 0.4 0,6 0.8 1 1,2}

FIGURE 8.1.3: Mise en évidence de la corrélation entre les simulations utilisant
la translation irrationnelle du Tore
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8.1. Générer un nombre aléatoire entre 0 et 1

On observe ainsi qu’il n’y a certainement pas indépendance entre les périodes !,
or dans la suite du simulateur, nous aurons besoin de générer des réalisations
de loi normale indépendantes & partir de ces données.

8.1.2.2 Evaluation de la corrélation

Voici le corrélogramme entre deux simulations pour un nombre premier fixé, et
celui terme a terme dans une méme simulation. On les obtient par le calcul
suivant :

200 (upy wpsn) e (wr — ) (upin — W)

SN SV (ur — 0

Avec :

s? la variance empirique

cov la covariance empirique

u la moyenne empirique de I'échantillon (u;);_;
hell,N —1]

1. Une quantification de la corrélation est disponible dans : PLANCHET F., THEROND P.,
JACQUEMIN J. : Modéles financiers en assurance p127-129.
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- Entre deux périodes p et p+h de la méme simulation n : précisément on

prend ici n=1 et p=1 (le premier nombre premier i.e 2)

-0,28

-0,2p9119238

-0,11374641
225116172
14225615

-0,096543885

Corrélogramme entre u(n,p) et u(n,p+h) non-mélangeé

0,135603326
0,261131462
0085156787
0,03397604

0,30085p535

mh=10
mh=9
oh=8
mh=7
o h=6
mh=5
oh=4
oh=3
mh=2
@ h=1

5

05

FIGURE 8.1.4: Mesure de la corrélation entre deux mémes éléments de suites
basées sur des valeurs propres différentes
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8.1. Générer un nombre aléatoire entre 0 et 1

- Entre deux simulations n et n+h pour un nombre premier fixé, précisément
on prend ici n=1 et p=1 (le premier nombre premier i.e 2)

Corrélogramme entre u(n,p) et u(n+h,p) non-mélangé

0,266582647

10,186874884 mh=10
mh=9
oh=8
mh=7
oh=6
0 60167767 mh=5
Oh=4
oh=3
mh=2
0,148118487 @h=1

-0,291038143
1456364652

-0,497435528

-0,351164438
-0,10348336

-0,455881149

FIGURE 8.1.5: Mesure de la corrélation entre deux éléments de la suite basée
sur une méme valeur propre

Ces deux corrélogrammes sont donc bien insuffisants en terme d’indépendance.
Il faut donc trouver une alternative entre la qualité de la simulation de la
translation irrationnelle du Tore et la nécessité d’indépendance.

On va donc tout simplement mélanger les simulations afin de casser 'ordre qui
créait cette dépendance.

8.1.3 L’algorithme du Tore mélangé

Pour résoudre ce probléme il suffit de modifier ’ordre dans lequel on va tirer les
réalisations de variables aléatoires. Au lieu d’avoir u,, nous avons maintenant u,,
avec m une variable aléatoire dans N. Pour obtenir m nous utilisons simplement
la fonction « Alea() » comme :

m=-(N)=Alea() x N +1
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Avec :

Pour

N le nombre total de simulations

Alea(), la fonction Excel retournant un nombre aléatoire compris entre 0
et 1

le méme échantillon que précédemment nous obtenons maintenant :

400 simulations mélangées pour le nombre premier p1=2

1.2

06

0 50 100 150 200 250 300 350 400 450

Ficu

RE 8.1.6: Simulation de 400 nombres aléatoires grace a la translation

irrationnelle du Tore mélangé en utilisant le nombre premier 2
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8.1.3.1 Etude de la corrélation

Voici les mémes corrélogrammes que précédemment :

- Entre deux périodes p et p+h de la méme simulation n, précisément on prend
ici n=1 et p=1 (le premier nombre premier i.e 2)

Corrélogramme entre u(n,p) et u(n,p+h) mélange
-0,026482231

-0,011553043 @h=10

0,101813097 mh=3

0,061195296 mfr=o

e m h=7

-0,061424329 @ h=6

-0,044349656 mh=5

0092317675 m=h

oh=3

-0,060902401 ]: e

|D.012D12253 @ h=1

-0,002943809
| 05 0 05 1

FIGURE 8.1.7: Mesure de la corrélation entre deux mémes éléments de suites
mélangées basées sur des valeurs propres différentes
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8.1. Générer un nombre aléatoire entre 0 et 1

- Entre deux simulations n et n+h pour un nombre premier fixé, précisément
on prend ici n=1 et p=1 (le premier nombre premier i.e 2)

Corrélogramme entre u(n,p) et u(n+h,p) melange

0,005901734
0004683121 @ h=10
0,004998514 | h=3
0,02427203 I mi=s
enete @ h=7
, |0.co038as4 o h=6
-0,005506382 mh=5
0000330861 i
oh=3
—0:010165615[ e
|D.O127?1?’5 @ h=1
-0,01556929 [
| 05 0 05 1

FIGURE 8.1.8: Mesure de la corrélation entre deux éléments de la suite mélangée
basée sur une méme valeur propre

Ceux-ci sont donc beaucoup plus satisfaisants que pour la méthode non mélan-
gée.

Pour la dépendance période par période il n’est pas possible de la réduire en
effectuant un second mélange sur le choix de la valeur propre.
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En effet nous obtenons un corrélogramme assez similaire :

Corrélogramme entre u(n,p) et u(n,p+h) double mélange
-0,024385508
-0,037343425 @ h=10
0,009772347 mh=3
. O h=8
0095241649 whe7
0027651081 @ h=6
0070277078 mh=5
-0,030794562 i
oh=3
[0.012341964 S
-0,000245406 @ h=1
j 0084771731
{ 05 0 05 1

FIGURE 8.1.9: Mesure de la corrélation avec le mélange du terme de la suite et
de la valeur propre utilisée

On fera 'hypothése que la dépendance linéaire entre les variables générées
est quasi-nulle et que nous générons bien des termes acceptables pour une
simulation stochastique.

8.1.4 Conclusion

Certes la mise en place de la translation irrationnelle du Tore et sa version
mélangée est plus longue et complexe. Cependant cette technique va s’avérer
plus efficace pour des échantillons plus restreints, ce qui va au final permettre
de raccourcir la durée totale de calcul.

Les tests du poker ainsi que le test sur la valorisation d'un call européen ? per-
mettent de conclure que 'erreur d’estimation est plus faible et plus rapidement
correcte avec 'utilisation de I'algorithme de Tore. On utilisera donc des généra-
teurs quasi-aléatoires pour appliquer la méthode de "Quasi”-MONTE-CARLO.

Nous pouvons aussi déduire que la discrépance des générateurs quasi-aléatoires
est généralement plus faible que celle des générateurs pseudo-aléatoires.

2. Voir PLANCHET F., THEROND P., JACQUEMIN J. : Modéles financiers en assurance
pl131-135.
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8.2. Simuler une réalisation de variable aléatoire de loi Normale centrée réduite

8.2 Simuler une réalisation de variable aléatoire de
loi Normale centrée réduite

Il est courant, voir systématique en finance, que I'on fasse des hypothéses gaus-
siennes concernant ’évolution des actifs financiers. Cette hypothése a 'avantage
de créer des processus que ’on maitrise bien pour ensuite les discrétiser et les
programmer en pratique.

Nous chercherons donc dans cette partie & aboutir a la simulation de réalisations
de variables aléatoires indépendantes, suivant une loi normale centrée réduite.
Le but sera par la suite de simuler des mouvements browniens géométriques
pour appliquer la méthode de MONTE-CARLO sur ces simulations de scénarios
financiers.

Nous évoquerons deux méthodes trés courantes puis nous expliquerons le choix
de 'une d’entre-elle. Reprenons U, la variable aléatoire suivant une loi uniforme,
générée précédemment par ’algorithme du Tore mélangé.

8.2.1 Méthode de BoxX-MULLER

C’est la méthode de simulation de la distribution de la loi Normale centrée
réduite la plus utilisée. Elle permet de produire des couples réalisation de loi
N(0,1), de corrélation nulle, et ceci trés simplement.

Soient Uy et Uy deux v.a de loi uniforme U(0,1). Alors :
X1 =+/—2In(Uy) cos (2nUs) (8.2.1)
Xy = \/—21In (Uy) sin (2705) (8.2.2)

suivent une loi N(0,1) et corr (X1, X2) =0

Démonstration. Nous avons

_Lliyo 2
{8.2.1 X &U = el z(X1+X2>X
=4 2
8.2.2 X — —tan— ' | ==
2 < U2 or an <X1>

Calculons le Jacobien :

U 0U
_ 6X, X |_ 1 1oy 1
det(J) = det UL ol memp( 2X1 mexp 2X2
0Xs 0Xo
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8.2. Simuler une réalisation de variable aléatoire de loi Normale centrée réduite

Comme la fonction de densité conjointe fy, v, (u1,u2) = 1.1 1)(u1)L(0,1)(u2)
et que

Fxxe (@, @2) = fu,u (g7 (21, 22), 95 (21, 32)).det(J)
= fUl,UQ(ul,uQ).det(J)

Nous avons bien X; et X2 qui suivent une loi N(0,1) avec corr (X1, X2) =0 O

Cette technique est propre & la loi Normale, cependant il existe des méthodes
plus générales qui s’appliquent & des distributions continues (Normale, Exponen-
tielle, Pareto, Weibull. .. ) dés lors que l'inversion de la fonction de répartition
est possible. C’est le cas de 'algorithme de MORO pour les pour la loi Normale.

8.2.2 L’algorithme de MORO

L’inversion des fonctions de répartition est une méthode permettant de simuler
une distribution continue & partir de réalisations de variables aléatoire de loi

Uniforme U(0,1).

Proposition. Si la fonction de répartition F est continue et strictement crois-
sante sur [0,1], alors elle admet une fonction réciproque que l’on notera F~1.

Pour la loi uniforme nous avons aussi :

Proposition. Soit U une variable aléatoire suivant une loi Uniforme sur l’in-
tervalle [0,1]. Alors la variable aléatoire F~1(U) a pour fonction de répartition
F.

C’est-a-dire que pour simuler N réalisations de variables aléatoires gaussiennes
centrées réduites, il suffit de générer F~1(U), avec F la fonction de répartition
de la loi Normale et U la variable aléatoire générée par la méthode du Tore
mélangé décrite précédemment. Comme la loi de probabilité d’une variable
aléatoire réelle est caractérisée par sa fonction de répartition, si F~1(U) a la
méme fonction de répartition que la loi, alors cette variable aléatoire doit suivre
cette méme loi.

Exemple : X ~ Exp(0)

Fx(z) = 1—e %
Sr = —;ln(l—FX(m))
s Flu = —;ln(l —u) =Y (u)

=Y ~ Exp(9)
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8.2. Simuler une réalisation de variable aléatoire de loi Normale centrée réduite

Pour la loi Normale centrée réduite N(0,1) nous avons alors :

Z ~ N(0,1)
1 22
fz(z) = N exp <—2>

Fy(z) = / fz<z>—¢127r / exp (—2) dt

Finalement ’algorithme va permettre d’approcher le résultat de 'inverse de
la fonction de répartition de la loi Normale par une méthode numeérique trés
précise.

MORO (1995), utilise pour la premiére fois la combinaison de deux algorithmes,
pour créer un algorithme hybride, de plus en plus considéré comme la méthode
la plus efficace pour générer des réalisations de variables aléatoires gaussiennes
centrées réduites & partir de simulations de loi uniforme.

BEASLEY et SPRINGER (1997) présentent un algorithme d’inversion pour la loi
Normale, mais qui s’avére finalement peu efficace pour la queue de distribution
de cette loi. C’est pourquoi MORO va donc distinguer deux régions et appliquer
I’algorithme de BEASLEY et SPRINGER uniquement sur la région centrale. La
partie des extrémes quant a elle sera modélisée a 1’aide des polyndémes de
TCHEBYCHEV tronqués.

Voici la méthode :
Soit u la valeur de la loi uniforme générée et posons z = u—0, 5. Nous cherchons
a approcher x tel que y = ®(z) avec @ la fonction de répartition de la loi
N(0,1).

1. La région centrale de la distribution : |z| < 0,42
Z?:o a;z”
Z?:o b;z?7
i a(i) \ b(i) |
0| 2.50662823884 1
1 | -18.61500062529 | -8.4735109309
2
3

r =z

Avec :

41.39119773534 | 23.08336743743
-25.44106049637 | -21.06224101826
4 3.13082909833

2. Les queues de la distribution : |z| > 0, 42

c
S8 oaTilt) — 50 siz>0
xTr =

¢
50 - Z?zo ciTy(t) siz<0
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a2 o)

¢
et 228:0 ¢ Ti(t) — 50 qui peut étre approché par ’algorithme :

€o
t.di —dy + 5

Avec : d; = 2.t.d;j11 — diyo + c; pour i=8,7,....1 et djg =dg =0

et les paramétres suivant :

|

c(i) k(i)
7.7108870705487895
2.7772013533685169 | 0.4179886424926431
0.3614964129261002 | 4.2454686881376569
0.0373418233434554
0.0028297143036967
0.0001625716917922
0.0000080173304740
0.0000003840919865
9.9999999129707170

O[T | W N O] =

8.3 Validation de la normalité de 1’échantillon
simulé

Afin de valider I'adéquation de cet échantillon (x;),_; ,, généré a la loi Normale,
nous allons effectuer certains tests sur un échantillon de n—=1000 réalisations de
variables aléatoires.

8.3.1 Moyenne et écart-type empirique

Nous obtenons :

1 n
T = nz;x = 0,0040
P

1 n
> (i —7)* =1,0226

=1

5= n—1

Ces premiers résultats respectent bien les paramétres de la loi Normale centrée
réduite.
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8.3.2 Test de SHAPIRO-WILK

Ce test d’hypothése permet de rejeter ou non ’hypothése de mortalité selon un
certain risque. Il est particuliérement puissant, méme pour les petits effectifs.

La statistique de test W de I’échantillon (z;) est donnée par :

i=1...n

(> aiﬂﬁi)Q

W = =10
Doy (@ — )’

Avec :

(@;);,—q _, des constantes générées a partir de la moyenne et de la matrice
de variance co-variance des quantiles d’un échantillon de taille n
suivant une loi normale. Elles sont fournies par des tables spécifiques

7 la moyenne empirique de 1’échantillon

Il suffit ensuite de comparer cette statistique avec la valeur critique W,.;; de
cette statistique pour un seuil de risque, donné par la table de SHAPIRO ET
WILK.

— Si W > Wi+ on ne peut pas rejetter 'hypothése de normalité

— Si W < We.i+ on rejette 'hypothése de normalité

On peut également produire la probabilité critique du test : la p-value

Résultats :

’ Statistique ‘ seuil 1% ‘ seuil 5% ‘

Werit ‘
W 0,999037
P-value 0,8916

La conclusion est donc de ne pas rejetter I’hypothése de normalité, méme au
seuil de risque de 1%.

8.3.3 Test de LILLIEFORS

Ce test est une variante du test de KOLMOGOROV-SMIRNOV ol les paramétres
de la loi sont estimés & partir des données.

La statistique D du test est donnée par :
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Avec :
F; la fréquence théorique de la loi de répartition normale centrale réduite
Comme pour le test précédent, nous concluons sur ’acceptation du test en

comparant D avec sa valeur critique Dcrit qui dépend du seuil de risque. Cette
valeur est approchée a partir de formules simples.

La région critique est cette fois-ci D > D..;; et permet de rejeter I’hypothése
de normalité.

Résultats :
’ Statistique seuil 1% \ seuil 5% ‘
Dcrit ‘ &\/%6 =
D 0,0169

Nous avons bien D < D..;; donc on ne peut pas rejeter cette hypothése de
normalité.

8.3.4 Test A’ANDERSON-DARLING

Cette autre variante de KOLMOGOROV-SMIRNOV donne plus d’importance aux
queues de distribution. La statistique A est donnée par :

n

A=-n-— iz (20 — 1) [In (F}) + In (1 — Fr—it1)]
=1

Avec :
F; est la fréquence théorique de la loi de répartition normale centrée et

réduite

La région critique est & nouveau donnée par A > At

Résultats :
’ Statistique \ seuil 1% \ seuil 5% ‘
Acrit ‘
A 0,167940

Etant donné que A < A.-;z on ne peut pas rejetter I’hypothése de normalité.

8.3.5 Test d’AGosTINO (K-squared)

Sans rentrer dans les détails, ce test est basé sur les coefficients du kurtosis et
du skewness. Si ceux-ci différent simultanément de 0, on rejette I'hypothése de
normalité.

Ici aussi on accepte 'hypothése de Normalité, avec une P-value=0,7726.
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8.3.6 Conclusion

On accepte donc sans hésiter I’hypothése que notre générateur de nombres
aléatoires permet bien de simuler la réalisation de loi Normale centrée réduite.
Nous pouvons donc passer a la modélisation des processus stochastiques du
rendement des différents actifs.
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Chapitre 9

Simulation de processus
stochastiques

Nous pouvons a présent nous intéresser & la simulation stochastique de 1’évo-
lution des actifs, afin d’obtenir des scénarios financiers qui permettront de
modéliser la revalorisation des contrats d’assurance, et donc le Best Estimate,
par la méthode de MONTE-CARLO.

Présentons tout d’abord deux théorémes essentiels dans la manipulation des
équations différentielles stochastiques.

Méthode : on simule N trajectoires de T périodes pour chaque type
d’actif, avec T étant un multiple de 12 car on choisit un pas men-
suel pour la modélisation. La pondération des rendements selon 1’al-
location de DP’actif nous donnera les produits financiers et donc la
revalorisation des passifs d’assurances.

9.1 Eléments fondamentaux

Nous utiliserons par la suite ces deux notions mathématiques lors de la discré-
tisation des processus que nous présenterons.

9.1.1 Lemme d’ITO pour les processus stochastiques

Si X est la solution de I’équation différentielle stochastique (EDS) :

X(t):X(0)+/O m(X(s),s)ds+/0 o (X(s), 5) dB(s)
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ou encore de :
dX(t) =m (X (t),t)dt + o (X(t),t) dB(t)

Avec :
B un mouvement brownien
m la moyenne, le drift du processus
o 'intensité de la volatilité

Si f(t,z) est une fonction de classe C*? (R, R) alors :

) ) 8? )
df (X (),1) = (g: (X (t), 1) &i + ;a (X(2),1)2 aé) dt+o (X (1),) 5-dB(?)

9.1.2 Décomposition de CHOLESKY

Theorem. Soit 'y« une matrice symétrique définie positive. Il existe une
unique matrice triangulaire inférieure Apxyn @ diagonale positive telle que I' =
AA’. On appelle A la “racine carrée” de ' ou la décomposée de CHOLESKY, de
termes oy ;.

La construction de A se fait en quatre étapes :

Le premier terme :

Les termes de la diagonale : i =2,...,n

QG =
Les termes du triangle inférieur : Vi =2,...,netVj=1,...,i—1
1 i
i = o Tij = > ikt
k k=1

Comme A est une matrice triangulaire inférieure on a donc :

Vi=1,....n—1etVj=i+1,....,nonawa;; =0

Proposition. Soit X N (04, Idg), alors si nous posons Y =m + AX, nous
avons Y ~ N (m,T).
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Démonstration. Nous avons

E(Y) = E(m+ AX)
= m+AE(X)

= m+Ax0=m

amsl que
Ty = E(Y -E(Y) (Y -E(Y)))
= E(AX (AX)')
= E(AXX'4A)
= AE(XX') A
= AA
=T

Toute combinaison linéaire des composantes de Y est combinaison linéaire des
composantes de X qui sont des lois gaussiennes indépendantes. Donc Y suit

une loi gaussienne N (m,T"). O
Exemple :
1 03 0.7
Soit la matrice de corrélation I'sxg3 = | 0.3 1 0.5
0.7 05 1
En appliquant I'algorithme de la décomposition de CHOLESKY nous
obtenons :
1 0 0

A= 03 0.9539 0
0.7 0.3040 0.6462

Nous pouvons rapidement vérifier qu’il y a bien :

AA' =T

9.1.3 Probabilité risque neutre et probabilité historique

L’hypothése selon laquelle les agents seraient neutres face au risque, est lar-
gement utilisée pour le pricing instantané des options. Elle permet en effet
de simplifier les calculs de valorisation des produits dérivés, car sous cette
probabilité, les prix des actifs sont des martingales et 'on peut appliquer le
principe de PAOA ! sous sa forme forte 2. BLACK, SCHOLES et MERTON ont

1. Absence d’Opportunité d’Arbitrage

2. En plus de ne pas pouvoir obtenir sirement un gain positif avec un portefeuille de
valeur nulle, car deux actifs procurant le méme flux doivent avoir le méme prix, on peut ici
dire aussi qu’il est impossible d’obtenir une espérance de gain positive en arbitrant n’importe
quels actifs.
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ainsi démontré que le prix théorique d’une option est indépendant de I’espérance
du gain de l'actif sous-jacent.

Or ces modeéles stochastiques ne permettent pas de mesurer les risques, ni
d’effectuer une allocation stratégique d’actifs. En effet, si un investissement
obligataire sur 20 ans rapporterait en moyenne autant qu’un placement mo-
nétaire, I'allocation optimale serait systématiquement de placer la totalité en
monétaire.

Dans notre cas, I'allocation stratégique des actifs n’est pas a déterminer car 1’'on
part d’un portefeuille existant dont 1’asset-miz est connu et stable & chaque
période.

La structure de la directive Solvency 2 nécessite deux approches en termes de

simulation lors de la construction d’un modéle interne :

— Estimer la distribution de I'actif net dont on va évaluer la sensibilité aux
différents chocs pour obtenir le SCR (la VaR a 99.5% a 1 an). Ceci ne peut
étre fait qu’avec une probabilité historique pour tenir compte des risques a
Iactif.

— Calculer le Best Estimate avec une logique Market-Consistent, en actualisant
les différents flux au taux sans risque. Market-Consistent signifie que les
engagements sont homogénes & un prix observable sur le marché, c’est-a-dire
au colt de la couverture financiére que I'on pourrait mettre en place pour un
passif couvrable. On adopte ici une approche risque-neutre pour modéliser
I'impact de 'actif risqué.

Pour passer d’un univers a ’autre et pour rester cohérent dans les deux types de

projection ®, on se tournera vers des modéles a déflateurs pour mesurer le prix de

marché du risque. Le déflateur est une fonction d’actualisation stochastique qui
intégre une composante temps. Elle permet d’obtenir la valeur de marché & une
date, & partir de la projection des flux de trésorerie dans 'univers historique.

Pour notre outil, nous resterons donc en probabilité risque-neutre, car le but
est uniquement de déterminer les engagements Market-Consistent de assureur.
Nous ne développerons donc pas ce sujet, largement documenté 4.

Il faudra porter une attention particuliére au calibrage des généra-
teurs de scénario, de sorte qu’en moyenne, tous les actifs aient le
méme rendement égal au taux sans risque.

9.1.4 Remarques

— L’une des difficultés principales de la simulation de ces processus est 1'es-
timation des paramétres, ainsi que des matrices de corrélations entre les

3. Par exemple la projection en univers risque neutre sera effectué en utilisant une volatilité
implicite, alors que la projection en probabilité historique utilisera la volatilité historique.

4. Toutes les sources sont disponibles sur : http ://actudactuaires.typepad.com/laboratoire/2010/04/calibrage-
des-primes-de-risque.html
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différentes classes d’actifs. A noter également que le nombre de paramétres
& estimer doit rester raisonnable dans un modéle sous peine de perdre en
robustesse.
Mais l'objectif ici n’est pas de calibrer le modéle aux données du marché, et
on souhaite uniquement comparer 'approche déterministe et stochastique.
C’est pourquoi ces estimations ne sont pas déterminantes, la seule contrainte
étant que la moyenne des scénarios générés soit représentée par le scénario
central que I'on utilisera dans le modéle déterministe sur PROPHET.

— On fait ici abstraction des dividendes des actions car I’estimation du taux
continu de dividende est sensible & estimer sur la base d’un historique.

9.2 Processus des taux d’intérét

On fait I’hypothése que les taux d’intérét suivent un processus d’ORNSTEIN-
UHLENBECK, comme c’est le cas dans le fameux modéle de VASICEK.

9.2.1 Modéle de Vasicek
9.2.1.1 Définition

Le taux instantané en t, r; est alors donné par I’équation différentielle stochas-
tique :
dry =a(b—ry)dt + odBy

Avec :
b le taux moyen de long terme, b € R
a la vitesse de retour a la moyenne, a € R4
o l'intensité instantanée du bruit qui suit un mouvement brownien B

Ce modéle intégre donc un effet de retour a la moyenne, c¢’est-a-dire que le taux
va revenir plus ou moins rapidement vers sa moyenne, en évoluant selon un
processus de WIENER autour de celle-ci. Si a=0 on est alors dans le cas d’une
marche aléatoire sans phénoméne de mean-reverting.

En appliquant le lemme d’ITO présenté précédemment, la solution de cette
EDS s’écrit alors :
t

re=roe " +b(l—e") +oe ™ / e dBg
0

Pour v < t nous pouvons écrire :

t
re = rye W 4 p (1 — e_“(t_“)> +o / et =9) 4B,
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Comme dBs = Bsy1 — B est gaussien de loi N (0, 1), alors ry 'est également,
de moyenne et de variance :

pr (u,t) = rye” Y 4 p (1 — e_a(t_“))

t

o2 (u,t) = J/etSdB
t

2/

Il
Q

—_

—2at s)

S

9.2.1.2 Discrétisation

Pour implémenter ce processus, il faut tout d’abord le discrétiser. Heureusement
le processus d’ORNSTEIN-UHLENBECK admet une discrétisation exacte, c’est-
a~dire que 'on peut simuler directement le processus d’ITO sans erreur de
discrétisation. Cela revient & résoudre explicitement I’EDS associée.

La discrétisation exacte de 4 peut alors étre exprimée récursivement comme :

Tirs = Hp (Gt +0) 4+ 0 (4 0) Zigs

1
= rte_a5 —+ b (]. — €_a6> + o 27(]. — 6720‘6)Zt+5
a

Avec :
0 > 0 représentant la période de discrétisation
Z; ~ N (0,1)

9.2.1.3 Calibrage

L’une des difficultés principales de la simulation de ces processus est I’estimation
des paramétres ainsi que des matrices de corrélation entre les différentes classes
d’actifs. A noter également que le nombre de paramétres & estimer doit rester
raisonnable dans un modéle sous peine de perdre en robustesse (principe de
parcimonie en statistique). Encore une fois, 'objectif ici n’est pas de calibrer le
modéle aux données du marché, et on souhaite uniquement comparer I’approche
déterministe (scénario moyen dans PROPHET) et stochastique (moyenne des
scénarios dans le nouvel outil).
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9.2. Processus des taux d’intérét

Il faudra porter une attention particuliére au calibrage des géné-
rateurs de scénario, de sorte qu’en moyenne, tous les actifs aient
le méme rendement égal au taux sans risque. En réalité il faudrait
retrouver la courbe moyenne donnée par le CEIOPS.

Voici les paramétres utilisés lors de la modélisation des taux sans risque.

Parameétres | Valeurs Origine ‘
a 0.28
b 0.0404 | taux sans risque 20 ans fourni par le CEIOPS
o 0.06
70 0.012 | taux sans risque un an fourni par le CEIOPS

La volatilité est volontairement importante car nous cherchons & mesurer les
effets de la prise en compte explicite de cette volatilité dans la mesure de la
revalorisation.

9.2.1.4 Observations

Aprés discrétisation exacte du modéle de VASICEK nous obtenons :

03 Exemple de 5 simulations obtenues

0,2
0,1 ‘ T VA Vi 7. Y

e | W Ml

[ iy ] T 'd‘li" J I 'l I i 'Ill" 2\
13 | é\ﬂgg 48 67 w w\m\ {21 133%5 167 169 181 193 206 217 23 a1
! W
|

ALY [ ! | =—Simulation 1

01 b\\,‘”ulw \JI“ f f ulu v — Simulation 2
’ \ v W — Simulation 3
— Simulation 4

— Simulation 5

FIGURE 9.2.1: Evolution (en mois) du taux d’'intérét annuel dans cing scénarios
stochastiques générées grace au modéle de VASICEK
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9.2. Processus des taux d’intérét

Et finalement la moyenne de 10 000 scénarios est représentée par :

Scénario de taux moyen avec le modeéle de Vasicek
0,045 -

0,04 w
0,035
0,03 /
0,025
0,02 /
0,015 /

0,01

0,005

0 m
1 13 26 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241

FIGURE 9.2.2: Moyenne de 10 000 scénarios du taux d’intérét annuel (en mois)
simulés par le modeéle de VASICEK

Nous avons donc simulé I’évolution des taux instantanés sans risque sur la
période de projection T, cela représente en quelque sorte N courbes de taux
forward. Cependant il existe une formule pour déterminer la courbe des taux
spot en fonction du taux initial et des paramétres du modéle de VASICEK.

9.2.1.5 Courbe d’actualisation

Cette courbe est nécessaire dans notre cas pour obtenir la courbe d’actualisation.

Le prix P (t) en date t=0 d’un zéro coupon versant 1 en date t est donné par :

o2 1 o? i O a2
P(t):e:vp{—tx [b_Qa_at<<b_2a_T0> (1_6 a)_@(l_e a) )]}

La courbe d’actualisation ne variera donc pas en fonction du scénario car tous
les paramétres de la formule sont fixés lors de la modélisation.
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9.2. Processus des taux d’intérét

9.2.1.6 Limites du modéle

Or le choix de ce modéle peut étre remis en cause pour diverses raisons :

- On constate empiriquement que la volatilité n’est pas constante quel que soit
le niveau des taux d’intérét. En effet, plus le taux est élevé (faible) et
plus la volatilité est importante (basse).

- Le modéle de VASICEK peut retourner des taux négatifs ce qui est impossible
dans la réalité.

On peut alors utiliser la littérature abondante pour se tourner vers un autre
modéle, et 'alternative la plus courante est celle du CIR.

9.2.2 Modéle de Cox, Ingersoll et Ross
9.2.2.1 Définition

Cox, INGERSOLL et Ross (C.I.LR. 1985) proposent ainsi un modéle qui répond
A ces problémes tout en restant trés proche de celui de VASICEK.

Le taux instantané est alors modélisé par :

th:a(b—Tt)dt+U\/7TtdBt

Ce modéle garantit donc que le processus de taux soit toujours positif dans le
cas continu car :

ry = 0=dry=abdt
ol ab>0

C’est-a-dire que seule la volatilité o est remplacée par o,/r; et dépend donc
maintenant du niveau du taux d’intérét et donc du temps. Posons ¢ = o/ry

9.2.2.2 Discrétisation

Le probléme se situe au niveau de la discrétisation car cette fois-ci une dis-
crétisation exacte facilement programmable n’existe pas (car numériquement
trop cotiteux). Il faut donc avoir recours a une technique de discrétisation
approximative telle que le schéma d’EULER ou de MILSTEIN. Pour plus de
détails nous renvoyons a [Article 3b]
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9.2. Processus des taux d’intérét

9.2.2.2.1 Le schéma d’EULER

Soit (X¢),_s s un processus continu sur T périodes § (par exemple 6 = 1/12)

L’idée de la discrétisation d’EULER est simplement de poser :

t+6 t+6

Xt+5 = Xt+/ﬁ( d8+/04
t

~ Xi+ 5 (Xt) 6 + a(X¢) (Biys — Br)

ot a () et B() sont deux fonctions intégrables de X;.

Pour le processus du CIR, le développement d’ITO-TAYLOR au premier ordre
nous donne :

t

t
Tt—TO‘f‘H X07 /d XO) )/dBS+R1 (O7t)
0 0

Par simplification et en négligeant le résidu Ry (0,¢) nous obtenons alors :

Tivs = Tt U (7}, t) 6+o0 (Tt, t) (Bt+5 — Bt)
= rt+u(rt,t)(5—|—5(rt,t)\[52
= rn+alb—r)d+o\rdZ

Avec :
Z ~ N (0,1)
J le pas de projection (dans notre cas 1/12)

1 et o respectivement la moyenne et ’écart type, qui dépendent du niveau
de taux d’intérét de la période précédente et donc du temps.

Pour la qualité et la vitesse de convergence de ce schéma de discrétisation nous
renvoyons de nouveau a [Article 3b/.

9.2.2.2.2 Le schéma de MILSTEIN

Le principe est le méme sauf que le développement est d’ordre 2 et c’est le
résidu d’ordre 3 qui est cette fois-ci négligé. Dans le schéma d’Euler, nous
faisions I'approximation :

t+4
/ a(X,)dBy ~ a(X;) (Bess — Br)
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9.2. Processus des taux d’intérét

Alors que maintenant nous utilisons :

t+6
/ a(X,)dBs =~ a(X;) (Beys — By) + ;a’ (Xe) a(X¢) {(Beys — By) — 6}

Dans ce cas on obtient au final pour le CIR :
o2
reas =1 +a(b—r)d+ o107 + Zé (Z2 — 1)

On obtient alors une meilleure approximation du processus continu, et ceci

sans avoir a simuler une seconde réalisation de variable aléatoire °.

9.2.2.2.3 Remarque

L’une des raisons pour laquelle nous sommes amenés & préférer le modéle de
CoX, INGERSOLL et R0OSS & celui de VASICEK, est la positivité stricte du
taux pour b suffisamment grand. Or la discrétisation de ce processus continu
basé sur un mouvement brownien, que ’on opte pour le schéma d’EULER ou
de MILSTEIN, peut dans I'absolu générer des taux négatifs. Ce cas est alors
plus grave car comme on procéde par récurrence et que la condition 74 > 0
est imposée par 'utilisation de la racine carrée, le calcul est alors simplement
impossible.

Nous avons :

—o0>0
- 0<d<1
- ac R+et be R+
- Z~N(0,1)
. . : a(re—0)6 —rn
I1 est donc possible d’avoir un taux négatif par exemple lorsque Z < 0—7}5'

Cela dépend beaucoup du calibrage des paramétres, et on observe en pratique
que pour des paramétres “non extrémes”’, ce cas n’est jamais réalisé. Plus for-
mellement on peut démontrer en applicant le lemme d’ITO, qu’une condition
nécessaire pour que le CIR discrétisé n’engendre pas des taux négatifs est :

o
b> % > 0 ce qui est vérifié ici.
a

9.2.2.3 Limites

Les modéles de Cox, INGERSOLL et ROSS ainsi que celui de VASICEK possédent
néanmoins des limites biens connus comme celle de ne reposer que sur une seule
variable explicative : le taux instantané rg. Or en pratique cette hypothése de
corrélation parfaite entre g et 7 n’est pas observée.

5. Pour plus d’information nous renvoyons a [Article 3b] et [Ouvrage 4]
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9.2. Processus des taux d’intérét

9.2.2.4 Observations

Comme précédemment nous observons donc 10 000 trajectoires comme par
exemple :

0,15
Exemple de 5 simulations obtenues
== Simulation 1
— Simulation 2
— Simulation 3
0,1 |— Simulation 4
— Simulation 5

0,05

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239

FIGURE 9.2.3: Evolution (en mois) du taux d’intérét annuel dans cing scénarios
stochastiques générées grace au modeéle de CoX, INGERSOLL, ROSS

A premiére vue, le probléme important de négativité du taux est réglé ou du
moins contenu sur I'ensemble des simulations pour ces hypothéses données 6

6. Idem que celles du modéle de VASICEK
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9.2. Processus des taux d’intérét

Et la moyenne de ces scénarios est maintenant représentée par :

Scénario moyen avec le modéle de Cox, Ingersoll et Ross

0,045

0,04

0,035 /
0,03 /
0,025 /
0,02 /
0,015 /

0,01

’

0,005

0 -
1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235

FIGURE 9.2.4: Moyenne de 10 000 scénarios du taux d’intérét annuel (en mois)
simulés par le modeéle de VASICEK

Le taux initial, le taux long terme et la pente de la courbe sont similaires au
modéle de VASICEK, car les paramétres sont restés inchangés. Or on constate
que la courbe est plus lisse, et surtout plus stable sur les derniéres années. Ceci
est certainement da au fait que nous avons réussi & éviter la simulation de
taux négatifs, et que I’écart-type entre les scénarios est réduit car ceux-ci sont
cantonnés a la partie positive pour obtenir en moyenne le méme rendement.

9.2.2.5 Courbe d’actualisation

Comme pour le modéle de VASICEK, nous simulons ici I’évolution des taux
courts, mais la courbe d’actualisation doit étre mesurée & partir de la courbe
de taux spot qui en résulte. Pour le CIR il est également possible de calculer
explicitement le prix d’un zéro-coupon en fonction des parameétres du modéle
et du taux instantané .

7. Pour plus de détails nous renvoyons a [Article 3af
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9.3. Processus du rendement des actions : le mouvement brownien géométrique

Proposition. Pour toutt < 1 < T, le priz en date t, P (t,7), d’une obligation
zéro-coupon versant 1 en dans T années est donné par :

P(t,7) = Ay (1) e "€

Oﬂ 2ab
2pe”5" (71) o
A () == -
(p+a)(erlm=t —1)+2p
2 (ePT=t) _ 1
Cy (1) = ( )

(+a) (@ I—1) 12

p = Va®+ 202

Nous chercherons donc a calculer (P (0,7))._; p

Le facteur d’actualisation & la date t ne dépend plus maintenant uniquement
du taux instantané en t=0 comme pour le modéle de VASICEK. La courbe
d’actualisation va donc ici varier & chaque scénario de taux ce qui semble plus
cohérent avec la logique de MONTE-CARLO.

9.3 Processus du rendement des actions : le
mouvement brownien géométrique

9.3.1 Définition

On modélise I’évolution du cours des actions .S; par un mouvement brownien
géométrique By comme utilisé dans le modéle de BLACK, SCHOLES et MERTON :

dsS;
— = pdt + odBy
St

Avec :
1 la tendance, constante

o I'écart type par unité de temps, constant lui aussi

9.3.2 Discrétisation du processus continu

Pour ce processus, il existe également une discrétisation exacte donnée par :

2
St:Soexp{<,u—02>t+a(Bt—Bo)}
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9.3. Processus du rendement des actions : le mouvement brownien géométrique

Avec :

(Bt — Bp) ~ N (0,t) deux mouvements browniens géométriques

Pour un pas de discrétisation de ¢ (dans notre cas 1/12), on modélise le processus
par récurrence grace a :

2
Stys = Stexp{<,u— 02> 5—|—UZ\/5}

7Z la réalisation d’une variable aléatoire gaussienne centrée réduite

Avec :

0 <t <t+ P x ¢ pour une simulation sur P périodes.

9.3.3 Corrélation entre les actifs

Tous les actifs évoluent sur des marchés (de taux, d’action, immobilier...) régis
par des variables financiéres communes comme l'inflation, le taux de chomage...
et possédant des intéractions évidentes. L’hypothése d’indépendance ne peut
raisonnablement pas étre faite car le comportement du marché impacte tous
les actifs.

Au passage nous pouvons évoquer le modéle de WILKIE (1986). Dans ce modéle
intégré, le taux d’inflation joue le réle central, car de celui-ci découle ’évolution
des taux d’intérét, des actions et de 'immobilier. Cependant ’articulation d’un
modeéle autour d’une seule variable nécessite une estimation trés pointue de
celle-ci, sous peine de créer un biais important dans tout le modéle.

Nous avons présenté un théoréme important pour l'utilisation de matrices de
corrélations, la décomposition de CHOLESKY. Nous verrons son application
a notre portefeuille pour aboutir & la nouvelle discrétisation du processus du
rendement des actifs sur le marché action.

9.3.3.1 Présentation

On suppose un portefeuille composé uniquement d’actions et d’obligations
dans une proportion « et 1 — a. L’évolution de ces actifs est modélisé par les
processus que nous avons présentés précédemment.

On ajoute maintenant I’hypothése que toutes les actions du portefeuille sont
corrélées avec le marché des actions, corrélé lui-méme avec le marché des taux
d’intérét. Il suffit donc juste pour chaque titre, d’estimer le rendement espéré,
sa volatilité et son lien de corrélation avec le marché, sans estimer la corrélation
des titres entre eux.
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9.3. Processus du rendement des actions : le mouvement brownien géométrique

(source : PLANCHET F., THEROND P.; JACQUEMIN J. : Modéles
financiers en assurance, Analyses de risque dynamiques [Economica

2005])

Voici schématiquement I'intéraction entre le marché des titres et celui des taux :

) )

Titre 1
ds )
L= u.dt +a,dB]
S

t

dB! =dBS = p.dt | |

Marché action Marche des taux

régi par le mouvement dB® # dB" = pdt pCEREY le HlleelI_lEHT
brownien géométrique ! ! a brownien géométrique

B’ B

\ ) L )

FIGURE 9.3.1: Hypothéses sur les liens de corrélation existants entre le rende-
ment des actions et le niveau des taux d’intérét

Nous pourrions trés bien complexifier la modélisation en générant un scé-
nario & d dimensions non-indépendantes, simulant le cours des d actions en
portefeuille. Cela nécessiterait la simulation de B = (B1, Bo, ..., Bg) un mou-
vement brownien de dimension d, avec sa matrice de corrélation telle que
Corr (B1 (t), B2 (t)) = p1,2. On utiliserait alors a nouveau la décomposition de
CHOLESKY.

9.3.3.2 Intégration dans le processus

Revenons a 'hypothése qu’il n’existe qu’une corrélation avec le marché. Nous
supposons toujours que le titre i, en 'absence de dividendes, a la dynamique
suivante, basée sur le mouvement brownien Bj :

dSy »
— = pdt + UidB;
St
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9.3. Processus du rendement des actions : le mouvement brownien géométrique

Nous avons décrit la corrélation entre ce titre et ’ensemble du marché des
actions (voir la figure précédente) par :

dB} ® dB¢ = p;dt

Nous pouvons alors dire qu’il existe un mouvement brownien B indépendant

de B tel que :
dSt na 2 1D
? = p;dt + inidBt +oi4/1 — 03 dBt
t

2
, . . . o 010 i
Démonstration. Soit la matrice I'oxo = 1 p 12 2 , alors la décompo-
pPo102 05

sition de Cholesky que nous avons présenté nous permet d’écrire :

o 0 o 0 '
1 1 l
22 < poy 094/ 1 — p? ) ( poy o911 —p? >

Le théoréme de KOLMOGOROV (“Kolmogorov extension theorem” ou “Kolmo-
gorov existence theorem”) nous dit que pour décrire un processus stochastique,
en 'occurence un mouvement brownien, il suffit de décrire les lois conjointes
des marginales finies. ]

Si 'on suppose encore que le titre i est dépendant de 1’évolution des taux
instantanés uniquement par le lien avec le marché action, et que cette corrélation
entre le marché action et le marché des taux d’intérét est donnée par :

dB¢ @ dBl = padt
La dynamique devient alors :

ds;

S, = pidt + 0ipipadBr + cipin/1 — p2dBE + 041/ 1 — p?déf

BI, B#, B sont des mouvements browniens indépendants
o; la volatilité du titre i

En appliquant le lemme d’ITO a ’équation différentielle stochastique précédente
il vient alors :

t
2
ok .
S; = Sy exp / ((ul — 21) du + oipipa dBt + oipin/1 — p2 dB} + 044/1 — p? dBZ)

0

Il faut ensuite discrétiser ce processus, et I'on obtient finalement :

Sty — S

g = Hidt 0ipipaV'OZ + aipin/1— P2V Zo + o1\ |1 — p2V5Z;
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9.3. Processus du rendement des actions : le mouvement brownien géométrique

Z, Zq, Z; sont des réalisations de variables aléatoires indépendantes de
loi normale centrée réduite

J le pas de discrétisation qui vaut 1/12 dans notre cas

9.3.4 Calibrage

Nous faisons I'hypothése que le portefeuille d’action n’est composé que du
méme titre. Cela évite de modéliser, inutilement dans notre cas, des milliers de
scénarios supplémentaires ot le drift, la volatilité ainsi que la corrélation avec
le marché seraient différents. Nous prenons comme parameétres :

Variable ‘ Valeur ‘ Origine
i 0.03539 | Rendement moyen des taux sans risque générés
0 33.59% Indice de volatilité de I'Eurostoxx 50
Pi 0.8
Pa 0.2

Il est important de choisir u; aprés avoir simulé les scénarios des taux d’intérét,
afin de s’assurer qu’en moyenne les deux types d’actifs ont le méme rendement,
ce qui respecte bien I'hypothése de I'univers risque-neutre dans lequel nous
évoluons.
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9.3. Processus du rendement des actions : le mouvement brownien géométrique

9.3.5 Observations

Nous ne modélisons que le rendement des actions et non leur prix. Celui-ci
est volontairement trés volatile et le rendement moyen sur toute la période
correspond bien & celui observé sur la moyenne des scénarios de taux.

Scénario du rendement des actions

0,15 1

k=]
=
@

mois

rendement

=]
=}
=

-0,15 4

-0,35

FIGURE 9.3.2: Exemple d’un scénario de rendement des actions sur 10 ans
obtenu par simulation.
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Chapitre 10

Description de 'outil

Cet outil développé sous EXCEL doit permettre de répliquer le modéle détermi-
niste pour un scénario donné. On lui ajoute ensuite un générateur de scénario
qui va reproduire le calcul pour chaque police et pour chaque scénario : le mo-
déle devient ainsi stochastique. En appliquant la méthode de MONTE-CARLO
nous pourrons ensuite mesurer la différence sur le Best Estimate calculé avec
le scénario moyen et la moyenne des Best Estimate de chaque scénario.

Une des premiéres contraintes était donc de pouvoir reproduire les différentes
variables de PROPHET. Cela permet également de faire un outil qui correspond
parfaitement au fonctionnement de produits réels.

10.1 Projection du portefeuille

Concernant le sous-ensemble du portefeuille considéré, nous avons créé des
contrats fictifs d’assurance mixte & primes mensuelles. Cela permet d’une part
d’avoir un horizon temporel fini et ainsi restreindre la durée de projection pour
diminuer le temps de calcul. D’autre part ce type de contrat représente une part
significative du portefeuille et nous pouvons ainsi reproduire le fonctionnement
d’une assurance a capital différé, d’une temporaire décés, et le systéme de reva-
lorisation est finalement assez proche d’'un bon d’assurance a durée déterminée.
L’évolution de la réserve mathématique est croissante, et dépend de I’age de
I’assuré. Il sera donc possible de jouer sur I’age de ’assuré pour obtenir des
profils de réserve mathématique différents, ce qui impactera le calcul de la

TVOG.

Pour des raisons de confidentialité, toutes les hypothéses utilisées
ici sont fictives mais réalistes.
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10.1. Projection du portefeuille

10.1.1 Description des polices

Toutes les polices ont un capital en cas de vie ou de décés égal & 10 000 euros
Toutes les polices sont souscrites a la date d’évaluation ¢ = 0.

Les frais réels d’acquisition sont fixes égaux a 200 euros, et les frais réels de
gestion sont égaux a 150 euros par an.

Les primes sont payées mensuellement avec des frais de 2% a la charge du
souscripteur.

Il n’y a pas de frais de gestion supplémentaires selon la valeur du contrat.

Le rachat est possible a n’importe quelle date avec une pénalité de rachat de

10%

Le capital ainsi que la valeur de rachat sont revalorisés par la participation
aux bénéfices

Le taux technique varie de 1.5% a 4%
La durée des contrats varie de 10 & 20 ans

L’age de I'assuré varie de 40 a 50 ans

En composant toutes les combinaisons par tranche de 5 ans pour la durée et de
0.5% pour le taux technique, nous obtenons ainsi 54 polices aux caractéristiques
strictement différentes.

Pour chaque police il sera donc nécessaire de calculer le Best Estimate sous
les 1000 scénarios pour ensuite mesurer la moyenne de ces scénarios par la
méthode de MONTE-CARLO. Il est donc compréhensible que le tableur d’Excel
n’est pas le plus approprié pour effectuer de tels calculs.

10.1.2 Hypothéses de projection des cash-flows

La marge actionnaire est de 1%

La courbe des taux d’inflation est la méme que le modéle déterministe présenté
précédemment

Le taux de rachat est fix¢ & 6% par an

La table de mortalité utilisée pour le calcul de la provision mathématique est
la table belge HS6872

La table d’expérience utilisée pour la projection est la table Assuralia IDH
sans ajustement d’age.
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10.1. Projection du portefeuille

10.1.3 Hypothéses simplificatrices

Les rachats partiels ne sont pas modélisés.

- La réserve pour PB future n’est pas gérée, elle est supposée nulle en date 0
et on distribue I'excédent de produit financier dans sa globalité.

La mortalité n’est pas stochastique

La police ne peut pas étre réduite lorsque ’assuré arréte de payer ses primes.

Au départ, I'actif n’est constitué que de liquidités, sans plus-ou-moins values
latentes. On investit dans deux types d’actifs composés a 70% d’obligations
et 30% d’actions (sans dividendes). Cette allocation est constante au
cours du temps.

Les obligations sont des obligations perpétuelles a taux variable, dont le
rendement est donné par le taux sans risque instantané.

Le drift est constant, ce qui nous assure de calibrer les processus de telle
sorte que tous les actifs rapportent en moyenne le méme taux égal au
taux sans risque moyen.

Le portefeuille considéré n’intégre pas de réassurance

122



Chapitre 11

Résultats et comparaison

Aprés avoir fait tourné ’outil pour un jeu de 1000 scénarios, nous obtenons donc
un montant du Best Estimate pour chaque contrat et pour chaque scénario,
soit 1000 x 54 = 54000 résultats. Nous appliquons ensuite la méthode de
Monte-Carlo pour déduire un montant du Best Fstimate comparable avec celui
obtenu dans le modéle déterministe.

11.1 Principe de Monte-Carlo

Une définition formelle de la méthode pourrait étre donné par! :

Definition. Méthode de Monte-Carlo

Soit (€2, A, P) un espace probabilisé, X une variable aléatoire & valeurs dans
R?® muni de la tribu borélienne Bgrs et h : R® +— R une application mesurable.
Le probléme est d’évaluer numériquement l'intégrale :

1Y B (x)] :/h(X)dP
Q

lorsque h (X) est P-intégrable, i.e. h(X) € L' (Q, A, P)

Les méthodes de Monte-Carlo sont basées sur un théoréme fondamental qui
permet 'approximation de ’espérance : la loi des grands nombres.

Theorem. Loi (forte) des grands nombres :

Soit (Yn)n21 une suite de v.a. réelles intégrables i.i.d. Alors pour N grand,

N 1
_ 1
Iy = nE:1Yn — E[Y1] p.s.etdansL

1. PATARD P-A. : Outils numériques pour la simulation Monte Carlo des produits dérivés
complezes (2007)
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11.1. Principe de Monte-Carlo

On simule donc un grand nombre N de variables aléatoires indépendantes
(Yn),—1 n et de méme loi que Y, puis on obtient une approximation de
lespérance de Y grace a la moyenne empirique (estimateur sans biais de la
moyenne). Tout I'objectif de cette méthode est donc de comparer le résultat
de la moyenne des scénarios (modeéle stochastique) avec le résultat du scénario
moyen (modéle déterministe).

Dans notre cas (Y,),, représente les scénarios, et chaque scénario est le résultat
de la somme des Best Estimate sur tout le portefeuille.

Soit (c1 ...cp) le portefeuille composé de P polices, nous obtenons finalement
un montant total du Best Estimate qui n’est rien d’autre qu’une espérance
mathématique estimée :

N
BEStDCh _ i Y,
- NZ n

n=1

| NP
= NZZBE(CP,TL)

n=1p=1

ot BE(cp,n) est le résultat obtenus pour le contrat p avec le scénario financier n.
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11.2. Sensibilités du Best Estimate

11.2 Sensibilités du Best Estimate

Avant d’exposer les résultats, nous allons tout d’abord étudier plus en détail les
résultats obtenus, profitant du fait que le portefeuille fictif a été construit de
telle sorte que les différents paramétres varient de fagon réguliére et maitrisée.

11.2.1 Aux caractéristiques du contrat

Commencons par étudier 'impact des caractéristiques de la police sur le montant
du Best Estimate pour un scénario simulé fixé.

1600

Best Estimate pour les polices du portefeuille

1400

1200 A A

vV v/
“TWYNMUVAL N =
AR AR ATTATAf

200

1000

\\\

Best Estimate

O rrrrrrrrrrrrrrrrrrrrrrrrr T T T T T T T T T T T T T T T T T T T T T T T T T T

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52  numérode police

FIGURE 11.2.1: Montant du Best Estimate obtenu par le modéle stochastique
pour toutes les polices et pour un scénario donné. Exemple pour 3 scénarios
différents

La forme particuliére que ’on obtient suggére déja une influence trés importante
des caractéristiques du contrats. Comme elle dépend uniquement de ’ordre
dans lequel nous avons disposé nos polices, donnons tout d’abord plus de détails
sur la construction des polices du portefeuille.
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11.2. Sensibilités du Best Estimate

N° ‘ Age ‘ Durée ‘ Taux technique ‘

1 40 20 1.5%

2 40 20 2%

3 40 20 2.5%

4 40 20 3%

5 40 20 3.5%

6 40 20 4%

7 40 15 1.5%

8 40 15 2%

15 40 10 1.5%—4%
19—24 | 45 20 1.5%—4%
31—36 | 45 10 1.5%—4%
37—42 | 50 20 1.5%—4%
49—54 | 50 10 1.5%—4%

On peut donc tirer les conclusions suivantes qui respectent bien les résultats
attendus a priori :

1. Observation : Les pics correspondent aux taux techniques extrémes, le
Best Estimate est croissant en fonction du taux technique.

= Le taux technique du contrat a une influence majeure sur le Best
Estimate, étant donné qu’il est garanti pour toute la durée du contrat
quel que soit les produits financiers. La participation aux bénéfices ne
provient que de la partie résiduelle éventuelle aprés avoir retiré la marge
actionnaire.

2. Observation : Pour un taux technique équivalent, on constate une légére
décroissance du Best Estimate.

=L’age augmente donc la prime pure également car :

P Agn S pour ' > x
T e N\, pour ' > x

:>Px/:n >Px:n

ce qui, toute chose égale par ailleurs, réduit l’engagement de 1’assureur.
Cet effet prend le dessus sur le flux de mortalité qui augmente avec I’age
et aura donc l'effet inverse sur le Best Estimate. On fait ici abstraction
de leffet temps puisque la prime est payée en début de période alors que
le décés a lieu en milieu de période.
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11.2. Sensibilités du Best Estimate

3. Les scénarios plus ou moins favorables translatent cette structure en
dents de scie a la hausse comme & la baisse, mais pas dans les mémes
proportions pour tous les contrats.

11.2.2 Aux scénarios simulés

Vérifions également ensuite que I'impact du scénario financier sur le montant
final du Best Estimate est aussi loin d’étre négligeable et que 'on peut mettre
en évidence certains scénarios extrémes qui vont modifier considérablement les
flux projetés.

1200 -
Impact du scénario sur le Best Estimate
o -
® _ — _
E - ~ o n
5 . - - ] —— o 4
w _ M n R L
] T m M T
(=] ml - r - —
s || - L | | .
600 +
0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

numéro du scénario

FIGURE 11.2.2: Exemple du Best Estimate pour 100 scénarios et pour une
police donnée. Le résultat est minoré mais non-majoré

L’écart maximal constaté est d’environ 35% entre la réalisation des deux
scénarios les plus extrémes a la hausse et & la baisse. En réalité, les scénarios
trés favorables vont engendrer une forte participation bénéficiaire et donc
un Best Estimate élevé. Or comme la PB n’est pas symétrique, un scénario
défavorable ou trés défavorable aura le méme impact sur le Best Estimate, car
la PB sera nulle. C’est exactement ce caractére asymétrique qui provoque un
écart entre le scénario moyen et la moyenne des scénarios.
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11.2. Sensibilités du Best Estimate

Notation. Soit :

PF, : taux de rendement financier en date t
« : marge actionnaire

r¢ taux technique en date t

PB; le taux des provisions mathématiques reversé comme PB en t

Alors :

PB; = max (PF, — a — 14;0) = PB; € [0; +00]
I(PF},a*,rf) : PBy=0= BE; € [BE (PF},a",1});+00]

C’est pourquoi on constate graphiquement que le montant du Best Estimate est
minoré par cette valeur, en quelque sorte le Best Estimate sous les hypothéses du
tarif. Mais il n’est pas majoré et nous observons des montants ponctuellement
trés élevés. Comme nous prenons ensuite la moyenne de ces réalisations il
devient important de simuler un grand nombre de scénarios afin que les scénarios
extrémes ne faussent pas le résultat.

C’est finalement un mélange de liens complexes entre les données du portefeuille
et les hypothéses de rendements financiers futurs, qui va permettre d’obtenir
un montant du Best Estimate des engagements futurs de ’assureur. La partici-
pation aux bénéfices est 'unique actrice de cette interaction entre 'actif et le
passif dans ce calcul, mais celle-ci va également dépendre du taux technique du
contrat.
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11.3. Résultats

11.3 Reésultats

11.3.1 Meéthode de comparaison

Rappelons que le but est de mesurer A tel que :

BEstochastique + A= BEdéterministe +TVOG

Afin de gommer les approximations causées par ’outil, nous n’avons pas du
tout utilise PROPHET, mais effectué le calcul avec le scénario moyen dans 1’outil
EXCEL répliquant les calculs de PROPHET.

En ce qui concerne le calcul de la TVOG, nous avons mensualisé le calcul
utilisant des options évaluées avec la formule fermée de BLACK et SCHOLES, car
nous possédons déja une projection des provisions mathématiques mensuelles
et le calcul sera d’autant plus précis. La volatilité utilisée est la moyenne de
celles utilisées dans les simulations, pondérées par l'allocation d’actif supposée
constante dans le temps.

11.3.2 Montant du Best Estimate obtenu pour les deux
modéles

Voici les résultats obtenus grace a l'outil, aprés l'avoir fait tourner sur le

portefeuille composé de 54 polices. Nous appellerons :

— 7 BEstochastiquer 16 yegultat de la méthode de Monte Carlo pour 1000 scénarios
financiers

— 7 Bpdéterminister | ragultat obtenu grace a outil pour le scénario moyen

— "TVOG” le montant de la valeur temps retourné par la méthode décrite a la
section | 6.4 page 62]

’ BEstochastique ‘ 46854.09
BEdeterministe 40069.80
TVOG 5702

B Edéterministe + Ty OG | 45771.80

Le Best Estimate selon la méthode stochastique est donc légérement inférieur
& celui que nous obtenons avec un scénario unique augmenté de la TVOG.
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11.3. Résultats

Evaluons maintenant I'importance de ces écarts constatés :

] Ecart sur BE total ‘

A = (BEdeterministe 4 TVOG) _ BEstochzzstique -1082.29
% Différence -2.31%

’ Ecart sur estimation de la TVOG ‘

Time Value = BEstochastique _ BEdeterministe 6784.29
% Erreur de la TVOG -15.95%

Nous pouvons donc conclure, pour cet exemple, que la méthode utili-
sée pour ajouter la TVOG sous-évalue d’environ 16% la valeur temps
’réelle” du systéme de revalorisation par le taux garanti et la partici-
pation aux bénéfices. Ici cela ne représente finalement que 2.31% du
Best Estimate, et uniquement des produits prévoyant la distribution
de participation aux bénéfices. Néanmoins il faut également rappe-
ler que la méthode de Monte Carlo est aussi une approximation, qui
ne devient trés fiable qu’a partir d’un nombre important de simula-
tions. Mais nous supposouns ici que c’est un bien meilleur estimateur
de la valeur temps réelle qu’une réplication financiére par des actifs
dérivés évalués par une formule fermée de BLACK et SCHOLES.

Quoi qu'il en soit, le fait que BEStochastique > B pdéterministe stait attendu car
le phénoméne d’asymétrie est causé par la minoration de la participation aux
bénéfices. Par exemple on peut imaginer une situation ou le scénario moyen
n’entrainerait pas de distribution de PB lorsque :

max (71,72, ...,77) < taux technique + marge actionnaire

Avec :
7+ le taux de rendement moyen & la date t avect =1...T

Or si ce taux de rendement était simulé, nous obtiendrions des scénarios plus
favorables et d’autres moins favorables afin d’avoir celui-ci en moyenne. Pour
les scénarios moins favorables, il n’y aurait aucun changement car la PB serait
toujours nulle, mais des scénarios plus favorables pourraient en engendrer et le
Best Estimate serait alors supérieur. Au global la moyenne pour Monte Carlo
serait également supérieure, et I’ajout du caractére stochastique de la TVOG
sera donc indispensable.
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11.3. Résultats

Dans la derniére version des “Technical Specifications” pour le QIS5, nous
trouvons cette conclusion concernant les ” Financial options and guarantees” :

TP.7.46. The possible simplification for financial options and gua-
rantees is to approximate them by assuming a Black-Scholes type
of environment, although its scope should be carefully limited to
those cases where the underlying assumptions of such model are
tested. Additionally, even stochastic modelling may require some
simplifications when facing extremely complex features. This latter
may be developed as part of level 3 guidance.
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Chapitre 12

Modélisation d’un taux de
rachat dynamique

Un des avantages a utiliser un modéle stochastique est de pouvoir faire varier
des paramétres de projection, selon ’évolution des marchés financiers. En effet
il est évident que la rentabilité du contrat pour I’assuré aura une incidence non
négligeable sur son comportement de rachat. Pour finir nous aborderons donc
la question de la modélisation du taux de rachat.

12.1 Modélisation

La modélisation de la dynamique de rachat, admet comme souvent, différents
niveaux de complexité. Usuellement le taux de rachat est scindé en deux
dynamiques, influencées par des parameétres bien distincts :

12.1.1 Le rachat structurel

Il est déterminé par le type de contrat, les caractéristiques de la population
assurée, ’age du contrat, la fiscalité. .. mais est indépendant de 1’évolution des
marchés financiers. Un modéle stochastique n’est donc pas indispensable pour
le mesurer.

12.1.2 Le rachat conjoncturel
Il vient augmenter 'intensité du rachat structurel, et constitue une partie

variable entiérement déterminée par la revalorisation ou le rendement du
contrat.
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12.1. Modélisation

Une modélisation usuelle du taux de rachat global en date t 7, et donnée par
[Document 2] :

. ‘i
= Ttstructurel « |:1 +a (sz,bie o T_tefjl”ec 1f>}

Avec :

réile e taux de rendement en date t attendu par I'assuré

ti : . )
ry S {ec e taux de rendement en date t effectivement servi a assuré

« la sensibilité du taux de rachat a la sur(sous)-performance du contrat

Afin d’obtenir des taux cohérents quel que soit le rendement effectif, nous
ajoutons & cela un taux plancher et plafond.

7, = min {max {Ttstructurel > [1 +a (rgibie o rteijlcecﬂf)} ;Tmin} ;Tmaz}

Le taux de rachat total va donc augmenter (diminuer) lorsque le rendement
effectif du contrat va étre inférieur (supérieur) au taux de rendement attendu.
Dans notre cas, le taux cible sera égal au taux spot sans risque long terme, que
I’assuré aurait pu attendre s’il avait investi dans une obligation d’Etat dont
I’échéance est égale a celle du contrat. Ici cela représente 4.04% sur 20 ans.

On utilise donc la notion de satisfaction par rapport au rendement du contrat.
Si le taux attendu est réellement servi le taux conjoncturel n’a pas d’incidence
sur le taux de rachat global.

Remarque : Le rachat pour les contrats d’assurance en cas de vie ou de déceés
sont nettement moins sensibles & la revalorisation et a I’dge du contrat qu’un
contrat de capitalisation standard & taux garanti ou d’investissement en unités
de compte par exemple. En effet la motivation lors de la souscription de ces
derniers est principalement basée sur le rendement financier et I’avantage fiscal.

Modéliser le rachat conjoncturel n’est donc pas indispensable voir incorrect,
dans le cas des assurances mixtes, car souvent ’assuré n’a pas réellement
conscience de cette revalorisation avant la prestation en cas de décés, de survie,
ou lors de la demande de rachat. C’est pourquoi, si nous voulons évaluer I'impact
de 'intégration du rachat dynamique sur le Best Estimate, et la conclusion sera
donc valable pour I’ Embedded Value également, nous négligerons cette réalité.
Il sera ainsi possible d’évaluer dans quelle proportion, le passage d’un taux de
rachat ”flat” constant & un modéle de rachat dynamique, va impacter le Best
Estimate, et quel est sa sensibilité aux différents parameétres.
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12.2. Calibrage

12.2 Calibrage

Nous partons d’une estimation des taux de rachat structurel donné par :

’ Ancienneté ‘ Taux de rachat structurel

10; 4] 2%
14; 8] 5%
]8; 00| 8%

Nous faisons I’hypothése que, si ces taux sont pertinents pendant les premiéres
années du contrat, comme nous considérons des contrats avec une échéance
fixe (20 ans pour I'exemple) le taux de rachat devrait décroitre les derniéres
années du contrat. Car racheter tres prés de ’échéance est peu avantageux si
le contrat prévoit des pénalités de rachat par exemple, sans parler de 'effet de
fidélité qui augmente. Nous ajoutons donc '’hypothése que ce taux structurel
retombe progressivement vers 5% la derniére année. Pour lisser I’évolution du
taux de rachat et obtenir une évolution mensuelle nous utilisons une fonction

polynomiale d’ordre 2.

Evolution du taux de rachat structurel en fonction de la maturité du contrat

9%

8% ———

/ \ R%=0,8798
6% AN
5% /
4% /
3% /
2% +—o— / .

1% /

0% T T T T 1

- 2 _
o /\ y = -0,0005¢ + 0,0129x - 0,0072

FIGURE 12.2.1: Hypothése d’évolution du taux de rachat structurel selon une

fonction polynomiale (en années)
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12.3. Résultats

Il faut ensuite déterminer le coefficient « tel que la moyenne des taux de rachat
correspondent au taux ”flat” utilisé dans le modéle déterministe. Le taux cible
correspond au taux sans risque en fonction de la maturité du contrat et nous
utilisons le taux moyen simulé comme taux effectif. Ces taux sont constants
sur toute la durée du contrat, par contre le taux structurel utilisé évolue selon
la fonction :

y = —0.000522 + 0.0129z — 0.0072

Nous obtenons ainsi un coefficient « différent pour chaque échéance :

Echéance‘ pcible ‘ «
10 3.54% | 9.818826684

15 3.95% | 7.743401704
20 4.04% | 8.800098917

12.3 Reésultats

Pour ne pas obtenir un taux de rachat structurel négatif la premiére année,
nous minorons celui-ci par 2%.

0,014

0,012 -

0,01 A

0,006 , M\[\ A I NANEIN AHI

M g A SV

0,004 W v “ U w
0.002 N\ NN — Taux flat .
’ \j\/\/ I v — Taux de rachat dynamique total
W — Taux structurel extrapolé
0

13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229

-0,002

FIGURE 12.3.1: Variations du taux de rachat obtenu pour un scénario et une
police donné, comparé au taux flat précédemment utilisé et aux nouvelles
hypothéses sur le taux de rachat structurel (en mois)
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12.3. Résultats

L’impact est donc important sur un scénario isolé et 'impact sur les flux de
rachat sont non-négligeables.

Globalement on constate également une augmentation significative du Best
Estimate et ceci s’explique facilement. Etant donné que les flux de rachat sont le
résultat d’un taux de rachat que ’on applique & la valeur de rachat, ’évolution
de cette derniére est également & considérer. Comme la valeur de rachat évolue
de la méme fagon que les provisions mathématiques (modulo les pénalités de
rachat), c’est & dire de maniére croissante, nous avons deux effets antagonistes
qui s’appliquent sur les prestations de rachat suite a I'introduction de ce taux
de rachat dynamique :

1. Le taux de rachat ”flat” était globalement supérieur que le nouveau
taux de rachat sur les sept premiéres années puis inférieur. L’effet de
I’actualisation jouant moins sur les premiéres années, les flux de rachats
devraient étre moins importants donc le Best Estimate également plus
petit L.

2. Comme la valeur de rachat est croissante, on appliquera les taux de rachat
les plus élevés sur un montant supérieur. Les flux de rachats seront donc
plus importants qu’avec le taux ”flat” et le Best Estimate sera de méme
plus grand.

On peut donc en conclure que le second effet prend le dessus sur le premier, et
que notre exemple ne nous permet pas de mesurer de facon efficace I'impact de
I'introduction d’un taux de rachat dynamique. D’autant plus qu’'une modifica-
tion du taux de rachat va également modifier toutes les autres prestations car
toute la projection du nombre de contrats est modifiée.

Il faudrait reproduire les mémes mesures sur un capital constant dans le temps,
mais de toute évidence il est probable que seul 'effet de I'actualisation viendrait
différencier les deux modéles. Toutefois un modéle dynamique est beaucoup plus
flexible et permet, s’il est bien calibré, de projeter plus fidélement I’évolution
des rachats pour tous les types de contrats.

1. Tout ceci n’est biensir vrai que si en moyenne nous retrouvons bien le taux ”flat”
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Chapitre 13

Conclusion

La nouvelle réforme de solvabilité qui devrait s’appliquer a partir de I'exercice
comptable au 31 décembre 2012, s’appliquera & tous les acteurs du secteur de
I’assurance, sans distinction de taille et de moyens. Les études quantitatives
d’impact (QIS) ont un double intérét dans la mise en place de cette réforme :
permettre de calibrer au mieux les scénarios & considérer, mais aussi permettre
aux compagnies de se préparer a son application.

La complexité croissante de la formule standard et des exigences a la mise en
place d’un modéle interne comme alternative & la méthode proposée, va sans
aucun doute engendrer un cofit supplémentaire important pour les compagnies.
Le risque principal est que ce cotlit devienne disproportionné par rapport
a l'intérét initial du projet qui est de fournir une mesure plus fiable des
risques de ’assureur et donc une solvabilité mieux adaptée. Le principe de
proportionnalité est donc au coeur des échanges entre les propositions de la
Commission européenne et les avis des acteurs du secteur de I’assurance via les
Consultation Papers notamment.

Si le calcul du Best Estimate n’est qu'une étape dans I’ensemble du processus
de calcul permettant de déboucher sur le montant du SCR et du MCR requis,
il reste la premiére pierre indispensable et déterminante pour la suite. Les
différents niveaux de complexité que le régulateur admettra, seront fonction
de la capacité de ’assureur ou du réassureur a développer une méthode plus
précise, ainsi que de I'ampleur de ’approximation effectuée. En effet, méme si
I’évaluation du Best FEstimate ne doit pas contenir de prudence supplémentaire
comme nous 'avons expliqué dans le 3.1.2 par exemple, en cas de doute sur la
méthode il faudra toujours privilégier la solution la plus prudente. Le probléme
est que dans notre cas, il semblerait que, dans cet exemple, se restreindre a un
modéle déterministe corrigé de la TVOG soit une approximation contraire a ce
principe.
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Or le régulateur ne serait pas en mesure d’imposer le recours a un modéle
stochastique, tant le cotit financier et humain ne pourrait pas étre supporté par
les petites et moyennes compagnies, qui invoqueraient le principe de proportion-
nalité. Et les résultats que nous présentons ici tendent a valider I'utilisation d’un
modéle déterministe ajusté, tant au niveau de 'ampleur de 'implémentation,
qu’a l'impact réduit de cette approximation, tout en permettant une analyse ra-
pide et fine. Un modéle stochastique quant & lui, nécessite des outils complexes
et adaptés qu’il faudra maitriser et calibrer parfaitement, mais aussi un temps
de calcul bien plus important, pour finalement une valeur ajoutée nuancée.
On constate un écart d’approximation peu important, qui ne se retrouvera
que dans les produits prévoyant de la participation aux bénéfices, car ce flux
est le seul a dépendre de la réalisation de ’actif et n’est pas symétrique selon
celle-ci. Cette différence est donc acceptable, a condition que 'on ajuste le
Best Estimate de la TVOG par une méthode ad-hoc testée, et que les volumes
restent raisonnables et maitrisés.

Cependant il est évident que 'estimation de Monte Carlo sur un modéle stochas-
tique bien calibré est plus précis et plus flexible que tout autre approximation.
Surtout que ces avantages sont ensuite transposables au calcul de la MCEV
entre autre. Cette méthode permet de faire varier des hypothéses et des para-
meétres selon différents scénarios financiers, comme nous ’avons présenté au
chapitre 12, et il est donc également possible d’envisager une gestion dynamique
de T'actif, ou 'allocation varierait au cours du temps selon un taux cible et le
versement des prestations.
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Annexe A

Table d’expérience Assuralia

Groupe en totalité : Globalisation 2003 - 2007
Hommes

Groepsverzekering : Globalisatie 2003 - 2007
Mannen

L]
L]

Table d'expérience suivant ajustement Makeham
Ervaringstafel volgens een Makehambenadering

qx
0.1
0.01
0.001
0.0001
20 23 30 3% 40 45 30 5 1] B n 15 §0 83
Age | Leeftijd

De 0 & 60 ans : e = 1.137358574 De &0 & 99 ans : ¢ = 1.135813115

Van 0 tot 60 jaar : g = 0.9%93%81619 Van 60 tot 99 jaar : g = 0.9%93%80737

5 = 0,999645576 5 = 0,999645576
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Annexe B

Code VBA de simulation des
scénarios

Sub simulations ()
S o S KK KK o oK o K KK R K R S KK KR R R SR KK KK R K R KK KK R R ok K KK K K R S KK KK R R ok K KKK K R kKK KK

Initialisation des paramétres de projection
stk ok ok ok oK KK KoK SR oK K Kk oK oK R K K KK SR oK K kK Sk oK K K K Sk ok R oK K KK Sk oK K oK K Sk oK K ok K kK ok ok K K K koK K oK K KK R K R K

Dim N As Integer ’le nombre de simulations

N = Sheets("Input"). Cells (2, 3).Value

Dim T As Integer ’le nombre de périodes par simulation

T = Sheets("input"). Cells (3, 3).Value

Dim P As Double ’la durée en année d’une période soit P=1/12 pour
un mois

P = Sheets("input"). Cells (4, 3).Value

3k 3k ok ok ok K Kk oK K K 5K K KK sk K KK oK Kk ok 3K K K sk K Kk sk K Kk sk 3 Kk ok Kk ok sk Kk ok 3K Kk sk K Kk ok K ok ok oK Kk ok K koK

Initialisation des paramétres des modéles financiers
Sk KKK K K K KKK K K R K K KKK K K K K K KKK K R K K KKK K K R K oK KK KK K K KKK K K K K KKK K K K KKK K K

Dim Z, Za, Zi As Double ’simulations de loi normale N(0,1)
Dim j1, j2, j3 As Integer

Dim sigmai As Double ’ wolatilité de 1l ’action

Dim mui As Double ’drift de [l ’action

Dim roi As Double ’corrélation titre—marché

Dim roa As Double ’corrélation action—taux

Dim a, b, sigma, r0, sigmaold As Double

a = Sheets("Input"). Cells (20, 3).Value

b = Sheets("Input"). Cells (21, 3).Value

r0 = Sheets("Input").Cells (23, 3).Value

sigmaold = Sheets("Input"). Cells (22, 3).Value

sigmai = Sheets("Input").Cells (28, 3).Value

mui = Sheets("Input"). Cells (27, 3).Value

roi = Sheets("Input"). Cells (33, 3).Value

roa = Sheets("Input").Cells (34, 3).Value

Dim k As Integer ’‘compteur pour le mombre de périodes
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Dim i As Integer ’compteur pour le mnombre de simulations
ok ok o ok ok ok ok ok ok ok ok ok ok R ok ok ok ok ok K ok ok ok ok R ok ok ok ok ok K ok ok ok ok ok koK ok ok K ok Kk ok ok ok koK ok ok ok ok Kk ok ok Kk Kok

Début de la simulation
S sk sk sk ok ok sk sk ok sk sk sk ok sk sk ok ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk ok sk sk ok sk ok ok sk sk sk ok sk sk s ok sk sk sk sk sk sk ok sk sk sk ok sk sk ok ok sk ok o ok

For i =1 To N
For k =1 To T
sk ok ok ok sk ok sk ok sk ok ok ok ok ok ok ok sk ok sk ok o ok ok ok ok sk ok sk ok sk ok ok ok ok o ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok sk ok ok o ko

Réalisations de loi normale N(0,1) par Moro appliqué au Tore
mélangé
Sk ko KKK K KK K KK KKK R KK K K K KK R K K R KK K K R koK K R KK K K K R kK R KK R K Rk K

Randomize
Z = moro(torenmel (i, k, N))
Za = moro(torenmel (i, k, N))
Zi = moro(torenmel (i, k, N))

>k 3k 3k 3k sk >k 3k skosk sk >k 3k sk skosk sk >k 3k sk sk sk sk 3k sk sk sk >k 3k skosk sk >k 3k sk sk sk sk 3k 3kok sk sk 3k 3k ok sk sk 3k 3k ok sk sk >k 3k sk sk sk >k 3k sk sk sk ok 3k skosk sk ok ok

Simulation du rendement des actions
sk sk sk ok sk sk sk ok sk sk sk ok sk sk ok sk sk sk ok sk sk s sk sk sk ok sk sk ok sk sk s ok sk sk o sk sk sk K sk sk sk ok sk sk ok sk ok ok sk sk sk ok sk sk s ok sk sk ok ok ok sk ok sk sk

Sheets ("Scénario_action").Cells(1 + i, 2 + k).Value = mui * P
+ sigmai * roi % roa * Z % P ~ 0.5

+ sigmai * roi * Za x ((1 — roa =~ 2) ~ 0.5) = P~ 0.5

+ sigmai * Zi % ((1 — roi ~ 2) ~ 0.5) = P ~ 0.5

3k 3k 3k >k 3k 3kosk sk sk 3k sk sk sk sk >k Sk sk sk sk >k 3k sk sk sk >k 3k sk sk sk >k 3k 3kok sk >k 3k 3kok sk sk 3k 3k sk sk sk 3k 3k 3k sk sk >k 3k 3k sk sk >k 3k 3k sk sk >k 3k skosk sk ok sk skosk

Simulation des taux d’intérét selon Cox—Ingersoll—Ross
3 ok ok ok KKK K KK K KK KK K K KK K K K KK K R KK K K K kK K R KK K K oK Rk KK R kK K R oK K K ok R kK ok

Sheets ("CoxIRoss") . Cells (i + 1, 2).Value = r0
Sheets ("CoxIRoss").Cells(i + 1, 2 + k).Value =
Sheets ("CoxIRoss"). Cells (i + 1, 2 + k — 1).Value
+ a * (b — Sheets("CoxIRoss").Cells(i + 1, 2 + k — 1).Value) * P
+ sigmaold * Z * (Sheets("CoxIRoss").Cells(i + 1, 2 + k — 1).Value

x P) ~ 0.5

Next k
Next i

End Sub
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Annexe C

Démonstration pour le calcul du

GAO

selon l’article : BOYLE P., HARDY M. : Guaranteed Annuity
Options, (2003).
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Annexe B : Démonstration pour le GAO :
Boyle P., Hardy M. :, Guaranteed Annuity Options, (2003)

3 Derivation of Option Formula

In this section we will develop a formula for pricing the guaranteed annuity
option. First we deal with simpler contracts which involve only interest rate
risk. Then we introduce mortality risk as well. Finally we derive a formula
for the guaranteed annuity option.

We will use the fact that the gnaranteed annuity option is similar to a call
option on a bond where the coupon payments correspond to the guaranteed
annuity payments. We assume that the mortality risk is independent of the
financial risk and that it is therefore diversifiable. We base the valuation of
the option on the one factor Vasicek(1977) model. This model assumes that
the short term interest rate follows a mean reverting Ornstein Uhlenbeck
process and admits simple analytical solutions for bond prices and the prices
of options on zero coupon bonds. In 1989, Jamshidian derived a simple
formula for the price of an option on a coupon paying bond as a linear
combination of options on zero coupon bonds. However neither the original
Vasicek model nor the this version of Jamshidian’s model reproduced the
market prices of the pure discount bonds.

Dvbvig(1988) showed how to adjust a general one factor stochastic inter-
est rate model so that it could reproduce the current market term structure.
Hull and White(1990) also showed how to adjust the one factor Vasicek and
Cox Ingersoll Ross(1985) models to be consistent with the current term struc-
ture of interest rates. In particular Hull and White noted that the extended
Vasicek model is extremely tractable. We use these ideas in our development
of a simple interest rate model for valuing the guaranteed annuity option.
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We start by valuing a very basic contract. We assume that the price, at
time t, of a zero coupon bond that will pay one unit at time s > ¢ is D(#, s).
We assume an arbitrage free financial market and we also assume that there
is a complete spectrum of bond maturities. To begin with. the only random
rariable is the interest rate. At time t we know the (market) prices of all the
zero coupon bonds with maturity s > ¢. We consider a contract that pays
one unit at times (7' + j), where j = 1,2...k and 7" > t. Note that the
market value of this contract at current time 7 is

k
V(t)=> D(t,T+j)
i=1

This result follows from the no arbitrage assumption.
We can also express the current market price of this payment stream as
follows

Vi) V(T) ot ;
m—ﬂer [m‘f]—&m [V(T) | ] (2)

This is because in the absence of arbitrage the prices deflated by a suitable
numeraire are martingales, We can use any traded asset® as numeraire. Here
we use the zero coupon bond which matures at time 7" as the numeraire and
we denote the associated probability measure by the symbol (Qr. Equation
(2) provides a valuation formula for any payoff V(7') and we use it extensively
in the sequel.

The expected value, under ()7, of any pure discount bond with maturity
(= 1) can be readily obtained using the same valuation formula.

D(t, T+ j))

Bor [DITT+) | 1] = S50

The ratio on the right hand side is often called the time 7" forward price at
t, of the pure discount bond with maturity (7" + 7).

We now introduce mortality. We will deal with contracts where the pay-
ments are contingent upon the survival of a given life. Under an immediate
annuity the life receives one unit per annum as long as he or she survives.
The actuarial present value at T of an immediate annuity to a life aged R

Swhose price is always positive
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at T’ is

J
ar(T) =Y jpr D(T.T + j) (3)

J=1

where ;pp represents the probability that the life aged R will survive for a
further j years. The limiting age of the mortality table is denoted by w and
we set J = (w — R). Note we use R for the age of the life at time 7. It is
convenient to have different notation for the are of the policyholder and for
time.

This actuarial present value corresponds to the expectation over the dis-
tribution of the (curtate) future lifetime of the life in question. Let 7 denote
the tuture lifetime of a life aged R at time 1. Consider the random variable

Y(r|T)= Z D(T.T +j).

=1

for 7 = 1,2, where by convention Y (0 | 7') = 0. This random variable
corresponds to the market value of an annuity certain payable for 7 vears.
Note that D(T,71 + j) is known at time 1" for all j. The probability that
Te(k—1k]is

—1PRrR QR4 k—1-

where gpy;_1 denotes the probability that a life now aged (R4 k£ —1) dies in
the next year ie before reaching age (R + k) . Using these probabilities, the
expected value of the annuity certain payable for the random future lifetime
is

J

Ep, Y(7 | T) 1= s1Pr qrgn— [ Y(k=1) | 1. (4)

k=1

The expectation here is taken with respect to the survival probabilities, Ps.
It is easy to show that this expectation can be converted to the expression
for ar(7") on the right hand side of equation(3).

We next derive an expression for the value, at time ¢, of a deferred annuity.
We assume the life in question is aged = at current time 7. At time 7" > ¢,
this individual will be aged R = « + (T" — t) assuming he survives. At
current time f, these future payments are random variables: both with
respect to mortality and also with respect to interest rates. Milevsky and
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Promislow (2001) discuss the valuation of insurance contracts allowing for
both sources of randomness. The results are simpler if we assume that the
force of mortality” is deterministic and for now we will make this assumption.
Our assumption corresponds to the assumption of a deterministic hazard and
just as in the case of credit risk this assumption leads to simpler formulae.
Under this assumption the interest rate risk is independent of the mortality
risk.

There is an important implication of this mortality assumption. Assume
we have a life aged x at current time f. At time 7' > ¢ this life will either
survive and reach age R = (v + 1" —t) or die in the interval (t,7"). Our mor-
tality assumption implies that we know, at current time ¢, the distribution of
the future lifetime of the life conditional on reaching age K. In other words
we can accurately predict at time, t the force of mortality that will operate
during [1,7" + J).

Let V() be the market value at time t of the deferred annuity that starts
at time 7'. We have

Vit .
% — B[ (Y(r) Loy ) | 1] (5)

where the expectation is taken over the joint distribution of ()7 and Ps and
7. is the future lifetime of a life aged x at time t. Because the mortality risk
is assumed to be diversitiable and independent of the interest rate risk we
can write

V(1) J . .
e o — (T-0H)Px ZJ’pR EQT [D(TT—i_.}) |f]
j=1
/ D(t, T +j)
= (T-t)P= Z iPR W

i=1

Hence we have
J

Vi(t) = (T—t)Px Z spr D(t. T+ j)

=1

“The force of mortality corresponds to the hazard rate in modelling default risk(see
Duffie and Singleton(1999)).
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Note that the market value at time ¢, of the deferred annuity can be expressed
as a linear combination of zero coupon bonds. Recall that R = x + (1" — £).
We now turn to the valuation of the guaranteed annuity option. Let G(1')
denote the value of this option at maturity. We have
S(T) (ar(T) — g)*

G(T) = p Lo, o1 (6)

where T; = (' —t) and g is the guaranteed annuity conversion rate. In our
benchmark example g = 9. Proceeding as before the value of the option at
time, t is given by

T > 15 ]
Initially we assume'® that S(7') is independent of interest rates. We have

T—tPx D(t? Tj EQT [S(T)]

G(t) = . Eo, | (ap(D) —g)* | 7o > 1) |
ape S(E _ _
= %() EQT [(GH(T) _Q)+ ‘ Ty = Td)}
The last line follows because
S _
DET) Eqp [ S(T) | 1]

Inserting the expression for ag(7T) from (3) we have

J

Eoullan(T) —g)* | 7o > Ta)] = Eg, | (D jpr D(T.T+j) —g)*| t

=1

The expression inside the expectation on the right hand side corresponds
to a call option on a coupon paying bond where the payment at time (1" + j)
is ;pgr. Jamshidian(1989) noted that in the case of a one factor interest rate
model this option could be expressed as a portfolio of options on zero coupon
bonds. Hence we now assume that the interest rate dynamics are generated
by a single factor. Specifically we assume that the short interest rate follows a

1"This is a very strong assumption but it simplifies the analysis.
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one tactor Ornstein Uhlenbeck process as assumed by Vasicek. Let a; = ;pr
so that the coupon bond value at time, T is

J
> a; D(T.T +j).
=1
Note that the market value at time, t of this coupon bond is
J
P(t)y=> a; D(t. T+ j).
=1

With this notation our call option has a value at time, T of
(P(T)—g)*.

Let r} denote the value of the short rate for which

J
a; DT, T+j) =g
=1

J

where we use the asterisk to signify that each zero coupon bond is evaluated
at 5. Recall that in the Vasicek model the zero coupon bond price is specified
once we know the prevailing short term interest rate. We now define /; as
tfollows
K, =D"T.T+j).

Jamshidian proved that the market price of the option on the coupon bond
with strike price g is equal to the price of a portfolio of options on the
individual zero coupon bonds with strike prices K. Specifically we have

J
ClP(t),g.t] => a;C[D(t.T +j), K, 1],
i=1

where C[P(t), ¢,1] is the price at time ¢ of a call option on the coupon bond

with strike price g and C[D(t,T + j), K;,1] is the price at time t of a call

option on the zero coupon bond with maturity (1" + j) and strike price A;.

For the Vasicek model these call prices have simple Black Scholes expressions.
We can use Jamshidian’s result to obtain an explicit expression for G(#).

Recall that ]

r—D: S(t)

g

G(1) = Eou[(P(T) = g)* | 1]
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From the numeraire valuation equation we have

ClP(t), g,1]

Bt = FerlPT) —g)* 4]

Pulling all the pieces together we have

! _ T—tls S(t) Et{r:l a; Cv[D(tT +j)?}{j?t] -
(1) = 1= ; DT | (7)

The explicit formula for each individual bond option under the Vasicek
model is

CID(t.T+j), K;, t] = D(t, T+ j)N(hi(j)) — K;D(t,T)N(ha(j)).

where DT
log——rtd)
. D(t,TVK; gp
hy(j) = 20D 4 28
= 2
D(tT+35)
ho(i) — lOgD(t.T]KJ Tp
1(J) = o, 2
and

;"1 — p—2r(T—t) (1— e—ﬁj)
2K K
The parameters x. # and o characterize the dvnamics of the short rate of

interest under the Vasicek process. The price of the zero coupon bond under
this model when the short rate is r(#) is

crp:cr\/f

Ditt45) = expl-6r— (1) ~ ) )
2

M

(467" — 72 4 255 — 3) |



	Table des matières
	Introduction
	Définition du Best Estimate
	Cadre règlementaire
	Mise en perspective dans Solvency 2
	Fonctionnement de Prophet

	Du déterministe au stochastique
	Hypothèses de projection
	Tables de mortalité 
	Loi de rachat
	Structure par terme des taux sans risque
	Vecteur du rendement certainty-equivalent
	Courbe de l'inflation
	Estimation des frais généraux

	Assurances à garantie en cas de décès et en cas de vie
	Les primes reçues
	Les flux de prestation 
	La marge administrative
	La participation aux bénéfices
	La réassurance
	Conclusion

	Contrats en unités de compte
	Définition
	Projection des frais
	Modélisation de la garantie décès

	Options et Garanties intrinsèques aux contrats d'assurance
	Définition des Options cachées
	Insuffisance du modèle déterministe
	Evaluation des options financières
	Time Value of financial Option and Guarantee
	Guaranteed Annuity Option

	Conclusion du calcul du Best Estimate avec une méthode déterministe

	Modélisation stochastique
	Générateur de variables aléatoires 
	Générer un nombre aléatoire entre 0 et 1
	Simuler une réalisation de variable aléatoire de loi Normale centrée réduite
	Validation de la normalité de l'échantillon simulé

	Simulation de processus stochastiques
	Eléments fondamentaux
	Processus des taux d'intérêt
	Processus du rendement des actions : le mouvement brownien géométrique

	Description de l'outil
	Projection du portefeuille

	Résultats et comparaison
	Principe de Monte-Carlo
	Sensibilités du Best Estimate
	Résultats

	Modélisation d'un taux de rachat dynamique
	Modélisation
	Calibrage
	Résultats

	Conclusion
	Table des figures
	Bibliographie
	Table d'expérience Assuralia : 
	Code VBA de simulation des scénarios
	Démonstration pour le calcul du GAO 


