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Abstract: 

This paper shows that some policy features are crucial to explain the decision of the 

policyholder to surrender her contract. We point it out by applying two segmentation 

models to endowment policies from a life insurance portfolio: the Logistic Regression 

model and the Classification And Regression Trees model. First we present the models and 

discuss their assumptions and limits. Then we test different policy features and 

policyholder's characteristics to be lapse triggers so as to segment the portfolio in classes 

regarding the surrender risk. Results make it explicit that duration and profit benefit option 

are essential. Finally, we explore and discuss the main differences of both models in terms 

of operational results. 

Résumé: 

Certaines caractéristiques jouent un rôle majeur dans la décision de l'assuré de 

racheter son contrat d'assurance. Ses conditions de souscription, son âge, sa profession ainsi 

que d'autres facteurs propres à sa situation influencent ses décisions. Deux modèles de 

segmentation nous ont permis de développer ces idées sur les contrats mixtes d'un 

portefeuille d'Assurance-Vie : les arbres de classification et de régression, et la régression 

logistique. Nous présentons dans un premier temps les fondamentaux de chacun des 

modèles ainsi que leurs hypothèses et limites. Puis nous testons différents facteurs comme 

possibles déclencheurs du rachat, dans le but de segmenter le portefeuille en classe de 

risque : l'ancienneté fiscale et la garantie de participation au bénéfice apparaissent comme 

des éléments essentiels. En dernière partie, nous discutons des différences entre les deux 

modélisations en termes de résultats numériques et d'un point de vue opérationnel. 
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1. INTRODUCTION 

Understanding the dynamics of surrender (sometimes lapse) rates is a crucial point 

for insurance companies, who may look towards several problems. First, policy lapse might 

make the insurer unable to fully recover her initial expenses due to costs of procuring, 

underwriting, and issuing new business. Actually the insurer pays expenses at or before the 

contract issue date but earns profits over its life, so that she might incur losses from early 

lapsed policies. Indeed, the time profile is very important because the costs of a surrender 

change over it. Second, policyholders who have adverse health or other insurability 

problems tend not to lapse their policies, causing the insurer to experience more claims than 

expected if the lapse rate is high: this is the so-called “moral hazard” and “adverse 

selection” where there only remain ``bad risks" (Bluhm (1982)). Third, massive early 

surrenders or policy lapses pose a liquidity threat to the insurer who is subjected to interest 

rate risk (because interest rate is likely to change over the period of the contract). Imagine 

that financial events and a general loss of confidence of investors provokes a high increase 

of interest rate, say tr  plus a liquidity premium tλ . Borrowing money in order to pay back 

the surrender values to policyholders is thus more expensive for the insurer who could 

undergo a series of undesirable effects: no time to recover initial expenses, obligation to 

borrow at a high cost and finally necessity to liquidate assets at the worst moment. 

However, the surrenders are not always a bad thing for the insurer because policyholders 

renounce to some guarantees, which makes the insurer earn money. 

What causes lapses has attracted certain academic interest for some time. 

Originally two main hypotheses have been suggested to explain lapse behavior.  On one 

hand, the emergency fund hypothesis contends that policyholders use cash surrender value 

as emergency fund when facing personal financial distress. Outreville (1990) develops an 

ordinary least square method for short term dynamics whose testable implication would be 

an increasing surrender rate during economic recessions. On the other hand, the interest rate 

hypothesis conjectures that the surrender rate rises when the market interest rate increases: 

the investor acts as the opportunity cost for owning insurance contracts. Interest rates rise 

makes equilibrium premiums to decrease, so there is definitely a greater likelihood that a 

newly acquired contract provides the same coverage at a lower premium. Indeed 

policyholders tend to surrender their policy to exploit higher yields (or lower premiums) 

available in the market.  Engle & Granger (1987) suggest to separate the potential long-

term relationship between lapse rate, interest rate and unemployment rate from their short-
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term adjustment mechanisms thanks to the cointegrated vector autoregression approach. 

From a financial engineering perspective, it may be difficult to accept that kind of arbitrage 

opportunities are not used by policyholders. Even if policyholders are still far from being 

rational, one cannot exclude that in the near future, policyholders may become more 

rational and may be helped by journalists or financial analysts to optimize the use of their 

life insurance portfolios. 

Modeling precisely lapse behavior is therefore important for insurer's liquidity and 

profitability. The lapse rate on life policies is one of the central parameters in the 

managerial framework for both term (fixed maturity) and whole life products: assumptions 

about it have to be made in Asset and Liability Management, particularly for projections of 

the European Embedded Value (EEV). Product designers generally assume an expected 

level of lapsation thanks to data mining techniques. To fully exploit the information of an 

insurance company dataset is typically a hard task for practitioners, who must deal with 

various sources of complexity: missing data, mixture of data types, high dimensionality and 

heterogeneity between policyholders. This complexity often prevents companies from 

getting to the maximum productivity because they only collect part of the information from 

observations. The challenge is thus to select salient features of the data and feed back 

summaries of the information. 

The use of two complementary segmentation models, the Classification And 

Regression Trees (CART) model by Breiman et al. (1984) and the Logistic Regression 

(LR) model (see Hilbe (2009)), could give clues to managers regarding the surrender risk, 

in order to adapt product features and penalty fees. In the literature, Kagraoka (2005) and 

Atkins & Gallop (2007) applied respectively the negative binomial and the zero-inflated 

models as counting processes, and Kim (2005) applied the logistic regression model with 

economic variables to explain the lapses on insurance policies during the economic crisis in 

Korea. To the best of our knowledge,  CART and LR have not been compared with policy 

features and policyholder's characteristics in this framework. 

Our paper aims at i) determining what segmentation method could be the most 

appropriated to an insurance portfolio dataset by looking at the gap in classification errors 

between CART and LR, ii) investigating potential surrender triggers in a classical 

economic regime. Those triggers could be very different in a disturbed period (financial 

crisis, reputation issues): we clearly have in mind that there exists a bias in the 

segmentation analysis because we do not consider dates (and thus forget cohort effects) as 
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well as exogenous factors possibly playing a (big) role on surrender behaviors (financial 

indexes for instance). We go back to this remark and suggest some extension of the 

application with external dynamic factors at the end of the paper to make temporal 

predictions. However this is absolutely not our purpose here. 

The paper is organized as follows: we first present theoretical results about  CART 

method that are useful for our practical problem in Section 2. Section 3 more briefly recalls 

the basics of logistic regression, as it has been more widely used in many fields. In Section 

4, we compare both approaches on a real-life insurance portfolio embedding endowment 

contracts and discuss their limits. We provide numerical indicators, and determine the main 

reasons for a policyholder to surrender in a classical economic situation as well as 

predictors of the individual surrender probability. Section 5 finally presents some possible 

further extensions. 

2. THE CART MODEL 

The CART method, an iterative and recursive flexible nonparametric tool, was 

developed by Breiman et al. (1984) in order to segment a population by splitting up the data 

set step by step thanks to binary rules. In classification issues, binary trees provide an 

illuminating way of looking at data and results. The novelty of CART is in its algorithm to 

build the tree: there is no arbitrary rule to stop its construction, contrary to the previous uses 

of decision trees. The two main goals of a classification process are basically to uncover the 

predictive structure of the data and to produce an accurate classifier. Depending on the 

problem, there is usually a trade-off to find between the predictive power and the fit. The 

opportunity to make predictions particularly with regression trees is also very useful, but 

CART should not be used to the exclusion of other methods. 

2.1 The model 

We present in this section how to construct the classification tree: Figure 1 shows 

the different stages to follow (the appendix details each of the steps and the underlying 

concepts which are not developed herein). We find interesting to provide a clear 

chronological methodology when using CART as it is somewhat quite difficult to get it 

summarized in the literature. 
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Figure 1: Ordered steps of CART procedure 

2.1.1 Building the classification tree  

Notation 1  

Let 1= ( , )n n n Nx j ≤ ≤ε  be a sample of size N, where nj  are the observations of the 

outcome variable Y (Y = {1, 2,..., }C J∈  and 
1 2

= { , ,..., }n n n nd
x x x x  the observations of X  

in   which are the d  explanatory variables (
=1

=
d

ii∏   where i  is a set of 

categorical or continuous variable). Let 

- x∀ ∈ , the classification process class(.,ε ) classifies x in a group j ∈  C.   

- The prior of group j is defined by = j
j

N

N
π  where = { | = }j n nN card j j j .   

- Given t ⊂   (t finite subset of  ), let us denote N(t) = card

{( , ) , }n n nx j x t∈ ∈ε .   

- ( )jN t
= {( , ) ,n n ncard x j j∈ε =j }ngiven that x t∈ .   

- An estimator by substitution of P(j,t), denoted p(j,t), is given by p(j,t) = 
( )

( )
j

j

N t

N t
π .   

- An estimator by substitution of P(t), denoted p(t), is given by p(t) = 

=1
( , )

J

j
p j t .   

- P(j |  t) is the a-posteriori probability of class j, is estimated by 

( )( , ) ( , )
= =

( ) ( )
j

j

N tp j t p j t

p t N t π
.  

How to begin?  

The principle is to divide   into q classes, where q is not given a-priori. The 

method builds an increasing sequence of partitions of  ; the transfer from one part to 

another is given by the use of binary (or splitting) rules such as:  
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 ( ) ( ) ( ).L L R Rimpur t p impur t p impur t≥ +  

Do we always respect it? ``Yes" if g is concave. In our applications and in most of 

them, we consider the Gini index of diversity (Appendix A 2.3), which can be interpreted 

as a probability of misclassification. It is the probability to assign an observation selected 

randomly from the node t  to class k , times the estimated probability that this item is 

actually in class j .  There also exits other impurity functions with an easier interpretation 

(Appendix A 2.3), but there is no convincing justification for a particular choice (they all 

fulfill the requirements of an impurity function). Besides, the properties of the final tree are 

usually surprisingly insensitive to the choice of this impurity function! For further 
explanations, see Breiman et al. (1984).  Traditionally, the optimal division tΔ  of a node t  

stands for  
 = ( ( , )),t

D
argmax impur t

Δ∈
Δ Δ δ  (4) 

where ( ( , ))argmax impur tΔδ  denotes the splitting rule Δ  which maximizes 

( , )impur tΔδ . 

At each step, the process is run in order to lower the impurity as fast as possible.   

Intuitively, it means that as many observations as possible should belong to the same class 

in a given node. The maximum decrease of impurity defines what splitting rule must be 

chosen. Maximizing the gain in purity (homogeneity) dividing the node t is the same as 

maximizing the gain of purity on the overall tree T. Hence by dividing the parent node t  

into descendant nodes ( Lt , Rt ) with the rule Δ , one gets the more branched tree 'T  (see 

Figure 2) and from (2):  

 '

{ }

( ) = ( ) ( ) ( ).L R
w T t

Impur T Impur w Impur t Impur t
∈ −

+ +


 

So the impurity fluctuation F of the tree T is  
 = ( ) ( ) ( )L RF Impur t Impur t Impur t− −  

 = ( , )Impur tΔδ  

 = ( ) ( , ).p t impur tΔδ  (5) 

Indeed, it results from the probability to be present in this node multiplied by the 

decrease of impurity given by the split Δ .   The following step is now: when do we have to 

stop the splits?   The user can choose among different rules to stop the division process. 

Some of them are natural, others are purely arbitrary: i) obviously, the divisions stop as 

soon as the observations of the explanatory variables are the same in a given class (not 

possible to split once more); ii) define a minimum number of observations in each node 
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(the smaller it is, the bigger the number of leaves is); iii) choose a threshold λ  as the 

minimum decrease of impurity: let *
+∈λ  ,  

 ( , ) < .
D

max Impur t stop the division
Δ∈

Δ δ λ  

Actually there is no stopping-rule in CART; we build the largest tree ( maxT ) and we 

prune it. A comprehensive procedure to make it is provided in Appendix A 2.6. 

2.1.2 The classification function  

The aim is to build a classification function, denoted here by class(.,ε ), such that  

 :class C→  

 ( , ) = ,x class x j→ ε  

with = { ; ( , ) = }jB x class x j∈ ε , so that we can class the policyholder (given its 

characteristics ``x") in a set jB  to predict the response. This function must provide insight 

and understanding into the predictive structure of the data and classify them accurately. 

Consider that the optimal tree has been built; to know at what class the terminal nodes 

belong, one uses the following rule:  
 ( , ) = ( | ).

j C
class x argmax p j t

∈
ε  (6) 

We recognize the so-called Bayes rule which maximizes the a-posteriori probability 

of being in class j given that we are in the node t. This process defines the classification 

function and therefore allows predictions. The estimation of assigning a wrong class to an 

observation present in the node t (with respect to the class observed for this observation) 

then reads  
 ( ) = 1 ( , ) = 1 ( | ),

j C
r t class x max p j t

∈
− −ε  (7) 

Let the misclassification rate at node t  be ˆ( ) = ( ) ( )t p t r tτ . 

For each node of the tree, it represents the probability to be in the node t  multiplied 

by the probability to wrongly class an observation given that we are in the node t . It turns 

out that the general misclassification rate is  
 ˆ ˆ( ) = ( ).

t T

T t
∈



τ τ  (8) 

To put it in a nutshell, we can summarize the four stages to be defined in the tree 

growing procedure:   

1. a set of binary questions like {is x S∈ ?}, S ∈  (quite hard task numerically 

speaking),  

2. an impurity function for the goodness of split criterion (arbitrary choice),  
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3. a stop-splitting rule (natural stopping-rule is then 1 case by leaf, hard task 

because arbitrary choice),  

4. a classification rule to assign every terminal node to a class (easy to define).  

As we have seen, CART builds the maximal tree maxT  and then prune it (to avoid 

arbitrary stopping-rules). 

2.1.3 Prediction error estimate 

The prediction error is assessed by the probability that an observation is classified 

in a wrong class by class(., ε ), that is to say:  

 ( ) = ( ( , ) )class P class X Y≠τ ε  

The classification process, the predictor and its efficiency to get the final tree are 
based on the estimation of this error. The true misclassification rate * ( )classτ  cannot be 

estimated when considering the whole data set to build the classification function, but 

various estimators exist in the literature (Ghattas (1999)). The expression of the 

misclassification rate depends on the learning sample chosen to run the study (details in 

Appendix A 2.4).   There exists for now three types of prediction error estimate:    

- the resubstitution estimate of the tree misclassification rate: we consider 

all observations ε  in the learning sample. Achievements are overestimated 

because we class the same data (as those used to build the classification 

function) to test the efficiency of the procedure. This is of course the worse 

estimator for predictions.   

- the test sample estimate: let W ⊂ ε  be a test (witness) sample whose size 

is <N N′  (N is the size of ε ). Usually 'N = / 3N  so that the size of the 

learning sample equals 2 / 3* N . The learning sample is used to build the 

classifier and the test sample is used to check for its accuracy. This 

estimator is better but requires a larger initial dataset.   

- the cross-validation technique: suppose that ε  is divided into K disjointed 
subgroups 1( )k k K≤ ≤ε  of approximately same size. Let us define K new 

learning datasets such that =k
k−ε ε ε . The idea is to build a classification 

function on each sample kε  such that (.) = (., )k kclass class ε . This 

technique is highly recommended when we lack data, because it is more 

realistic (final error is the mean of K  errors).  
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Hereafter, ( )Tτ  is the prediction error on T ; ˆ( )Tτ , ˆ ( )ts Tτ  and ˆ ( )cv Tτ  its 

estimations. 

2.2 Limits and improvements 

The classification tree method offers some interesting advantages: i) no restriction 

on the type of data (both categorical and numerical variables accepted); ii) simple final 

form, compactly stored and displayed; iii) by running the process to find the best split at 

each node, the algorithm does a kind of automatic stepwise variable selection and 

complexity reduction. In addition, monotonous transformations of ordered variables do not 

alter the results.  CART is not a parametric model and thus do not require a particular 

specification of the relationship nature between the outcome and the predictor variables (no 

linearity assumption for example). Moreover, it often successfully identifies interactions 

between predictors. 

However, each split is based on one single variable and when the class structure 

depends on combinations of variables, the standard tree algorithm will do poorly at 

uncovering this structure. Besides, the effect of one variable can be hidden by others when 

looking at the final tree. To avoid this, there exists solutions as ranking the variables in 

function of their potential in the splitting process: this is what is called the secondary and 

surrogate splits (also used with missing data, see Breiman et al. (1984)). There also 

remains some additional issues: i) sometimes the final tree is difficult to use in practice 

because of its numerous ramifications: the more you split the better you think it is, but if 

one sets the stop-splitting criterion so as to get only one data point in every terminal node, 

then the estimation of the misclassification rate would not be realistic (equal to 0 because 

each node is classified by the case it contains: overfitting); ii)   CART gives an idea of the 

prominence of each explanatory variable: as a matter of fact, reading the final tree from the 

root to the leaves gives the importance of variables in descending order. But Ghattas (2000) 

criticizes the bad reliability of the method: a small modification of the dataset can cause 

different classifiers, a big constraint to make predictions because of its instability. 

For sure,   we would like to avoid that a variable could be considered very important 

with a given dataset, and be absent in the tree in another quasi-similar one! The first point i) 

can be solved thanks to the introduction of a complexity cost in the pruning algorithm (see 

Appendix A 2.6) and the second one ii) using cross-validation,   bagging predictors or 

arcing classifiers. 
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2.3 Bagging predictors   

The bad robustness of the  CART algorithm when changing the original dataset has 

already been discussed.   To experiment different optimal final classifiers can be challenged 

using resampling techniques. Bootstrap is the most famous of them (sample N cases at 

random with replacement in an original sample of size N), and the bagging is just a 

bootstrap aggregation of classifiers trained on bootstrap samples. Several studies (Breiman 

(1996), Breiman (1994) and Breiman (1998)) proved the significance and robustness of 

bagging predictors. The final classifier assigns to an observation the class which has been 

predicted by a majority of ``bootstrap" classifiers. The final classifier cannot be represented 

as a tree, but is extremely robust. 

This led to the development of ``Random Forest" algorithms which were developed 

by (Breiman (2001)) and follows the same idea as bagging predictors: a combination of tree 

predictors such that each tree is built independently from the others. The final classification 

decision is obtained by a majority vote law on all the classification trees, the forest chooses 

the classification having the most votes over all the trees in the forest. The larger the 

number of trees, the best the ability of this algorithm (until a certain number of trees). We 

usually speak about the out-of-bag error when using Random Forest algorithm: it represents 

for each observation the misclassification rate of predicted values of the trees that have not 

been built using this observation in the bagging scheme. This error tends to stabilize to a 

low value. 

The bagging method can be implemented with the randomForest R package  .   We 

prefer to use it in our applications instead of the ipred package   because it enables to 

compute the importance of each explanatory variable. For more precision on these theories, 

please refer to Breiman et al (1984) and Breiman's webpage. 

3. THE LR MODEL   

The logistic regression (Hosmer & Lemeshow (2000) Balakrishnan (1991)) 

belongs to the class of generalized linear models (McCullagh & Nelder (1989)).  Using this 

technique yields to predict the probability of occurrence of a binary event by fitting data 

(either numerical or categorical) to a logistic curve. The logistic regression is a choice 

model used for binomial regressions, and is mainly used in medical and marketing worlds 

                                                           
 available at http://cran.r-project.org/web/packages/randomForest/index.html 
 available at http://genome.jouy.inra.fr/doc/genome/statistiques/R-2.6.0/library/ipred/html/bagging.html 
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(for instance to predict the customer's propensity to cease a subscription). Actuaries 

sometimes also model the mortality of an experienced portfolio with it, which is a way for 

them to segment their portfolio regarding death risk. Here, the goal is to model the 

surrender decision of policyholders. 

3.1 Why the logistic function: a first explanation   

The logistic function is very useful because from an input z which varies from 

negative infinity to positive infinity one gets an output Φ (z) confined to [0,1]:  

 
1

( ) = = .
1 1

z

z z

e
z

e e−Φ
+ +

 (9) 

Because we want to model a probability (represented by Φ (z) above), this is the 

first explanation of this choice. The requirement of a non-decreasing function for 

cumulative distribution function is satisfied. Actually z represents the exposure to some set 

of risk factors, and is given by a common regression equation  
 0 1 1= ... ,k kz X X+ + +β β β  

where the iX  are the explanatory variables (e.g. age). Hereafter, we denote the regression 

coefficients by '
0 1= ( , ,..., )kβ β β β . 

Remark 1 :    
- = 1,..., ; ii k∀ β  represents the regression coefficient associated to the risk 

factor i (say age for instance),   

- the inverse of the logit function is the logistic function: 
1

0 =1
( ) =

k

j jj
p X−Φ +β β ,   

- there exists the polytomic or multinomial regression when the response 

variable has more than two levels,   

- other link-functions have been proposed historically,   

- we could also introduce this technique considering the strict regression 

approach. The idea is to transform the output of a common linear regression 

to be suitable for probabilities by using a logit link function.  

3.2 Estimation of parameters 

To estimate the regression coefficients, the ordinary least square estimation is the 

most famous technique. However, the fact that we want to estimate a probability 
(surrenders 0 1 1( , ( ... ))k kB n X XΦ + + +β β β ) implies that we usually estimate the 
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coefficients thanks to the maximum likelihood principle. Anyway, it can be shown that 

maximum likelihood and least square principles are equivalent in this scope 

3.2.1 Maximum likelihood estimation   

Let n be the number of independent observations. By definition, the likelihood 

function for a binomial law is  

 1' '

=1

( , ) = ( ) (1 ( )) ,
n

Y Yi i
i i

i

L X X X
−Φ − Φ∏β β β  

where Φ  is defined in ((9)). The log-likelihood then reads  

 
'

'

=1

ln( ( , )) = ( ) ln(1 )
n

Xi
i i

i

L X Y X e− + ββ β  (10) 

The maximum likelihood estimator β̂  satisfies 
ln( )

ˆ
L∂

∂β
=0. This condition yields to 

a system of equations that are not in a closed form. We usually run the Newton-Raphson 

algorithm to find the solutions (see Appendices B.3 and B4 for further details). 

3.2.2 The final probability 

The individual estimation of probability to surrender is inferred from the previous 

estimates of coefficients,  

 0 1 1
ˆ ˆ ˆˆ = ( ... ),k kp X XΦ + + +β β β  (11) 

where the îβ  are the regression coefficients estimated by maximum likelihood. Thus each 

insured has her own estimated probability to surrender given its characteristics.   We now 

want to determine the confidence interval for the surrender probability on the whole 

portfolio. In a collective framework, the usual way is to use the Binomial law 

approximation which considers that the number of surrenders among n  policyholders 

follows a Normal distribution. However this technique requires that: i) n → ∞  (big size of 

portfolio), ii) probability ip  to surrender is comparable for all i  individuals 

(homogeneity). The first point is usually not a problem in insurance (portfolios are often 

huge by nature). The second point is a direct consequence of the Central Limit Theorem 

(CLT): the sum of i.i.d. random variables follows a Gaussian law. Actually a portfolio is 

almost always heterogeneous. Anyway, imagine that the n  policyholders in the portfolio 

are divided into i  homogeneous groups (of size in ) of policyholders. Within each group i , 

policyholders are considered independent and have the same characteristics: they are 

therefore homogeneous (same probability ip  to surrender). The number of surrenders s
iN  
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in group i  embedding in  policyholders is thus binomially (by property) or normally (CLT) 

distributed (sum of i.i.d. Bernouilli variables), although the assumption of independence is 

quite wrong because the environment is likely to affect lots of policyholders in the same 

time (see Loisel & Milhaud (2011) for further details). Hence,  

 
=1

[ ] = = ( .),
ni

s
i i i i

i

N p n p binomial law prop  (12) 

 
=1 =1

[ ] = (1 ) = = .
n ni i

s
i i i i i i i i

i i

ar N p p p q n p q−   (13) 

From (12) and (13) we can get the confidence interval of ˆ = /s
i i ip N n  within the thi  

homogeneous group by using the one of a Normal standard distribution. The total number 
sN  of surrenders over the whole portfolio is the sum of surrenders in those homogeneous 

groups: =s s
ii

N N . The Normal law is stable under summation, so that sN  is still 

normally distributed. Finally, a good approximation of ˆ = /sp N n  is  

 
2

1 1
ˆ = / ( , (1 )),s

i i i i i i
i i i

p N n N n p n p p
n n

−    

which yields to the confidence interval (at level 5%)  
 [ ]1.96 , 1.96A B A B− × + ×  (14) 

where =
i ii

n p
A

n


, 
2

(1 )
=

i i ii
n p p

B
n

−
, i  is the index of the homogeneous 

group, and ip  is the estimated probability to surrender within group i . 

3.2.3 Deviance and tests  

The most famous tests are the likelihood ratio test and the Wald test, they are 

detailed in Appendix B 5. 

3.3 Interpretations  

The regression coefficients values give us some information on the effect of each 

risk factor. The intercept 0β  is the value of z for the reference risk profile: this is the 

expected value of the outcome when the predictor variables correspond to the reference 

modalities (for categorical variables) and thresholds (for continuous variables). The 

coefficients iβ  (i = 1,2,...,k) describe the contribution of each risk: a positive iβ  means 

that this risk factor increases the probability of the outcome (lapse), while a negative one 

means that it decreases the probability of this outcome. A large / ( )i iβ σ β  (where ( )iσ β  
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denotes the standard deviation of the coefficient estimation) means that the risk i strongly 

influences the probability of the outcome, and conversely. The regression coefficients have 

to be compared to the reference profile, for which = 0β  except for the intercept. 

Practitioners are used to focusing on the odd-ratio indicators: they represent the ratio 

of probabilities 
1

p

p−
. Let us see an example to understand this quantity. 

Example 1  Say that the probability of success p = (P Y =1| )X  is 0.7. Then the 

probability of failure q = (P Y = 0 | )X  is 0.3. The odds of success are defined as the ratio 

of these two probabilities, i.e. /p q = 0.7 / 0.3 = 2.33 ; it means that with the same 

characteristics (vector X), the success is 2.33 more likely to happen than the failure 

(obviously the odds of failure are 0.3 / 0.7 = 0.43 ). Now consider that only one explanatory 

variable differ from one policyholder to another, say the age (among age and region). Then 

for one policyholder we have 0 1 2/ =
X Xage regionp q e

+ +β β β
. All terms disappear between both 

policyholders except age, the odd-ratio between them aged 40 and 30 years old is thus  

 
40 1

10 1
30 1

( = 1| = 40) ( = 1| = 30)
/ = =

( = 0 | = 40) ( = 0 | = 30)
age age

age age

P Y X P Y X e
e

P Y X P Y X e

β
β

β  

Generally speaking, we notice that a unit additive change in the values of 

explanatory variables should change the odds by constant multiplicative figures. The odd-

ratios represent the difference in terms of surrender probability when explanatory variables 

change, and thus   are a very useful operational tool to define risk classes. 

3.4 Limits of the model 

Required assumptions define the main limits of the model. The policies ( |i iY X ) are 

considered conditionally independent with respect to the explanatory variables. Explanatory 

variables must also be independent, which is never totally right in reality. Fortunately 

calculations can be done in practice if the Pearson correlation coefficient is not equal to 

100% (otherwise singularity in matrix inversion). Modalities of a categorical variable are 

considered independent, which is generally true except in case of erroneous data.   

Moreover, a lot of data should be available for the robustness of the modeling.   Well, this 

is not really the point here because insurance portfolios used to be large enough. However, 

applying the logistic regression over a whole portfolio of life-insurance contracts could lead 

us to very strange results. Indeed, if this is a run-off portfolio (no new business) which 

covers a very long period (say 50 years), almost all the policyholders would have lapsed 
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and the regression would make no sense! We checked that this is not the case in our 

application (new business is being issued all along the observation period). 

To sum up, logistic regression is a great tool to model the differences of the outcome 

variable considering the differences on the explanatory variables. The big drawback is the 

independence assumption between policyholders, but a crucial advantage is the opportunity 

to make precise predictions. Some examples of application can be found in Huang & Wang 

(2001) and Kagraoka (2005). Other quasi-similar segmentation models like Tobit model 

(Cox & Lin (2006)) or Cox model (Cox (1972)) could have been explored. For further 

details, a comparison of these different models is available in Austin (2007). 

4. APPLICATION ON A LIFE INSURANCE PORTFOLIO 

Depending on the country, the database provides information on policyholder's 

characteristics (birth date, gender, marital status, smoker status, living place...) and policy 

features (issue date, termination date, type of contract, premium frequency, sum insured, 

distribution channel...) of life insurance contracts. Here, a real life portfolio was collected 

thanks to the Spanish entity of a large French insurer.   In our study we have information on 

the gender, the birth date of the policyholders, the premium frequency, the face amount, the 

premium; the type of contract, its issue date, its termination date and the reason of the 

termination. The face amount is an indicator of the policyholder's wealth, and the premium 

encompasses the risk premium and the saving premium. The risk premium is commonly the 

product of the sum-at-risk (sum paid back to the policyholder in case of guarantee) by the 

probability for the guarantee to be triggered. Thus with certain endowment products 

covering the death, the risk premium is the mortality rate times the sum-at-risk (amount 

added to the reserve in case of death), all discounted. The saving premium is the investment 

made by the policyholder.  

We used the package rpart of R to implement the CART method and obtain the 

results in the sequel. The functions to implement the logistic regression are included in the 

core of the R programs. 

4.1 Static analysis  

We mean by static analysis a ``photograph" of the portfolio in December 2007. The 

types of long-term contracts are either pure saving or endowment products, but we focus on 

the 28506 endowment policies hereafter. These Term Annually Renewable (TAR) products 
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cannot be surrendered in the first year following the underwriting (except in very special 

cases), and there is no tax constraint in Spain concerning life insurance saving contracts. It 

means that the policyholders can surrender their contracts at each anniversary date without 

any fee, but are penalized otherwise. We will see later (in Figure 6) that these features are 

big incentives and drive the surrender profile in function of the contract duration. 

The study covers the full period 2000-2007. This means that the characteristics of 

policyholders and contracts that we extract from the database are those observed either at 

the surrender date or in December 2007 (if the policyholder has not surrendered yet). Recall 

that we first would like to have an idea of the possible triggers of the surrender decision, by 

explaining surrenders as a function of other variables. It will thus enable us to detect the 

``risky" policyholders at a given date. 

Remark 2 The static analysis raises some burning questions: what is the 

composition of the portfolio? Is it at maturity? What is the part of new business? 

For example if the duration of the contract is one of the main explanatory factor for 

surrenders (and it is!), one has to be careful to cover a sufficiently long period to experience 

a normal surrender rate, say 10% a year. If the contract duration is almost always at least 15 

months (before the surrender), looking at surrenders statistics twelve months after the issue 

date of the contracts would not be realistic because the annual surrender rate would be very 

close to 0%. Indeed we do not have a dynamical view of the phenomenon, this static 

analysis is just a simple way to point out the more discriminant factors of the surrender 

decision, even if some bias still exists as we have seen in Introduction. We go back to this 

problem in Section 4.2 where the monthly study reflects that policyholders often wonder 

whether they should surrender their contract (say at least twice a year). However, eight 

years of experience here seems to be ok for our purpose.  

In December 2007, 15571 of the 28506 endowment contracts present in the database 

have been surrendered. The two segmentation models provide us with two different 

information:    

- CART gives us the most discriminant variables regarding the surrender in 

descending order (reading the classification tree from the root to the 

leaves). Finally, one can class a policyholder as ``risky" at the underwriting 

process or later but the predicted response is binary (although we could get 

the probability to be in each class and thus the probability to surrender);   
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- LR offers a more precise result, the probability (propensity) for this 

policyholder to surrender her contract given its characteristics, and 

sensitivities of surrender decisions when explanatory variables change 

(thanks to the odd-ratios technique and the regression coefficients).  

4.1.1 CART results 

In R, one performs the analysis thanks to the package rpart (r-partitionning), and 

more precisely the procedure rpart which builds the classification tree. By default, rpart 

uses the Gini index to compute the impurity of a node. As we have seen previously, this 

option does not seem important because results should not much differ. There is no 

misclassification cost (see Appendix A 2.5) in our application. 

We proceed like in theory:   
1. first, maxT  is built with no complexity cost (by setting the option cp  equal to 0);  

2. second, this tree is pruned off to lower the number of leaves and simplify the 

results.  

The minimum number of observations required in a leaf of maxT  has been set to 1, 

the number of competitive splits computed is 2, and we use the cross-validation technique 

to get better and more accurate results. The number of samples for cross-validation is set to 

10 in rpart.control. Beware: these cross-validations correspond to the 

misclassification rate estimated by cross-validations (and not the cross-validation estimate 

of the prediction error presented in Section 2.1.3, which is useful to estimate better the real 

prediction error but not to build an optimal tree). We randomly create the learning and 

validation datasets, whose sizes are respectively 16868 and 11638 policyholders. 

The test-sample estimate of the prediction error in the maximal tree maxT  computed 

on the validation sample is 14.88%, corresponding to non diagonal terms of the confusion 

matrix given in Table 1.  

 
     observed Y = 0  observed Y = 1  
 predicted Y = 0   4262   1004  
 predicted Y = 1   728   5644  

Table 1: Confusion matrix (pruned), validation sample. 

This tree has too many leaves and its representation is too complex, so that we have 

to prune it. The choice of the complexity parameter α  in the pruning algorithm (see 

Appendix A 2.6) is a trade-off between the final size of the tree and the minimum 
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misclassification rate required by the user. Table 7 and Figure 9 in Appendix A.1 plots the 

learning error in function of this complexity cost. Each complexity parameter corresponds 

to an optimal tree whose size is specified on the graph gotten by ten cross-validations.   

Notice that minimizing the learning error (by cross-validation) and its standard deviation 

requires setting 04 04]1.04 ,1.30 ]e e− −∈α , but the corresponding number of leaves (equal to 

82) is too high to represent the tree easily. Hence we have chosen to set 04= 6e−α  which 

corresponds to 11 leaves and a very small increase of the error. The corresponding tree is 

plotted on Figure 3.  

 

 

 

 

 

 

 

 

 

Figure 3: The final classification tree. Binary response variable: surrender. The first 
splitting-rule . =contract type bd  means that the contract type is the most discriminant 

variable ( bd  correspond to the 2nd  and 4th  categories, like in alphabetic order). 
Continuous explanatory variables have been previously categorized for the modeling. 

The most important (discriminant) variable seems to be the type of contract 

(characterized by the premium type, unique or periodic; and the profit benefit option), then 

the duration and so on.  Selected variables in the tree construction are the contract type, the 

duration, the face amount, the premium frequency, the saving premium and the 

underwriting age. Finally, gender and risk premium don't appear in the final tree, because 

they should not be relevant. The first splitting-rule is therefore ``does the policyholder own 

a contract with profit benefit?". If ``no" go down to the left, otherwise go down to the right. 

The predicted classes are written in the terminal nodes, and the proportions under this class 

are the number of policyholders observed as ``no surrender" on the left and ``surrender" on 

the right. Obviously the bigger the difference between these numbers, the better the 

segmentation. Here, if the policyholder has a contract with a periodic or unique premium 
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and no profit benefit option (PP sin PB and PU sin PB), he probably won't surrender 

(2608/2610 = 99.92%). The predicted class is labeled ``No". 

Remark 3: Sometimes some categories of certain explanatory variables do not 

appear in the final tree. In fact, the representation of the tree obliges us to hide other 

competitive possible splits at each node (or surrogate splits). But the complete analytic 

result provides the solution to this problem (it is just a display problem).  

Example 2: Let us consider someone whose characteristics are a periodical 

premium and a contract with profit benefit. The duration of her contract is today observed 

in the seventh range and her face amount belongs to the second range. The tree predicts 

that this policyholder is today in a risky position given its characteristics (58/61   95% of 

people with these characteristics have surrendered their contract).  

Looking at Figure 3, it is clear that the most discriminant factor regarding the 

surrender risk here is the profit benefit option. The misclassification rate (learning error) of 

this tree is 15% ( 33.1% 45.4%× , where 45.4% is the root error when no split) according to 

relative errors in Table 7 presented in Appendix A.1. The prediction error can be estimated 

via the confusion matrix in Table 2: 

 
     observed Y = 0  observed Y = 1  
 predicted Y = 0   4188   1078  
 predicted Y = 1   664   5708  

Table 2: Confusion matrix ( maxT ) on validation sample. 

It is quite satisfying: only 14.97% of predictions are wrong, which is almost equal 

to the prediction error on the maximal tree maxT . Indeed the compromise is really interesting 

because pruning the tree from 175 leaves to 11 leaves causes a less than 1%-increase of the 

prediction error! 

To consolidate these results, we use the bagging predictors thanks to the 

randomForest package. The following stages in the Random Forest algorithm are 

performed to grow a tree: bootstrap the original sample (this sample will be the training 

set), split at each node with the best variable in terms of decrease of the impurity (possible 

m  variables randomly chosen among M initial input variables, <m M  because m=M 

corresponds to the bagging method), grow the tree to the largest extent possible (no 

pruning). The forest error rate depends on the strength of each individual tree (its power to 

classify well) and the correlation between any two trees in the forest. When the strength 
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increases the forest error decreases and when the correlation increases the forest error also 

increases. m  is the only adjustable parameter to which random forests is sensitive, and 

reducing m  reduces both the correlation and the strength; thus there is an optimal m  that 

can be found with the out-of-bag error. We cannot represent the new final classifier as a 

tree, but it gives best results (all these concepts are explained on Breiman's webpage1).  

 
  observed Y = 0   observed Y = 1  
 predicted Y = 0   10327   2608  
 predicted Y = 1   1592   13979  

Table 3: The confusion matrix of the classifier by the Random Forest. 

Table 3 summarizes the results on the entire original dataset (no learning and test 

samples because this is already a bootstrap aggregation): the unbiased out-of-bag error 

estimate is 14.73%. The importance of explanatory variables is given in Figure 4 as well as 

the necessary number of trees in the forest for the out-of-bag error to be stabilized (which 

seems to be here about 50 trees).  

 

Figure 4: On the left, the importance of explanatory variables. On the right, the number of 
trees required to stabilize the out-of-bag errors: the black line is the overall error, the 

green line is the error of the category ``surrender" and the red one for the category ``no 
surrender". 

These results confirm what we expected: the duration and the type of contract are 

the most meaningful variables to explain the policyholder's decision to surrender her life 

insurance contract.   To be sure that the importance of these factors is not biased by the 

duration effect, we decided to run the analysis excluding the duration and splitting data into 

                                                           
1 See http://www.stat.berkeley.edu/users/breiman/RandomForests/cc home.htm 
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two subsets: policyholders whose final contract duration corresponds to peaks in Figure 6, 

and others policyholders left. We thus look at surrenders due to penalty fees as well as 

other surrenders without penalty constraints.  

 

Figure 5: Importance of explanatory variables excluding the duration effect. On the left 
policyholders whose final contract duration corresponds to peaks in Figure 6, and others 

on the right. 

Not surprisingly Figure 5 shows that we get the same most important factors (with 

the order slightly differing), meaning that the duration effect is not correlated to another 

risk factor and thus does not lead to biased viewpoints. 

4.1.2 The LR model  

Consider that X is the matrix of explanatory variables for each observation, that is to 

say a line of the matrix X represents a policyholder and a column represents the observed 

value for a certain risk factor (e.g. the age). 
The response vector Y = '

1 2( , ,..., )nY Y Y  represents the surrender decisions of the 

28506 insureds (policyholders). 

In the classical regression framework, the problem can be written in the matrix form:  

 

1,1 1,2 1,1 0

2,12 1

,1 ,

1

1
=

1

k

n n kn k

X X XY

XY

X XY

    
    
    
    
         


  

     
 

β
β

β

 

  



SURRENDER TRIGGERS IN LIFE INSURANCE: WHAT MAIN FEATURES AFFECT THE 
SURRENDER BEHAVIOR IN A CLASSICAL ECONOMIC CONTEXT?

27 

 

 

We ran the logistic regression in R thanks to the function glm.   The output of the 

model is the effect of each variable, the standard deviation of the estimated regression 

coefficients, and the deviance of the model (see Appendices B 3, 4 and 5.) 

Categorical variables are split into dummy variables corresponding each one to a 

modality (same process as in  CART) to build the so-called ``design matrix''. A stepwise 

logistic regression is carried out with a step-by-step iterative algorithm which is used to 
compare a model based on p′  of the p  original variables to any of its sub-model (with one 

less variable), or to any of its top-model (with one more variable). The R procedure 

stepAIC from the package MASS allows us to drop non significant variables from the 

model and to add relevant ones. We finally get the optimal model with the minimum 

number of relevant variables. The learning sample still contains the randomly chosen 16868 

policyholders and the validation sample the 11638 ones left. As usual, the regression 

coefficients were estimated on the learning sample whereas the predictions were made on 

the validation dataset. Table 8 in Appendix B.1 summarizes the regression coefficients of 

the explanatory variables, their standard deviation, and the p-value of the Wald test 

(confidence in the estimation and relevance of the regression coefficients, see Appendix B 

5.2). We can deduce from the estimates of regression coefficients that the variables which 

seem to have the main effects (biggest absolute values) are once again the duration, the 

contract type, but also the face amount. This suggests that the results are consistent with  

CART, and that historical data should no longer be used if the surrender profile with 

respect to contract duration changes (due to regulatory's decisions for example). The odd-

ratios presented in Section 3.3 should be compared to 1 (value corresponding to the 

reference category). Looking at Table 4, we clearly see that the modeled odd-ratios are a 

quite bad representation of the reality: they are very different from the empirical ones 

(obtained via descriptive statistics). For instance, the model tells us that a policyholder 

whose underwriting age is over 70 years old is less likely to surrender than a young 

policyholder whose underwriting age is less than 20 years old all other things being equal. 

The experience shows that in fact they are 3.28 times more likely to surrender! The good 

point is that the estimated odd-ratios very often have the same trend as the observed ones 

(as compared to the reference category). This is the case with duration:  
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Figure 6: Surrender rate (%) VS duration (in month) for Mixtos products. Effect of penalty 
fees and tax constraints (contracts can be surrendered at each anniversary date without 

fees, which explains the peaks). 

Figure 6 shows the surrender profile with respect to duration (ratio of surrenders 

within each duration range), and is obviously in line with odd-ratio estimations of Table 4: 

indeed the risk is very high at the beginning and goes decreasing with time.  

The model has globally a bad goodness of fit since many regression coefficients 

estimates are not significant, and this is the reason why the modeled odd-ratios do not 

represent accurately the reality in most of cases. As we have previously seen, there is a 

trade-off between the goodness of fit and the predictive power: in our case good results in 

terms of prediction are clearly favored since the goal is to make classification predictions.  

Table 4: Odd-ratios, endowment products (duration in month, learning sample). Contract 
types: PP con PB →  periodic premium (PP) with profit benefit (PB), PP sin PB →  PP 

without PB, PU con PB →  unique premium (PU) with PB, PU sin PB →  PU without PB. 
Continuous variables (e.g. duration) have previously been categorized. 

Odd-ratios  Reference  Other modalities 
Duration  [0,12] ]12,18] ]18,24] ]24,30] ]30,36] ]36,42] ]42,48] ]48,54] >54
surrenders  3062 1740 1187 791 728 400 365 244 682 
empirical OR   10.56 2.89 2.69 1.82 1.16 0.96 0.68 0.19 
modeled OR   0.27 0.07 0.06 0.05 0.03 0.02 0.02 0.004

Premium freq. Monthly 
Bi-

monthly 
Quarterly 

Half-
Yearly 

Annual Single  

surrenders  2790 12 323 92 595 5387  
empirical OR   2.22 0.93 0.66 2.39 1.60  
modeled OR   2.52 0.97 0.80 1.55 0.75  
UW. age  [0,20[ [20,30[ [30,40[ [40,50[ [50,60[ [60,70[ > 70      
surrenders  258 1719 2165 2002 1490 1088 477      
empirical OR   1.16 1.06 1.25 1.63 2.67 3.28     
modeled OR   1.32 0.99 0.77 0.67 0.51 0.47     
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 Face amount  #1[∗ ] #2[∗ ] #3[∗ ]  
surrenders  5361 684 3154      
empirical OR   0.14 0.12      
modeled OR   0.003 0.0008      
 Risk prem.  #1[∗ ] #2[∗ ] #3[∗ ]  
surrenders  3941 2987 2271      
empirical OR   1.50 0.92      
modeled OR   1.43 1.30      
 Saving prem.  #1[∗ ] #2[∗ ] #3[∗ ]  
surrenders  3331 1762 4106      
empirical OR   1.90 2.09      
modeled OR   2.55 3.78      
 Contract type  PP con 

PB 
PP sin 

PB 
PU con 

PB 
PU sin 

PB 
     

surrenders  3840 0 5357 2  
empirical OR   0 4.75 0.0008  
modeled OR   5.6e-08 0.0006 3.9e-06  
*Note: for confidentiality reasons, the real ranges of the face amount, the risk premium and saving premium are 
omitted.  

Table 5: Confusion matrix (LR model). 

     observed Y = 0   observed Y = 1  
 predict Y = 0   #correct rejections   #misses  
  4153   637  
 predict Y = 1   #false risky policyholder   #success  
  1113   5735  

The confusion matrix given in Table 5 gives the number of misclassified 

policyholders and represents the predictive power of the method. Of course good 

predictions still appear in the diagonal of the table. To make such predictions, we consider 

that a policyholder with a modeled probability to surrender greater than 0.5 is assigned the 

response 1, otherwise the response 0. Here the predictions are right for 84.96% of the 

validation sample, thus the prediction error equals 15.04% and is quasi-similar to the one 

gotten with  CART method. 

It is also interesting to compare the two methods with other usual performance 

criteria: the sensitivity (Se) and the specificity (Sp). Let success be the case which 

corresponds to a predicted and an observed response equal to 1 in the confusion matrix. 

misses corresponds to a predicted response equal to 0 and the observed one 1. correct 

rejections corresponds to an observed and a predicted response equal to 0, and finally false 

risky policyholder stands for a predicted response equal to 1 and an observed one to 0. The 

sensitivity is the number of success over the number of observed surrendered contracts, and 

the specificity is the number of correct rejections over the number of observed non-

surrendered contracts.  
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Table 6: Performance criteria. 

 
maxT  prunedT  RandomForestT  LR 

 Se  84.9% 84.1% 84.3% 90% 
 Sp  85.4% 86.3% 86.7% 78.9% 
 (1-Se)  15.1% 15.9% 15.7% 10% 

Table 6 summarizes the performance criteria for each method; we want to minimize 

the proportion of misses. The predictions of the LR model have less misses and more false 

risky policyholders; in our three  CART applications, results are quite similar and errors are 

well-balanced. The compromise between sensitivity and specificity is better in  CART but 

the number of misses is higher. Hence the most prudential model is the LR model (10%) for 

us. 

This first static analysis is helpful to understand which policyholders' characteristics 

and contract' features are relevant, but has a big drawback: we cannot quantify the impact 

of the economical and financial context on surrender behaviors since we only look at the 

portfolio at a given date.   We could state that in a classical economic and financial regime, 

behaviors are not driven by economy and hence the static analysis is enough. This is 

obviously not the case during a crisis where it is extremely hard to anticipate behaviors and 

thus surrender rates (policyholders' decisions may be correlated, see Milhaud et al. (2010) 

for a discussion on this). The modeling also becomes much more difficult to handle. To 

provide a comprehensive model that enables to capture well all effects (endogenous and 

exogenous) would be tempting but is not in the scope of this paper. 

4.2 Further developments: a dynamical analysis  

  This section is not the heart of the paper, but aims at proving that a static analysis 

could lead to huge errors in terms of future surrender rate predictions. Practitioners can 

robustly use segmentation models to get risky profiles, but should be very careful when 

dealing with time predictions which are strongly dependent on a moving environment. The 

dynamical analysis better reflects the evolution of economic conditions faced by 

policyholders and allows us to model their monthly decisions. Therefore the surrender rate 

is modeled each month on the whole portfolio by aggregation of individual decisions. In 

this part of the paper we only consider the LR model because we can easily input economic 

indexes so as to make future predictions. 

We have already discussed about the problem of the static analysis (Introduction 

and Section 3.4): depending on the period covered and the phenomenon modeled, it could 
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be largely erroneous: if the period covered is longer than the ``term'' of the phenomenon, 

the binary response variable would everytime equal 1. By consequence, the model would 

not be true to life; this is the first argument to run a monthly study. Another one is that we 

model a dynamical decision: we may think that policyholders is likely to wonder each 

month if they should keep their contract in force. 

However, the dynamical analysis raises a robustness and stability problem because 

of the additional underlying assumption of independence in time. In practice, we consider 

that the decision of the policyholder at date 1t +  is independent of what happened before, 

and more precisely independent with her decision at date t  (very strong hypothesis which 

is obviously not reasonable in reality). In the new dataset (whose size is 991 010), 

policyholders have been duplicated each month while they were present in the portfolio (no 

surrender and no other reason to leave), and their characteristics were up-dated (duration of 

the contract, economic indexes...). It gives birth to another bias which does not really alter 

the results from our experience: characteristics of people with long durations are over-

represented in the sample. Anyway, we perform the LR on this new dataset after being sure 

that the model is built on a representative period (the portfolio is at maturity). 

We check the accuracy and the quality of the predictions by comparing the predicted 

surrender rate and the observed one each month. The final dataset is divided into the 

following learning and validation samples: the learning sample (whose size is 629357) 

covers the period from January 2000 to March 2005, and the validation sample covers the 

period from April 2005 to December 2007 (size equals 361653). To build the model, we 

add the month of observation (seasonality effects), economical index (unemployment rate) 

and financial indexes (credited rate, Spanish market index Ibex 35, 1Y and 10Y risk-free 

interest rates) to the same explanatory variables as in the static study. We neglect the death 

of policyholders in the portfolio when making future predictions even if they are exposed to 

this risk, since this event is sufficiently rare (about 42e− ) in our portfolio. 



32 X. MILHAUD – S. LOISEL – V. MAUME-DESCHAMPS  

 

 

Figure 7: Monthly average credited rate for Mixtos products. This credited rate 
encompasses the mean guaranteed rate, plus the mean profit benefit rate. 

 

 

Figure 8: Predictions of the portfolio surrender rate with economic indexes added in 
explanatory variables. On the left, the predictions on the learning sample and on the right 

predictions on the validation sample. 

As a matter of fact, we see on Figure 8 that the observation period has a big 

influence: the model fits quite well the data in the ``learning period'' but is a bit far from the 

reality when predicting the future, especially in 2007.   As we can see in Figures 7 and 8, it 

is rather interesting to note that the average lapsation level increases as the profit benefit is 

decreasing (2003-2004), which shows a clear relation between credited and lapse rates. The 

results seem to be acceptable except that it works very bad in extreme situations. During an 

economic crisis, financial indicators should be the main explanatory variables of surrender 

decisions. Besides, the assumptions of independence (between policyholders and dates) are 

not at all realistic when considering extreme events. Here, the beginning of the financial 
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crisis led the surrender rate of endowment products in Spain to drop in 2007, which is not 

predicted by the model and shows that the economic framework is crucial. Actually we 

realize that the model does not capture the right effects, especially concerning economy. 

This gap between predictions and observed surrender rate is certainly due to the fact 

that the user has to make an assumption when predicting: what will be the average level of 

lapsation in the coming months and years as compared to today (or a reference date)? Then 

the predicted surrender rate will be adjusted depending on this hypothesis.   Here we simply 

assume that the average level of lapsation during the learning period will stay the same in 

the validation period (2005, 2006 and 2007) and then we predict the surrender decisions of 

policyholders taking into account individual characteristics, economy and seasonality 

(introduced via the ``month'' explanatory variable). Indeed a good prediction   partially 

depends on the good choice of the future expected general level of lapsation as compared to 

today (when the date is introduced in the model): will it be higher? lower? the same? The 

conclusion is that if future economic conditions are significantly different from the past, the 

findings of the statistical predictions are often useless, which justifies why statistical 

predictions for surrender rates are not so popular in actuarial theory and practice. 

5. DISCUSSION AND IMPROVEMENTS  

The goal of this paper is to give insights on discriminant contract features and 

policyholder's characteristics regarding the surrender behavior. So what's new? 

Our study has brought out some typical risky profiles: oldest people tend to 

surrender more than others, as well as those who have a periodical premium (``annual" 

and ``bi-monthly" are the worst cases). Policyholders with low income are more likely to 

surrender their contracts: poor insureds have to pay for fees and regular premiums but they 

do not have the money for it, whereas rich people may not really pay attention to this. In 

general the biggest risks are concentrated on the first periods following the termination of a 

tax constraint: if the duration of the contract has reached the tax or penalty relief 

delay, the risk is very high. Finally, the participation of the policyholder to the benefits of 

the insurance company plays an important role in its decision, the study has shown that 

people with no profit benefit option do not surrender their contract whereas people with 

the profit benefit (PB) option tend to surrender their contract. Three reasons could explain 

it: first, people move to a new product which globally offers a higher PB, second a high PB 

in the first years of the contract enables the policyholder to overperform the initial yield and 
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could lead her to surrender the contract and recover the surrender value, third someone with 

a PB option simply receives frequent information on it and on the surrender value, which 

can prompt her to surrender. The gender of the policyholder does not seem to be 

discriminant. 

The conclusion could be that the classification predictions can be performed by 

running either the  LR model or the CART model. Risky profiles should be extracted from 

the descriptive statistics or the CART model more than from the  LR model for which the 

modeled odd-ratios are often not really significant. An idea could be to select salient 

explanatory variables with the CART procedure and Random Forest algorithm, and then 

apply the  LR model to make predictions and use odd-ratios, since we have seen that the 

results of both models were consistent and complementary. Another improvement in the  

LR model could be to re-balance the dataset (Ruiz-Gazen & Villa (2007)) which is 

extremely unbalanced in the dynamical analysis: we observe 15571 surrenders among 

991010 observations, meaning that surrenders only represent 1.57% of the whole dataset. 

We can overcome it by using downsampling or oversampling (Liu et al. (2006)), or by 

changing the decision function (here the policyholder was assigned a surrender if the 

modeled probability was over 0.5 in predictions, but this is not always optimal (Lemmens 

& Croux (2006)). 

Most of professionals know that the duration of the contract is a meaningful factor in 

explaining the surrender because of tax constraints. At underwriting, we do not have any 

information on it because the contract is newly acquired. Hence, duration as an input of the 

model enables us to get reasonable predictions of surrender rates but could not be 

considered when we want to segment the population of policyholders at underwriting. 

However this is not really a point since we just have to remove the duration in the modeling 

to segment policyholders at underwriting process. 

Besides, the results of these two segmentation models are true at a fixed date t  

(when the model is built). To improve this and take nicely into account the duration and the 

economic context, it could be preferable to use a functional data analysis, or to try some 

models used in survival analysis like the Cox model family: we could have access to the 

intensity to surrender at t dt+ , where dt  can be big. The moral hazard, the adverse 

selection and hidden variables such as the competition on the market (Albrecher et al. 

(2010)) could be considered as well, but are much more difficult to measure and collect. 

Finally, there still remains the question on how to model accurately the surrender decisions 
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in all contexts (including a disturbed one) and what kind of model to use to adjust the level 

of lapsation. Structural effects as well as the conjuncture have both to be considered when 

modeling surrender rates, which is quite a challenge since they are different by nature. It 

suggests for instance the use of two separated processes with possible jumps. 
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A. CART METHOD  

1. CHOICE OF THE COMPLEXITY PARAMETER  

rpart() prunes the tree and runs a K-fold cross validation (K=10 by default) on 

each pruned tree (we took K=10). The policyholders in the cross-validation process are 

randomly selected, thus the cptable  can slightly differ from one simulation to another. On 

Table 7, relerror  measures the learning error and describes the fit of the tree, xerror  

measures the misclassification rate in the 10-fold cross validation and is considered as a 

better estimator of the actual error. xstd  is the standard deviation of xerror . The optimal 

tree minimizes =err xerror xstd+ . If two trees have the same error err , we choose the 

smallest. Table 7 enables to plot the learning error in function of the complexity parameter 

and the size of the tree in Figure 9.  

Table  7: Complexity parameters 
CP nsplit rel error xerror xstd CP nsplit rel error xerror xstd 
3.3981e-01 0 1.000 1.000 0.0084 1.9559e-04 59 0.312 0.332 0.0060 
3.0539e-01 1 0.660 0.660 0.0077 1.8255e-04 68 0.310 0.332 0.0060 
5.9982e-03 2 0.354 0.361 0.0062 1.3040e-04 73 0.309 0.332 0.0060 
7.8237e-04 5 0.336 0.337 0.0061 1.0432e-04 82 0.308 0.332 0.0060 
5.2158e-04 10 0.331 0.333 0.0060 9.7796e-05 88 0.307 0.333 0.0060 
4.5638e-04 15 0.328 0.333 0.0060 8.6930e-05 97 0.306 0.334 0.0060 
3.9119e-04 19 0.326 0.333 0.0060 6.5198e-05 100 0.306 0.334 0.0060 
3.6945e-04 21 0.325 0.333 0.0060 4.3465e-05 117 0.305 0.337 0.0061 
3.2599e-04 32 0.319 0.333 0.0060 3.7256e-05 132 0.304 0.339 0.0061 
3.1295e-04 34 0.318 0.333 0.0060 3.2599e-05 139 0.304 0.340 0.0061 
2.6079e-04 39 0.317 0.332 0.0060 2.6079e-05 159 0.303 0.340 0.0061 
2.1733e-04 53 0.31360 0.334 0.0060 0.0000e+00 174 0.303 0.341 0.0061 

Remark 4: Notes on how to read this table:    
- the third tree with 2 splits corresponds to ]2.30,3.10]∈α  ,   

- R standardizes the error, that is why relative error of the root is equal to 1. 

The real error of the root can be obtained by printing the tree (here it is 

45.465%),   
- the maximal tree maxT  (non-pruned) returned automatically and by default 

by the function rpart() corresponds to the last line of the cptable .  
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Figure 9: The cross-validated misclassification estimator of the optimal tree in function of 
the complexity parameter cp (or α ). maxT  contains here 175 leaves and corresponds to 

= 0cp . Notice that there is an initial sharp drop of error followed by a ``flat" plateau and 

a slow rise. 

2. DEEPER IN CART THEORY 

2.1 Specification of binary rules   

Criterion 1 These rules only depend on one ``threshold" μ  and one variable lx , 

1 l d≤ ≤ :   

- ,lx ≤ ∈μ μ   in the case of an ordinal variable (if we have m distinct 

values for lx , the set of possible sections card(D) is equal to M - 1);  

- lx ∈ μ  where μ  is a subset of { 1 2, ,..., Mμ μ μ } and mμ  are the 

modalities of a categorical variable (in this case the cardinal of the 

subset D of possible binary rules is 12 1M − − ).  

2.2 What is an impurity function? 

Definition 1 An impurity function is a real function g defined over discrete 

probabilities on a finite set:  

1 2 1 2: ( , ,..., ) ( , ,..., ),J Jg p p p g p p p→  symmetric in 1p , 2p , ..., Jp  and:   

1. the maximum of g is at equiprobability: 1 2( , ,..., Jargmax g p p p ) = 

1 1 1
, ,...,

J J J
 
 
 

,  

2. the minimum of g is given by the ``dirac": 1 2( , ,..., Jargmin g p p p ) ∈  { 1,..., Je e

}, where je  is the thj  element in the canonical basis of J .  
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2.3 Existing impurity functions 

We usually consider the following functions which satisfy the concavity criterium:    

- impur(t) = - 
=1

( | )
J

j
p j t  ln( ( | ))p j t ;   

- impur(t) = ( | )
j k

p j t
≠  ( | )p k t  (Gini index)  

Remark 5: 

In a variance approach,    
- the Gini diversity index also equals to 21 jj

p−  ;   

- we also use the twoing rule, choose Δ  to maximize 

2[ | ( | ) ( | ) |]
4

L R
L Rj

p p
p j t p j t− ;   

- in a two-class problem, the Gini index reduces to 
( ) = 2 (1| ) (2 | )impur t p t p t .  

2.4 Notes on prediction error 

Formally, we can write the expression of the part of observations wrongly classed by 

the function class in function of the prediction error estimate chosen:   

- the resubstitution estimate:  

 
( , )

1
ˆ( ) = 1 0,353 1{ ( , ) }n n

x jn n

class em class x j
N ∈

− ≠
ε

τ ε  (15) 

- the test sample estimate: used as in (2):  

 
'

( , )

1
ˆ ( ) = 1 0,353 1{ ( , ) }ts

n n
x j Wn n

class em class x j
N ∈

− ≠τ ε  (16) 

- the cross-validation estimate:  

 
=1( , )

1
ˆ ( ) = 1 0,353 1{ ( , ) }

K
cv k

n n
k x jn n k

class em class x j
N ∈

− ≠ 
ε

τ ε  (17) 

Notice also that:  

 
( , )

1
ˆ[ ( )] = 1 0,353 1{ ( , ) }n n

x jn n

class em class x j
N ∈

 
− ≠ 

  


ε
τ ε   

 
( , )

1
= [ 1 0,353 1{ ( , ) }]n n

x jn n

em class x j
N ∈

− ≠
ε

ε  

 = ( ( , ) ) = ( ).P class X Y class≠ε τ  

and all presented estimators are unbiased: 
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ˆ ˆ ˆ[ ( )] = [ ( )] = [ ( )]cv tsclass class classτ τ τ    

Prediction error and misclassification error are two different concepts. 

Misclassification error is the error in nodes of the tree whereas prediction error is linked to 

the final classification of the variable of interest and is calculated once the tree is built. 

By default, R computes a cross-validation estimator of the learning error. This is the 

results given in the complexity parameter table. But this cross-validation procedure does 

not correspond to the cross-validation technique in re-sampling theory. The former 

computes the optimal tree for a given size by minimizing the learning error whereas the 

latter only aims at getting to a more realistic estimator of the prediction error but does not 

deal with the problem of finding an optimal tree. 

2.5 Penalize wrong classification 

Using the inaccurate resubstitution estimate (see A 3.) as well as selecting too large 

trees have led tree structured methods to a lot of critics. In real applications, the cost of 
misclassifying a class j  object as a class i  object is not the same for all i j≠ . A possible 

improvement could be to penalize the misclassification of an observation (as compared to 

the response observed) by a positive factor.  

Definition 2 The cost of classifying an observation in a wrong class is defined by  
 : ,C C such that+Γ × →  ( | ) 0 ( | ) = 0i j and i iΓ ≥ Γ  

Hence, let us define 

- the probability to class an observation badly by 
( | ) = ( ( , ) = | )classP i j P class x i jε  (the function class classes x in the class i 

instead of the class j),   
- ( ) = ( | ) ( | )class classi

j i j P i jΓτ : the mean cost of wrong classification,  

We get = ( )class Tτ τ  and  

 
1

( ) = ( ) ( ) = ( )class j class
j j

T j j N j
N

 τ π τ τ  

Given this new framework, Ghattas (2000) defines the new penalized classification 

function to assign a class to a terminal node t:  
 ( , ) = ( | ) ( | )

i C j C

class x argmin i j p j t
∈ ∈

Γε  (18) 

From (5), the estimation of the misclassification rate is now  
 ( ) = min ( | ) ( | )

i C
j C

r t i j p j t
∈ ∈

Γ  
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Given that ( ) = ( ) ( )t r t p tτ , the misclassification rate by substitution on the tree T is 

still  ˆ ˆ( ) = ( )
t T

T t
∈



τ τ  (19) 

Corollary 1 The tree misclassification rate estimator ˆ( )Tτ  becomes smaller each 

time a split is made, whatever the split. Thus, if we denote by sT  the tree gotten by splitting 

T  at a terminal node, we get  
 ˆ ˆ( ) ( )sT T≤τ τ  (20) 

Let Lt  and Rt  be the descendants of node t  in tree sT . 

From (6) and (7), it turns out that  
 ˆ ˆ( ) ( )

t T t Ts

t t
∈ ∈

≤ 
 
τ τ  

 ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )L R
t T t T

t t t t t
∈ ∈

− + + ≤ 
 
τ τ τ τ τ  

 ˆ ˆ ˆ( ) ( ) ( )L Rt t t+ ≤τ τ τ  (21) 

2.6 Pruning the tree  

The problem of a too complex final tree overfitting data can be easily solved. In fact 

looking for the right stopping-rule is the wrong way of looking at the problem, a more 

satisfactory procedure to get the final result consist of two key elements.   

1. Don't stop the construction of the tree (forget arbitrary stopping-rules) and get 
the largest tree maxT ; then prune it upward until the root node (the criterion to 

prune and recombine the tree upward is much more important than the splitting 

criterion);  

2. Use better estimators of the true misclassification rate to select the right sized 

tree from among the pruned subtrees. Use cross-validation or learning/test 

samples for this.  
The idea is to look for subtrees of maxT  with a minimum misclassification rate. To 

prune a branch tT  from a tree T  means to delete all descendants of node t  in T . 

The resulting pruned tree is denoted by ' = tT T T− , and ' <T T . 

From (8) we get  
 ˆ ˆ( ) ( )tt T≥τ τ  (22) 

maxT  contains so many nodes that a huge number of distinct ways of pruning up to 

the root exist, thus we need to define a criterion to select the pruning procedure which gives 

the ``best" subtree (the right-sized tree). Obviously, the natural criterion to compare same 
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sized trees is the misclassification error: the selective pruning process starts with maxT  and 

progressively prunes maxT  upward to its root node such that at each stage of pruning the 

misclassification rate of the tree is as small as possible. This work yields to a sequence of 

smaller and smaller trees: 1 2> > > ... >max rootT T T T . ( rootT  is just the root node). 

From (7), notice that: 1 1ˆ ˆ< ( ) ( )max maxT T T T ≤τ τ . The error of the maximal tree is 

always less or equal to the error of the pruned tree and the aim is to lower the number of 

leaves of maxT , thus it is natural to think about penalizing a big number of leaves in the 

final tree. That is why we introduce in the term of the error a complexity cost representing 

this idea. The new misclassification rate or cost-complexity measure is then:  

 ˆ ˆ( ) = ( ) ( ) , > 0.
complexity term

T T Card T where+



ατ τ α α  (23) 

( )Card T  is the number of terminal nodes of T . 

Actually we just want to find the substree ( ) maxT T≤α  which minimizes ( )Tατ  for 

each α :  
 ( ( )) = min ( )

T Tmax

T T
≤α ατ α τ  (24) 

For problems of existence and uniqueness of the tree ( )T α , please refer to Breiman 

et al. (1984). 

α  is clearly linked to the size of the final pruned tree; if α  is small, then the 

penalty for having a lot of leaves is small and the tree ( )T α  will be large. 

The critical cases are:    
- = 0α : each leaf contains only one observation ( maxT  very large). Every 

case is correctly classified and ( ) = 0maxTτ . maxT  minimizes 0 ( )Tτ ;   

- → +∞α : the penalty for terminal nodes is big and the minimizing subtree 

will consist in the root node only.  

Algorithm 1: To know what branches to prune off and the optimal α  associated,   

1. Let terminal nodes Lt  and Rt  be the immediate descendants of a parent node t

; starting from maxT , one looks for the division which did not lead to a decrease 

of error, i.e. where ˆ ˆ ˆ( ) = ( ) ( )L Rt t t+τ τ τ  (see(8)). Prune off Lt  and Rt , and do it 

again until no more pruning is possible. We get 1 <T T ;  

2. For 1
tT  any branch of 1T , define 1

1
ˆ ˆ( ) = ( )t

tt T
T t

∈ τ τ . According to ( ), the non 

terminal nodes t  of the tree 1T  satisfy the following property: 1ˆ ˆ( ) > ( )tt Tτ τ  (no 

equality because of step 1).  
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3. Denote by {t} the subbranch of 1
tT  consisting of the single node {t}, card({t}) = 

1. 
Hence, ˆ ˆ({ }) = ( )t t +ατ τ α  and  

 1 1 1ˆ ˆ( ) = ( ) ( )t t tT T Card T+ 
ατ τ α  (25) 

We have seen that 1ˆ ˆ( ) < ({ })tT tτ τ , but the introduction of the complexity term makes 

this inequality with α̂τ  become not always true. While 1ˆ ˆ( ) < ({ })tT tα ατ τ  it is no use to 

prune the tree, but there exists a threshold cα  such that 1ˆ ˆ( ) = ({ })t

c c
T tα ατ τ . Therefore,  

 1 1ˆ ˆ( ) ( ) = ( )t t
c cT Card T t+ +τ α τ α  

 1

1

ˆ ˆ( ) ( )
=

( ) 1

t

c t

t T

Card T

−
−

τ τα  

While < cα α , it is no use to prune off the tree at the node t , but as soon as = cα α  

pruning off the subbranch presents some interest because the error is the same and the tree 

is simpler;  
4. Do this for all t  in 1T  and choose the node t  in 1T  which minimizes this 

quantity cα . Let 1α  be cα . By pruning 1T  at the node t , we get 2 1 1= tT T T− . 

Recursively, repeat 3. and 4. with 2T , get 2α , and so on until the root node.  

Finally, we get by construction (see the critical cases) a sequence 

1 2< < ... < rootα α α  corresponding to the pruned trees 1 2> > ... > rootT T T . rootT  consists 

only on the root node. 

But what is the optimal tree in this sequence? (11) tells us that the best pruned tree is 

the one with the minimum misclassification rate. 

B. LOGISTIC REGRESSION 

1. STATIC RESULTS 

The regression coefficients, their standard error, the confidence we can have in the 

value of the coefficients and their effect are available in Table 8. The regression 

coefficients of the dynamical study are not given here, there are too many coefficients 

because the date was included in the modeling.   
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Table 8: Estimations of the logistic regression coefficients for ``Mixtos" products. With 
confidential data, modalities increasing means the variable associated also increasing. 

Coef. (var. type) 
modality : 

correspondance 
coefficient 
estimate 

std error p-value effect 

 0β  (continuous)     10.63398   1.48281   7.42e-13   > 0   

   1 : [0,12] (in 
month)  

 0 (reference)      nul  

   2 : ]12,18]   -1.31804   0.15450   < 2 16e −    < 0   
   3 : ]18,24]   -2.66856   0.14016   < 2 16e −    < 0   
   4 : ]24,30]   -2.75744   0.14799   < 2 16e −    < 0   

 durationβ    5 : ]30,36]   -3.09368   0.14294   < 2 16e −    < 0   

 (categorical)   6 : ]36,42]   -3.54961  0.15080   < 2 16e −    < 0   
   7 : ]42,48]   -3.72161  0.14980   < 2 16e −    < 0   
   8 : ]48,54]   -4.10431  0.15772   < 2 16e −    < 0   
   9 : > 54    -5.49307   0.14037   < 2 16e −    < 0   

   Monthly   0 (reference)      nul  
   Bi-monthly   0.92656   0.62071   0.135504   > 0   
   Quarterly   -0.03284   0.10270  0.749148   < 0   
 

premium frequencyβ   

 Half-yearly   -0.22055   0.16681   0.186128   < 0   

 (categorical)   Annual   0.43613   0.10690  4.51e-05   > 0   
 (in month)   Single   -0.28494   0.38155   0.455177   < 0   
   1 : [0,20[ 

(years old)  
 0 (reference)      nul  

   2 : [20,30[   0.28378   0.13912   0.041376   > 0   
   3 : [30,40[   -0.01146   0.13663   0.933163   < 0   

 underwriting ageβ    4 : [40,50[   -0.26266   0.14077  0.062054   < 0   

 (categorical)   5 : [50,60[   -0.42098   0.15136   0.005416   < 0   
   6 : [60,70[   -0.66396   0.19531  0.000675   < 0   
   7 : > 70    -0.75323   0.23417   0.001297   < 0   

   1[∗ ] :   0 (reference)      nul  

 face amountβ    2[∗ ] :   -5.79014   1.46592   7.82e-05   < 0   

 (categorical)   3[∗ ] :   -7.14918  1.46631   1.08e-06   < 0   
   1[∗ ] :   0 (reference)      nul  

 risk premiumβ    2[∗ ] :   0.36060  0.11719   0.002091   > 0   

 (categorical)   3[∗ ] :   0.26300   0.14041   0.061068   > 0   
   1[∗ ] :   0 (reference)      nul  
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 saving premiumβ    2[∗ ] :   0.93642   0.13099   8.74e-13   > 0   

 (categorical)   3[∗ ] :   1.32983   0.14955   < 2 16e −    > 0   
   PP con PB   0 (reference)      nul  

 contract typeβ    PP sin PB   -16.79213  114.05786   0.882955   < 0   

 (categorical)   PU con PB   -7.48389   1.51757   8.16e-07   < 0   
   PU sin PB   -12.43284   1.08499   < 2 16e −    < 0   
   Female   0 (reference)      nul  

 genderβ    Male   -0.08543   0.04854   0.078401   < 0   

*Note : for confidentiality reasons, the real ranges of the face amount, the risk premium and saving premium are omitted.  

2. THEORETICAL FRAMEWORK 

The main idea why the logit modeling seems to be relevant is that we want to model 

a binary event (surrender). Indeed, logistic regression analyses binomially distributed data 
of the form ( , )i i iY B n p , where in  is the number of bernoulli trials and ip  the 

probability of ``success" (surrender). If we denote by Y the variable to explain (i.e. the 

surrender decision), we have  

 
1, ,

=
0, .

if the policyholder surrenders
Y

else





 

It is now possible to adapt the logistic regression equation to our environment and 
we get p  as the probability to surrender:  

 0 0

0 0

[ = 1| = ,..., = ]
= ln

[ = 0 | = ,..., = ]
k k

k k

P Y X x X x
logit

P Y X x X x

 
 
 

 

 0 1 1= ... k kX X+ + +β β β  

Finally,  

 

1

0
=1

( ( )) = ( ( )) =

(1)
( ( )) = ( )

k

j j
j

logit p p p

logit p X

− Φ Φ Φ

Φ Φ + 


β β
 

0 =1
(1) = ( )

k

j jj
p X Φ +β β . 

This writing will help us to understand the expression of the likelihood function in B. 
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3. THE NEWTON-RAPHSON ALGORITHM  

The condition on maximizing the log-likelihood function yields to the following 

system of (k + 1) equations to solve  

 

0
=1 =10

0
=1 =1

= ( ) = 0
ˆ

= ( ( )) = 0
ˆ

n k

i k k
i j

n k

ij i k k
i jj

l
Y X

l
X Y X

∂ − Φ +∂
 ∂ − Φ +
∂

 

 

β β
β

β β
β

 

= 1,..., .j k∀  

The problem is that it is not in a closed form, we need to use an algorithm (often 

Newton-Raphson) to find its solution. In SAS and R software, the Newton-Raphson 

algorithm to solve it is included and uses the following iterative process:  

 
2

( 1) ( ) 1
'

ln( ( )) ln( ( ))
= ( ) ( )i i L L+ −∂ ∂− ×

∂∂ ∂
β ββ β

ββ β
 (26) 

When the difference between ( 1)i+β  and ( )iβ  is less than a given threshold (say 
410 )− , the iteration stops and we get the final solution. 

4. ESTIMATING THE VARIANCE MATRIX   

The variance matrix Z  of coefficients β̂  is  

 

0 0 1 0

1 0 1

0 1

ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( , )

ˆ ˆ ˆ( , ) ( )

ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( )

k

k k k

Var Cov Cov

Cov Var

Cov Cov Var

 
 
 
 
 
 
 



 
   



β β β β β

β β β

β β β β β

 (27) 

and is estimated by the inverse of the information of Fisher matrix, given by  

 
2

'

ln( ( ))
( ) = [ ].

L
I

∂−
∂ ∂

ββ
β β

  

So we have a pretty result: the latter term also appears in the Newton-Raphson 

algorithm, so we can estimate the regression coefficients and their variance matrix together. 
The maximum likelihood estimator β̂  converges and is asymptotically normally-

distributed with mean the real value of β  and variance the inverse of the Fisher matrix 

( )I β . 

The term in the expectation is called Hessian matrix and is also used in the 
significance tests of the regression coefficients β . 
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5. DEVIANCE AND TESTS  

5.1 Statistic evaluation of the regression  

To check the relevance of the model, we classically use the statistic of the log-
likelihood ratio test: the first assumption of this test is 1 2= = ... = = 0kβ β β  ( 0H ); 

And the alternative hypothesis is "at least one regression coefficient is not equal to 
0" ( 1H ). 

Now let us denote by l( β ) the log-likelihood of the logistic regression model with 

1k +  regression coefficients, and the log-likelihood of the simplest logistic regression 

model (with only the constant term associated to 0β ) by l( 0β ), the statistic of the log-

likelihood ratio is  
 0= 2 ( ( ) ( ))l lΛ × −β β  (28) 

This statistic follows a 2
kχ , a chi-square law with k degrees of freedom (d.f.). 

To conclude, if the ``p-value" is lower then the expected threshold of confidence 

(e.g. 5%), the model is globally statistically significant and 0H  is rejected. 

More intuitively, sometimes the 2R  coefficient of MC Fadden is also used: 

2

0

( )
= 1

( )

l
R

l
− β

β
. 

As one could expect, if this coefficient is closed to 0 it is because the ratio is closed 

to 1, and then the log-likelihood of the complete model is closed to the simplest model one 

which means that this is not significant to have explanatory variables. 

On the contrary, if 2R  is closed to 1 it means that there is a huge difference between 

the two model. In this case, the complete model is the best one. 

5.2 Relevance of a given explanatory variable 

The idea of this test is to compare the value of the estimated coefficient jβ  

(associated to the explanatory variable jX ) to its variance. This variance is taken from the 

Hessian matrix defined above. 
Here the first assumption is: = 0jβ  ( 0H ); 

Otherwise the alternative one is then: 0j ≠β  ( 1H ). 

We use the Wald statistic which follows a 2
1χ  to do this test: 

2ˆ
=

ˆ( )

j

jVar
Λ

β
β

. 
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Let us choose 5% as confidence threshold, and let us denote by 2
95% (1)χ  the 95% 

quantile of the chi-square law with 1 d.f. 0H  is true if the ratio is lower than this quantile, 

otherwise 1H  is confirmed. 

  

  


