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A Technical Note on the Smith-Wilson Method 
 

 

1. Introduction 
 

The Smith-Wilson technique is a macroeconomic approach: a spot (i.e. zero coupon) rate 

curve is fitted to observed prices of financial instruments, with the macroeconomic ulti-

mate long term forward rate as input parameter.1  

 

The output from the Smith-Wilson calculation is the discount factor P(t), t>0. P(t) is the 

market price at valuing time for a zero coupon bond paying 1 at some future date t (the 

maturity).  

 

Depending on whether we need the spot rates as continuously compounded rates tR
~
 or 

as rates tR  with annual compounding, the following relation between the discount factor 

and the spot rate can be used to assess the spot rates:    )exp()(
~

tRttP ⋅−= for continu-

ously compounded rates, and   )1()( -t

tRtP += for annual compounding. 

 

The relation between the two rates is )1ln(
~

tt RR += . 

 

The aim is to assess the price function P(t) for all maturities t, t > 0. From the relations 

referred to above it can be seen that therewith the whole risk-free term structure at 

valuing date is defined. 

 

In its most general form the input data for the Smith-Wilson method can consist of differ-

ent financial instruments that relate to interest rates. We will first present the formulae in 

the case where the inputs are zero coupon bond prices. The formulae in this simple case 

are quite easy to understand and straightforward to implement. Then we will present the 

formulae for the general case, where a large set of arbitrary financial instruments can be 

the input. 

 

All financial instruments specified through 

• their market price at valuation date, 

• the cash payment dates up to maturity, and 

• the size of the cash flows at these dates, 

can be input instruments for the Smith-Wilson method. 

 

In the last part of this note we will look at the input for fitting to zero coupon bond rates, 

to coupon bond rates and to par swap rates. 

 

                                           
1
 The mathematical background and a further discussion of the method can be found in the original paper by 

Andrew Smith and Tim Wilson, see Smith A. & Wilson, T. – “Fitting Yield curves with long Term Constraints” 

(2001), Research Notes, Bacon and Woodrow. (Remark: We will refer later on to an actualised version of the 

paper.) 
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We will proceed as follows: After some general remarks on extrapolation techniques in 

section 2 we list the advantages and disadvantages of the Smith-Wilson technique in 

section 3, give the formulae in section 4, apply these formulae to different input instru-

ments in section 5 and illustrate the method through two worked examples for par swap 

rates in section 6. 

 

 

2. Some general remarks 
 

Most extrapolation methods start from the price function, and assume that the price 

function is known for a fixed number of N maturities. In order to get the price function 

for all maturities, more assumptions are needed. 

 

The most common procedure is to impose – in a first step – a functional form with K 

parameters on the price function, on the spot rate curve or on the forward rate curve2. 

These functional forms could be polynomials, splines, exponential functions, or a combi-

nation of these or different other functions3. 

 

In some of the methods, in a second step, the K parameters are estimated by minimizing 

the sum of the squares of the differences between estimated data and market data at 

each point in time where market data is given. In other methods K equations are set up 

from which the K parameters are calculated. 

 

The equations are – as a rule – set up in a manner that guarantees that P has (most of) 

the features desired for a price function. The desired features are: 

• P is a positive function, 

• strictly decreasing, 

• with value 1 at time t=0, 

• passing through all given data points, 

• to a certain degree smooth, and  

• with values converging to 0 for large t. 

 

In some of the methods the term structure is estimated by using one approach for all 

maturities, in others different methods are used depending on whether spot rates are 

assessed in the liquid part or in the extrapolated part of the term structure. The most 

prominent examples of the first procedure are the Svensson method and the Nelson-

Siegel method4, where the same parametric form is used throughout the whole term 

structure. BarrieHibbert on the other hand apply splines for the liquid part and Nelson-

Siegel for the extrapolated part of the term structure. 

 

In the Smith-Wilson method the pricing function P(t), for all t>0, is set up as the sum of 

a term e-UFR·t for the asymptotical long term behavior of the discount factor and a linear 

combination of N kernel functions5 Ki(t), i=1,2,…,N (the number N of kernel functions 

being equal to the number of input instruments). 

 

The kernel functions are appropriately defined functions of the input market data and two 

input parameters: the ultimate forward rate (UFR) and a parameter (alpha) that deter-

mines how fast the estimated forward rates converge to UFR. 

                                           
2
 Svensson imposes a parametric form with 6, Nelson-Siegel one with 4 parameters. 

3
 BarrieHibbert use cubic splines for the liquid part and Nelson-Siegel for the extrapolated part. 

4
 The method used by the ECB and many other central banks, when assessing the published zero coupon rates. 

5
 The idea behind the choice of the kernel functions can be found in Smith A. & Wilson, T. – “Fitting Yield 

curves with long Term Constraints” (2001), Research Notes, Bacon and Woodrow.  
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If N input instruments are given, we know N market prices and can thus set up N linear 

equations. In most of the cases the resulting system of linear equations (SLE) can be 

solved automatically, i.e. without interfering from the outside. By plugging the solution of 

the SLE (the solution assessed for the maturities of the N input instruments) into the 

Smith-Wilson pricing function at any given time t we receive the discount function for 

maturity t. With the discount function, the spot rate curve is known. 

 

 

3. Advantages and disadvantages of the Smith-Wilson 

(S-W) method 
 

Compared to the other extrapolation methods, the main advantages can be summed up 

as follows: 

• S-W is a method in the open domain. Both the formulae and a computing tool can 

be published on CEIOPS homepage. Thus, the method is wholly transparent and 

fully accessible to all companies, at all times. 

• S-W is very flexible concerning the input, and at the same time it is very easy to 

implement. The risk-free term structure can be assessed from a choice of bonds 

(with or without coupons) or from swap rates, all by using one simple6 excel 

spreadsheet. 

• S-W can be used as a widely mechanized approach. In most cases the assessment 

of the extrapolated rates will consist in automatically applying the formulas to the 

input data, but in some situations – where the input data is biased, or where the 

linear equations that have to be solved are linearly dependent or nearly linearly 

dependent7 – judgment may still be needed. 

• S-W provides a perfect fit of the estimated term structure to the liquid market 

data. In many other methods the term structure is assessed as a smoothed curve 

that is only reasonably close to the market data8. A trade-off is often made 

                                           
6
 Especially, VBA code will not be needed, as in many companies the opening of macro code from sources out-

side the company is considered a breach of security and will not be allowed.  
7
 The system of linear equations that have to be solved can become linearly dependent or nearly linearly depen-

dent for certain input data. This will require that the user of the method has to decide to remove some of the data 

from the input in order to compute a valid solution. The function W(t,u) can be interpreted as the covariance 

function of an Integrated Ornstein Uhlenbeck yield curve model. From this follows that linear dependency can 

only occur in cases where two or more of the input instruments have the same maturity; these are cases in which 

also the other extrapolation methods will have a problem. For details see Frankland, Smith, Wilkins, Varnell, 

Holtham, Biffis, Eshun, Dullaway – “Modelling Extreme Market Values – A Report of the Benchmarking 

Stochastic Models Working Party” (2008). The paper can be downloaded at: 

http://www.actuaries.org.uk/__data/assets/pdf_file/0007/140110/sm20081103.pdf 
8
 The Svensson and Nelson-Siegel method can be used as macroeconomic methods if the parameter defining the 

flat component of the curve is taken as UFR. The other 5 (3) parameters will be determined through a least 

square optimisation. For a market with a large set of market data the estimated term structure will not fit the 

market data exactly. Another example is given by the method CRO-Forum used to assess the risk-free rates from 

par swap rates when they proposed the input for QIS5 for CEIOPS. They use a “regression spline with smooth-

ing constraints” method, the “Barrie&Hibbert standard yield curve fitting methodology”. They clarify on page 8 

of their note “QIS5 Technical Specification Risk –free interest rates” the following: “This method produces rates 

that are very close to but not exactly equal to market rates. The average absolute error is generally less than 1 

basis point.” It is not very clear whether this means that the error is assessed by first netting out positive and 

negative deviations for each currency, and so taking the average of the absolute value of these netted errors over 

all currencies. Should this be implied by what CRO-Forum writes, the fit of the term structures to the market 

data could be much worse than the 1 bps suggest. 
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between the goodness of fit and the smoothness of the term structure. In S-W all 

relevant data from the liquid market is taken as input, no smoothing is performed. 

• S-W is based on solving a linear system of equations analytically. This is an 

advantage compared to methods that are based on e.g. minimizing sums of least 

square deviations, as these are susceptible to “catastrophic” jumps when the 

least-squares fit jumps from one set of parameters to another set of quite 

different values9. This problem is due to the non-linearity in the least squares 

formula which can give rise to more than one local minimum. 

• S-W can be applied directly to the raw data from financial markets. No bootstrap-

ping or other methods are needed to transform market par swap rates into zero 

coupon bond rates, as is the case for example in the linear extrapolation method, 

where the input has to be first converted into zero coupon bond rates. 

• S-W is a uniform approach, both interpolation between the liquid market data 

points and extrapolation beyond the last data point are performed. For many 

other methods interpolation and extrapolation are done separately, often based on 

different principles and mostly using different kinds of functions for assessing the 

different parts of the curve. This can lead to inconsistencies between the inter-

polated and extrapolated part of the same curve and also to inconsistencies over 

time for each part of the curve. (If e.g. due to higher liquidity at the long end, the 

entry point for the extrapolation changes significantly from one period to the next, 

the rates for maturities between these two points in time will be assessed with 

quite different methods from one period to the next.) 

• In S-W the ultimate forward rate will be reached asymptotically10. How fast the 

extrapolated forward rates converge to the UFR will depend on how the rates in 

the liquid part of the term structure behave and on an exogenous parameter 

alpha. For higher alpha the extrapolated forward rates converge faster to the UFR, 

i.e. the market data from the liquid part of the curve are of less impact for the 

extrapolated rates. 

 

Some of the disadvantages of the Smith-Wilson approach: 

• The parameter alpha has to be chosen outside the model. Thus, in general, expert 

judgment would be needed to assess this input parameter for each currency and 

each point in time separately. In order to have a harmonized approach over all 

currencies in Solvency II we will for all currencies use the Smith-Wilson approach 

with the parameter alpha starting at 0.111. If this alpha is not appropriate for the 

currency it is applied to, we will increase it iteratively, until it is deemed – based 

on given criteria – to be appropriate. A lot more work needs to be done here to 

develop objective criteria for setting the alpha, in order to avoid that expert judg-

ment is needed in all these cases. 

• There is no constraint forcing the discount function P(t) to decrease. In the liquid 

part of the assessed term structure we could have cases where P(t) is a decreas-

ing function on the given liquid market data points, but becomes a locally 

                                           
9
 For a thorough discussion of these problems see Andrew J. G. Cairns – “Descriptive Bond-Yield and Forward-

rate models for the British Government Securities’ Market” (1997). 

The paper can be found at http://www.ma.hw.ac.uk/~andrewc/papers/ajgc11.pdf  
10

 Introducing the maturity T2 as the maturity where the UFR is reached literally can be avoided if the S-W out-

come is no longer compared to the linear extrapolation outcome. 
11

 Larger values of alpha give greater weight to the ultimate forward rate, while smaller values of alpha give 

more weight to the liquid market data. More work has to be done in order to see if a lower value of alpha than 

0.1 could be more appropriate as starting value, as the resulting curves could be deemed to be more objective and 

market consistent. 
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increasing function on the interpolated curve. This can happen if a smooth curve 

is fitted between two neighboring market data points for which the P(t) values are 

quite near12. Many other methods would have the same problem here. 

• Beyond the liquid part of the curve, P(t) may become negative. This situation can 

arise when the last forward rate in the liquid part of the curve is high compared to 

the sum of UFR and alpha. This is a disadvantage of S-W compared e.g. to para-

metric methods, as parametric methods often are based on formulas for the spot 

rate which per definition can not produce negative discount functions. If for cer-

tain sets of input market data P(t) will become negative, one has to take higher 

alphas. This procedure will have to be based on expert judgment. 

 

 

4. The Smith-Wilson technique 
 

We will now explain how the term structure can be assessed by using the S-W technique. 

 

Smith-Wilson technique for zero coupon bond prices as input 
 

We start by assuming that in the liquid part of the term structure the price function is 

known for a fixed number of N maturities: u1, u2, u3, up to uN. This is the same as saying 

that the risk-free zero coupon rates for these N liquid maturities are given beforehand. 

 

Depending on whether the market data spot rates are given as continuously compounded 

rates 
iuR

~
or as rates 

iuR with annual compounding, the input zero bond prices at maturi-

ties uj can be expressed as: 

 

           )exp()(
~

iuiii RuuPm ⋅−== for continuously compounded rates, and 

 

          )1()( i-u

iuii RuPm +== for annual compounding. 

 

In this case, where zero coupon bond prices are the input, the task consists in assessing 

the price function, i.e. the spot rates for the remaining maturities. These can be both 

maturities in the liquid end of the term structure where risk-free zero coupon rates are 

missing (interpolation) and maturities beyond the last observable maturity (extrapola-

tion). 

 

The pricing function proposed by Smith and Wilson13 reduces in this simple case to: 

 

 

      0     t),,()(
1

∑
=

⋅− ≥⋅+=
N

j

jj

tUFR
utWetP ζ  (1) 

 

                                           
12

 As an example P(0)=1, P(1)=0.95001, P(2)=0.95000, P(3)=0.9, and so on. When we fit a smooth curve 

through this points we will for large alpha get a curve between P(1) and P(2) that will bend down (i.e. 

P(t)<P(2)=0.95 for some 1<t<2) because of the enforced smooth continuation of the fit between P(0) and P(1). 
13

 Smith A. & Wilson, T. – “Fitting Yield curves with long Term Constraints” (2001), Research Notes, Bacon 

and Woodrow. Referred to in Michael Thomas, Eben Maré: “Long Term Forecasting and Hedging of the South 

African Yield Curve”, Presentation at the 2007 Convention of the Actuarial Society of South Africa. 

   Andrew Smith: Pricing Beyond the Curve – derivatives and the Long Term (2001), presentation to be found at 

http://www.cfr.statslab.cam.ac.uk/events/content/20001/asmith2001.pdf 
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With the symmetric Wilson W(t, uj) functions defined as: 

{ }     )(5.0),min(),(
),min(),min(),max()( jjjj ututut

j

utUFR

j eeeuteutW
⋅−⋅⋅−+⋅−

−⋅⋅−⋅⋅=
ααα

α
  (2) 

 

The following notation holds: 

    – N, the number of zero coupon bonds with known price function 

    – mi, i=1, 2, … N, the market prices of the zero coupon bonds 

    – ui, i=1, 2, … N, the maturities of the zero coupon bonds with known prices 

    – t, the term to maturity in the price function 

    – UFR, the ultimate unconditional forward rate, continuously compounded 

    – α, mean reversion, a measure for the speed of convergence to the UFR 

    – ζi, i=1, 2, … N, parameters to fit the actual yield curve 

 

The so called kernel functions Kj(t) are defined as functions of the maturity t:  

 

 0  t),,()( >= jj utWtK  and  j=1,2,3,…,N  (3) 

 

They depend only on the input parameters and on data from the input zero coupon 

bonds. For each input bond a particular kernel function is computed from this definition. 

The intuition behind the model is to assess the function P(t) as the linear combination of 

all the kernel functions. This is similar to the Nelson-Siegel method, where the forward 

rate function is assessed as the sum of a flat curve, a sloped curve and a humped curve, 

and the Svensson method, where a second humped curve is added to the three curves 

from Nelson-Siegel. 

 

The unknown parameters needed to compute the linear combination of the kernel func-

tions, ζj, j=1, 2, 3 … N, are given as solutions of the following linear system of equations: 

 

∑

∑

∑

=

⋅−

=

⋅−

=

⋅−

⋅+==

⋅+==

⋅+==

N

j

jNj

uUFR

NN

N

j

jj

uUFR

N

j

jj

uUFR

uuWeuPm

uuWeuPm

uuWeuPm

N

1

1

222

1

111

),()(

..................................................................

              ),()(

),()(

2

1

ζ

ζ

ζ

    (4) 

 

In vector space notation this becomes:  

 

,Wζµpm +==   (5) 

 

with: 

 ,))(),.......(),((

,),.......,,(

21

21

T

N

T

N

uPuPuP

mmm

=

=

p

m
 

 

,),....,( 21 TuUFRuUFRuUFR Neee
⋅−⋅−⋅−=µ  
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 ,),...,(ζ T

N21 ζζζ=  

 

where the superscript T denotes the transposed vector and 

 

NjNiji uuW ,...2,1;,...2,1)),(( ===W  is a NxN-matrix of certain Wilson functions. 

 

It follows from (5) that the solution ζ = (ζ1, ζ2, ζ3, …, ζN)
T is the product of the inverted 

NxN-matrix W and the difference between the p-vector and the µ-vector (i.e. the 

difference between the market prices of the zero coupon bonds and the asymptotical 

term), that is: 

 

          ),()( 11 µmWµpWζ −=−= −−
      (6) 

 

We can now plug these parameters (i.e. ζ1, ζ2, ζ3, …, ζN) into the pricing function and get 

the value of the zero coupon bond price for all maturities t for which no zero coupon 

bonds prices are given to begin with: 

 

∑
=

⋅− ⋅+=
N

j

jj

tUFR
utWetP

1

),()( ζ ,  t>0  (7) 

 

From this value it is straightforward to calculate the spot rates by using the definition of 

the zero coupon bond price. The spot rates are calculated as )
)(

1
ln(

1~

tPt
Rt ⋅= for continuous 

compounded rates and 1

1

)
)(

1
( −= t

t
tP

R  if annual compounding is used. 

 

 

Smith-Wilson technique for a set of general inputs 

 

We now assume that we have N interest related financial instruments as input from the 

liquid part of the term structure and that J is the number of different dates at which a 

cash payment has to be made on behalf of at least one of these instruments. The follow-

ing input shall be given:  

• The market prices mi of the instruments i at valuation date, for i=1,2,3,…,N. 

• All cash payment dates u1, u2, u3, …, uJ, for the instruments. 

• The cash flows ci,1, ci,2, ci,3, …, ciJ that are due for instrument i at time u1, u2, …uJ, 

for all i. (If no cash payment is due at time t = uj on instrument i, then ci,j is set to 

nil). 

 

The general pricing function at valuing time proposed by Smith and Wilson14 is: 

 

           0     t),),(()(
1 1

,∑ ∑
= =

⋅− ≥⋅⋅+=
N

i

J

j

jjii

tUFR
utWcetP ζ    (8) 

 

                                           
14

 Smith A. & Wilson, T. – “Fitting Yield curves with long Term Constraints” (2001), Research Notes, Bacon 

and Woodrow. Referred to in Michael Thomas, Eben Maré: “Long Term Forecasting and Hedging of the South 

African Yield Curve”, Presentation at the 2007 Convention of the Actuarial Society of South Africa. 
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with the symmetric Wilson-functions W(t, uj) defined as in (2) above and the same 

notation for t, UFR, α and ζi as was given for the zero coupon case. 

 

The function defined by the inner parenthesis in (8) is called the kernel functions Ki(t): 

 

           1,2,3,...Ni , 0  t,),()(
1

, =>⋅=∑
=

J

j

jjii utWctK     (9) 

 

For each input instrument a particular kernel function is computed. The intuition here is 

to assess the function P(t) as the linear combination of all the kernel functions. 

 

In the simple case, where the zero coupon prices P(ui) for certain maturities are given as 

market price input mi, i.e. where mi equals P(ui) for i=1,2,3,…,N, the left side of the 

linear system of equations (LSE) in (1) is known and it was straightforward to compute 

the ζi from this LSE. In the general case we have the market prices mi of the instru-

ments, but the zero coupon prices P(ui) are not known. 

 

We do know how to assess the market price of an instrument i if all cash payment dates 

u1, u2, u3, …, uJ for the instrument, the cash flows ci,1, ci,2, ci,3, …, ciJ at times u1, u2, …uJ, 

and the discount factors P(uj), j=1,2,3,…,J, are known. Then we have to discount the 

cash flows ci,j to the valuation date (i.e. multiply ci,j with P(uj) and sum over all cash flow 

dates). 

 

             ....N 1,2,3,i  ,)(
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, =⋅=∑
=

J

j

jjii uPcm      (10) 

 

In the above relation, we know the market prices mi and the cash flows ci,j.  

 

We set the definition of the price function for P(uj) (8) into relation (10) and get the LSE:  
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We can rearrange the above expressions to get:  
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In vector space notation we write the left side of (11) as: 

 

                             ,Cpm =        (13) 

 

and (12) as: 
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the JxJ matrix of certain Wilson functions. 

 

Combining (13) and (14) leads to:  

 

        ,)ζ(CWCCµm T+=        (15) 

 

and we see at once that the solution ζ1, ζ2, ζ3, … ζN is calculated by inverting the NxN-

matrix CWCT and multiplying it with the difference of the market value vector and the 

vector assessed as product of matrix C with the µ-vector, the asymptotical term: 

 



 

 10 

     )     Cµ(m)(CWCζ 1T −= −
      (16) 

 

Now we can plug these parameters ζ1, ζ2, ζ3, … ζN for t= 1,2,3,… into the pricing function 

P(t) and get the value of the discount function for all maturities, and thus the term 

structure for the spot rates. 

 

Remark: When using swap rates to fit the risk-free term structure, an adjustment to 

allow for the credit risk in swaps has to be made. Assuming that the adjustment can be 

expressed as a delta credit risk spread of ∆cr basis points of swaps above basic risk-free 

rates, it seems adequate to use one of two following adjustments: 

1. Adjust the continuously compounded spot rates with ∆cr basis points. This means 

that ∆cr basis points are subtracted from the continuously compounded spot 

rates, which were assessed with the S-W technique from the unadjusted swaps. 

This is equivalent to multiplying the discount factors P(t) (assessed from un-

adjusted swaps), with an adjustment factor e(∆cr/10000)·t. 

2. Adjust the input data with ∆cr basis points. This means that ∆cr basis points are 

subtracted from the raw par swap rates. These adjusted rates are then used to 

assess the spot rates with the S-W technique. 

 

 

5. Fitting the spot rate term structure to bond prices 

and swap rates 
 

With the Smith-Wilson technique the term structure can be fitted to all the different 

financial instruments that may be eligible as basis for assessing the risk-free interest rate 

curve. 

 

Each set of instruments that is taken as input is defined by  

• the vector of the market prices (of N instruments) at valuation date,  

• the vector of the cash payment dates (J different dates) up to the last maturity, 

and  

• the NxJ-matrix of the cash flows on the instruments in these dates.  

 

We will now look at this input when the spot rate curve is fitted to zero coupon bond 

rates, to coupon bond rates and to par swap rates. We will furthermore give some simple 

computed examples for par swap rates as input. 
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Instruments Market prices Cash payment dates Cash flow matrix 

Zero coupon 

bonds 

• Market prices of 

the N input 

instruments, 

given as the per 

cent amount of 

the notional 

amount 

• The market 

prices of the 

zero coupon 

input bonds 

translate at 

once into spot 

rates for input 

maturities  

• The cash payment 

dates are the 

maturity dates of 

the N zero coupon 

input bonds (i.e. 

J=N) 

• An NxN matrix with 

entries: 

- ci,j =1 for i=j, and 

- ci,j =0 else. 

• Remark: The C matrix 

reduces to the unity 

matrix. It can easily be 

seen that all the 

complex formulae 

given in (8,9,11,16) 

reduce to the simpler 

ones in (1,3,4,6). 

Coupon 

bonds 

• Market prices of 

the N coupon 

input bonds, 

given as the per 

cent amount of 

the notional 

amount of the 

bond. 

• The cash payment 

dates are, in 

addition to the 

maturity dates of 

the input bonds all 

coupon dates.  

• Order these J cash 

payment dates in 

increasing order, 

i.e. u1 <u2< …<uJ 

• Order the bonds 

depending on their 

time to maturity, 

such that if the 

time of maturity of 

the ith bond is 

denominated with 

ut(i), the following 

holds: ut(1) <ut(2) 

…<ut(N) =uJ  

• An NxJ matrix with the 

following entries (all i): 

- ci,j =rc(i)/s, j<t(i) 

- ci,t(i) =1+rc(i)/s, 

- ci,j =0, j>t(i), 

where rc(i) is the 

coupon rate of ith bond, 

and s is the settlement 

frequency. 

• Remark: We propose 

to take the simple 

approach, and to not 

allow for day count 

details 
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Instruments Market prices Cash payment dates Cash flow matrix 

Par swap 

rates 

• The market 

prices of the N 

par swap input 

instruments are 

taken as unit 

(i.e. 1). 

• To receive the 

swap rate, a 

floating rate has 

to be earned, 

that can be 

swapped 

against the 

fixed rate. To 

earn the 

variable rate a 

notional amount 

has to be 

invested. At 

maturity, the 

notional amount 

is de-invested.  

• The cash payment 

dates are, in 

addition to the 

maturity dates of 

the swap 

agreements all 

swap rate 

payment dates.  

• Order these J cash 

payment dates in 

increasing order, 

i.e. u1 <u2< …<uJ 

• Order the swaps 

depending on their 

time to maturity, 

such that if the 

time to maturity of 

the ith swap is 

denominated with 

ui,t(i), the following 

holds: u1,t(1) 

<u2,t(2) …<uN,t(N) 

=uJ 

• An NxJ matrix with the 

following entries (all i):  

- ci,j =rc(i)/s, j<t(i) 

- ci,t(i) =1+rc(i)/s, 

- ci,j =0, j>t(i), 

where rc(i) is the swap 

rate of agreement i, 

and s is the settlement 

frequency. 

 

• Remark: We propose 

to take the simple 

approach, and to not 

allow for day count 

details. 
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6. Worked examples 
 

When fitting the spot rate term structure to the input data from the following examples, 

we set the long term forward rate to 4.2% (for annual compounding; i.e. ln(1+0.042) = 

0.04114 or 4.114% for continuous compounding), and the alpha parameter to 0.1. 

 

Example 1 
 

Market data input for example 1 

 

Par swap 

rates  

Market 

prices 
Cash payment dates 

Transposed cash flow matrix 

CT (i.e. cash flows of 

instrument i in column i) 

 

Maturities: 

1,2,3,5 years 

 

s=1  

 

coupon rates 

rc(1) 1% 

rc(2) 2% 

rc(3) 2.6% 

rc(5) 3.4%  

 

 

i mi 

1 1 

2 1 

3 1 

4 1  

 

 

• u1 =1, u2=2, u3=3, 

u4=4, u5=5 

• u1,t(1) =1, u2,t(2) =2, 

u3,t(3) =3, u4,t(4) =5 

 

 

 1 2 3 4 

u1 1.01 0.2 0.026 0.034 

u2 0 1.02 0.026 0.034 

u3 0 0 1.026 0.034 

u4 0 0 0 0.034 

u5 0 0 0 1.034  

    

 

 

The steps in the S-W technique 

 

The 5x5 matrix of Wilson functions is computed straightforward from formula (2): 

 























=

0.122  0.104  0.083  0.058  0.031

  0.104  0.090  0.072  0.051  0.027

  0.083  0.072  0.058  0.041  0.022

0.058  0.051  0.041  0.030  0.016

0.031  0.027  0.022  0.016  0.009

W   

 

If multiplied with C from the right and CT from the left, the resulting 4x4 matrix is: 

 



















=

0.150  0.097  0.067  0.035

  0.097  0.065  0.045  0.023

  0.067  0.045  0.032  0.017

  0.035  0.023  0.017  0.009

T
CWC  

 

The inverse of this matrix CWCT is computed as: 
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( )


















=

426.6      1323.2-    1116.2       268.0-    

  1323.2-    6252.3     7987.5-     3653.0    

1116.2      7987.5-   7.6 1433     10190.4-

  268.0-     3653.0     10190.4-   10658.6  

1-T
CWC  

 

We first multiply the cash flows in C with the vector µ of the asymptotic terms, and then 

subtract this vector from the vector of the market values: 

 



















=



















−



















=

0.035

0.044

0.041

0.031

  0.965

0.956

0.959

0.969

1

1

1

1

 Cµ-m   

 

Multiply (CWCT)-1 with m-µ. The resulting vector represents the solution of the LSE that 

was set up in (15): 

 



















=

5.47-

111.40

33.5-

57.79

 ζ  

 

To assess the discount function P(t) in arbitrary t, t>0, the Wilson functions W(t,uj), 

j=1,2,3…J have to be assessed and multiplied with C, as defined in (8). We want to 

compute the discount factor for t=4, and calculate therefore wT = (W(4,uj))j=1,2,3,4,5  

 

[ ]0.104   0.090   0.072    0.051   0.27=Tw   

 

This vector multiplied with CT gives the values of the kernel functions in t=4, i.e.: 

 

[ ]0.116   0.076   0.052   0.027)(K
1,2,3,4i

(4)i ==
=

TTCw  

 

From the linear combination of these kernel functions we get: 

 

0.037=)ζC(w TT
 

 

and adding the asymptotical factor =×− 404114.0
e 0.8483, the discount function at maturity 4 

years has the value P(4)= 0.848+0.037=0.885. This gives a spot rate (with annual com-

pounding) of 3.10%. 

 

We can table the Wilson functions for all maturities (years, month, days) for which risk-

free spot rates will be needed, perform the above calculation for each maturity, and thus 

assess the risk-free interest rate term structure. 
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Example 2 

 

Market data input for example 2 

 

Par swap 

rates 

Market 

prices 
Cash payment dates 

Transposed cash flow matrix 

CT (i.e. cash flows of 

instrument i in column i) 

 

Maturities: 

1,2,3,5 years 

 

s=1  

 

coupon rates 

rc(1) 1% 

rc(2) 2% 

rc(3) 2.6% 

rc(5) 3.4%  

 

i mi 

1 1 

2 1 

3 1 

4 1  

 

• u1=0.25, u2=0.5, 

u3=0.75, u4=1, 

u5=1.25, ……. 

u19=4.75, u20=5,  

• u1,t(1) =1, u2,t(2) =2, 

u3,t(3) =3, u4,t(4) =5 

 

 1 2 3 4 

u1 0.0025 0.005 0.0065 0.0085 

u2 0.0025 0.005 0.0065 0.0085 

u3 0.0025 0.005 0.0065 0.0085 

u4 1.0025 0.005 0.0065 0.0085 

u5 0 0.005 0.0065 0.0085 

u7 0 0.005 0.0065 0.0085 

u8 0 1.005 0.0065 0.0085 

u9 0 0 0.0065 0.0085 

.. 0 0 … … 

u19 0 0 0 0.0085 

u20 0 0 0 1.0085  
    

 

 

The steps in the S-W technique 

 

The 20x20 matrix of Wilson functions is computed straightforward from formula (2): 

 

 

 

 

 

 

 

 

W = [                                                                                                                  ] 

 

 

 

 

 

 

 

If multiplied with C from the right and CT from the left, the resulting 4x4 matrix is: 

 



















=

0.1470.0950.0660.034

0.0950.0630.0440.023

0.0660.0440.0310.016

0.0340.0230.0160.009

T
CWC  

 

The inverse of this matrix CWCT is computed as: 

 

0.001 0.001 0.002 0.002 0.003 0.003 0.004 0.004 0.005 0.005 0.005 0.006 0.006 0.006 0.007 0.007 0.007 0.007 0.008 0.008 

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.011 0.011 0.012 0.013 0.013 0.014 0.014 0.015 0.015 0.016 

0.002 0.003 0.005 0.007 0.008 0.009 0.011 0.012 0.013 0.014 0.016 0.017 0.018 0.019 0.019 0.020 0.021 0.022 0.023 0.023 

0.002 0.004 0.007 0.009 0.011 0.012 0.014 0.016 0.018 0.019 0.020 0.022 0.023 0.024 0.026 0.027 0.028 0.029 0.030 0.031 

0.003 0.005 0.008 0.011 0.013 0.015 0.017 0.020 0.022 0.023 0.025 0.027 0.029 0.030 0.032 0.033 0.034 0.036 0.037 0.038 

0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.023 0.026 0.028 0.030 0.032 0.034 0.036 0.037 0.039 0.041 0.042 0.044 0.045 

0.004 0.007 0.011 0.014 0.017 0.021 0.024 0.027 0.029 0.032 0.034 0.037 0.039 0.041 0.043 0.045 0.047 0.049 0.050 0.052 

0.004 0.008 0.012 0.016 0.020 0.023 0.027 0.030 0.033 0.036 0.039 0.041 0.044 0.046 0.049 0.051 0.053 0.055 0.057 0.058 

0.005 0.009 0.013 0.018 0.022 0.026 0.029 0.033 0.036 0.040 0.043 0.046 0.049 0.051 0.054 0.056 0.059 0.061 0.063 0.065 

0.005 0.010 0.014 0.019 0.023 0.028 0.032 0.036 0.040 0.043 0.047 0.050 0.053 0.056 0.059 0.062 0.064 0.067 0.069 0.071 

0.005 0.011 0.016 0.020 0.025 0.030 0.034 0.039 0.043 0.047 0.051 0.054 0.058 0.061 0.064 0.067 0.070 0.072 0.075 0.077 

0.006 0.011 0.017 0.022 0.027 0.032 0.037 0.041 0.046 0.050 0.054 0.058 0.062 0.065 0.069 0.072 0.075 0.078 0.080 0.083 

0.006 0.012 0.018 0.023 0.029 0.034 0.039 0.044 0.049 0.053 0.058 0.062 0.066 0.070 0.073 0.077 0.080 0.083 0.086 0.089 

0.006 0.013 0.019 0.024 0.030 0.036 0.041 0.046 0.051 0.056 0.061 0.065 0.070 0.074 0.078 0.081 0.085 0.088 0.091 0.094 

0.007 0.013 0.019 0.026 0.032 0.037 0.043 0.049 0.054 0.059 0.064 0.069 0.073 0.078 0.082 0.086 0.089 0.093 0.096 0.099 

0.007 0.014 0.020 0.027 0.033 0.039 0.045 0.051 0.056 0.062 0.067 0.072 0.077 0.081 0.086 0.090 0.094 0.097 0.101 0.104 

0.007 0.014 0.021 0.028 0.034 0.041 0.047 0.053 0.059 0.064 0.070 0.075 0.080 0.085 0.089 0.094 0.098 0.102 0.105 0.109 

0.007 0.015 0.022 0.029 0.036 0.042 0.049 0.055 0.061 0.067 0.072 0.078 0.083 0.088 0.093 0.097 0.102 0.106 0.110 0.113 

0.008 0.015 0.023 0.030 0.037 0.044 0.050 0.057 0.063 0.069 0.075 0.080 0.086 0.091 0.096 0.101 0.105 0.110 0.114 0.118 

0.008 0.016 0.023 0.031 0.038 0.045 0.052 0.058 0.065 0.071 0.077 0.083 0.089 0.094 0.099 0.104 0.109 0.113 0.118 0.122 
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( )


















=

 437.4-1353.71139.6272.7-   

-1353.76381.5-8136.83708.9    

1139.6-8136.814579.010328.0-

-272.73708.9-10328.010765.8  

1-T
CWC  

 

We first multiply the cash flows in C with the vector µ of the asymptotic terms, and then 

subtract the vector from the vector of the market values: 

 



















=



















−



















=





































































⋅−



















=

0.033

0.043

0.041

0.031

0.967

0.957

0.959

0.969

1

1

1

1

0.8141

0.8225

0.8310

0.8396

0.8483

0.8570

0.8659

0.8748

0.8839

0.8930

0.9023

0.9116

0.9210

0.9305

0.9402

0.9499

0.9597

0.9696

0.9796

0.9898

1

1

1

1

 CCµ-m

  

 

Multiply (CWCT)-1 with m-µ. The resulting vector represents the solution of the LSE that 

was set up in (14):  

 



















=

5.7-  

    11.8   

    34.1- 

    58.6  

 ζ  

 

To assess the discount function P(t) in arbitrary t, t>0, the Wilson functions W(t,uj), 

j=1,2,3…20 have to be assessed and multiplied with C, as defined in (7). We want to 

compute the discount factor for t=4. We calculate wT=(W(4,uj))j=1,2,3,..20 , multiply it with 

CT and get the values of the kernel functions for t=4, i.e.: 
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[ ]0,115   0,075   0,052   0,027)(K
1,2,3,4i

(4)i ==
=

TTCw  

 

From the linear combination of these kernel functions we get   

 

0.0353=)ζC(w TT
 

 

and adding the asymptotical factor =×− 404114.0
e 0.8483, the discount function at maturity 4 

years has the value P(4) = 0.0353 +0.8483=0.8836. This gives a spot rate (with annual 

compounding) of 3.141%. 

 

 


