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ABSTRACT

In this article, we consider the evolution of the post-age-60 mortality curve
in the United Kingdom and its impact on the pricing of the risk associated
with aggregate mortality improvements over time: so-called longevity risk.
We introduce a two-factor stochastic model for the development of this curve
through time. The first factor affects mortality-rate dynamics at all ages in
the same way, whereas the second factor affects mortality-rate dynamics
at higher ages much more than at lower ages. The article then examines
the pricing of longevity bonds with different terms to maturity referenced
to different cohorts. We find that longevity risk over relatively short time
horizons is very low, but at horizons in excess of ten years it begins to pick
up very rapidly.

A key component of the article is the proposal and development of a method
for calculating the market risk-adjusted price of a longevity bond. The pro-
posed adjustment includes not just an allowance for the underlying stochas-
tic mortality, but also makes an allowance for parameter risk. We utilize the
pricing information contained in the November 2004 European Investment
Bank longevity bond to make inferences about the likely market prices of the
risks in the model. Based on these, we investigate how future issues might
be priced to ensure an absence of arbitrage between bonds with different
characteristics.
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INTRODUCTION

Recently, it has become clear that mortality is a stochastic process: longevity has not
only been improving, but it has been improving, to some extent, in an unpredictable
way. These unanticipated improvements have proved to be of greatest significance at
higher ages, and have caused life offices (and pension plan sponsors in the case where
the plan provides the pension) to incur losses on their life annuity business. The prob-
lem is that pensioners are living much longer than was anticipated, say, twenty years
ago. As a result, life offices are paying out for much longer than was anticipated, and
their profit margins are being eroded in the process. The insurance industry is there-
fore bearing the costs of unexpectedly greater longevity. Looking forward, possible
changes in lifestyle, medical advances, and new discoveries in genetics are likely to
make future improvements to life expectancy highly unpredictable as well. This, in
turn, will lead to smaller books of life annuity business, smaller profit margins, or
both.

There are a number of possible types of systematic, mortality-related risks that annuity
providers and life insurers are exposed to. For the sake of clarity, in this article we will
use the following conventions.

� The term mortality risk should be taken to encompass all forms of uncertainty in
future mortality rates, including increases and decreases in mortality rates.

� Longevity risk should be interpreted as uncertainty in the long-term trend in mor-
tality rates and its impact on the long-term probability of survival of an individual.
Longevity risk is normally taken to mean the risk that survival rates are higher than
anticipated, although we strictly take it to mean uncertainty in either direction.

� Short-term, catastrophic mortality risk should be interpreted as the risk that, over short
periods of time, mortality rates are much higher (or lower) than would normally be
experienced. Examples of such “catastrophes” include the influenza pandemic in
1918 and the tsunami in December 2004. Once the catastrophe has past, we expect
mortality rates to revert to their previous levels and to continue along previous
trends.1

The idea of using the capital markets to securitize and trade specific insurance risks is
relatively new, and picked up momentum in the 1990s with a number of securitizations
of non-life insurance risks (see, for example, Lane, 2000). December 2003 saw the issue
by Swiss Re of the first bond to link payments to mortality risk: specifically short-term,
catastrophic mortality risk. A related capital market innovation, the longevity bond,
provides life offices and pension plans with an instrument to hedge the much-longer-
term longevity risks that they face. The idea for longevity bonds was first published
in the Journal of Risk and Insurance in 2001.2 Longevity bonds are annuity bonds whose
coupons are not fixed over time, but fall in line with a given survivor index.3 For

1 Note that long-term trends in mortality might, however, be affected by certain types of
catastrophe. For example, survivors of a severe outbreak of influenza might be weakened in
some way and more prone in the future to heart disease or cancer. In this sense, catastrophic
mortality events might be correlated with long-term trends.

2 Blake and Burrows (2001). See also Cox, Fairchild, and Pedersen (2000).
3 For this reason they are also known as survivor bonds (e.g., Blake, and Burrows, 2001).
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example, the survivor index might be based on the population of 65-year olds alive
on the issue date of the bond. Each year the coupon payments received by the life
office or pension plan decrease by the percentage of the population who have died
that year. If, after the first year, 1.5% of the population of what are now 66-year olds
have died, then the coupon payable at the end of that first year will fall to 98.5% of the
nominal coupon rate. But this is exactly what the life office or pension plan wants, since
only 98.5% of their own 66-year-old annuitants (assuming these are representative of
reference population) will be alive after one year, so they do not have to pay out so
much.

In November 2004, BNP Paribas (in its role as structurer and manager) announced
that the European Investment Bank (EIB) would issue a longevity bond. The bond
had an initial market value of about £540m and a maturity of twenty-five years. Its
coupon payments were to be linked to a survivor index based on the realized mortality
experience of a cohort of males from England & Wales aged 65 in 2003 as published
by the UK Office for National Statistics (ONS). The intended main investors were UK
pension funds and life offices.4 Although this issue was ultimately unsuccessful, there
are important issues to be learned about how to price such contracts (an issue which
we discuss at length in this article) and about design issues (which are discussed
elsewhere: see, for example, Blake, Cairns, and Dowd, 2006).

The basic cashflows under the EIB/BNP longevity bond, ignoring credit risk, are de-
scribed in Appendix A. Our article focuses on the mathematical modelling that under-
pins the pricing of mortality-linked securities. For a full discussion of the EIB/BNP
bond as well as other types of mortality-linked security, the reader is referred to
Cowley and Cummins (2005), Cairns, et. al. (2005), and Blake, Cairns, and Dowd
(2006).

A variety of approaches have been proposed for modelling the randomness in aggre-
gate mortality rates over time. A key earlier work is that of Lee and Carter (1992).
Their work focuses on the practical application of stochastic mortality and its statis-
tical analysis. Aggregate mortality rates are, at best, measured annually and for this
reason Lee and Carter (1992) and later authors who adopted a similar approach (see,
for example, Brouhns, Denuit, and Vermunt, 2002; Renshaw and Haberman, 2003;
Currie, Durban, and Eilers, 2004) worked in discrete time. Models following the ap-
proach of Lee and Carter typically adapt discrete-time time series models to capture
the random element in the stochastic development of mortality rates. Other authors
have developed models in a continuous-time framework (see, for example, Milevsky
and Promislow, 2001; Dahl, 2004; Dahl and Møller, 2005; Miltersen and Persson, 2005;
Biffis, 2005; Schrager, 2006). For further discussion and a review of previous work, the
reader is referred to Cairns, Blake, and Dowd (2006).

Continuous-time models have an important role to play in our understanding of how
prices of mortality-linked securities will develop over time. However, the relative

4 The Swiss Re mortality bond and the EIB longevity bond were the first to trade mortality risk
exclusively. However, there have been previous issues of securities that packaged together
several risks including mortality. The motivation for the issue of these securities goes beyond
a desire purely to hedge mortality risk. A full discussion of these securities can be found in
Cowley and Cummins (2005).
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intractability at the present time of such models is hindering their practical imple-
mentation. In this article, practical implementation of a model and statistical analysis
are very much at the forefront of what we wish to achieve. Consequently, we choose
to develop a model in discrete time and adopt an approach that is similar in vein to
that of Lee and Carter (1992).

We propose a stochastic mortality model that we fit to UK mortality data and
show how the calibrated model can be used to price mortality-linked financial in-
struments such as the EIB/BNP longevity bond. The model involves two stochas-
tic factors. The first affects mortality at all ages in an equal manner, whereas the
second has an effect on mortality that is proportional to age. We present em-
pirical evidence that indicates that both these factors are needed to achieve a
satisfactory empirical fit over the mortality term structure (that is, to model ad-
equately historical mortality trends at different ages). The resulting model dy-
namics allow us to simulate cohort survival rates, thereby enabling us to model
longevity risk, and to model other indices underlying alternative mortality-linked
securities.

To price a mortality-linked security we adopt the risk-adjusted (or “risk-neutral”)
approach to pricing adopted by, for example, Milevsky and Promislow (2001) and
Dahl (2004). Given the current dearth of market data, we propose a simple method for
making the adjustment between real and risk-adjusted probabilities, which involves
a constant market price for both longevity and parameter risk. The magnitude of this
adjustment is established by estimating the market prices of these two risks implied
by the proposed issue price of the EIB/BNP longevity bond.

Once a deep, liquid market in mortality-linked securities develops, however, we will
be able to determine more reliable estimates of these market prices of risk and, indeed,
to test that the hypothesis are constant.

The layout of this article is as follows. The “Model Specification” section outlines
the model. The “Stochastic Mortality” section fits the model to English and Welsh
mortality data, and discusses the plausibility of the fit. The next section presents
some simulation results for the survivor index based on the calibrated model. Two
alternative sets of simulation results are presented: first, results that do not take ac-
count of parameter uncertainty, and, second, results that do take account of such
uncertainty. “The Price of Longevity Risk” discusses the premium that a life of-
fice or pension plan might be prepared to pay to lay off such risk—and uses this
to show how the EIB/BNP bond might be priced in a risk-adjusted framework.
Specifically, we focus on the market price of risk. It also presents some illustrative
pricing results. “The Risk Premium on New Issues” shows how the earlier results
might be used to price new longevity bonds with different terms to maturity and
following different cohorts. “Sensitivity to the EIB Interest Rate” comments briefly on
sensitivity of the results to changes in interest rates. In the following section, we
discuss whether the market price of risk should be positive or negative, bearing
in mind the requirements of different hedgers using different types on mortality-
linked contract. In the “Alternative Models” section, we give a brief discussion of
alternative models including some comments on the cohort effect. The final section
concludes.
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MODEL SPECIFICATION

By analogy with interest-rate terminology, Cairns, Blake, and Dowd (2006) used the
following notation for forward survival probabilities

p(t, T0, T1, x) = probability as measured at t that

an individual aged x at time 0 and still alive at T0

survives until time T1 > T0.

Let I(u) represent the indicator process that is equal to 1 at time u if the life aged x at
time 0 is still alive at time u, and 0 otherwise. Furthermore, let Mu be the filtration
generated by the development of the mortality curve up to time u.5 Then

p(t, T0, T1, x) = Pr (I (T1) = 1 | I (T0) = 1,Mt).

Note that p(t, T0, T1, x) = p(T1, T0, T1, x) for all t ≥ T1, since the observation period
(T0, T1] is then past and not subject to any further uncertainty.

For simplicity in this exposition, we will define p̃(t, x) = p(t + 1, t, t + 1, x) to be the
realized survival probability for the cohort aged x at time 0. Additionally, define the
realized mortality rate q̃ (t, x) = 1 − p̃(t, x).

In this article, we adopt the following model6 for the mortality curve:

q̃ (t, x) = 1 − p(t + 1, t, t + 1, x) = e A1(t+1)+A2(t+1)(x+t)

1 + e A1(t+1)+A2(t+1)(x+t) . (1)

In this equation, A1(u) and A2(u) are stochastic processes that are assumed to be
measurable at time u. An example of a mortality curve is given in Figure 1. This graph
shows the ungraduated mortality rates above the age of 60 for England & Wales males
in 20027 along with the fitted curve (fitted using least squares applied to (1)). The fit
is clearly very good. Simpler parametric curves can also be fitted (for example, q y =
a A1+A2 y) but the chosen curve gives a significantly better fit, especially for higher ages.

STOCHASTIC MORTALITY

Estimated values for A1(t) and A2(t) for the years 1961–2002 are plotted in Figure 2.8

These results show a clear trend in both series. The downward trend in A1(t) reflects
general improvements in mortality over time at all ages. The increasing trend in
A2(t) means that the curve is getting slightly steeper over time: that is, mortality
improvements have been greater at lower ages. There were also changes in the trend

5 That is, Mu represents the history of the mortality curve up to time u.
6 This is a special case of what are known as Perks models: see, for example, Perks (1932) or

Benjamin and Pollard (1993).
7 Available from the Government Actuary’s Department website, www.gad.gov.uk.
8 For each t, A1 and A2 were estimated using least squares by transforming the ungraduated

mortality rates from qy to log q y/py = A1 + A2 y + error.
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FIGURE 1
Ungraduated Mortality Rates Above the Age of 60 for England and Wales Males
for the Year 2002 (dots) and Fitted Curve eA1+A2 y/(1 + eA1+A2 y) for A1 = −10.95
and A2 = 0.1058
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and in the volatility of both series. To make forecasts of the future distribution of
A(t) = (A1(t), A2(t))′, we will model A(t) as a two-dimensional random walk with
drift. Specifically,

A(t + 1) = A(t) + μ + C Z(t + 1), (2)

where μ is a constant 2 × 1 vector, C is a constant 2 × 2 upper triangular matrix9 and
Z(t) is a two-dimensional standard normal random variable. If we use data from 1961
to 2002 (41 observations of the differences) we find that

μ̂ =
( −0.043 4

0.000 367

)
, and V̂ = ĈĈ ′ =

(
0.010 67 −0.000 161 7

−0.000 161 7 0.000 002 590

)
. (3)

9 There are infinitely many matrices C that satisfy V = CC′, but the choice of C makes no
difference to our analysis. Provided the entries of C are all real valued, CC′ is always positive
semidefinite. The restriction of C to an upper-triangular form means that C is straightforward
to derive from V and that this (Cholesky) decomposition is unique.
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FIGURE 2
Estimated Values of A1(t) (Left-Hand Panel) and A2(t) (Right-Hand Panel) in Equation (1)
from 1961 to 2002 for England and Wales Males
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If, on the other hand, we use data from 1982 to 2002 only (20 observations) then we
find that

μ̂ =
( −0.066 9

0.000 590

)
, and V̂ = ĈĈ ′ =

(
0.006 11 −0.000 093 9

−0.000 093 9 0.000 001 509

)
. (4)

These results show a steepening of trends after 1982, with μ1 and μ2 both becoming
larger in magnitude. They also show that the volatilities in the later period were
notably smaller than in the earlier period.

An important criterion for a good mortality model (see Cairns, Blake, and Dowd,
2006, for a discussion) requires the model and its parameter values to be biologically
reasonable.10 The negative value for μ1 indicates generally improving mortality, with
this improvement strengthening after 1982. The positive value for μ2 means that
mortality rates at higher ages are improving at a slower rate. Indeed, above the very
high age of 113, the model predicts deteriorating mortality.11 This might be perceived
to be an undesirable feature of our model, but because this crossover point is at such
a high age it is not felt to be a serious problem here as the number of lives involved is
very low.

10 Experts in mortality will hold certain subjective views on how mortality rates might evolve
over time or how mortality rates at different ages ought to relate to one another. Examples
of such criteria include: a requirement that the mortality curve in each calendar year is
increasing with age at higher ages; and models that give rise to a strictly positive probability
of immortality should be ruled out. Many experts would agree with these criteria but others
might not.

11 In other words, the mortality rate at ages >113 is rising over time rather than lowering.
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An additional criterion for biological reasonableness is that, in any given year in
the future, we should normally see mortality rates for older cohorts that are higher
than those for younger cohorts (that is, for fixed t, q̃ (t, x) should be an increasing
function of x). This criterion requires A2(t) to remain positive. In our model A2(t) could,
theoretically, become negative, but the positive value for μ2 and the initial value for
A2 in 2002 of 0.1058 means that A2(t) is very unlikely to do so. So the possibility of
a negative A2(t) is of little significance and for all practical purposes our model be
regarded as satisfying this second criterion of biological reasonableness as well.

Cohort Dynamics

In subsequent sections we will focus on the dynamics of a survivor index, S(t). This
is built up with reference to the mortality rates over time of one specific cohort, and it
makes sense, therefore, to look at cohort dynamics within the context of our two-factor
model. Investigating cohort dynamics also gives us the opportunity to make a further
check on biological reasonableness.

In some contexts, following a cohort might mean analyzing the force of mortality and
its dynamics over time. However, in the present article, we have chosen to work in
discrete time, so we will consider the dynamics of q̃ (t, x) for a cohort aged x at time 0.
It simplifies matters if we consider

log q̃ (t + 1, x)/ p̃(t + 1, x) = A1(t + 1) + A2(t + 1)(x + t + 1)

= (1, x + t + 1)′[A(t) + μ + C Z(t + 1)]

= log q̃ (t, x)/ p̃(t, x)

+ (μ1 + μ2(x + t + 1) + A2(t)) + (1, x + t + 1)′C Z(t + 1).

Now A2(t) is currently around 0.1058 and expected to increase slowly (μ2 > 0).
Furthermore, the standard deviation of A2(t) is very small over the time horizons
we are likely to consider (for example, the standard deviation of A2(25) is 0.006). Thus
μ1 + μ2 + A2(t) is initially positive and is expected to stay positive. As a consequence,
the cohort will experience generally increasing rates of mortality with occasional falls
in years when there is a large random mortality improvement across the board (that
is, when (1, x + t + 1)′C Z(t + 1) � 0).

SIMULATION RESULTS FOR THE SURVIVOR INDEX S (t )

A longevity bond of the type proposed by the EIB/BNP indexes coupon payments in
line with a survivor index S(t) for a specified cohort of individuals.12

We now wish to determine the distribution for S(t) for the times t = 1, 2, . . . , 25 that
are relevant for the EIB/BNP bond. Even though the functional form for q̃ (t, x) is
relatively simple, its distribution for t > 2 is not analytically tractable, so we resort to
Monte Carlo simulation and obtain the simulated q̃ (t, x) and S(t) from simulations of
the underlying process A(t).

12 In the case of the EIB/BNP bond, the reference cohort is the set of all England and Wales males
aged 65 in 2003. The method used to calculate S(t) for this cohort is given in Appendix A.
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Results with No Allowance for Parameter Uncertainty

In our first experiment, we simulated the A(t) according to Equation (2) using estimates
for μ and V based on data from 1961–2002 to 1982–2002. These parameter estimates
were treated as if they were the true parameter values, implying that, to begin with,
we ignore parameter uncertainty. The results are plotted in Figure 3. We can make the
following observations:

� The solid curves plot the expected values of S(t). Measured at time 0, these represent
the ex ante probabilities of survival from time 0 to time t, p(0, 0, t, 65) (which we
refer to as spot survival probabilities). The mean trajectory based on data from 1982 to
2002 (bottom plot) is slightly higher than that in the upper plot (based on 1961–2002
data). This is because steepening trends in A1(t) and A2(t) in the 1982–2002 data
(Figure 2) signal greater improvements in the future.

� The dashed curves in each plot show the 5th and the 95th percentiles of the distri-
bution of S(t). We can observe that the resulting 90% confidence interval is initially
quite narrow but becomes quite wide by the 25-year time horizon (which is the
maturity of the EIB/BNP longevity bond). We can also see that the confidence in-
terval based on 1982–2002 data is a little narrower, reflecting the smaller values on
the diagonal of V.

� The confidence interval for S(t) grows in quite a different way from, say, that as-
sociated with an investment in equities. This point is best illustrated by looking
at the variance of the logarithm of S(t), as illustrated in Figure 4. We can see that
this is very low in the early years indicating that we can predict with reasonable
certainty what mortality rates will be over the near future. However, after time 10
the variance starts to grow very rapidly (almost “exponentially”). This contrasts
with equities where we would expect to see linear, rather than “exponential,”
growth in the variance if the price process follows geometric Brownian motion.
The explanation for this variance growth is that the longer-term survival probabil-
ities incorporate the compounding of year-by-year mortality shocks: the survival
probability for year t depends on shocks applied to mortality rates in each of the
years 1 to t, and each individual shock affects survival probabilities in all subse-
quent years.13

Results with Parameter Uncertainty

We consider next the impact of parameter uncertainty. It is clear that we have a limited
amount of data and so the parameter estimates above must inevitably be subject to
some degree of uncertainty. We will analyze this using standard Bayesian methods.14

Recall that we have assumed that the process A(t) is subject to i.i.d. multivariate normal
shocks with mean μ and covariance matrix V. In the absence of any clear prior beliefs
about the values of μ and V we will use a non-informative prior distribution. A
common prior for the multivariate normal distribution in which both μ and V are
unknown is the Jeffreys prior

p(μ, V) ∝ |V|−3/2,

13 For further intuition, see Appendix C.
14 For a general discussion of model and parameter risk, see Cairns, 2000.
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FIGURE 3
Mean and Confidence Intervals for Projected Survival Probabilities Based on Data from
1961–2002 (Top Panel) or 1982–2002 (Bottom Panel). Each Plot Shows the Mean
(Solid Curve) and the 5th and 95th Percentiles (Dashed Curves) of the Simulated Distri-
bution of the Reference Index, S(t), with No Allowance for Parameter Uncertainty.
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FIGURE 4
Plot of the Variance of log S(t) Using Data From 1961–2002 (Solid Curve) and from
1982–2002 (Dashed Curve), with No Allowance for Parameter Uncertainty
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where |V| is the determinant of the matrix V.15 With this prior and with n observations
D = {D(1), . . . , D(n)} (where D(t) = A(t) − A(t − 1)), it is known that (see, for example,
Gelman et al., 1995) the posterior distribution16 for μ, V |D is:

V−1|D ∼ Wishart(n − 1, n−1V̂−1) (5)

μ|V, D ∼ MVN(μ̂, n−1V), (6)

where μ̂ = 1
n

n∑
t=1

D(t)

and V̂ = 1
n

n∑
t=1

(D(t) − μ̂)(D(t) − μ̂)′.

15 Since V is strictly positive definite, its determinant is strictly positive.
16 The Wishart distribution is a multivariate version of the Gamma or Chi-squared distribution.

For details on how to simulate the joint Normal-Inverse-Wishart distribution, see Appendix B.
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In what follows, we will restrict ourselves to an analysis based on data from 1982
to 2002.

For each simulated sample path of A(t), we simulate first μ and V from the Normal-
Inverse-Wishart distribution and use these values for the whole of that sample path.
The results of these simulations can be seen in Figures 5 and 6. In Figure 5, we can
see the impact of parameter uncertainty on the confidence interval: specifically that
parameter uncertainty becomes much more significant as a source of uncertainty in
S(t) as t increases. We can see that 25 years ahead parameter uncertainty accounts for
about half of the uncertainty in S(t).17 In Figure 6, we plot the variance of log S(t), and
the use here of a log scale allows us to see clearly that for smaller values of t parameter
uncertainty is much less important (that is, the difference between the two curves is
quite small).

THE PRICE OF LONGEVITY RISK

Now consider the price that a life office or pension fund might be prepared to pay to
lay off its exposure to longevity risk. From Figures 3 to 6 we can infer that if premiums
are to be paid in respect of each future year, the premium will be much larger for the
25-year payment than, say, the 10-year payment. Furthermore, a reasonable proportion
of this premium might be in respect of the desire to eliminate exposure to parameter
uncertainty.

Pricing Using Risk-Adjusted Probability Measures

We propose to specify the dynamics under a risk-adjusted pricing measure Q that is
equivalent to, in the probabilistic sense, the current real-world measure (which we
shall refer to as P).18 The measure Q is also commonly referred to as the risk-neutral
measure19 or as an equivalent-martingale measure.

Recall that we worked earlier with the following dynamics under P:

A(t + 1) = A(t) + μ + C Z(t + 1),

where Z(t + 1) is a standard 2-dimensional normal random variable under P.

17 That is, at t = 25 the size of the gap on the log scale between the solid and dashed lines
equates to a ratio of about 2 between the variances.

18 An alternative way of generating risk-adjusted measures is to use the Wang transform (Wang,
2000, 2002, 2003). These distort the distributions of each of the S(t) random variables. Exam-
ples of its application to longevity bonds and other mortality-linked securities include Lin
and Cox (2005); Denuit, Devolder and Goderniaux (2004); Cox, Lin and Wang (2005); and
Dowd et al. (2006).

19 In an incomplete market, the term risk-neutral is vague, but is used to convey the point that
expected returns over the short term under Q are equal to the short-term risk-free rate of
interest. At the present time, we are very far from having a complete market in which all
contingent claims can be replicated using dynamic hedging strategies. This means that the
risk-adjusted measure Q is not unique.
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FIGURE 5
Confidence Intervals for Projected Survival Probabilities Based on Data from 1982 to
2002. Confidence Intervals Are Shown Excluding Parameter Uncertainty (Thin Dotted
Curves) and Including Parameter Uncertainty (Thick Dashed Curves). The Mean Trajec-
tories (Thin and Thick Solid Curves) for the Two Cases Are Overlapping.
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Under the risk-adjusted measure Q(λ) we propose20 that:

A(t + 1) = A(t) + μ + C(Z̃(t + 1) − λ)

= A(t) + μ̃ + C Z̃(t + 1),

where μ̃ = μ − Cλ.

20 Modelling in discrete time means that there are infinitely-many equivalent measures to
choose from with different means, variances and covariances for Z(t + 1). However, we
choose to restrict ourselves to ones that have a constant market price of risk, that preserve
the variance-covariance structure of Z(t + 1), and that preserve the assumption of bivariate
normality. The latter assumptions lead to consistency between the discrete-time model and
the continuous-time diffusion model.
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FIGURE 6
Plot of the Variance (on a Log Scale) of log S(t) Using Data from 1982 to 2002. The
Variance has been Calculated Excluding Parameter Uncertainty (Dashed Curves) and
Including Parameter Uncertainty (Solid Curves).
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In this equation Z̃(t + 1) is a standard two-dimensional normal random variable21

under Q. The vector λ = (λ1, λ2) represents the market prices of longevity risk associated
with the processes Z1(t) and Z2(t), respectively. Under the chosen decomposition for
the matrix C (upper triangular), λ1 is associated with level shifts in mortality (specif-
ically log q/p), while λ2 is associated with a tilt in log q/p. We assume (as part of our
model) that λ is constant rather than time dependent: indeed it is difficult to propose
anything more sophisticated for λ in the absence of any market price data.

We can make the following points about Q(λ):

� Complete market models such as the Black–Scholes option-pricing model force
upon us a unique choice of measure Q. In contrast, here we have an incomplete
market, and a range of possibilities for Q(λ).

� If there exists some form of market in mortality-linked securities then the choice of
Q(λ) needs to be consistent with this (limited) market information (so that theoret-
ical prices under Q(λ) match observed market prices).

21 That is, Z̃(t + 1) = (Z̃1(t + 1), Z̃2(t + 1))′ where Z̃1(1), Z̃1(2), . . . and Z̃2(1), Z̃2(2), . . . are inde-
pendent sequences of i.i.d. N(0, 1) random variables under Q(λ).
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� Beyond these restrictions, the choice of Q(λ) becomes a modelling assumption.
Thus, here we have postulated that the market price of risk, λ, might be constant
over time (in the same way that the market price of risk is normally assumed to be
constant in the Black–Scholes model).22

� The assumptions embedded in Q(λ) form a testable hypothesis. However, the as-
sumptions can only be tested once a market develops in a range of mortality-linked
securities and with sufficient liquidity over time that historical price data can be
used to test if the assumption that the market price of risk is constant or time
varying.

Example: The EIB/BNP Longevity Bond

As an example, consider the 25-year EIB/BNP longevity bond announced in Novem-
ber 2004, with an issue price based on a yield of 35 basis points below LIBOR. The
appropriate starting point is the EIB curve for conventional fixed-interest bonds issued
typically at 15 basis points below LIBOR. This means that the new longevity bond
was priced at 20 basis points below standard EIB rates. This spread below standard
EIB rates will be denoted by δ in the equations that follow. We will now make the
following assumptions:

� The projected survival rates used in the pricing of the bond (in the case of the
EIB/BNP bond, this is the projection made by the UK Government Actuary’s De-
partment) are unbiased estimates at time 0 under the real-world measure P of the
survival rates.

� The spread of 20 basis points below the standard EIB curve is accounted for entirely
by the market price of longevity risk.

� The development of mortality rates over time is independent of the dynamics of
the interest-rate term structure over time.23

We will refer to Ŝ(0, T) as the survivor index based upon the latest GAD projections
available at time 0.24 Assumption 1 implies that Ŝ(0, T) = EP [S(T)|M0].

Next, let us refer to P(0, T) as the price at time 0 of a fixed-principle zero-coupon bond
issued by the EIB that pays 1 at time T. The basis declared by the EIB and BNP for
the initial price of the bond was V(0) = ∑25

T=1 P(0, T)eδT Ŝ(0, T), where δ is the spread

22 In the case of both the present model and the Black–Scholes model, it would seem appropriate
that the market price be allowed to vary in a stochastic fashion over the long term, 25 years,
of the contract. However, in the equity-modelling literature there seems to be little consensus
on the dynamics of the market price of risk. If we combine this observation with the absence
of any historical market data on mortality-linked securities we conclude that there is little
point in attempting to model the market-price of risk as a dynamic process.

23 This is a very useful simplifying assumption which we believe to be a reasonable one for
relatively short horizons under normal conditions. However, we recognize anecdotal evi-
dence (see, for example, Miltersen and Persson, 2005) that over the very long run the term
structure of interest rates will be influenced by the relative size of the capital stock to that of
the population, and the latter might be influenced by mortality (as well as fertility) dynamics.
Also in the short run, we recognize that a catastrophe that affects the size of the population
(such as nuclear war) will also affect interest rates.

24 Values for the Ŝ(0, T) are specified in the offer document issued by BNP Paribas.
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(expressed as a continuously compounding rate) below the EIB curve used in pricing
the bond.25 Given assumption 1 this is equivalent to26

V(0) =
25∑

T=1

P(0, T)eδT EP [S(T)|M0]. (7)

Values for EP [S(T)|M0] based upon parameters in (4) and without parameter un-
certainty are given in Table 1, column 1. For example, if we assume that implied EIB
zero-coupon prices are given by P(0, T) = 1.04−T and if we set δ = 0.0020 and λ = (0, 0)′

then we find that the price at issue of the bond on this contractual basis (Equation 7)
is V(0) = 11.442.

The risk-adjusted approach to pricing assumes that (exploiting assumption 3 above)

Vλ(0) =
25∑

T=1

P(0, T)EQ(λ)[S(T) |M0]. (8)

A comparison of Equations (7) and (8) shows that δ can be interpreted as an average
risk premium per annum. We shall see later that this risk premium will depend upon
the term of the bond and on the initial age of the cohort being tracked.

We can now ask the question: What values for the market prices of risk λ1 and λ2 satisfy
Vλ(0) = V(0)? Put another way, under what circumstances does the risk-adjusted price
(Equation 8) match the issue price quoted in the contract (Equation 7)?

With no parameter uncertainty, and δ = 0 we found that we could obtain Vλ(0) =
11.442 with (λ1, λ2) = (0.375, 0) and (0, 0.316). For these two values for λ the values
for EQ(λ)[S(t)|M0] are given in Table 1 columns 3 and 4. In column 5, we have also
given an intermediate value for λ between these two extremes.27 Here we can achieve
Vλ(0) = V(0) with λ1 = λ2 = 0.175.28,29

25 We do not know what the pricing convention for the bond will be after issue. How-
ever, it seems plausible that it will also be of the form (for integer t) V(t) = ∑25

T=t+1

P(t, T)eδ(t)(T−t) Ŝ(0, T): that is, still with reference to the initial estimate Ŝ(0, T), and with refer-
ence to an easily-observable zero-coupon curve at time t.

26 Strictly, the P(0, T) in Equation (7) should be LIBOR-implied discount factors, PL(0, T), in
combination with δ = 0.0035 as stated in the contract, while the P(0, T) in Equation (8) should
be the EIB-implied discount factors, PE(0, T). However, as stated above, the approximate
relationship between the two is PE(0, T) = PL(0, T)e0.0015T , which leads us to the given form
in Equation (7) with δ = 0.0020.

27 This can be found by fixing first the value for λ1 and then solving for λ2.
28 In fact, the set of values for (λ1, λ2) that gives a price of 11.442 is approximately linear running

from (0.375, 0) to (0, 0.316). A straight line between the two end points would pass through
(0.171, 0.171) rather than (0.175, 0.175).

29 It is tempting to think that (λ1, λ2) = (0.375, 0) and (0, 0.316) represent the extreme values for
the market price of longevity risk. This might be true for (λ1, λ2) = (0, 0.316) if the demand
for such assets is coming from annuity providers. However, if the market is dominated by
life offices hedging short-term catastrophic mortality risk in their term-assurance portfolios,
then λ1 might, in fact, be negative. Similarly, λ2 might be negative if longevity risk at ages
below 60 presents the greatest risk to annuity providers. We have more to say on this subject
in the section titled “The Sign of the Market Price of Risk.”
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TABLE 1
Longevity Bond Expected Cashflows Under the Risk-Neutral Measure Q(λ):
E Q(λ)[S(t )|M0] and Market Prices Under Various Assumptions for the Market Prices
of Longevity and Parameter Risk

Column Reference

1 2 3 4 5 6 7

Parameter uncertainty: N Y N N N Y Y
λ1 0 0 0.375 0 0.175 0 0
λ2 0 0 0 0.316 0.175 0 0
λ3 – 0 – – – 1.684 0
λ4 – 0 – – – 0 1.419

t EQ(λ)[S(t)|M0]

1 0.9836 0.9836 0.9837 0.9836 0.9836 0.9837 0.9836
2 0.9661 0.9661 0.9664 0.9662 0.9663 0.9664 0.9662
3 0.9475 0.9475 0.9482 0.9477 0.9479 0.9482 0.9477
4 0.9278 0.9278 0.9289 0.9281 0.9285 0.9289 0.9281
5 0.9068 0.9068 0.9086 0.9074 0.908 0.9086 0.9074
6 0.8845 0.8845 0.8872 0.8856 0.8863 0.8872 0.8856
7 0.861 0.8609 0.8646 0.8626 0.8635 0.8646 0.8626
8 0.836 0.8359 0.8408 0.8384 0.8395 0.8407 0.8383
9 0.8095 0.8095 0.8157 0.8129 0.8142 0.8156 0.8129

10 0.7816 0.7815 0.7893 0.7862 0.7877 0.7892 0.7861
11 0.7522 0.752 0.7616 0.7583 0.7599 0.7615 0.7582
12 0.7213 0.721 0.7326 0.7292 0.7308 0.7325 0.729
13 0.6888 0.6885 0.7023 0.6989 0.7004 0.7021 0.6987
14 0.6548 0.6545 0.6707 0.6675 0.6689 0.6704 0.6672
15 0.6195 0.6191 0.6378 0.635 0.6362 0.6374 0.6346
16 0.5828 0.5823 0.6036 0.6015 0.6024 0.6032 0.6011
17 0.5448 0.5443 0.5684 0.5672 0.5676 0.5679 0.5667
18 0.5059 0.5052 0.5321 0.5321 0.532 0.5315 0.5316
19 0.4661 0.4654 0.495 0.4965 0.4957 0.4944 0.4959
20 0.4258 0.4251 0.4573 0.4606 0.459 0.4566 0.4599
21 0.3853 0.3847 0.4191 0.4245 0.422 0.4185 0.4238
22 0.345 0.3445 0.3809 0.3885 0.3851 0.3803 0.3879
23 0.3054 0.305 0.3428 0.353 0.3486 0.3424 0.3524
24 0.2667 0.2668 0.3054 0.318 0.3128 0.3052 0.3177
25 0.2297 0.2302 0.2689 0.2841 0.278 0.269 0.284
Price
δ = 0 11.240 11.237 11.442 11.442 11.442 11.439 11.439
δ = 0.0020 11.442 11.439 – – – –

We next introduce parameter uncertainty into the analysis. We first simulate under P
with full parameter uncertainty and the values for EQ(λ)[S(t)|M0] are given in Table 1,
in column 2 with λ = (0, 0, 0, 0)′. We have seen in Figure 6 that parameter uncertainty
presents a significant risk to annuity providers. It follows that they will be prepared
to pay a premium to reduce this risk in the same way that they are prepared to pay to
reduce the impact of longevity risk.
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In this analysis, we concentrate on introducing a market price of risk for the mean
μ. In the case of no parameter uncertainty we assume that μ = μ̂. With parameter
uncertainty, the basic model (see Appendix B) simulates first V, then calculates the
upper-triangular matrix C that satisfies V = CC′, and then simulates

μ = μ̂ + n−1/2C Zμ,

where Zμ is a standard bivariate normal random variable. Once again we have to
identify possible equivalent measures. We propose here a similar restriction that,
under the equivalent measure, Zμ is still bivariate normal with unit variances but a
shifted mean. Thus we now simulate μ with reference to two additional market prices
of risk λ3 and λ4:

μ = μ̂ + n−1/2C(Z̃μ − λμ) = μ̃ + n−1/2C Z̃μ,

where λμ = (λ3, λ4)′ and μ̃ = μ̂ − n−1/2Cλμ.

We now have four market prices of risk to play with to match the single price
derived by discounting expected cashflows under P at EIB minus 20 basis points.
With parameter uncertainty included, the expected cashflows under P change very
slightly (see Table 1, column 2), as does the price of V(0) = 11.439. The values for
λ1 and λ2 required to match this price are essentially unchanged from the values
that were determined before (Table 1, columns 3 and 4) and are consequently not
repeated in the table. The required values for λ3 and λ4 were, respectively, 1.684 and
1.419, with the corresponding values for EQ(λ)[S(t)|M0] quoted in Table 1, columns 6
and 7.

For the various cases presented in Table 1 we have plotted in Figure 7 the expected
value under P or Q(λ) of S(t) for t = 1, . . . , 25. This plot helps us to analyze the impact
of using the different measures and, in particular, to see where most of the additional
value in the longevity bond resides. The expected values in the upper plot show
us two things. First, the inclusion of parameter uncertainty has almost no effect on
the expected values under P. Second, the expected values under the different Q(λ)
measures look similar, and all show up the largest differences compared with the P
measure near t = 25.

The lower plot in Figure 7 allows us to differentiate more easily between the different
Q(λ) measures. Here we have plotted the expected risk premium per annum on a
zero-coupon longevity bond that makes a single payment of S(t) at time t that is held
from time 0 through to maturity at t. This is calculated by converting the ratio of two
expected values into an additional rate of return per annum as follows:

1
t

log
(

EQ(λ)[S(t) |M0]
EP [S(t) |M0]

)
.

From this lower plot we can see that the level of the risk premium depends to some
extent on the choice of Q(λ). However, we can note from both Figure 7 and Table 1
that cases 3 and 6 produce very similar results and that cases 4 and 7 also produce very
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FIGURE 7
Top Panel: Expected Value of S(t) Under Different Probability Measures. Values for the
Market Prices of Risk in the Six Cases Considered Are Given in the Legend; p = 0
Means without Parameter Uncertainty and p = 1 Means with Parameter Uncertainty
in Both μ and V . Bottom Panel: Average Risk Premium Per Annum Is Defined as
log {E Q(λ) [S(t )]/E P[S(t )]}/t on a Zero-Coupon Longevity Bond Over the Full Term to
Maturity. Different Line Types Are Defined in the Top Plot.
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similar results.30 The reason for these similarities is not, in fact, difficult to explain.
Recall that we have

μ = μ̂ − n−1/2Cλμ + n−1/2C Z̃μ

and A(t + 1) = A(t) + μ − Cλ + C Z̃(t + 1)

= A(t) + μ̂ − n−1/2Cλμ − Cλ + n−1/2C Z̃μ + C Z̃(t + 1)

= A(t) + μ̂ − C
(
n−1/2λμ + λ

) + n−1/2C Z̃μ + C Z̃(t + 1).

Thus, relative to simulation under P with parameter uncertainty, when we simulate
under Q(λ), λ1 will have the same effect as n−1/2 λ3 and λ2 will have the same effect as
n−1/2 λ4. We can check this by comparing the values of λ1 to λ4 in Table 1. Projections
have been made on the basis of n = 20 observations of A(t + 1) − A(t), and we can see
that the ratios of λ3 to λ1 and λ4 to λ2 are both close to (20)1/2 as predicted.

Now return to the results presented in Table 1. Why are the required values of λ1 to
λ4 positive? And why does the average risk premium per annum plotted in Figure 7
differ in the way that it does for λ1 and λ2 (curves A and B)?

To answer these questions, we need to analyze the impact on the mortality curve of
changes in A1(t) and A2(t). Recall that we have

q̃ (t, x)
p̃(t, x)

= e A1(t)+A2(t)(x+t).

Now, if we replace A1(t) + A2(t)(x + t) by Ā1(t) + Ā2(t)(x + t − x0) where Ā1(t) =
A1(t) + A2(t)x0 and Ā2(t) = A2(t), then for a suitable choice of x0 (specifically, x0 =
V̂21/V̂22 ≈ 62.2) the processes Ā1(t) and Ā2(t) become independent random walks with
drift. Ā1(t) has Z1(t) as its driver with market price of risk λ1 and Ā2(t) has Z2(t) as its
driver with market price of risk λ2. Under this transformation we have

Ā(t + 1) = Ā(t) + μ̄ + C̄ Z(t)

where μ̄ =
( −0.0302

0.000590

)

and C̄ =
(

0.01645 0

0 0.001229

)
.

We can now see that, since both diagonal elements of C̄ are positive, a positive shock
Z1(t) will produce a level shift in q̃ (t, x)/ p̃(t, x) over all ages x: that is, an unanticipated
deterioration in longevity. A positive value of λ1, in contrast, causes Ā1(t) to be pushed
downwards over time thereby enhancing improvements in longevity. So λ1 > 0 is
required to produce a positive risk premium (that is, higher expected values of S(t)
under Q(λ)).

30 If we repeat cases 3 and 4, incorporating parameter uncertainty, then the remaining small
differences between the cases 3 and 6 and between cases 4 and 7 essentially disappear.
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We have to be slightly more careful when we analyze the impact of positive shocks
Z2(t). Specifically, for x + t above age x0 = 62.2, a positive value for Z2(t) will in-
crease q̃ (t, x)/ p̃(t, x) (particularly so at high ages). However, the same positive value
for Z2(t) will cause q̃ (t, x)/ p̃(t, x) to fall for values of x + t less than 62.2. Now in
our analysis we are considering a cohort who are all aged 65 at time 0, so that S(T)
is constructed from the experienced mortality rates q̃ (0, 65), q̃ (1, 65), . . . , q̃ (T − 1, 65).
Since the minimum age is 65, a positive shock in Z2(t) will cause an increase in each of
q̃ (t − 1, 65), q̃ (t, 65), . . . , q̃ (T − 1, 65), everything else being equal. Thus, we infer that
λ2 must also be positive to produce a positive risk premium.

This discussion also helps us to explain the difference between the curves corre-
sponding to (λ1, λ2) = (0.375, 0) and (λ1, λ2) = (0, 0.316) in the lower half of Figure
7. Specifically risk adjustments to the dynamics of A2(t) through the use of λ2 have
proportionately a much greater effect on higher-age mortality than adjustments to
A1(t) through λ1. This means that the probability of survival to higher ages is much
more sensitive to λ2 than to λ1. Thus we see that curve A in Figure 7 corresponding
to λ2 is flatter than curve B initially but then picks up at a much faster rate, ending up
at a higher level.

THE RISK PREMIUM ON NEW ISSUES

The announcement in 2004 of the 25-year EIB longevity bond will, we hope, be fol-
lowed by other issues with different maturity dates and which will follow different
cohorts.

Recall that the 25-year bond following the age-65 cohort (we will refer to this as the
(T = 25, x = 65) bond), had a 20 basis-point risk premium per annum. The question
now is: What risk premiums are appropriate for bonds with different terms to maturity
or that follow older or younger cohorts? It is important to address this question to
ensure that possible future bonds are priced in a consistent fashion.

This question can be answered relatively easily. The key is that the market prices of
risk λ1 and λ2 used in pricing the (T, x) bond must be the same as those used in pricing
the (25, 65) bond. Thus for each (T, x) we calculate the price of the bond by determining
expectations under Q(λ) and then discounting at EIB rates as before. We then calculate
the price of the bond using expectations under P, but then discounting at EIB rates
minus the risk premium δ as in Equation (7). We then need to find the value of δ that
equates the two prices under P and Q(λ).31

Recall that the only longevity bond so far proposed does not allow us to determine λ

uniquely. Instead, for any other proposed bond (T, x), the risk premium δ(T, x, λ) will
depend on λ.

Risk premia on (T, x) bonds are given in Tables 2, 3, and 4.32 We can make the following
observations:

31 We have not made any allowance in these calculations for parameter risk. We commented
earlier that the impact of this is minimal for the (25, 65) bond priced with a 20 basis-point
risk premium.

32 We concentrate on 20-, 25- and 30-year bonds, but, for completeness we have included infinite-
maturity longevity bonds (which Blake and Burrows, 2001, called survivor bonds). However,
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TABLE 2
Longevity Bond Risk Premium in Basis Points per Annum as a
Function of Term to Maturity and Initial Age of Cohort. Market
Price of Longevity Risk Assumed to Be λ = (0.375, 0).

Initial Age of Cohort, x

Bond Maturity T 60 65 70

20 8.9 14.7 23.1
25 12.7 20.0 28.7
30 16.9 24.3 31.5
∞ 22.9 27.2 32.2

TABLE 3
Longevity Bond Risk Premium in Basis Points per Annum as a
Function of Term to Maturity and Initial Age of Cohort. Market
Price of Longevity Risk Assumed to Be λ = (0, 0.316).

Initial Age of Cohort, x

Bond Maturity T 60 65 70

20 4.8 12.4 26.1
25 9.2 20.0 36.1
30 15.0 27.6 42.3
∞ 27.1 34.8 44.7

TABLE 4
Longevity Bond Risk Premium in Basis Points per Annum as a
Function of Term to Maturity and Initial Age of Cohort. Market
Price of Longevity Risk Assumed to Be λ = (0.175, 0.175).

Initial Age of Cohort, x

Bond Maturity T 60 65 70

20 6.8 13.4 25.1
25 11.0 20.0 33.3
30 16.2 26.6 37.9
∞ 25.5 33.7 39.6

� In each table we see that older cohorts attract a higher risk premium. As we take
younger and younger cohorts, the mortality rates get closer to zero, so even if we
introduce a market price of risk, the probability of survival will still be close to 1. In
contrast, at higher ages the market price of longevity risk will have a proportionally

we note the practical difficulties associated with such bonds in dealing with the small numbers
of survivors at very high ages as well as lack of reliability in mortality statistics at these ages.
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FIGURE 8
Plot of the Variances of log S(t) for the Age 60 (Solid Line), 65 (Dashed Line), and
70 (Dotted Line) Cohorts, Based on Data from 1982 to 2002, with No Allowance for
Parameter Uncertainty
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greater impact on the survival probability. These differences between ages 60, 65,
and 70 are illustrated by the Var[log S(t)] plot in Figure 8. We can see that the
longevity risk for the age-60 cohort is much lower than the age-65 and age-70
cohorts. Consequently, a lower risk premium is appropriate.

� In each table, we see that the longer the maturity of the bond, the greater the risk
premium. This reflects our earlier observations (for example, Figure 7, bottom) that
longer-dated cashflows have a higher risk premium per annum.

� In each table, consider the diagonal running from cohort 60, term 30 up to cohort
70, term 20. In each case the terminal age is 90. As we move up the diagonal, there
are two conflicting trends influencing the risk premium. The shortening maturity
serves to push the risk premium down,33 while the increasing initial age serves
to push the risk premium up. However, we can see from the table that the latter

33 See Table 5 for this trend.
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TABLE 5
Effect of the Change of Measure from P to Q(λ) for λ = (0.175,
0.175) on Expected Future, Truncated Lifetimes: e(x, T ) =∫ T

0 E [S(t )]dt . Upper Part of Table Shows e(x, T ) Under the
Real-World Measure P and the Lower Part of the Table Shows
the Increase in e(x, T ) When We Change to the Risk-Neutral
Measure Q(λ).

Initial Age of Cohort, x

60 65 70

eP(x, T)
Maximum 20 16.95 15.15 12.74
Years 25 19.59 16.78 13.45
T 30 21.30 17.53 13.64

∞ 22.43 17.79 13.66
e Q(λ)(x, T) − eP(x, T)

Maximum 20 0.12 0.20 0.28
Years 25 0.28 0.40 0.47
T 30 0.54 0.65 0.60

∞ 1.22 1.02 0.66

trend dominates and the risk premium increases as we move up the diagonal.
Compare, for example, one cohort currently aged 60 with another currently aged
70 and consider the contracted cashflow at age 90. This cashflow is clearly subject to
greater uncertainty for the age-60 cohort. However, the observation above indicates
that the overall impact of this greater uncertainty on the 30-year longevity bond is
much reduced by the effect of discounting.

� The risk premium δ(T, x, λ) varies most with (T, x) when λ = (0, 0.315) (Table 3). The
greater variation with T reflects the development of the risk premium illustrated
in Figure 7, bottom. The greater variation with x reflects the fact that Z2(t) affects
mortality rates in different ways at different ages. The market price of risk λ2 has a
positive effect on mortality at higher ages and a negative effect at lower ages.

� From Table 4 with the intermediate λ = (0.175, 0.175) we see that the risk premia
lie between those given in Tables 2 and 3.

Table 5 shows the impact in the truncated expected future lifetime e(x, T) when we
move from the real-world measure, P, to the risk-neutral measure Q(λ) when λ =
(0.175, 0.175).34 The trends in this table match those in Table 4 with the exception of
the trend along the diagonal from (x, T) = (60, 30) to (70, 20) where the trend is reversed.
As we move upwards along the diagonal we have the same two factors working in
opposite directions as before: decreasing term and increasing age. In Tables 2–4, the
impact of discounting was sufficient to allow the increasing-age effect to dominate. In
Table 5 the absence of discounting means that the decreasing-term effect is dominant.

34 If τ x is the random future lifetime of an individual aged x, then e(x, T) = E[min{τx, T}] =∫ T
0 E[S(t)]dt.



A TWO-FACTOR MODEL FOR STOCHASTIC MORTALITY 711

SENSITIVITY TO THE EIB INTEREST RATE

We can also investigate the impact of a change in interest rates. Specifically, let us
take λ as given but change the EIB interest rate from 4% to 5% per annum. In this
case we find that the impact on the risk premium is relatively small. Specifically, if
λ = (0.375, 0) then δ(25, 65) = 19.1 basis points and if λ = (0, 0.315) then δ(25, 65) =
18.9 basis points. This reduction in the risk premium reflects the relative lowering, in
present-value terms, of the later, more-uncertain cashflows under the bond.

THE SIGN OF THE MARKET PRICE OF RISK

In previous sections, we focused on the EIB/BNP longevity bond and used the infor-
mation contained in the offer price to make inferences about the market price of risk.
We concluded that this particular bond had a negative risk premium: that is, holders
of the bond were being asked to pay a premium in order to reduce their exposure to
longevity risk.35

Now consider a bond that allows life insurers to hedge their exposure to short-term
catastrophic mortality risk in their term-insurance portfolios (for example, the Swiss
Re mortality bond issued in 200336). One might argue that life insurers will be prepared
to pay a premium to reduce their exposure to the risk of high mortality rates. Indeed
this is the case with the Swiss Re mortality bond (see, for example, Beelders and
Colarossi, 2004). The problem is that this suggests that the market prices of risk in our
model should take the opposite sign to those estimated in the section titled “Example:
the EIB/BNP Longevity Bond.”

We can offer some partial answers to this apparent paradox.

� The apparent differences between implied market prices of risk would suggest the
existence of arbitrage opportunities. However, market frictions limit the ability of
annuity providers and life insurers to take advantage of these opportunities. These
firms can arbitrage away some differences between the different market prices
of risk, for example, by exploiting natural hedging. However, there are limits to
how much arbitrage they can realistically carry out because the dynamic strategies
involved are not costless to implement. There might also be regulatory constraints
that prevent annuity providers and life insurers from taking advantage of apparent
arbitrage opportunities. Thus, as in any other “imperfect” market, a certain amount
of price differentiation will remain, and we cannot rule out the possibility that the
different market prices of risk might have different signs.

35 Recall that the market price of risk, λ, is a displacement term that is applied to the standard
normal random variable Z(t). λ can be interpreted as the instantaneous expected rate of return
per unit of risk in excess of the risk-free rate of interest. For a traded asset such as a zero-coupon
longevity bond, the quantity of risk is the volatility of the bond price and the instantaneous
risk premium is the volatility multiplied by the market price of risk. In the previous sections
we quoted average risk premiums (for example, δ for the longevity bond) over the lifetime of
the asset.

36 The Swiss Re bond was a three-year floating-rate bond. The bond’s capital was at risk if
aggregate mortality during one of the three years exceeded some high threshold. The purpose
of this was to allow Swiss Re to reduce its exposure to catastrophic mortality events such as
an influenza pandemic.
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� The individual lives associated with annuity and term-assurance portfolios are
not subject to exactly the same rates of mortality. The age distributions of the two
populations and the average terms of the policies are quite different, and it is evident
from historical data that mortality improvements at different ages are not perfectly
correlated. The two groups are subject to quite different levels of underwriting. It
is also likely that their social backgrounds and family status are different. All of
these differences will have an impact on their mortality prospects. To some degree,
therefore, it might be possible to apply different market prices of risk to the different
policy groups and over different age ranges.

� Annuity providers seem to be focused on the risk associated with the long-term
trend in mortality (in our case, driven by a two-dimensional Brownian motion,
Z(t)). In contrast, life insurers and reinsurers seem to be more focused on short-term
catastrophic mortality risk (as is the case in the Swiss Re bond): it is this risk factor,
much more than longevity, that is the critical determinant of a life insurer’s profit or
loss. In order to model this type of risk, it would be appropriate to add to our model
an additional source of risk that captures more reasonably these extreme mortality
risks (see, for example, Beelders and Colarossi, 2004). This additional risk will have
its own market price of risk. If we combine life insurers and annuity providers, it
seems quite plausible that there is, in aggregate, a significant, positive net exposure
to both short-term catastrophic mortality risk and longevity risk. However, natural
hedging (Cox and Lin, 2004) can only succeed at the global level (encompassing
life insurers and annuity providers) if this aggregate exposure is close to zero. If
these net exposures are, in reality, positive, there remains an opportunity for the
financial markets to charge both life insurers and annuity providers a premium to
hedge their risks.

ALTERNATIVE MODELS

General Models

We have deliberately chosen to use a simple (linear) parametric form for
log q̃ (t, x)/ p̃(t, x). In part this is because the data seem to justify this assumption over
the 60–90 age range (see, for example, Figure 1). In addition, the simple model allows
us to focus attention on the key issues in this article: highlighting the risk associated
with future mortality-linked cashflows; and the calculation of the risk-adjusted price
of these cashflows.

A variety of alternative stochastic models have, of course, been proposed (see, for
example, Cairns, Blake, and Dowd, 2006, and references therein). However, rigorous
statistical analysis has, in the main, been limited to the the approach proposed by
Lee and Carter (1992) and their successors (see, for example, Brouhns, Denuit, and
Vermunt, 2002; and Renshaw and Haberman, 2003). The model analyzed in this article
might be considered as a special case of a two-factor Lee and Carter model (Renshaw
and Haberman, 2003)37.

Despite the relative simplicity of our model we have chosen to use two stochastic
factors rather than one. We did so partly because our earlier analysis suggests that

37 Here, though, we model log q̃ (t, x)/ p̃(t, x) in place of the usual log m̃(t, x) where m̃(t, x) is the
central death rate.
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we need two factors to get the best fit. However, we also did so because our later
analysis highlights the importance of the longer-term longevity risks (that is, the risks
associated with survivorship to very old ages), and we need the second mortality
factor to model these particular risks adequately. Finally, we wish to consider a range
of bonds with different maturity dates and following different cohorts, and this merits
an additional factor if the historical data supports it.

Modelling the Cohort Effect

A number of authors have recently focused attention on what has become known as
the cohort effect. These analyses (see, for example, Willets, 1999, 2004; Richards, Kirkby,
and Currie, 2005; and MacMinn et al., 2005) have demonstrated that, for a fixed age x,
the improvement in mortality from one calendar year to the next is critically dependent
on the year of birth (that is t − x). Richards, Kirkby, and Currie found, for example,
that the largest improvements in mortality rates in England and Wales have been
consistently experienced by individuals born around 1930. We have not attempted to
capture this effect in the current article. A recent paper by Renshaw and Haberman
(2006) has adapted the Lee and Carter approach to incorporate a cohort effect and we
anticipate more work along these lines in the coming years.

We can note that the change in pattern in A1(t) and A2(t) around 1985, observable in
Figure 2, is also consistent with the cohort effect.38 For example, suppose the slope
parameter, A2(t), would naturally be constant in the absence of a cohort effect. If
we then introduce a cohort effect, we would find that as the “golden” cohort moves
through the 60–90 age range, we would initially see the fitted curve steepen for 15
years and then fall back to its original slope over the next 15 years (that is, A2(t) would
rise from its normal stable level and then fall back). In Figure 2, we can see that A2(t)
was reasonably level, before starting to climb after 1985. If the cohort effect persists
then we might anticipate that A2(t) will start falling around the time when the 1930
cohort passes age 75 (the mid-point of our age 60–90 data sets). Thus, we might expect
to see A2(t) start to fall back again over the next few years, instead of continuing to
rise.

CONCLUSIONS

In this article, we have used a simple two-factor model for the development of the mor-
tality curve over time that seems, nevertheless, to fit the data well. The model allows
us to simulate the distribution of a survivor index over various time horizons under
both the real-world probability measure and under a variety of possible risk-adjusted
measures. By taking expectations under the latter measure, this model enables us to
price the longevity risk inherent in longevity bonds, given the known longevity risk
premium (of 20 basis points) contained in the world’s first longevity bond, namely the
November 2004 EIB 25-year bond designed by BNP Paribas with a reference cohort
of 65-year-old English and Welsh males. The chosen model is well suited to pricing
longevity bonds. For other types of contracts, that involve, for example, derivative

38 Note that some, but not all, simulated paths of A(t) using the random walk model also exhibit
apparent changes in the trend over periods of up to twenty years. That is, the random-walk
model is just as consistent with the historical patterns in Figure 2 as the pattern that would
be induced by the cohort effect.
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characteristics on future mortality rates (such as guaranteed annuity options) mod-
els formulated within the forward-mortality model (such as the Olivier–Smith model
described in Olivier and Jeffrey, 2004) or the mortality-market model (Cairns, Blake,
and Dowd, 2006) frameworks are likely to prove more efficient to implement.

We find that the premium increases with both term and the initial age of the reference
cohort. In the latter case, this is caused by the greater volatility that is associated with
the higher mortality rates of older people compared with younger people. For exam-
ple, in the worst-case scenario considered (where the entire longevity risk premium
is associated with the second (i.e., volatility) factor), the premium for a 30-year bond
with a reference cohort aged 70 is 42.3 basis points.

Another key finding of the article is that the reference cohort’s initial age is more
important for determining the premium than the bond’s maturity. To illustrate, again
in the context of the worst-case scenario, the premium for a 20-year bond with a
reference cohort aged 70 is 26.1 basis points, whereas the premium for a 30-year
bond with a reference cohort aged 60 is 15.0 basis points. This shows that the greater
uncertainty in death rates at higher ages dominates the greater discounting of the
more distant cash flows of longer maturing bonds.

These findings suggest that open-ended survivor bonds that continue to pay out
as long as members of the reference cohort are still alive would not have an exces-
sively high longevity risk premium. However, they might be unattractive in other
respects, such as the administrative inconvenience associated with paying very small
coupons fifty years or so after the bond was issued. So fixed-term longevity bonds
might well dominate for practical considerations. Our results also suggest that fixed-
term longevity bonds might also be favored by investors wishing to avoid ultra-long
longevity risk being dominated by parameter risk.

We propose in future research to investigate alternatives to the random walk model
with drift used here. Possibilities include models drawn from the ARIMA class of time
series models.39 By taking this approach, we will be investigating the important issue
of model risk in addition to the parameter risk considered in this article.

In this article, we have assumed that the fitted values of A(t) are known with certainty.
A further line of research is to relax this assumption and to use instead filtering
approaches or Markov Chain Monte Carlo (MCMC) methods to estimate jointly the
posterior distribution of the parameters and of the current values of A(t).

APPENDIX A
THE EIB/BNP LONGEVITY BOND

The EIB/BNP Paribas longevity bond makes reference to a cohort (aged x at time
0) index that is calculated along the following lines. We start, for convenience, by
letting t = 0 correspond to the beginning of 2003 and set the reference index S(0) =
1. Changes in the reference index, S(t), from one year to the next are determined
by reference to national mortality rates which are made publicly available. Thus,

39 The model used here is classified as an ARIMA(0, 1, 0) model. Elsewhere (Cairns, Blake,
Dawson, and Dowd, 2005) we have used an ARIMA(1, 1, 0) model with similar results to
those in this article.
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for t = 1, 2, . . . , S(t + 1) = S(t)(1 − m̃(t, x)), where m̃(t, x) is the central death rate for
individuals aged x + t in year t (that is, age 65 in 2003, age 66 in 2004, and so on)
published by the UK Office for National Statistics (ONS).

The publication by the ONS of central death rates contrasts with the mortality rates
(q̃ (t, x)) published, for example, by the UK Government Actuary’s Department (GAD)
(for example, as with those for 2002 plotted in Figure 1). For a full discussion of the
differences between q̃ (t, x) and m̃(t, x) the reader is referred to standard texts such as
Benjamin and Pollard (1993) or Bowers et al. (1986). A key approximation connecting
the two is given by

m̃(t, x) ≈ q̃ (t, x)
1 − 1

2 q̃ (t, x)
.

We have used this approximation in our simulations of S(t).

APPENDIX B
SIMULATION OF THE NORMAL-INVERSE-WISHART DISTRIBUTION

Equation (5) requires simulation of V|D using its posterior distribution, the Wishart
(n − 1, n−1V̂−1) distribution. It is more instructive to show how to simulate from the
Wishart distribution than it is to write down its density function. Thus:

� Let S be the upper triangular matrix that satisfies SS′ = n−1V̂−1.
� Now simulate n − 1 i.i.d. vectors α1, . . . , αn−1 ∼ MVN(0, SS′): that is, let αi =

SZi, where Zi is a standard n-dimensional normal random variable (that is, the
individual elements of each Zi are independent normal random variables with
mean 0 and variance 1).

� Let X = ∑n−1
i=1 αiα

′
i .

� Then X has a Wishart(n − 1, n−1V̂−1) distribution.
� Our final step is to invert X to get our simulated covariance matrix: that is, V =

X−1.

Note that E[X] = n−1
n V̂−1. Thus the distribution of the simulated matrices V = X−1

will be centered close to V̂ itself.

The second step of simulating from the Normal-Inverse-Wishart posterior distribution
is to take the simulated V from the steps above and then sample μ from a multivariate
normal distribution with mean μ̂ and covariance matrix n−1 V. This can be simulated
in the usual way.

APPENDIX C
ILLUSTRATION OF ACCUMULATED VARIANCE

Conside a random walk in which W(0) = 0 and, for each t, W(t + 1) = W(t) + Z(t +
1), where Z(1), Z(2), . . . is a sequence of i.i.d. standard normal random variables.

The way in which Var(log S(t)) builds up is similar to Y(T) = ∑T
t=1 W(t). Since W(t) =

Z(1) + . . . + Z(t) we have

Y(T) = TZ(1) + (T − 1)Z(2) + . . . + 2Z(T − 1) + Z(T).
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This has variance
∑T

t=1 t2 = 1
6 T(T + 1)(2T + 1). In contrast Var W(T) = T .

If we introduce a drift, λ, into the process (that is, the Z(t) are i.i.d. N(λ, 1)) (thereby
having the same effect as a market price of risk) then

Y(T) = 1
2

T(T + 1)λ + T Z(1) + (T − 1)Z(2) + . . . + 2Z(T − 1) + Z(T).

This does not affect the variance if λ is known. However, if λ is unknown with mean
λ̂ and variance σ 2, then

VarY(T) = 1
6

T(T + 1)(2T + 1) + 1
4

T2(T + 1)2σ 2.

As a consequence, uncertainty in λ causes greater uncertainty in Y(T) than does the un-
derlying volatility in W(T) as T gets larger (that is, the 1

4 T2(T + 1)2σ 2 term dominates
as T gets larger).
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