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THE LOG-NORMAL APPROXIMATION IN
FINANCIAL AND OTHER COMPUTATIONS

DANIEL DUFRESNE,∗ University of Melbourne

Abstract

Sums of log-normals frequently appear in a variety of situations, including engineering
and financial mathematics. In particular, the pricing of Asian or basket options is directly
related to finding the distributions of such sums. There is no general explicit formula
for the distribution of sums of log-normal random variables. This paper looks at the
limit distributions of sums of log-normal variables when the second parameter of the
log-normals tends to zero or to infinity; in financial terms, this is equivalent to letting
the volatility, or maturity, tend either to zero or to infinity. The limits obtained are either
normal or log-normal, depending on the normalization chosen; the same applies to the
reciprocal of the sums of log-normals. This justifies the log-normal approximation, much
used in practice, and also gives an asymptotically exact distribution for averages of log-
normals with a relatively small volatility; it has been noted that all the analytical pricing
formulae for Asian options perform poorly for small volatilities. Asymptotic formulae
are also found for the moments of the sums of log-normals. Results are given for both
discrete and continuous averages. More explicit results are obtained in the case of the
integral of geometric Brownian motion.

Keywords: Sums of log-normal variables; Brownian motion; Asian option; basket option;
exponential functional of Brownian motion
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1. Introduction

The log-normal distribution has had a very large number of applications; the book of Crow
and Shimizu (1988) lists reliability (lifetime distribution), biology (growth models), ecology,
atmospheric sciences and geology and other applications. One reason for the appeal of the
log-normal in modelling is obvious: if a quantity is positive, then assuming that the logarithm
of the quantity is normally distributed yields a tractable model which is relatively easy to
estimate statistically. Another reason is the stability of the log-normal when taking products.
As Dennis and Patil (1988) wrote (in Crow and Shimizu (1988)), ‘Whenever quantities grow
multiplicatively, the log-normal becomes a leading candidate for a statistical model of such
quantities.’ This explains in good part the persistence of the geometric Brownian motion model
for security prices in economics and finance.

An unfortunate problem arises when sums of log-normals are considered, in that the distri-
bution of sums of log-normals is never log-normal; moreover, the convolution of log-normal
distributions does not have a simple explicit expression. The sum of log-normals arises naturally
in a variety of models; two specific examples are (i) mobile radio cellular systems, where they
appear in the signal-to-noise ratio (see Slimane (2001)), and (ii) the pricing of average or basket
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options in finance (references are given below). Some approximations and bounds have been
suggested. This paper concerns the asymptotic distributions of the sums of log-normals.

This author has encountered sums of log-normals in two related contexts: (i) the pricing of
Asian and basket options and (ii) the study of an integral functional of Brownian motion (given in
(1.1) below). The second problem is particularly interesting because explicit expressions for the
law of the integral do exist, but are relatively complicated. In finance, the integral (1.1) occurs
in the pricing of so-called Asian options (see below); the integral is itself an approximation of
the actual quantity which defines the payoff of average options, which is of course a discrete
average of prices of the security. The integral in (1.1) also arises in other models, for instance
in physics (disordered systems); see for instance Comtet et al. (1998). It is also involved in the
solution of the stochastic differential equation

dXt = (a1Xt + a2) dt + a3Xt dBt

(with a1, a2, a3 constants), which is

Xt = X0eB̃t + a2eB̃t
∫ t

0
e−B̃s ds, B̃t =

(
a1 − a2

3

2

)
t + a3Bt .

It is known that the variables

eB̃t
∫ t

0
e−B̃s ds,

∫ t

0
eB̃s ds

have the same distribution for each fixed t ≥ 0 (Dufresne (1989), Carmona et al. (1997)).
Some details will now be given regarding Asian and basket options. The payoffs of Asian

(or average) options are expressed in terms of the average price of some security (stock, market
index) or commodity. Basket options have payoffs which depend on linear combinations of the
prices of several securities. In options on commodities (such as crude oil or natural gas), the price
of the underlying security is often replaced with an average in order to decrease volatility, or else
to reduce the possibility of manipulating prices close to expiration. If, as in the Black–Scholes
model, the underlying securities are modelled as geometric Brownian motions, then the pricing
of Asian or basket options is intimately related to finding the distribution of the sum or of the
integral of geometric Brownian motions; some explicit results are known in the particular case
where an Asian option has continuous averaging with equal weights, see Geman andYor (1993)
and Dufresne (2000) for details. The case of continuous averaging is, of course, an idealization
of reality, but more explicit results have so far been found regarding continuous averages
than for discrete ones; the continuous averaging formulae (with appropriate corrections) are
good approximations of the discrete ones when the averaging dates are numerous enough
and spread evenly through time; however, for other types of averages, there are no explicit
formulae for option prices. Moreover, the explicit formulae known so far in the continuous
case are not simple. The consequence is that practitioners rely on approximate formulae
(mostly the log-normal approximation and Edgeworth series) or on Monte Carlo simulations.
The log-normal approximation is sometimes very accurate, a fact which has apparently not
been justified mathematically so far; Taleb (1997, Chapters 22 and 23) mentioned the log-
normal approximation, but, with regard to Asian options, recommended the use of Monte Carlo
simulations whenever volatility exceeds 30%. This empirical observation relates directly to the
conclusions of this paper, as it will be shown that the limit distribution of the sums or averages
involved in Asian or basket options are either normal or log-normal as volatility tends to 0. With
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the exception of two brief numerical examples in Section 7, this paper deals exclusively with the
mathematical derivations of the limit distributions; the numerical comparison of option prices
with their approximation is left for subsequent contributions. The combinations of geometric
Brownian motions considered are general enough to include allAsian or basket options, whether
discrete, continuous, or mixed.

Some required facts will now be recalled with respect to the only particular case where
explicit formulae are known for the density of sums of log-normals. As explained by Geman
and Yor (1993) and others, in the Black–Scholes model the random variable of interest in the
pricing of Asian options with continuous averaging is

∫ T

0
S0ems+σBs ds, (1.1)

where S0 is the initial price of the underlying security andB is standard Brownian motion under
the risk-neutral measure. The drift m is, for example, equal to r − σ 2/2 when the underlying
security does not pay dividends and the risk-free rate of interest is r . In this and in other
situations m may be positive or negative.

Geman and Yor (1993) used the following transformation of (1.1): let

t ′ = σ 2T

4
and µ = 2m

σ 2 ; (1.2)

then, by the scaling property of Brownian motion, the random variable in (1.1) has the same
distribution as 4S0/σ

2 multiplied by

A
(µ)

t ′ =
∫ t ′

0
e2(µs+Bs) ds.

This transformation has been used elsewhere by Yor (including many of the papers reproduced
in Yor (2001)) and by this author, Dufresne (2000), (2001a), (2001b). This parametrization is
advantageous in many ways, as shown especially by the work of Marc Yor.

However, the above transformation may not be the most natural one for the purpose of finding
the asymptotic distribution of (1.1) when T tends to zero or infinity. We will instead use the
following one: let

t = σ 2T and ν = m

σ 2 ; (1.3)

then ∫ T

0
S0ems+σBs ds

D= S0

σ 2M
ν
t , where Mν

t =
∫ t

0
eνs+Bs ds

(here
D= denotes equality in distribution). It can be seen that t is the cumulative variance (or

quadratic variation) of the logarithm of B over the time period [0, t]. The standardized drift ν
may be positive or negative.

Both parametrizations (1.2) and (1.3) remove σ from the algebraic manipulations. Letting
t ′ or t tend to 0 can mean either leaving the maturity T fixed while letting σ decrease to 0, or
else leaving the volatility σ fixed while letting maturity decrease to 0. We can go from one set
of parameters to the other by employing the identity in distribution

Mν
t

D= 4A(2ν)t/4 . (1.4)



750 D. DUFRESNE

A complete list of references on Asian option pricing will not be given here; the reader is
referred to Dufresne (2000) and Linetsky (2001). The greater difficulty of pricing Asian options
with short maturities, or small volatilities, was noticed by Rogers and Shi (1995, p. 1087), who
solved the associated PDE numerically, and also by Fu et al. (1999), who inverted Geman and
Yor’s (1993) Laplace transform for Asian calls. Dufresne (2000) was unable to compute Asian
option prices for t smaller than approximately 0.1, while the Laguerre series performed better
as t increased (the number of required terms decreases with increasing t). Linetsky (2001) also
noticed that more terms of his series expression for Asian option prices are required for small t ;
he was able to get an accurate price in a case where t = 0.09 at the cost of computing 57 terms
of the series, and 400 terms are required in one case where t = 0.01, while larger t require less
computational effort. Now, an option with a maturity of one year on an underlying security with
a volatility σ = 0.30 has a normalized maturity of t = 0.09. A one-month averaging period
in an oil or gas price with 60% annual volatility yields t = 0.03. Much shorter standardized
maturities t result when the original maturity or volatility are smaller. A maturity of T = 1

12
(one month) and a 10% annual volatility means that t = 0.000833. Standardized volatilities
of 0.0001 or less arise in practice. Therefore, it would seem that the analytical expressions
known so far for Asian options, as well as some of the numerical procedures, are good mostly
for relatively large values of t , which are not very common in practice.

The conclusion is that there is a clear need for better approximations for small t . Observe
that simulation does not seem to suffer from the small-t problem, but has, however, its own
difficulties when used to price Asian options; see for instance Vázquez-Abad and Dufresne
(1998), Fu et al. (1999), and Su and Fu (2000).

The same phenomenon is observed for the known formulae for the density of A(µ)t . Yor
(1992) derived the joint law of (Bt , A

(µ)
t ),

P(A(µ)t ∈ du | Bt + µt = x) =
√

2πt

u
exp

(
x2

2t
− 1

2u
(1 + e2x)

)
θex/u(t) du,

where

θr(t) = r√
2π3t

exp

(
π2

2t

) ∫ ∞

0
dy exp

(
−y

2

2t

)
exp(−r cosh y) sinh(y) sin

(
πy

t

)
.

The trigonometric function in this expression causes numerical problems because of the in-
creasing oscillations of the integrand when t gets smaller. Observe that the factor exp(π2/2t)
is getting larger at the same time. The Laguerre series obtained in Dufresne (2000) also suffer
from the small-t problem, though the reason is apparently that the required moments of 1/A(µ)t

get very large when t is small. Dufresne (2001b) obtained the following expression for the
density of 1/2A(µ)t :

fµ(x, t) = e−µ2t/2 ∗ 2−µx−(µ+1)/2

×
∫ ∞

−∞
e−x cosh2 yq(y, t) cos

(
π

2

(
y

t
− µ

))
Hµ(

√
x sinh y) dy (1.5)

for x > 0, where

q(y, t) = eπ
2/8t−y2/2t

π
√

2t
cosh y

and Hµ(·) is the Hermite function (Lebedev (1972, p. 290)). Again there is a trigonometric
function with an argument in 1/t and a factor exp(π2/8t), which cause numerical instability
when t is small.
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Sections 2 and 3 deal with continuous averaging. The limit distributions are normal or
log-normal when t tends to 0, and log-normal when t tends to infinity. The log-normal
approximation is given what may be its first rigorous justification. (As far as this author
knows, the only prior justification of the log-normal approximation, though imperfect, is the
result given in Theorem 3.3(b) below, which shows that, as t tends to infinity, the normalized
logarithm of M0

t tends to the law of the absolute value of a normal variable; Revuz and Yor
(1999, p. 48) traced this result back to Durrett (1982).) Section 2 looks at limits of Mν

t when t
tends to 0, while Section 3 is concerned with limits as t tends to infinity. The results in Section 2
should be contrasted with the (seemingly) very different ones obtained by Barrieu et al. (2004).

Readers interested in discrete sums (as opposed to integral functionals of Brownian motion)
may wish to skip to Sections 4 and 5. Section 4 defines a general integral functional of several
geometric Brownian motions, which includes the combinations or averages involved in all
Asian or basket options, and studies its distribution as the volatilities tend to 0. Again, normal
and log-normal distributions are obtained in the limit. This paper does not say which of the
two approximations, normal or log-normal, will be best for pricing Asian options or in other
situations; this topic is left for further investigation.

Section 5 compares two slightly different log-normal approximations, and also shows that
the difference of two log-normals approximates combinations with both positive and negative
weights. Section 6 looks at the limits of processes related toAsian option pricing when volatility
tends to 0. Section 7 concludes the paper with ideas for further study, including two numerical
examples of Asian option prices with their normal and log-normal approximation. Appendix A
derives some asymptotic formulae for the moments of 1/A(µ)t that are used in some of the
proofs, but which are of interest in their own right.

The ‘big oh’ and ‘small oh’ symbols have their usual meanings:

a(t) = O(tk) as t → 0+
if |a(t)/tk| remains bounded as t decreases to 0, and

a(t) = O(tk) as t → 0+
means that

lim
t→0+

a(t)

tk
= 0.

We denote by Nm,s2 a random variable with a normal N(m, s2) distribution. We denote
convergence in distribution by

D−→ and almost sure convergence by
a.s.−→. We will use the

following general results related to convergence in distribution (Billingsley (1999, p. 27)):

1. Suppose that ‖ · ‖ is a norm (in what follows, either the Euclidean norm on R
d or the

supremum norm on C[0, T ]), and that Xn
D−→ X∗; if ‖Xn − Yn‖ a.s.−→ 0, then Yn

D−→ X∗.

2. Suppose that Xn
D−→ X∗ and that {Xn} is uniformly integrable; then EXn → EX∗. A

sufficient condition for uniform integrability is that supn E |Xn|1+ε < ∞ for some ε > 0;
another is that Y1 ≤ Xn ≤ Y2 almost surely for all n, where Y1 and Y2 are integrable.

Finally, B is one-dimensional standard Brownian motion, with

B
¯
t = inf

0≤u≤t Bu, B̄t = sup
0≤u≤t

Bu,
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and we write B
¯

= B
¯

1 and B̄ = B̄1. Each element of the vector (B(1), . . . , B(d)) is one-
dimensional standard Brownian motion, and the above notation is also used for its running
maximum and minimum, but it is not assumed that these Brownian motions are independent.

2. Limit distribution of Mν
t as t tends to 0

Theorem 2.1. (Normal limit as t → 0+.) Let

m(t) = t or m(t) = EMν
t

and

v(t) = t3

3
or v(t) = √

var(Mν
t ).

Then, as t → 0+,
Mν
t −m(t)√
v(t)

D−→ N0,1

and, for k ∈ N,

E

(
Mν
t −m(t)√
v(t)

)k
→ ENk

0,1. (2.1)

Proof. First, let m(t) = t and v(t) = t3/3. An obvious change of variable yields that

Mν
t = t

∫ 1

0
eνtu+But du.

The distribution of Mν
t is the same as that of

M̃ν
t = t

∫ 1

0
eνtu+

√
tBu du. (2.2)

We find that

t−3/2(M̃ν
t − t) = t−1/2

∫ 1

0
(eνtu+

√
tBu − 1) du. (2.3)

Now
1√
t
(ex

√
t − 1) = x + x2√t

2
eζ ,

where ζ lies between 0 and x
√
t . Apply this with x = νu

√
t + Bu: since the trajectories of

Brownian motion are almost surely continuous, they are also almost surely bounded over finite
intervals, and the ζ above almost surely tends to 0 uniformly in u. We thus have

t−1/2(eνtu+
√
tBu − 1)

a.s.−→ Bu.

Moreover, the function on the left-hand side is uniformly bounded when 0 < t, u < 1
(considering a single continuous trajectory of B). Hence,

t−3/2(M̃ν
t − t)

a.s.−→
∫ 1

0
Bu du as t → 0 + .

It is well known that the distribution of the integral on the right-hand side is normal with mean
0 and variance 1

3 .
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Finally, it is possible to replace m(t) = t with EMν
t because

t − EMν
t

t3/2
→ 0

as t decreases to 0 (see (2.5) below). Similarly, v(t) = t3/3 may be replaced with the standard
deviation of Mν

t because of (2.7) below.
For the convergence of moments (in (2.1)), we give two possible proofs, (i) and (ii). The

first one is more straightforward, but incomplete.

(i) Suppose that m(t) = EMν
t and v(t) = t3/3. Recall the formula for the moments of Mν

t

(Ramakrishnan (1954), Dufresne (1989), Yor (1992)):

E(Mν
t )
n = n!

n∑
k=0

eαkt
[ n∏
j=0,j 
=k

(αk − αj )

]−1

, (2.4)

where αk = kν + k2/2 for k ∈ N. In particular,

EMν
t = e(ν+1/2)t − 1

(ν + 1
2 )

= t + 1
2 (ν + 1

2 )t
2 + O(t3) (2.5)

and

E(Mν
t )

2 = 2

(ν + 1)(2ν + 3)
e(2ν+2)t − 2

(ν + 1
2 )(ν + 3

2 )
e(ν+1/2)t + 2

(ν + 1)(2ν + 1)

= t2 + (ν + 5
6 )t

3 + O(t4), (2.6)

which implies (by subtracting the square of (2.5)) that

lim
t→0+

varMν
t

t3/3
= 1. (2.7)

We have thus proved (2.1) for k = 1, 2. The author has checked the cases k = 3, . . . , 6 in the
same way, that is, by considering the Taylor series of the moments up to the required order, and
then simplifying (the reader is spared the messy details). The case of arbitrary k has not been
proved in this fashion, though this appears feasible.

(ii) Suppose thatm(t) = t and v(t) = t3/3. Since 1 − e−x ≤ x for nonnegative x, we find that
(see (2.3))

t−1/2
∫ 1

0
(eνtu+

√
tBu − 1) du ≥ t−1/2

∫ 1

0
(eνtu+

√
tB

¯ − 1) du

= t−1/2(e
√
tB

¯ − 1)
eνt − 1

νt
+ eνt − 1 − νt

νt3/2

≥ B
¯

eνt − 1

νt
+ eνt − 1 − νt

νt3/2
. (2.8)
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Observe that the last expression converges to B
¯

as t → 0+. Similarly,

t−1/2
∫ 1

0
(eνtu+

√
tBu − 1) du ≤ t−1/2

∫ 1

0
(eνtu+

√
tB̄ − 1) du

= t−1/2(e
√
tB̄ − 1)

eνt − 1

νt
+ eνt − 1 − νt

νt3/2

≤ B̄e
√
tB̄ eνt − 1

νt
+ eνt − 1 − νt

νt3/2
. (2.9)

The last inequality follows since

1√
t
(ex

√
t − 1) = xeζ ≤ xex

√
t ,

where ζ lies between 0 and x
√
t , which is valid for x > 0.

Noting that B
¯

and B̄e
√
tB̄ are both integrable, we have thus shown that the variables in (2.3)

(when 0 < t < 1) are bounded below and above by integrable random variables; they are
hence uniformly integrable. Since (2.3) converges in distribution as t → 0+, those inequalities
imply convergence of first moments to the first moment of the limit distribution (see the end of
Section 1). The same reasoning works for higher moments, only raise the inequalities to the
appropriate power and note that the variables B

¯
k and B̄kek

√
tB̄ are integrable for any k ∈ N.

The same results (in (i) or (ii)) are correct if m(t) = EMν
t instead of m(t) = t , since

E

(
Mν
t − EMν

t√
v(t)

)k
− E

(
Mν
t − t√
v(t)

)k
=

k−1∑
j=0

(
k

j

)
E

(
Mν
t − t√
v(t)

)j(
t − EMν

t√
v(t)

)k−j
,

which is seen to tend to 0 by a recursive argument. The same limits (2.1) hold if v(t) is replaced
with varMν

t because of (2.7), which completes the proof.

Remark 2.1. Yor (2001, p. 54) recently found that the formula (2.4) for the moments of Mν
t

had previously appeared in Ramakrishnan (1954), in relation to an astronomical model.

Remark 2.2. When one of the constants {αk; k ≥ 1} equals 0, the expressions for the moments
are slightly different, as explained by Dufresne (1989). This does not affect the results above.

Theorem 2.2. (Log-normal limit as t → 0+.) Let m(t) and v(t) be as in Theorem 2.1. Then,
as t → 0+,

m(t)√
v(t)

log

(
Mν
t

m(t)

)
D−→ N0,1 (2.10)

and, for k ∈ N,

E

(
m(t)√
v(t)

log

(
Mν
t

m(t)

))k
→ ENk

0,1. (2.11)

We will use the following lemma.

Lemma 2.1. Assume that, as n tends to infinity, the constants {an; n ≥ 1} tend to 0.

(a) Suppose the sequence of random variables {Zn; n ≥ 1} converges in distribution to Z∗.
Then

1

an
log(1 + anZn)1{1+anZn>0}

D−→ Z∗ as n → ∞.
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(b) Conversely, suppose that {Un; n ≥ 1} converges in distribution to U∗. Then

eanUn − 1

an

D−→ U∗ as n → ∞.

Proof. To prove (a), apply Skorokhod’s representation theorem (Billingsley (1999, p. 70)):
there is a probability space (�̃, F̃ , P̃) on which variables {Z̃n; n ≥ 1} and Z̃∗ are defined, such
that Z̃n

D= Zn for all n, Z̃∗ D= Z∗ andZn converges P̃-almost surely to Z̃∗. Clearly, 1{1+anZ̃n>0}
converges almost surely to 1 as n tends to infinity, and so

1

an
log(1 + anZ̃n)1{1+anZ̃n>0} = Z̃n

1

anZ̃n

∫ anZ̃n

0

du

1 + u
1{1+anZ̃n>0}

a.s.−→ Z̃∗.

Part (b) of the lemma is proved similarly.

Proof of Theorem 2.2. The limit distribution (2.10) follows at once from Lemma 2.1(a) and

m(t)√
v(t)

log

(
Mν
t

m(t)

)
= m(t)√

v(t)
log

(
1 +

√
v(t)

m(t)

Mν
t −m(t)√
v(t)

)
,

noting that limt→0+
√
v(t)/m(t) = 0.

To prove (2.11), recall B
¯

and B̄ from the proof of Theorem 2.1 and note that

e
√
tB

¯
eνt − 1

νt
t ≤ M̃ν

t ≤ e
√
tB̄ eνt − 1

νt
t. (2.12)

Hence,

g(t)B
¯

+ h(t) ≤ m(t)√
v(t)

log

(
M̃ν
t

m(t)

)
≤ g(t)B̄ + h(t), (2.13)

where

g(t) =
√
tm(t)√
v(t)

→ √
3, h(t) = log

(
eνt − 1

νt

t

m(t)

)
→ 0

as t → 0+. Hence, the variables in the middle of (2.13), raised to a power k ≥ 1, are uniformly
integrable, and thus all moments converge to those of the limit distribution. This completes the
proof.

Theorem 2.2 implies in particular that

E(logMν
t ) = log t + O(

√
t), var(logMν

t ) ∼ t

3

as t → 0+.

Theorem 2.3. (Normal limit for reciprocal average as t → 0+.) Let m(t) and v(t) be as in
Theorem 2.1. Then, as t → 0+,

m(t)√
v(t)

(
m(t)

Mν
t

− 1

)
D−→ N0,1

and, for k ∈ N,

E

[
m(t)√
v(t)

(
m(t)

Mν
t

− 1

)]k
→ ENk

0,1.
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Proof. There are at least two ways to prove convergence in distribution. One is to use
Lemma 2.1(b): let

Ut = − m(t)√
v(t)

log

(
Mν
t

m(t)

)
D−→ U∗ = N0,1, at =

√
v(t)

m(t)
.

A second more direct proof also yields convergence of moments. Initially, let m(t) = t , and
recall (2.2), (2.8), (2.9) and (2.12). Then

t√
v(t)

(
1 − t

Mν
t

)
D= t√

v(t)

(
1 − t

M̃ν
t

)
= t√

v(t)

∫ 1
0 (e

νtu+√
tBu − 1) du∫ 1

0 eνtu+
√
tBu du

. (2.14)

The last expression is easily seen to converge to

√
3

∫ 1

0
Bu du ∼ N(0, 1),

while it is bounded below by

t3/2√
v(t)

[
B
¯

e−√
tB

¯ +
(

eνt − 1

νt

)−1 eνt − 1 − νt

νt3/2
e−√

tB
¯

]
and bounded above by

t3/2√
v(t)

[
B̄e

√
t(B̄−B

¯
) +

(
eνt − 1

νt

)−1 eνt − 1 − νt

νt3/2
e−√

tB
¯

]
.

Those two bounds converge to
√

3B
¯

and
√

3B̄ respectively, and are each uniformly bounded
(when 0 < t < 1, say) by variables which have all moments finite.

The proof for m(t) = EMν
t is obtained as follows. Denote by Xt the right-hand side of

(2.14) and let

Yt = m(t)√
v(t)

(
1 − m(t)

M̃ν
t

)
.

Then

Yt −Xt = m(t)− t√
v(t)

(
m(t)+ t

M̃ν
t

− 1

)
,

which tends to 0 almost surely as t → 0+. This shows that Yt has the same limit distribution
as Xt . Finally, turn to moments: for k ≥ 1,

EXkt − E Y kt =
k∑
j=1

(
k

j

)
E[Xk−jt (Yt −Xt)

j ],

where the expectations on the right all tend to 0 as t → 0+, and so the kth moments of Xt and
Yt have the same limit. This completes the proof.

Theorem 2.3 implies that

E

(
1

Mν
t

)
= 1

t
+ O

(
1√
t

)
, var

(
1

Mν
t

)
∼ 1

3t

as t → 0+. These could also be obtained (with a little more effort) from the integral formulae
for the moments of 1/Mν

t ; see Dufresne (2000, p. 417).
As a last comment, observe that Lemma 2.1 may be reformulated as follows.
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Corollary 2.1. Suppose that an, bn,Xn > 0 and bn/an → 0. Then the following are equiva-
lent:

(i)
Xn − an

bn

D−→ U∗,

(ii)
an

bn
log

(
Xn

an

)
D−→ U∗,

(iii)
an

bn

(
an

Xn
− 1

)
D−→ −U∗.

When considering limit distributions as t → 0+, the normal and log-normal limits occur
simultaneously because

√
v(t)/m(t) → 0 as t → 0+. However,

√
varMν

t

EMν
t


→ 0 as t → ∞,

which explains why there is a log-normal limit distribution in the next section, but no normal
limit.

3. Limit distributions of Mν
t as t tends to infinity

Recall (Dufresne (1990)) that limt→∞Mν
t = Mν∞ is finite if and only if ν < 0, and that,

moreover,
2

Mν∞
∼ gamma(−2ν, 1), ν < 0. (3.1)

Theorem 3.1. (No normal limit for average as t → ∞.) Letm(t) = EMν
t and v(t) = varMν

t .
For any ν ∈ R, the reduced variable

Mν
t −m(t)√
v(t)

(3.2)

does not converge to a normal distribution as t → ∞. If ν ≥ −1, then it tends to 0 almost
surely.

Proof. First, suppose that ν < 0. Then Mν
t converges almost surely to an inverse gamma

variable, while the denominator tends either to a positive constant or to +∞. A normal limit
distribution is impossible. If −1 ≤ ν < 0, then, by (2.5), (2.6) and (3.1), the variance of Mν

t

tends to infinity, while the squared mean either tends to a constant or tends to infinity at a slower
rate than the variance. Hence, (3.2) tends to 0 almost surely if −1 ≤ ν < 0.

Suppose next that ν ≥ 0. From (2.5) and (2.6),

m(t) ∼ 1

ν + 1
2

e(ν+1/2)t , ν > − 1
2 ,

1√
v(t)

∼ e−(ν+1)t
√
(ν + 1)(ν + 3

2 ), ν > −1,
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and so m(t)/
√
v(t) → 0; it is thus sufficient to consider the limit of Mν

t /
√
v(t).We get

e−(ν+1)t
∫ t

0
eνs+Bs ds ≤ e−t+B̄t

∫ t

0
eν(s−t) ds,

which tends to 0 almost surely as t tends to infinity.

Theorem 3.2. (No normal limit for reciprocal average as t → ∞.) For any ν ∈ R, the
distribution of

1/Mν
t − E(1/Mν

t )√
var(1/Mν

t )
(3.3)

does not converge to a normal distribution as t → ∞. If ν ≥ 0, then the above variable tends
to 0 almost surely.

Proof. If ν < 0, then the limit distribution is obviously a gamma(−2ν, 1) distribution minus
its mean and divided by its standard deviation.

For ν ≥ 0, it is perhaps easier to consider the expression (3.3) with Mν
t replaced with A(µ)t ,

with µ = ν/2. Refer to Appendix A for the asymptotic behaviour of the first two moments of
A
(µ)
t (see (A.6)–(A.9), (A.13)–(A.18) and the comment after (A.18) in Appendix A). For all

µ ≥ 0, it can be seen that
E(1/A(µ)t )√
var(1/A(µ)t )

→ 0

as t tends to infinity. Thus, it only remains to show that

1

A
(µ)
t

√
var(1/A(µ)t )

→ 0

almost surely. In the case µ = 0, this follows from Theorem 3.3(b) (see below), which will
now be seen to imply that

lim
t→∞

A
(0)
t

tp
= ∞ a.s.

for all p. Suppose that there exist C,p > 0 and a set E of positive probability such that

lim inf
t→∞

A
(0)
t

tp
≤ C

on E. Then it follows that

lim inf
t→∞

1√
t

logA(0)t ≤ 0

on E, which is a contradiction since Theorem 3.3(b) says that

lim
t→∞ P

(
1√
t

logA(0)t > 0

)
= 1.

Next, consider µ > 0. First, note that

eptA(µ)t

a.s.−→ ∞, p > −2µ,
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as t tends to infinity, since the above may be rewritten as

e(p+2µ)t+2Bt [e−2µt−2BtA
(µ)
t ];

the first factor tends to ∞ almost surely, while the second has a strictly positive limit in
distribution. The equations (A.6)–(A.9) and (A.13)–(A.18) (see Appendix A) show that√

var

(
1

A
(µ)
t

)
∼ Ktpea(µ)t

as t → ∞, where K and p are constants and

a(µ) =
⎧⎨
⎩−µ

2

4
if 0 < µ ≤ 4,

4 − 2µ if µ > 4.

Obviously, a(µ) > −2µ for all µ > 0, which ends the proof.

Theorem 3.3. (Limits of logMν
t as t → ∞.) The following limits hold when t → ∞.

(a) Suppose that ν < 0. Then

1√
t
(logMν

t − νt)
a.s.−→ ∞,

1√
t

logMν
t

a.s.−→ 0.

(b) Suppose that ν = 0. Then
1√
t

logM0
t

D−→ |N0,1|
and

E

(
1√
t

logM0
t

)k
→ E |N0,1|k, k ∈ N.

(c) Suppose that ν > 0. Then

1√
t
[log (Mν

t )− νt] D−→ N0,1

and

E

(
1√
t
[log (Mν

t )− νt]
)k

→ ENk
0,1, k ∈ N.

Proof. Part (a) is an obvious consequence of (3.1). The limit distribution in (b) has a well-
known proof; see Comtet et al. (1998, Section 3.1) or Revuz and Yor (1999, Exercise 1.18,
p. 23). We will give another proof, based on Bougerol’s identity (for more details on the results
used below, see Bougerol (1983) and Alili et al. (1997)). This identity says that, if (V ,W) is
two-dimensional Brownian motion, then∫ t

0
eVs dWs

D= sinh(Wt )

for each fixed t > 0. This is equivalent to√
A
(0)
t N0,1

D= sinh(
√
tN0,1)
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if N0,1 is independent of A(0)t . This implies that

1√
t

logA(0)t + 1√
t

log(N2
0,1)

D= 1√
t

log[sinh2(
√
tN0,1)].

The second term on the left-hand side tends to 0 almost surely as t tends to infinity, and sinh2 y

behaves like e2|y|/4 as y → ±∞, which yields that

1√
t

logA(0)t
D−→ 2|N0,1|.

This is the result sought, by (1.4).
Convergence of moments in (b) results from the same uniform integrability argument as in

the proof of Theorem 2.1 after noting that

1√
t

log t + B
¯

≤ 1√
t

log M̃0
t ≤ 1√

t
log t + B̄.

In (c), time reversal implies that, for any ν (Dufresne (1989)),

Mν
t

D= eνt+Bt
∫ t

0
e−νu−Bu du.

Take logarithms on either side, subtract νt and divide by
√
t to get

1√
t
(logMν

t − νt)
D= Bt√

t
+ 1√

t
log

∫ t

0
e−νu−Bu du.

The first summand on the right-hand has an N(0, 1) distribution, while the second one converges
to 0 almost surely. To prove convergence of moments, it is sufficient to show that the last
expression is uniformly integrable. This is done by noting that it has lower and upper bounds

Bt − B̄t√
t

+ 1√
t

log

(
1 − e−νt

ν

)
and

Bt − B
¯
t√

t
+ 1√

t
log

(
1 − e−νt

ν

)

respectively. Those bounds are uniformly integrable, because

Bt − B̄t√
t

D= B1 − B̄1,
Bt − B

¯
t√

t

D= B1 − B
¯

1.

Part (b) of Theorem 3.3 implies that, as t → ∞,

E(logM0
t ) ∼

√
2t

π
, var(logM0

t ) ∼ t

(
1 − 2

π

)
,

while part (c) means that, for ν > 0,

E(logMν
t ) = νt + O(

√
t), var(logMν

t ) ∼ t.

Observe that exact integral expressions can be found for the moments of logMν
t , using the

density (1.5). Comtet et al. (1998) gave other formulae regarding the first moment of logMν
t .
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4. Limits of more general sums of log-normals

The continuous averages with equal weights studied in the previous sections are important
mathematically, as they allow explicit formulae for many quantities of interest. However,
financial (and other) computations concern discrete averages with weights which are not
necessarily equal, and these are not always well approximated by continuous averages with
equal weights. In this section, we consider more general averages involving any number of
different securities. This includes all Asian and basket payoffs, as well as hybrids of the two
types. For instance, an option’s payoff might be based on the sum of the time-weighted averages
of two securities S(1) and S(2), say

n1∑
j=1

w
(1)
j S

(1)
tj

+
n2∑
j=1

w
(2)
j S

(2)
tj
. (4.1)

Here (S(1), S(2)) would often be correlated log-normal processes.
It is not possible to formulate the limit distribution problem in the same way here as it was

in Section 2. In order to appreciate this, suppose that Brownian motion is sampled at times t1
and t2, with 0 < t1 < t2, yielding a weighted average

w1emt1+σBt1 + w2emt2+σBt2 =
∫ t

0
ems+σBs dF(s), t ≥ t2, (4.2)

where F is the combination of Dirac measures w1δt1 + w2δt2 . Then, letting t decrease to 0,
Yt loses one Dirac mass when t ∈ (t1, t2), and is equal to 0 if t < t1, which does not yield a
very interesting limit, whichever normalization is chosen. Some other way must then be used
to find an approximation which preserves the measure F . There is an obvious choice: let σ
tend to 0, rather than t . For example, denote the expression in (4.2) by Yσ , and consider the
limit distribution

Yσ − E Yσ
σ

=
∫ t

0

1

σ
(ems+σBs − ems+(σ 2/2)s) dF(s)

a.s.−→
∫ t

0
emsBs dF(s).

The last variable having a normal distribution, it is then simple to check that

Yσ − E Yσ
var Yσ

D−→ N0,1.

(In other words, var Yσ ∼ σ 2 var[∫ emsBs dF(s)] as σ → 0.)
Let us compare this with the limits obtained in Section 2. Consider (1.1), before the

transformation (1.3) is performed. Here F is the Lebesgue measure restricted to [0, T ] and, if

Yσ =
∫ T

0
ems+σBs ds,

then (Yσ − E Yσ )/
√

var Yσ tends to the standard normal as σ tends to 0, which is the same
as Theorem 2.1. The counterparts of Theorems 2.2 and 2.3 then follow from Lemma 2.1, as
before. In conclusion, letting t or σ tend to 0 lead to the same asymptotic distributions in the
case of the integral in (1.1). From an intuitive point of view this is not surprising, since the
variance of σBt decreases to 0 as either σ or t tends to 0. (We remark that an alternative to
letting σ tend to 0 would be to rescale the measure F such that its whole mass is concentrated
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increasingly close to 0. In light of the above comments, this possibility will not be considered,
as it is equivalent to letting σ tend to 0.)

Consequently, in this section we consider a vector of n correlated geometric Brownian
motions (S(1), . . . , S(n)) (‘log-normal processes’) and look at the limit distributions of general
averages (such as (4.1) above) when the volatilities of all the securities tend to 0. Rather than
letting all the separate volatilities tend to 0, we simplify the algebra by introducing a factor p
in all the volatilities:

volatility of security k = pσk, k = 1, . . . , n.

As p decreases to 0, all the volatilities tend to 0. We assume that

S
(k)
t = S

(k)
0 exp(µkt + pσkB

(k)
t ), k = 1, . . . , n.

Here (B(1), . . . , B(n)) is, under the risk-neutral measure, a vector of (possibly correlated)
standard Brownian motions.

We now describe the notation to be used for the averages. Rather than writing averages as
in (4.1), we prefer writing any time-weighted combination of security k as an integral of the
process exp(pσkB

(k)
t ) with respect to a signed measure F (k):

combination of prices of security k =
∫ T

0
epσkB

(k)
t dF (k)t .

This notation accommodates both discrete and continuous averages, or combinations of
these. A discrete combination of the security S(k), with weightsw(k)j at time tj , j = 1, . . . , nk ,
is therefore written as

nk∑
j=1

w
(k)
j S

(k)
tj

=
∫ T

0
epσkB

(k)
t dF (k)t ,

where the measure F (k) assigns mass S(k)0 eµktj w(k)j to the time point tj for j = 1, . . . , nk . A
continuous average over [0, T ] is written as the right-hand side of the last equation, but now

F (k)(s1, s2) = S
(k)
0

T

∫ s2

s1

eµkt dt

for any interval (s1, s2)with 0 ≤ s1 < s2 ≤ T . To avoid trivialities, we assume that, for each k,
F (k) is not the zero measure, F (k)[0, T ] is finite and σk is strictly greater than 0.

In order to include all the above types of combinations of geometric Brownian motions, we
consider random variables of the form

Xp =
n∑
k=1

∫ T

0
epσkB

(k)
t dF (k)t ,

where F (1), . . . , F (n) are signed measures, and look for limit distributions of Xp (suitably
normalized) as p tends to 0. First (Theorem 4.1), we consider normal limit distributions for

Xp − EXp
p

.
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Observe that signed measures may assign a negative mass to a set, and so, in this case, negative
weights w(k)j are allowed in (4.1). Next (Theorem 4.2), we restrict the analysis to proper
measures (that is, all weights must now be nonnegative), and look for the limit distribution of

1

p
log

(
Xp

EXp

)
.

It will turn out that EXp can always be replaced with X0 in the above expressions. Similar
results will be obtained for 1/Xp as well (Theorem 4.3).

Theorem 4.1. Suppose that F (1), . . . , F (n) are signed measures. Then, as p tends to 0,

Xp − EXp
p

a.s.−→ Y =
n∑
k=1

σk

∫ T

0
B
(k)
t dF (k)t ∼ N0,v2

and, for k ∈ N,

E

(
Xp − EXp

p

)k
→ vk ENk

0,1,

where

v2 = var(Y )

=
n∑
k=1

σ 2
k

∫ T

0

∫ T

0
(t1 ∧ t2) dF (k)t1

dF (k)t2
+ 2

∑
1≤j<k≤n

E(B(j)1 B
(k)
1 )

∫ T

0

∫ T

0
(t1 ∧ t2) dF (j)t1

dF (k)t2
.

These results also hold if EXp is replaced with X0.

Proof. No generality is lost by assuming that p > 0. We find that

Xp − EXp
p

=
n∑
k=1

∫ T

0

epσkB
(k)
t − 1

p
dF (k)t ,

and the almost-sure limit follows from dominated convergence, given that

epσkB
(k)
t − 1

p

a.s.−→ σkB
(k)
t .

The variance of Y is found by expanding Y 2 and then taking expectations.
Convergence of moments is established by noting that, when 0 < p < 1,

∣∣∣∣epσkB
(k)
t − 1

p

∣∣∣∣ ≤ σk(B̄
(k)
t − B

¯
(k)
t )e

σkB̄
(k)
t ,

where B̄(k)t = max0≤s≤t B(k)s and B
¯
(k)
t = min0≤s≤t B(k)s .

The same results hold if EXp is replaced with X0, because, as p tends to 0,

EXp −X0

p
→ 0.



764 D. DUFRESNE

Theorem 4.2. Suppose that F (1), . . . , F (n) are measures. Then, as p tends to 0,

1

p
log

(
Xp

EXp

)
a.s.−→ Y

X0

and, for k ∈ N,

E

[
1

p
log

(
Xp

EXp

)]k
→

(
v

X0

)k
ENk

0,1,

where Y and v are as in Theorem 4.1. These results also hold if EXp is replaced with X0.

Proof. The first claim results from

1

p
log

(
Xp

EXp

)
= 1

p
log

(
1 + p

EXp

Xp − EXp
p

)
a.s.−→ Y

X0
.

Moreover,

1

p
log

(
Xp

X0

)
− 1

p
log

(
Xp

EXp

)
= 1

p
log

(
1 + p

X0

EXp −X0

p

)
→ 0.

Convergence of moments results from dominated convergence, after noting that

X0 exp
[
pmin

k
(σkB

¯
(k)
T )

]
≤ Xk ≤ X0 exp

[
pmax

k
(σkB̄

(k)
T )

]
.

This completes the proof.

Theorem 4.2 implies that, as p → 0,

E(logXp) = logX0 + O(p), var(logXp) ∼ p2v2

X2
0

.

Theorem 4.3. Suppose that F (1), . . . , F (n) are measures. Then, as p tends to 0,

1

p

[
1

Xp
− E

(
1

Xp

)]
a.s.−→ − Y

X2
0

and, for k ∈ N,

p−k E

[
1

Xp
− E

(
1

Xp

)]k
→

(
v

X2
0

)k
Nk

0,1,

where Y and v are as in Theorem 4.1. The results above also hold if E(1/Xp) is replaced with
1/X0 or with 1/E(Xp).

Proof. From

Zp = 1

p
log

(
Xp

X0

)
a.s.−→ Y

X0
,

it follows that
1

p

(
1

Xp
− 1

X0

)
= 1

pX0
(e−pZp − 1)

a.s.−→ − Y

X2
0

.
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In the expressions on the left-hand side, 1/X0 may be replaced with E(1/Xp), since, when
0 < p < 1,

X0

p

(
1

X0
− 1

Xp

)
≤ exp

[
− min

k
(σkB

¯
(k)
T )

](
exp

[
max
k
(σkB̄

(k)
T )

]
− 1

)
,

X0

p

(
1

X0
− 1

Xp

)
≥ exp

[
− min

k
(σkB

¯
(k)
T )

]
min
k
(σkB

¯
(k)
T ).

(4.3)

These two bounds are integrable, the left-hand side tends to 0 almost surely, and so

1

p

[
1

X0
− E

(
1

Xp

)]
→ 0.

Similarly, 1/X0 may be replaced with 1/EXp because

1

p

(
1

X0
− 1

EXp

)
= 1

X0 EXp

EXp −X0

p
→ 0.

Convergence of moments results from the bounds (4.3).

Theorem 4.3 implies that, as p → 0,

E

(
1

Xp

)
= 1

X0
+ O(p), var

(
1

Xp

)
∼ p2v2

X4
0

.

5. Some comments on log-normal approximations

We first compare two log-normal approximations in the case where each F (k) is a measure,
and then discuss a log-normal difference approximation when at least one F (k) is a signed
measure.

The usual way to find a log-normal approximation for a nonnegative distribution is to match
first and second moments, which implies that

Xp ≈ log-normal(m1p, s
2
1p),

where

s2
1p = log

[
EX2

p

(EXp)2

]
, m1p = log(EXp)− s2

1p

2
.

Theorem 4.2 now suggests a different log-normal approximation:

Xp ≈ X0epY/X0 ∼ log-normal(m2p, s
2
2p),

with

m2p = logX0, s2
2p = p2v2

X2
0

.

The following result shows that the two sets of log-normal parameters are close when volatilities
are small.

Theorem 5.1. As p → 0,

m1p −m2p = O(p2), s2
1p − s2

2p = O(p4).
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Proof. First, there exist ξp and ηp, both between 0 and p2, such that

1

p4 (s
2
1p − s2

2p) = 1

p4 log

[
e−p2v2/X2

0
EX2

p

(EXp)2

]

= 1

p4 log

[
1 − p2v2

X2
0

+ p4v4

2X4
0

e−ξpv2/X2
0

+ p2

(EXp)2

(
1 − p2v2

X2
0

e−ηpv2/X2
0

)
EX2

p − (EXp)2

p2

]
.

The expression inside the square brackets may be rewritten as 1 + p4Kp, where Kp can be
shown to have a finite limit as p tends to 0. For the first parameters, the situation is simpler:

1

p2 (m1p −m2p) = 1

p2 log

(
EXp
X0

)
− s2

1p

2p2 → 1

2X0

∑
k

σ 2
k

∫
t dF (k)T − v2

2X2
0

.

This completes the proof.

Next, turn to the case where at least one of the F (k) is not a proper measure, that is, where
there are positive and negative weights in the combination of securities. Theorem 4.1 suggests
a normal approximation for Xp, but numerical computations (not shown here) reveal that a
better approximation in this case might be a difference of log-normals: separate the positive
and negative components and express Xp as the difference of two positive sums, and apply
Theorem 4.2 to each sum separately; the following result justifies the approximation of Xp by
the difference of two log-normals (the simple proof is omitted).

Theorem 5.2. Suppose that X(1)p and X(2)p are as in Theorem 4.2, with

1

p
log

(
X
(j)
p

X
(j)
0

)
→ Y (j)

X
(j)
0

, j = 1, 2.

Then

lim
p→0

1

p

[
X(1)p −X(2)p −

(
X
(1)
0 epY

(1)/X
(1)
0 −X

(2)
0 epY

(2)/X
(2)
0

)]
= 0 a.s.

This justifies considering the approximation

X(1)p −X(2)p ≈ X
(1)
0 epY

(1)/X
(1)
0 −X

(2)
0 epY

(2)/X
(2)
0 .

6. Limits of some related stochastic processes

The following results, given without proof, concern some stochastic processes which arise
in the study of Asian options with continuous averaging. We let, for σ > 0 and ν ∈ R,

M
ν,σ
t =

∫ t

0
eνs+σBs ds, S

ν,σ
t = xeνt+σBt + eνt+σBt

∫ t

0
e−νs−σBs ds,

and

X
ν,σ
t = M

ν,σ
t −M

ν,0
t

σ
, Y

ν,σ
t = S

ν,σ
t − S

ν,0
t

σ
,

X̃
ν,σ
t = 1

σ
log

(
M
ν,σ
t

M
ν,0
t

)
, Ỹ

ν,σ
t = 1

σ
log

(
S
ν,σ
t

S
ν,0
t

)
.
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It is known that, if x = 0, then Mν,σ
t and Sν,σt have the same distribution for fixed t ; however,

the second process is Markov, while the first one is not. The theorem shows that both processes
have Gaussian limits, when suitably normalized, as σ → 0+.

Theorem 6.1. In each of the following, convergence is almost sure in the supremum norm over
[0, T ] for any T < ∞.

(a) The process Xν,σ converges to Xν,0, where

X
ν,0
t =

∫ t

0
eνsBs ds.

(b) The process Y ν,σ converges to Y ν,0, where

Y
ν,0
t = xeνtBt +

∫ t

0
eν(t−s)(Bt − Bs) ds,

dY ν,0t = νY
ν,0
t dt + S

ν,0
t dBt .

(c) The process X̃ν,σ converges to X̃ν,0, where

X̃
ν,0
t = X

ν,0
t

M
ν,0
t

, X̃
ν,0
0 = 0.

(d) If x ≥ 0, the process Ỹ ν,σ converges to Ỹ ν,0, where

Ỹ
ν,0
t = Y

ν,0
t

S
ν,0
t

, Ỹ
ν,0
0 = 0.

7. Conclusion

The main conclusions of this paper are:

1. For combinations of geometric Brownian motions with small volatilities or short dura-
tions, the limit distributions may be normal or log-normal, depending on the normalization
chosen; the normal and log-normal are equivalent because, intuitively, the standard
deviation of the sums are small relative to the mean, as volatilities tend to 0.

2. When maturities tend to infinity, log-normal limit distributions are sometimes obtained,
but no instance of a normal limit has been found.

Further theoretical and numerical work is required to determine the value of these results
for pricing Asian and basket options; in order to keep this paper from becoming too long, this
will be done in subsequent contributions. As a preview, however, two numerical examples are
briefly presented below.

Example 7.1. Consider case 1 in Example 7.2 of Dufresne (2000), which had also been used
in other papers. An at-the-money Asian call option, with continuous averaging, has maturity
T of 1 year, the volatility is σ = 0.10, the risk-free rate of interest is 0.02 and the initial stock
price is 2. Monte Carlo simulations (with 200 000 replications) give a 95% confidence interval
for the price of 0.05602 ± 0.00017. The Laguerre series studied in the same paper work when
t = σ 2T is large enough, but they fail here, because t = 0.01 is too small. The improved



768 D. DUFRESNE

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

1

2

3

4

5

Log-normal
approximation

Normal
approximation

Maturity, t

R
el

at
iv

e 
er

ro
r 

(%
)

Figure 1.

Laguerre series of Schröder (2002) may give an accurate answer (this particular computation
has not been performed), but the required programming and computing are far from trivial.
The expansion given by Linetsky (2001), with 400 terms and very significant programming and
computing efforts, yields 0.055986.

The normal approximation gives 0.0557, and the usual (moment-matching) log-normal
approximation yields 0.0560537, with, in each case, an insignificant computing effort. The
relative errors are 0.005 and 0.001 respectively. The log-normal approximation is well within
the 95% confidence interval found by simulation.

Example 7.2. Figure 1 shows the relative errors (as percentages of the prices obtained by
Monte Carlo simulation) of normal and log-normal approximations for the prices of at-the-
money Asian call options (again with continuous averaging) for different maturities. The
quantities approximated are

c(t) = e−rt E

(
1

t
M0
t − 1

)
+
.

(As explained in Section 1, here t stands for σ 2T . For instance, t = 0.04 might correspond to
σ = 20% and T = 1, or to σ = 40% and T = 0.25.) It is seen that, for both approximations,
the relative errors tend to zero as t tends to 0, but that the log-normal approximation produces
relative errors which are about 10 times smaller than those of the normal approximation. The
relative errors are roughly linear in t , and tend to 0 as t tends to 0.

Appendix A. Asymptotic expressions for the first two moments of 1/2A
(µ)
t

In this appendix, we find asymptotic formulae for the first two moments of 1/2A(µ)t as t
tends to infinity. We use results from Dufresne (2000), (2001b),

E

(
1

2A(µ)t

)
= e−µ2t/2

√
2πt3

∫ ∞

0
ye−y2/2t cosh[(µ− 1)y]

sinh(y)
dy

= e−µ2t/2

√
2πt3

∫ ∞

0
ye−y2/2t e(µ−2)y + e−µy

1 − e−2y dy (A.1)
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and

E

(
1

2A(µ+2)
t

)
= e−(2µ+2)t

[
µ+ E

(
1

2A(µ)t

)]
(A.2)

for all µ ∈ R, and from Dufresne (2001a),

1

2A(−µ)t

D= 1

2A(µ)t

+Gµ (A.3)

for all µ > 0, where Gµ is independent of A(µ)t and has a gamma(µ, 1) distribution.
It is enough to find an asymptotic formula when 0 ≤ µ < 2, and then use (A.2) and (A.3)

for the other values of µ.
First, suppose that 0 < µ < 2. Then both µ− 2 and −µ are strictly negative, and (A.1) is

a function of t times the sum of two integrals of the form∫ ∞

0
ye−y2/2t e−ay

1 − e−2y dy, (A.4)

with a > 0. For n ≥ 1, there is a ζ(y), between 0 and y2, such that

(2t)nn!
[∫ ∞

0
ye−y2/2t e−ay

1 − e−2y dy −
n−1∑
k=0

(−1)k

(2t)kk!
∫ ∞

0
y2k+1 e−ay

1 − e−2y dy

]

=
∫ ∞

0
y2n+1e−ζ(y)/2t e−ay

1 − e−2y dy

→
∫ ∞

0
y2n+1 e−ay

1 − e−2y dy

as t → ∞. The last integral is related to the logarithmic derivative of the gamma function,
ψ(z), which has the following expression (Lebedev (1972, p. 7)):

ψ(z) = ′(z)
(z)

= ′(1)+
∫ ∞

0

e−u − e−zu

1 − e−u du, Re(z) > 0.

Hence,∫ ∞

0
y2n+1 e−ay

1 − e−2y dy = 2−2n−2
∫ ∞

0
u2n+1 e−au/2

1 − e−u du = 2−2n−2ψ(2n+1)
(
a

2

)
,

and (A.4) has the asymptotic expansion∫ ∞

0
ye−y2/2t e−ay

1 − e−2y dy ∼
∞∑
k=0

(−1)k

4(8t)kk!ψ
(2k+1)

(
a

2

)
.

Finally,

E

(
1

2A(µ)t

)
∼ e−µ2t/2

√
2πt3

∞∑
k=0

α
(µ)
k

tk
, 0 < µ < 2, (A.5)

as t → ∞, with

α
(µ)
k = (−1)k

23k+2k!
[
ψ(2k+1)

(
µ

2

)
+ ψ(2k+1)

(
1 − µ

2

)]
.
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Now turn to the case µ = 0. Since

e−2y + 1

1 − e−2y = 1 + 2
e−2y

1 − e−2y

and ∫ ∞

0
ye−y2/2t dy = t,

the preceding considerations yield that

E

(
1

2A(0)t

)
∼ 1√

2πt

(
1 + 1

t

∞∑
k=0

α
(0)
k

tk

)
,

with

α
(0)
k = (−1)k

23k+1k!ψ
(2k+1)(1), k ≥ 0.

Using (A.2) and (A.3), these formulae allow the derivation of asymptotic expressions for the
first moment of 1/2A(µ)t for any µ ∈ R+. For example,

E

(
1

2A(2)t

)
∼ e−2t

√
2πt

(
1 + 1

t

∞∑
k=0

α
(0)
k

tk

)
,

E

(
1

2A(µ)t

)
∼ −µ+ e−µ2t/2

√
2πt3

∞∑
k=0

α
(−µ)
k

tk
, −2 < µ < 0,

E

(
1

2A(µ)t

)
∼ (µ− 2)e−(2µ−2)t + e−µ2t/2

√
2πt3

∞∑
k=0

α
(µ−2)
k

tk
, 2 < µ < 4.

For the purposes of this paper, the first terms in the asymptotic expressions are required, which
are seen to be

E

(
1

2A(0)t

)
∼ 1√

2πt
, (A.6)

E

(
1

2A(µ)t

)
∼ e−µ2t/2α

(µ)
0√

2πt3
, 0 < µ < 2, (A.7)

E

(
1

2A(2)t

)
∼ e−2t

√
2πt

, (A.8)

E

(
1

2A(µ)t

)
∼ (µ− 2)e−(2µ−2)t , µ > 2. (A.9)

Next, consider the second moment of 1/2A(µ)t . From Dufresne (2000, p. 417),

E

(
1

2A(µ)t

)2

=
∫ ∞

0
φµ(2, t, y)

cosh[(µ− 1)y]
sinh(y)

dy,

where

φµ(2, t, y) =
[(

1 − µ

2

)2

+ 3

4t
− y2

4t2

]
e−µ2t/2

√
2πt3

ye−y2/2t . (A.10)
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The second moment of 1/2A(µ)t is then the sum of three integrals, and finding the asymptotic
expansion of each of these integrals yields that (when 0 < µ < 2)

E

(
1

2A(µ)t

)2

∼ e−µ2t/2

√
2πt3

∞∑
k=0

β
(µ)
k

tk
, (A.11)

with β(µ)0 = (1 − µ/2)2α(µ)0 . From Corollary 3.4 of Dufresne (2001b), with r = n = 1 in the
first formula there,

E

(
1

2A(µ+2)
t

)2

= e−(2µ+2)t
[
(µ− 1)E

(
1

2A(µ)t

)
+ E

(
1

2A(µ)t

)2]
. (A.12)

This formula implies, in view of (A.5), that (A.11) holds also when 2 < µ < 4 (the constants
{β(µ)k ; k ≥ 0} are again combinations of derivatives of ψ(·)). For the same values of µ, (A.9)
then implies that

(µ− 1)E

(
1

2A(µ)t

)
+ E

(
1

2A(µ)t

)2

∼ (µ− 1)(µ− 2)e−(2µ−2)t ,

which in turn gives

E

(
1

2A(µ)t

)2

∼ (µ− 3)(µ− 4)e−(4µ−8)t , 4 < µ < 6.

It can be checked by induction that the same formula holds for µ ∈ (2n, 2n+ 2) for all n ≥ 2.
Now suppose that µ is an even, nonnegative integer. From (A.10),

E

(
1

2A(0)t

)2

= 1√
2πt3

∫ ∞

0

[
1 + 3

4t
− y2

4t2

]
ye−y2/2t

[
1 + 2

e−2y

1 − e−2y

]
dy.

Proceeding as for the first moment, we find that

E

(
1

2A(0)t

)2

=
[

1 + 3

4t

]
E

(
1

2A(0)t

)
− 1√

2πt3

{
1

4t2

∫ ∞

0
y3e−y2/2t

[
1 + 2

e−2y

1 − e−2y

]
dy

}
.

The expression in braces has the asymptotic expansion

1

4t2

∫ ∞

0
y3e−y2/2t

[
1 + 2

e−2y

1 − e−2y

]
dy ∼ 1

2
+ 1

32t2

∞∑
k=0

(−1)k

(8t)kk!ψ
(2k+3)(1),

and so

E

(
1

2A(0)t

)2

∼ 1√
2πt

(
1 + 1

t

∞∑
k=0

β
(0)
k

tk

)
,

where the constants {βk} are combinations of the derivatives of ψ(z) at z = 1. In particular,

β
(0)
0 = α

(0)
0 + 1

4 .
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Using (A.12), this yields that

E

(
1

2A(2)t

)2

∼ e−2t

√
2πt3

(
1

4
+

∞∑
k=1

β
(0)
k − α

(0)
k

tk

)
.

In the same fashion, it is seen that (A.17) below holds:

E

(
1

2A(0)t

)2

∼ 1√
2πt

, (A.13)

E

(
1

2A(µ)t

)2

∼ e−µ2t/2

√
2πt3

β
(µ)
0 , 0 < µ < 2, (A.14)

E

(
1

2A(2)t

)2

∼ e−2t

4
√

2πt3
, (A.15)

E

(
1

2A(µ)t

)2

∼ e−µ2t/2

√
2πt3

β
(µ)
0 , 2 < µ < 4, (A.16)

E

(
1

2A(4)t

)2

∼ e−8t

√
2πt

, (A.17)

E

(
1

2A(µ)t

)2

∼ (µ− 3)(µ− 4)e−(4µ−8)t , µ > 4. (A.18)

By subtracting the squares of (A.6)–(A.9), it is seen that, in all cases, the first term of the
asymptotic expansion of var(1/A(µ)t ) is also given by the right-hand sides of (A.13)–(A.18).

Asymptotic formulae for µ < 0 can be found by appealing to (A.3), which yields that

E

(
1

2A(−µ)t

)2

= E

(
1

2A(µ)t

)2

+ 2µE

(
1

2A(µ)t

)
+ µ(µ+ 1). (A.19)
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