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The no-arbitrage valuation of basket options is com-
plicated by the fact that the sum of lognormal random vari-
ables is not lognormal. This problem is shared with arith-
metic Asian options as well. Various ad hoc approximation
techniques have been proposed, none of them very satisfacto-
ry or accurate.

In this article we suggest using the reciprocal gamma
distribution as an approximation for the state-price density
(SPD) function of the underlying basket stochastic variable.
This, in turn, allows us to obtatn a closed-form expression

for the price of a basket option. The technigue, when com-
pared against a simple lognormal approximation, performs
at its best when the correlation structure of the underlying
basket exhibits a specific decaying pattern.

As a by-product, we introduce a formal approach for
assessing the goodness of fit of candidate distributions for
approximating the SPD. Finally, we present a numerical
example in which we apply our formula to value (G-7)
index-linked guaranteed investment certificates, which can be
decomposed into a zero-coupon bond and a basket option.

asket options have become extremely popu-

lar over the last few years as part of many

structured index-linked products offered to

institutional and retail investors. A basket
option, as its name implies, is an option on a collec-
tion, or basket, of assets, typically stocks. A basket call
option gives the holder the right, but not the obliga-
tion, to purchase a prespecified fixed portfolio of
stocks at a fixed strike price.

As a direct consequence of the linear summa-
tion, the no-arbitrage valuation of basket options is
complicated by the fact that the sum of lognormal
distributions is not Jognormal. Consequently, there is
no known closed-form solution to the problem of pric-
ing and hedging these products.
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A variety of approximation techniques and ad
hoc rules of thumb have arisen to tackle this prob-
lem. They include:

1. The lognormal approximations of Hull [1997],
Huynh [1994], and Gentle-Vorst [1993].

2. The binormial trees of Hull and White [1993] and
Roubinstein [1994].

3. The simulation techniques of Joy, Boyle, and
Tang [1996].

Lyden [1996] provides a bibliography of the
valuation techniques that have been applied to basket
options. A close scrutiny of the literature reveals that,
as one would expect in these situations, the more
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accurate the approximation, the more complicated
and computationally expensive its calculation.

This valuation problem is shared with arithmetic
Asian options as well. The payoff from an arithmetic
Asian option depends on the sum of an underlying
stock’s prices at prespecified times. An Asian option is
essentially a one-stock basket option over time, where
the basket of stocks consists of the underlying stock on
different days. The difference between an Asian option
and a basket option is essentially in the correlation
structure of the elements being averaged.

A recent development in arithmetic Asian
option pricing has been the introduction of the recip-
rocal gamma distribution as the state-price density
function for the sum of contemporaneously correlated
lognormal random variables. See Milevsky and Posner
[1998] for details. This technique encourages us to try
the same approximation for basket options, given the
inherent symmetry between the two problems.

We demonstrate how to value basket options by
using the reciprocal gamma distribution as the state-
price density function for the underlying stochastic
variable. This, in turn, allows us to obtain a closed-
form expression for the price of a basket option,
employing moment matching techniques. The cumu-
lative distribution function (CDF) of the gamma dis-
tribution, G(d) in our formula, plays the same role as
N(d) in the Black-Scholes formula. Qur result should
be pedagogically attractive to traders who will under-
stand that we are replacing the normal CDF by an
alternative CDF since the basket is not lognormal.

Finally, we present a numerical example in
which we apply our formula to value index-linked
guaranteed investment certificates (ILGICs) on a
collection of international stock indexes, which can
be decomposed into a zero-coupon bond and a bas-
ket option.

I. RECIPROCAL GAMMA
VERSUS LOGNORMAL

If 2 random variable X is gamma distributed

[i.e., X ~ Gamma (&, B}], then the probability density

function (PDF) of X 1s

e F /B(x /ﬂ)a-l

BT @) ,x20,ap>0 (1)

glx,0.p) =
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where I'() is the gamma function, which has the
property that

T + 1) = al'(o) (2)

If a random variable Y is reciprocal gamma dis-
tributed [(i.e., Y ~ R.Gamma (a, B)], its inverse, 1/Y,
is gamma distributed. We use the notation G (y. o, B)
to denote the CDF of the reciprocal gamma distribu-
tion evaluated at y, and G(x, @, P) to denote the CDF
of the gamma distribution evaluated at x.

By definition:

Gplv. o By =1-G(l/y, o, B)

It then follows that the probability density
functions are related as:

, y20, o,p>0 (3)

¢ (y.cp) = By B

y

One can show using standard calculus tech-
niques that

i
Bio—1)(o—2)...(0~ i)

E(Y']= i=1,23 .., @

If X is a lognormal random variable [i.e., X ~
LN(, ©)], however, one can show that

E[Xi]=exp(iu+%i20'2} i=12 3, .. (5

We will use the notation M, when referring to the i-
th moment of a random variable.

II. THE FORMULA AND JUSTIFICATION

We assume that there are N underlying pro-
cesses 5.(t) (1 = 1, ..., N) that follow the risk-neutral
stochastic differential equations:

dS.(t) = (r — q) S,(t) dt + o, S,(t)dB,(t)
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with a given correlation structure (p)ld between the
Brownian motions. Qur interest is in the dynamics of

a (weighted) arithmetic sum of the underlyings:

N
Alt) = XaSi(0)
=1

where a, are weights.

The Cox-Ross [1976] fundamental theorem
of derivative asset pricing states that, in a complete
market, the no-arbitrage value of the basket option
will be:

basket.call = e "TE*[max(A(T) — K,0)]

The value of the basket option is equal to its
ekpectcd payoff discounted at the risk-free rate,
where E* denotes the expectation with respect to
the state-price density (SPD) function, also known
as the risk-neutral probability density function.
Consequently:

basket.call = ™" ojomax(A(T) - K,00d¥[A(T)]
6]

where W[A(T)] denotes the SPD. Unfortunately, the
SPD of A} is not known in general, and it appears
that closed-form solutions to the problem are not
available. A common approach to this problem has
been to approximate the SPD ¥[A(T)] by a lognor-
mal functional form using various moment matching
techniques.

We propose moment matching to a reciprocal
gamma, as opposed to lognormal, distribution.
Milevsky and Posner [1998] demonstrate that, in the
context of Asian option pricing, the sum of correlated
Jognormal random variables is closely approximated
by (and converges in the limit to) the reciprocal
gamma distribution. We apply the same technique in
the basket case, given the intrinsic symmetry between
the two problems.

Indeed, Asian options and basket options differ
only by the specification of their respective covariance
matrices. An Asian option is an arithmetic average of
a stock price at N prespecified (equally spaced) times
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over the life of the option.
The covariance matrix of the logarithms of the
stock prices at each of these times is essentially:

11 1 1
o2 212 2 2
—g}-{nﬁn(i,j)}=—l\—15 SRR (6)
12 . N-1 N-1
12 "N-1 N

We refer to this as a decaying correlation struc-
ture. If the basket of underlying stocks has a decaying
correlation structure, it is reasonable to use the Asian
option approximation for the basket option as well.
Numerical examples will demonstrate that this
approximation is more accurate than the lognormal
distribution, when compared against results from a
Monte Carlo simulation. Of course, when the corre-
lation structure differs significantly from the Asian
style payoff, there is no theoretical justification for
using the reciprocal gamma distribution compared to
any other two-parameter density.

The appendix provides a further discussion of
the distance between the reciprocal gamma and log-
normal densities, vis-3-vis the sum of lognormals.

Our initial task is to comipute the first two
moments of the basket’s risk-neutral payoff structure
at maturity, and then match them to 1) the lognor-
mal distribution, and 2) the reciprocal gamma distri-
bution, to compare the valuations produced by the
two methods.

A convenient technique is to define the time T
“pseudo-forward” of the basket as

N
F=ZaF
i=1

where

E =8§,0)e" 97 )

If we divide A(T) by E and call it A%(T), it is effec-
tively normalized to have a mean of 1 (e, M; = 1).
One can verify that the second moment of A*(T) is
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M = 3T B 5 o)l ulrenee
LI .

= -F—E,Ea]aJFlF P00, T (8)

Lognormal Approximation

Assume that the normalized basket A*(T) is
lognormal. Since M, = 1, we have from Equation 5)
that the “variance” of the basket

v =In(M,)

Then the moment-matched lognormal SPD gives a
price for the call, using the usual Black-Scholes for-
mula, as

LN basket.call =

e_,T[FN[ln(F/K) + VIZJ_KN(ln(F/K) - WZH

v ;V

where N(.} is the CDF of a standard normal variate.
A similar approach is used by Huynh [1994] and
- Hull [1997}].

Reciprocal Gamma Approximation

We now illustrate our innovation, which is to
moment match to a reciprocal gamma distribution
instead of a lognormal. To moment match to a recip-
rocal gamma distribution, we proceed to find the
parameters o, P in terms of the first two moments.
Since M, = 1, we have from Equation (4) that

1

p= w1 ©)
and
My L
B(e - (e~ 2)
It then follows that:
SUMMER, 1598

2M, -1 1
i B=1-— (10)

Using the reciprocal gamma distribution with
these parameters and using Equation (3), we have that
the price of the call is then

RGbasketcall = ¢ | max(A(T) - K. OK¥(A(T)
0

=TF | (A m——~}; (A"(T),0.BYA"(T)

K/F

K/F K/F

[F | xg,(x.0.B)ix—K [g,(x, aﬂ)dx]

) e"'T{F [ E/xOB T El/xa dx]

K/F X K/F x

[ Fx

= ¢TI E j 5“““"’”@ K j g(u,(lﬂ)du]

T(F/K
=e" ng(ua -1B)dx - KIE(“-“ﬁ)d“]

The last equality is from the fact that:
g o) _ e Pae/pe - e/ Pix /gy
x xpI(or) B’I'(o)
_ c-x/ﬂ(x/p)o:—Z
Pric)/(o-1)
e x /B (x /ﬂ)a—Z
= —gxa-1,
Bro~1) glx B
[using Equation (1}, Equation (2), and Equation (9)).
Finally, we have that
RGbasket.call =
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IIl. NUMERICAL EXAMPLE:
INDEX-LINKED GICs OR EIA

A numerical example will compare the lognor-
mal and reciprocal gamma techniques for the case of
seven stocks in a basket option. The technique per-
forms better than the lognormal when calibrated
against a Monte Carlo simulation.

Index-linked guaranteed investment certificates
(ILGIC:s) are a good example of basket options offered
to the retail public. With the general decline in the
level of interest rates, ILGICs have become extremely
popular. Virtually every one of the major Canadian
banks offers a variant on this product. An ILGIC (in
the US. an equity enhanced certificate of deposit or
equity indexed annuity) is a retail savings vehicle, simi-
lar to a term deposit, with an interest rate that is linked
to a collection of diversified stock indexes. Upon
maturity of the product, the total return will be deter-
mined on the basis of the performance of the underly-
ing indexes over the prespecified term.

An ILGIC is engineered by fusing a zero-
coupon bond with a basket option that is struck at the
spot rate of the underlying indexes. See Baubonis,
Gastineau, and Purcell [1993] for more of the institu-
tional details.

We are interested in pricing the embedded bas-
ket option on the product linked to the performance
of the G-7 stock markets. (The zero-coupon bond
can simply be priced off the term structure.)

Consider a call option that pays off the max of a
weighted average of renormalized G-7 stock indexes
less 1 (which is the return of principal) and zero. Define

EXHIBIT 1
G-7 ILGIC WEICHTINGS
WEIGHT  ANN. Drv.
Country  INDEX (%) VoL. (%) YELD (%)
Canada TSE 100 10 11.55 1.69
France CAC 40 : 15 20.68 2.39
Germany DAX 15 14.53 1.36
Italy MIB30 5 17.99 1.92
Japan Nikkei 225 20 15.59 0.81
UK. FTSE 160 10 14.62 3.62
u.s. S&P 500 25 15.68 1.66
7 S(T
AM = 54,20
i=1 5(0)

where a, are weights that sum to 1. Qur interest is in
pricing call options on A(T) struck at 1:

basket.call = e "TE*[max(A[T] - 1, 0)]

This 15, effectively, a call option on the rate of return
of a basket of indexes.

The popular G-7 ILGIC offered by Canada
Trust Co. uses the weightings in Exhibit 1 in the
seven indexes. The annualized (historical) volatility,
dividend vyield, and correlation matrix, from a Cana-
dian dollar perspective, were provided by the J.P.
Morgan Risk Metrics system on July 17, 1997,

The (log return) correlation structure used is in
Exhibit 2. We use a flat (domestic) risk-free rate, 1, of

EXHIBIT 2
CORRELATIONS
CaNADA FrANCE GERMANY ITALY Jaran U.K. U.S.

Canada 1.0000 0.3500 0.1000 0.2700 0.0400 0.1700 0.7100
France 0.3500 1.0000 0.3900 0.2700 0.5000 —0.0800 0.1500
Germany 0.1000 0.3900 1.0000 0.5300 0.7000 —0.2300 0.0900
Italy - 0.2700 0.2700 0.5300 1.0000 0.4600 =0.2200 0.3200
Japan 0.0400 0.5000 0.7000 0.4600 1.0000 -0.2900 0.1300
UK. 0.1700 =0.0800 —0.2300 -0.2200 =0.2900 1.0000 —0.0300
uUs. 0.7100 0.1500 0.0900 0.3200 0.1300 ~0.0300 1.0000
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EXHIBIT 3
Resurrs
TENOR MONTE STD. RECIPROCAL
{(YEARS) CaARLO ERROR Gamma LOGNORMAL
1 0.0587 0.0002 0.0589 0.0591
3 0.1331  0.0004 0.1328 0.1338
5 0.1945  0.0005 0.1942 0.1957
10 0.3104  0.0007 0.3103 0.3119

6.3% (continuously compounded).

Call option values at different tenors are evalu-
ated using these parameters. In reality, the risk-free
rate, volatilities, and even correlation structure should
vary with tenor. For simplicity and for ease of repro-
ducibility, however, we keep the parameters static.

For example, when pricing a three-year bas-
ket option, we plug the weights and the statistical
parameters into Equation (7) to obtain that F =
1.1460 and therefore M, = 1.0225 [from Equation
(8)]. This, in turn, leads to o0 = 46.3648 and B =
0.0220 from Equation (10). Finally, we plug o, B, K,
FE T, and r into Equation (11) to obtain a price of
0.1328 for the basket option using the reciprocal
gamma distribution.

The general results are displayed in Exhibit 3.
The reciprocal gamma and lognormal approximation
results are provided for different tenors (one, three,
five, and ten years) along with a Monte Carlo simula-
tion (of length 100,000).

Exhibit 4 displays: the reciprocal gamma (RG)
approximation and the lognormal (LN) distribution.
The Monte Carlo state-price density is our proxy for
the true state-price density of the weighted average.
The curve seems to indicate that the RG is closer to
the true density than the LN. In particular, the right-
hand tail of the LN contains a larger mass than the
RG, which is consistent with the overpricing of out-
of-the-money call options.

IV. CONCLUSION

The lognormal distribution and its properties
are very familiar to financial engineers as a result of
the Black-Scholes formula and the financial economic
Jjustification for geometric Brownian motion. It is no
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surprise therefore that academics and practitioners
alike have attempted to force the lognormal distribu-
tion onto situations for which there is little theoretical
justification. Thus is quite evident with basket options,
where the finite sum of lognormal variates is conve-
niently approximated by a lognormal distribution.

Under certain circumstances, basket options can
be valued using the reciprocal gamma (instead of the
lognormal) distribution as the state-price density func-
tion. Our justification comes from a limiting result,
originating in Asian option pricing theory, which states
that the sum of correlated lognormals converges to the
reciprocal gamma distribution in the limit.

Consequently, our basket option pricing for-
mula produces results that are better than the lognor-
mal approximation and are very accurate when com-
pared with Monte Carlo simulations.

A final caveat is in order. After extensive test-
ing, it appears that, compared to the Monte Carlo
price, the traditional lognormal method overprices
out-of-the-money (relative to the forward) call
options, and the reciprocal gamma method slightly
underprices them. Perhaps a prudent implementation
of this technique would involve averaging the RG
and the LN prices to obtain a more reliable estimate
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when dealing with out-of-the-money basket call
options, especially when the correlation structure is
non-decaying.

APPENDIX

We introduce a formal (original) approach for
assessing the goodness of fit of candidate distributions for
approximating the SPD. In particular, we demonstrate that
the reciprocal gamma (RG} distribution is closer to the
sum of lognommals than the lognormal (LN) distribution,
when the correlation structure satisfies the decaying criteria.
The method we use is motivated by the Kolmogorov-
Smirnov notion of distance between random variables.

Specifically, let F{x} denote the cumulative density
function (CDF) of the true sum of lognormals, and let
H(x) denote the CDF of some known arbitrary random
variable, for example, reciprocal gamma or lognormal.
Define the Kolmogorov-Smirnov metric:

d(F.H) = max|F(x} — H(x) (A-1)

which can be thought of as a2 measure of how close, or far,
the two distributions, F{x) and H(x), are from each other.
See Breiman {1993, Chapter 13] for details and justification
of this metric as a measure of distance.

We use the notation:

d(F,Gg) (A-2)

max
x

F(x) - Gg(x)
and

d(F, Ly)

(A-3)

max]F(x) — Ly(x)
for the distance between the true distribution of the sum of
lognormals and the two approximating functions: the LN
and the RG.

This metric has various applications. In particular,
there is a result that states that if a random sample of size m
is drawn from one of two distributions, F or H, and if the
sample size m, is less than 0.71/d(F, H)?, detection at the
95% confidence level is impossible. Likewise, by taking
square roots, if d(F, H) < 0.84/ Vm , we cannot detect the
difference between the two distributions at a confidence
level of 95%.

In our particular case, we make use of this result. If
a sample of size m is drawn from a continuous random
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variable with CDF denoted by F(x), the sample CDF
denoted by F_(X) obeys the inequality:

Pr(d(F, F ) <) = 0.95 (A-4)

1.36

where € = .
'm J;
Intuitively, as the sample size m gets large, the sam-

ple CDF gets closer to the true CDF. The practical impli-
cation of this statement is that we can simulate samples for
the underlying basket of securities, compute the mean, and
then collect the terminal values to create a histogram that is
compared against the two analytically available alternatives,
the LN distribution and the RG distribution.

We now show that if

d(Gg, F ) <d(Ly F)-2¢, (A-5)

then

d(Gg, P < dLy. P (A-6)
with 95% confidence. In other words, if the empirical
CDF is closer to the RG, by at least an amount 2¢_, then
the true CDF is closer to RG than to LN.

" The argument is geometric. If the simulated CDF of
the sum of lognormals is within a prespecified distance of
the candidates for the approximating CDF of the sum of
lognormals, it follows that the tmie CDF is within a pre-
specified distance as well. More precisely, Equations (A-2)
and (A-3) define an uncertainty ball of size €_ about F.

Accordingly we have the bounds on the true distances:

deﬁ)(em-d(ca,m <d(Gg ,E ) +€,, (A-7)
and
max  d{LyH)>d({Ly.E,)-¢, (A-8)

HSd(HF,)<e,,

Since these equations hold for the max and the min,
respectively, they hold for F as well.
Consequently, if we have that:
d(Gy, F ) <d{L,.F,)-2¢ (A-9)
it follows that:
d(Gg, F) <d(Gp,F ) +€ <d(L,F)-2¢ +¢g =

d@L,, F,)-€ <d@Ly, P (A-10)
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EXHIBIT 5

SiMuLATION RESULTS

p(Gg, F) b(L, F.) DIFFERENCE 2,
0.0141 0.0279 0.0138 0.0136
EXHIBIT 6
ATM Basket OprrioN PRICES
TENOR MONTE STD. RECIPROCAL
(vEARS) CarRLO ERROR GaMMA LOGNORMAL
1 0.0731  0.0001 0.0730 0.0739
3 0.1111  0.0003 0.1102 0.1140
5 0.1269  0.0005 0.1238 (.1310

To verify that this indeed holds for the sum of log-
normals when compared against the LN and RG, we sim-
ulate sample paths for the basket price process, where the
covariance is structured as

11 1
o, 0_2.1 2 2 2
F{m.m(h_])}—ﬁ Lo .o
12 . N-1 N1
[1 2 N-1 N |

and then construct the sample CDF, F_(X), using m =
40,000. The results for T = 1 are in Exhibit 5. They indi-
cate that the argument indeed holds: The reciprocal
gamma is closer to the true density with probability 95%.

This argument works provided that d(Gg, F ) <
d(Ly. F,) — 2¢_ holds in the simulation result. Otherwise
we cannot state that d(Gg, F) < d(LN, F). Of coumse, to
prove this result always holds is an open problem.

Pursuant to this example, consider a basket of ten
equal-weighted (nsk-neutral) forward assets, ie., r = q=
6%. The covariance structure of the assets is “decaying”
with g;; = (6%/N){min(i, j)}, where ¢ = 10%. This means
that the actual volatility of asset i is 10vi% . Exhibit 6 pro-
vides prices for different maturities for ATM call options.
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Of course, there is nothing unique about the
lognormal density function in our comparison. Indeed,
the same experiment can be applied to other candidate
distributions.
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