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ABSTRACT

This paper studies optimal investment strategies of an insurance company. We assume that the
insurance company receives premiums at a constant rate, the total claims are modeled by a
compound Poisson process, and the insurance company can invest in the money market and in a
risky asset such as stocks. This model generalizes the model in Hipp and Plum (2000) by including
a risk-free asset. The investment behavior is investigated numerically for various claim-size distri-
butions. The optimal policy and the solution of the associated Hamilton-Jacobi-Bellman equation
are then computed under each assumed distribution. Our results provide insights for managers of
insurance companies on how to invest. We also investigate the effects of changes in various factors,
such as stock volatility, on optimal investment strategies, and survival probability. The model is
generalized to cases in which borrowing constraints or reinsurance are present.

1. INTRODUCTION

The optimal portfolio selection problem is of practical importance. Earlier work in this area can be
traced back to Markowitz’s mean-variance model (Markowitz 1959). Samuelson (1969) extends the
work of Markowitz to a dynamic setup. By using a dynamic stochastic programming approach, he
succeeds in obtaining the optimal decision for a consumption investment model. Merton (1971) uses the
stochastic optimal control method in continuous finance to obtain a closed-form solution to the problem
of optimal portfolio strategy under specific assumptions about asset returns and investor preferences.
For recent developments on this subject, we refer readers to Campbell and Viceira (2001) and Korn
(1997). In a paper in this journal, Gerber and Shiu (2000) consider the problem of optimal capital
growth and dynamic asset allocation. In the case with only one risky asset and one risk-free asset, they
show that the Merton ratio must be the risk-neutral Esscher parameter divided by the elasticity, with
respect to current wealth, of the expected marginal utility of optimal terminal wealth. In the case where
there is more than one risky asset, they prove the “two funds theorem” (“mutual fund” theorem).

Nowadays insurance companies invest not only in the money market, but also in stocks. Due to high
risk in the stock market, investment strategies and risk management are becoming more and more
important. The asset allocation problem for an insurance portfolio is different from that considered by
Markowitz and others, since an insurer needs to pay claims. This paper considers the classical insurance
risk model, but we also assume that the insurance companies invest in the money market and stocks.
By providing some numerical results, we hope that the paper will provide insights to the practitioners.

In the actuarial science literature, an insurance company acts to maximize (or minimize) a certain
objective function under different constraints (Borch 1967, 1969; Bühlmann 1970; Gerber 1972).
Asmussen and Taksar (1997) reexamine this problem; they use results from the theory of controlled
insurance diffusions and assume that the surplus process follows a Brownian motion with drift, where
the control variable is the dividends. They are able to obtain closed-form solutions. Browne (1995)
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considers a model in which the aggregate claims are modeled by a Brownian motion with drift, and the
risky asset is modeled by a geometric Brownian motion (see also Browne 1997, 1999). The compound
Poisson model is the most popular model in risk theory; Hipp and Taksar (2000) use it in modeling the
insurance business and consider the problem of optimal choice of new business to minimize the infinite
time ruin probability. Hipp and Plum (2000) use the Cramér-Lundberg model to model the risk process
of an insurance company and assume that the surplus of the insurance company can be invested in a
risky asset (market index) that follows a geometric Brownian motion. When the claim size follows an
exponential distribution, they are able to obtain explicit solutions. However, they do not incorporate a
risk-free asset in their model. Taksar (2000) presents a short survey of stochastic models of risk control
and dividend optimization techniques for a financial corporation. The objective in the models is to
maximize the dividend payouts. Taksar shows that in most cases the optimal dividend distribution
scheme is a barrier type, and the risk control policy depends substantially on the nature of reinsurance
available. Recently many papers have been published on this topic: see, for example, Gerber and Shiu
(2004), Højgaard and Taksar (1998a, 1998b, 2000), and Taksar and Markussen (2003).

This paper studies the portfolio selection problem for an insurance firm and aims to find an optimal
investment strategy for the firm: that is, it decides how the firm should invest between a risk-free bond
and a risky stock subject to its obligation to pay the policyholders when claims occur. Controlled
diffusion models of stochastic control theory are used. The criterion for portfolio selection is the
maximization of the survival probability (or minimizing the ruin probability) of the firm. The survival
probability of a firm is defined as the probability that the surplus will not fall below zero at any time in
the future for a given initial surplus. This definition implies that the portfolio selection problem is an
infinite-horizon control problem. A continuous-time model is used to facilitate the mathematical
treatment as the method of dynamic programming can be applied more efficiently. This study offers
theoretical support to the optimal portfolio that should be held by the insurance companies and may
serve as a guide for their real-world investment decisions. The model of this paper is an extension of the
model in Hipp and Plum (2000) by including a risk-free asset. They obtain closed-form solutions for
their model, but we are unable to obtain any closed-form solution. We rely on numerical methods for
providing insights. After performing helpful transformations of our integro-differential equations, we are
able to obtain numerical results.

The approach of this paper follows the standard line of control theory. The next section describes
the model setup and states the Hamilton-Jacobi-Bellman (HJB) equation. We also state the exis-
tence and uniqueness of the solution to the Hamilton-Jacobi-Bellman equation and the verification
theorem. Section 3 provides numerical results by assuming popular claim-size distributions. In
Section 4 we study the effects of different factors, such as stock volatility, on the optimal investment
strategies, and Section 5 extends the model to more general cases.

2. MODEL OF SURPLUS PROCESS AND THE HJB EQUATION

In this section the model of surplus process is specified, and the HJB equation is presented.

2.1 The Model
We assume that the standard assumptions of continuous-time financial models hold, that is, (1)
continuous trading is allowed, (2) no transaction cost or tax is involved in trading, and (3) assets are
infinitely divisible. For simplicity, we assume that there are only two assets in the financial market: a
risk-free bond and a risky asset, namely stocks, in this section. The risk-free interest rate is assumed to
be non-negative in the model. The price of the risk-free bond follows

dB�t� � r0 B�t�dt,

where B(t) is the price of the risk-free bond at time t, and r0 is the risk-free interest rate, which is
assumed to be constant (r0 � 0). The price of the stock follows
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dP�t� � �P�t�dt � �P�t�dWt,

where P(t) is the price of the stock at time t, � is the expected instantaneous rate of return of the stock
(� � 0), � is the volatility of the stock price (� � 0), and {Wt : t � 0} is a standard Brownian motion
defined on the complete probability space (�, F, P), while {Ft} is the P-augmentation of the natural
filtration Ft

W :� the sigma field generated by {Ws; 0 � s � t}.
Next, we assume that the risk process follows the Cramér-Lundberg model:

dR�t� � cdt � dS�t�, R�0� � s.

Here c is the constant premium rate, and S(t) � ¥i�1
Nt Yi, where Nt is the number of claims, which follows

a Poisson process with intensity �, and Yi’s are individual claim sizes. We assume that {Yi} is an i.i.d.
sequence. As in the risk theory literature, c is set to equal (1 	 
)E[S(1)], where 
(�0) is the relative
security loading.

Now we can specify the surplus process X(t) as follows: let A(t) be the total amount of money invested
in the stock market at time t by the insurer. We assume that A(t) is locally bounded and belongs to the
set of admissible policies, that is, {A(t), t � 0} is a measurable and Ft-adapted process, with

�
0

T

�A�t��2 dt � 


almost surely for every T � 
. We can then specify the model of X(t) by

dX�t� � A�t�
dP�t�

P�t�
� �X�t� � A�t��

dB�t�

B�t�
� dR�t�,

or, more explicitly,

dX�t� � �� � r0� A�t�dt � r0 X�t�dt � �A�t�dWt � cdt � dS�t�, X�0� � s. (1)

2.2 The Hamilton-Jacobi-Bellman Equation
We use the survival probability as the objective function. This criterion is more objective than the
expected discounted utility or other utility-related criteria because utility is unobservable and the
specification of a utility function is somewhat arbitrary. First, we define the control policy as A, the
amount of money invested in the stock market. It is the control variable to be adjusted so that the
objective function is maximized.

Then we define the bankruptcy time or ruin time (with initial surplus s(�0)) to be the first time after
time zero when the surplus becomes negative:

�s :� inf�t � 0 : X�t� � 0�.

The survival probability with initial surplus s is the probability that no bankruptcy will ever occur:

��s� :� P��s � 
�.

By using a standard method, we can obtain the following HJB equation. It is easy to check that the
technical conditions that the equation has a unique solution are satisfied:

max
A

��E���s � Y� � ��s�� � ���s��c � �� � r0�A�s� � r0s� �
1
2 ���s��2A�s�2� � 0. (2)

In the following we first assume that �(s) is strictly increasing. This is consistent with the smoothness
assumption and the intuition that the more wealth there is, the higher the probability the insurer will
survive. Another assumption is that �(s) is concave. However, �(s) is not assumed to have a second
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derivative. To ensure smoothness and concavity, the claim density function must be locally bounded.
The justification of these assumptions will be given later.

The HJB equation obtained in the previous section is a quadratic equation in A. The coefficient of the
quadratic term is 1

2 �2��(s). Therefore, it should be that ��(s) � 0, which will also be proved later. (As
the survival probability is bounded above by one, this is a reasonable assumption.)

Let A*(s) be the optimal investment amount in stocks. For s � 0, the supremum is attained when

A*�s� � �
�� � r0�

�2

���s�

���s�
. (3)

The term (� � r0)/�2 is often encountered in optimization problems in mathematical finance; see, for
example, Merton (1971). It is called the price of risk, the return of the risky asset over the risk-free rate
after adjustment for risk involved. Here risk is in the sense of the volatility of the risky asset.

2.3 Integro-Differential Equation
We assume that � � r0 (if � � r0, the solution is trivial and is given by A*(s) � 0). Under the
assumptions above, A*(s) becomes positive for s � 0. Substitute A*(s) in the HJB equation; after some
algebra, we have, for s � 0,

��� � r0����s��2 � 2�2���s���r0s � c����s� � �E���s � Y� � ��s���. (4)

With the initial surplus s � 0, if we invest a positive amount in the risky asset, the ruin will occur
immediately with probability one because of the fluctuation property of a Brownian motion. Therefore,
A*(0) � 0. Substituting this to the HJB equation yields

c���0� � ���0�. (5)

This is the initial condition for the HJB equation. Note that if �(s) is a solution, then ��(s) is also a
solution. Therefore, it is more convenient to set ��(0) � 1 and adjust the multiple � at the end to ensure
�(
) � 1. The initial condition then becomes

c � ���0�. (6)

2.4 Verification Theorem
In this subsection we state the existence of solution for the HJB equation and its optimality. Because the
proofs are similar to those in the literature, for example, Hipp (2000), Hipp and Plum (2000), and
Schmidli (2002), we state the results without proofs.

The proof of Proposition 2.1 can be found in Hipp (2000). The proof of Proposition 2.2 is simple, and
a similar result can be found in Hipp and Plum (2000).

Proposition 2.1

(Existence of Solution) Let the claim-size distribution have a locally bounded density. Then the HJB
equation has a bounded twice continuously differentiable solution � � C2(0, 
) � C1[0, 
).

Proposition 2.2

(Property of the Solution) If �(s) is twice continuously differentiable and solves the HJB equation,
then it is strictly increasing and strictly concave.

The next Proposition can be proved using an idea in Schmidli (2002).

Proposition 2.3

(Verification Theorem) If f(s) : R � 3 R � is a strictly increasing twice continuously differentiable
function solving the HJB equation, then f(s) is bounded and �(s) � f(s)/f(
).
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3. NUMERICAL SOLUTION OF THE HJB EQUATION

This section presents the numerical solutions of the integro-differential equation under different
assumptions on the claim-size distribution. First, the integro-differential equation is transformed
into a form that is more readily solvable.

Let F(y) be the distribution function of the claim-size distribution. The integro-differential equation
(4) can be written as

� �
0




���s � y� � ��s�� dF� y� � �r0s � c����s� �
1
2

����s��2

���s� �� � r0

� �2

.

Denoting (� � r0/�)2 by R, (�/R) by �� , (r0/R) by r�0, and (c/R) by c�, we have

�� �
0




���s � y� � ��s�� dF� y� � �r�0s � c� ����s� �
1
2

����s��2

���s�
. (7)

Let H(t) � 1 � F(t), and by an integration by parts, we have

�
0




���s � y� � ��s�� dF� y� � �
0




H� y�d��s � y� � ���0�H�s� � �
0

s

���s � y�H�y� dy.

Therefore, the equation becomes

�����0�H�s� � �� �
0

s

���s � y�H�y� dy � �r�0s � c�����s� �
1
2

����s��2

���s�
.

From the initial condition, ���(0) � c�, and denoting u(s) � ��(s), we have

��� �
0

s

u�s � y�H�y� dy � �r�0s � c��u�s� � c�H�s� �
1
2

�u�s��2

u��s�
. (8)

3.1 Exponential Claim-Size Distribution
The following procedures are essentially the same as those proposed by Hipp and Plum (2000), except
that an extra term r0s is incorporated. A closed-form solution cannot be obtained.

Assume that f(y) � ke�ky; then F(y) � 1 � e�ky and H(y) � e�ky. Let v(y) � u(y)eky. Thus,

v�� y� � u�� y�eky � kv� y�,
v�� y� � kv� y�

v� y�
�

u�� y�

u� y�
.

Substituting them into equation (8), we have

��� �
0

s

v�y� dy � �r�0s � c��v�s� � c� �
1
2

�v�s��2

v��s� � kv�s�
. (9)

Let �(s) � [v(s)/(kv(s) � v�(s))]2. Since u�(y) � ��(y) � 0 and u(y) � ��(y) � 0, we have v�(y) �
u�(y)eky 	 kv(y) � kv(y). Thus,

1

���s�
�

kv�s� � v��s�

v�s�
� k �

v��s�

v�s�
. (10)
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equation (9) becomes

��� �
0

s

v�y� dy � �r�0s � c��v�s� � c� � �1
2 v�s����s�.

Differentiate both sides with respect to s and divide both sides by v(s), and we have

���� � r�0� � �r�0s � c��
v��s�

v�s�
� �

1
2

v��s�

v�s�
���s� �

���s�

4���s�
.

Using equation (10), we have

���s� � �2k��s� � 4����� � r�0� � k�r�0s � c�� �
1
2����s� � 4�r�0s � c��, (11)

which is a nonlinear ordinary differential equation.
Now we provide the initial condition. Because

���s� �
v�s�

kv�s� � v��s�
� �

u�s�

u��s�
� �

���s�

���s�
�

�2

� � r0
A*�s�,

we have

��0� � 0. (12)

We solve the ordinary differential equation by the finite-difference method. Let h be the length of the
interval used in the numerical scheme. Denote �(nh) by �n. Discretize the equation as

�n	1 � �n � h��2k�n � 4����� � r�0� � k�r�0nh � c�� �
1
2���n � 4�r�0nh � c���. (13)

By this recursive formula and the initial condition, the numerical solution of �(s) can be obtained. A*(s)
can then be found using

A*�s� �
� � r0

�2 ���s�. (14)

After finding A*(s), �(s) can also be found as a by-product of the HJB equation.
The HJB equation in the exponential case is

�� �
0

s

�� y�ek� y�s� d y � �� ��s� � �r�0s � c� ����s� � �1
2 ���s����s�.

Let g(s) � �0
s �(y)ek(y�s) dy, and we obtain

�� g�s� � �� ��s� � �r�0s � c� ����s� � �1
2 ���s����s�, g��s� � �k �

0

s

��y�ek� y�s� dy � ��s� � �kg�s� � ��s�,

(15)

and

g�0� � 0. (16)

Discretizing the systems of differential equations again and writing �n � �(nh) and gn � g(nh), we have

�� gn	1 � �� �n	1 � �r�0�n � 1�h � c� �
��n	1 � �n�

h
� �

1
2

��n	1 � �n�

h
��n	1,
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�n	1 �
�r�0�n � 1�h � c� �

1
2��n��n � ��hgn	1

r�0�n � 1�h � c� �
1
2��n	1 � ��h

, (17)

gn	1 � gn � h��kgn � �n�. (18)

From these equations and the initial conditions, the numerical value of �(s) can be computed. Finally,
multiply this �(s) by an appropriate constant to ensure that �(
) � 1.

Example 3.1

Let � � 0.1, r0 � 0.04, � � 0.3, k � 1, � � 3, 
 � 0.2, and h � 0.01. Then c � (1 	 
)�E(Y) � 1.2(3 �
1) � 3.6. The result is shown in Figure 1. (Note that, in this paper, the x-axis denotes the surplus in all
figures, and the y-axis denotes the amount invested in the stock in Figures 1–9, 16 and 19 and denotes
the survival probability in Figures 10–15 and 17.)

It can be seen that when the surplus is small (smaller than three here) the insurer will invest more
than its surplus in the stock market. This can be done by borrowing at the risk-free rate; that is, the
insurer takes a leverage. (Our setup assumes that there is no difference between the borrowing and
lending rates.) This means that the insurer is willing to achieve a higher return to prevent bankruptcy
despite the higher risk involved. However, as the insurer’s surplus increases, the proportion and even
the amount invested in stocks in its portfolio decreases. The larger the surplus, the less immediate risk
of bankruptcy that the insurer faces. It can withstand the impact of several claims without running into
bankruptcy, meaning that it is more happy with a conservative strategy. Therefore, the insurer would
rather choose to purchase risk-free bonds than to hold stocks to minimize losses because of the
volatility of stocks.

The exponential distribution is light-tailed, which implies that the probability of an extraordinary event
is very small. This is why it is safe to say that the insurer can withstand the risk from claims. To investigate
the effect of claim-size distributions more comprehensively, fat-tailed distributions also need to be studied.

3.2 Gamma Claim-Size Distribution
The technique of transforming the integro-differential equation into an ordinary differential equation
can be applied to the case when the claim-size distribution is a gamma distribution, as a gamma
distribution also contains exponential factors.

Suppose that f(y) � [knyn�1/(n � 1)!]e�ky. Then F(y) � �0
y [kntn�1/(n � 1)!]e�kt dt � 1 � ¥i�1

n

[(ky)i�1/(i � 1)!]e�ky. Therefore, H(y) � 1 � F(y) � ¥i�1
n [(ky)i�1/(i � 1)!]e�ky.

Figure 1
Optimal Investment Strategy for Exponential Distribution
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Let Sn(t) � ¥i�1
n [(ti�1/(i � 1)!]. Then H(y) � Sn(ky)e�ky. Note that S�n(t) � ¥i�1

n�1 [ti�1/i � 1)!] �
Sn�1(t), so the HJB equation in the gamma case becomes

��� �
0

s

u�s � y�Sn�ky�e�ky dy � �r�0s � c��u�s� � c�Sn�s�e�ks �
1
2

�u�s��2

u��s�
. (19)

Again, let v(y) � u(y)eky. Transform the equation in the same way as in the exponential case, and we
have

��� �
0

s

v�y�Sn�k�s � y�� dy � �r�0s � c��v�s� � c�Sn�ks� �
1
2

�v�s��2

v��s� � kv�s�
. (20)

When n � 2, �(s) � [v(s)/(kv(s) � v�(s))]2, the HJB equation becomes

��� �
0

s

v�y��1 � k�s � y�� dy � �r�0s � c��v�s� � c��1 � ks� � �1
2 v�s����s�.

Similar to the exponential case, let z(s) � �0
s v(y) dy and m1(s) � ��z(s) 	 c�/z�(s); after some calculation

we obtain

���s� � �2k��s� � 4���� � r�0 � km1�s� � �r�0s � c��k �
1
2����s� � 4�r�0s � c��. (21)

Let m1n
� m1(nh); we can discretize the system of differential equations as

�n	1 � �n � h��2k�n � 4���� � r�0 � km1n � �r�0nh � c��k �
1
2���n � 4�r�0nh � c���,

m1n	1 � m1n � h��� � m1n	1�k �
1

��n	1
�� ,

�0 � 0, m10 � c. (22)

Similar to the exponential case,

A�s� �
� � r0

�2 ���s�. (23)

With g2(s) � �0
s �(y)(1 	 ky)ek(y�s) dy, the HJB equation can be rewritten as

�� g2�s� � �� ��s� � �r�0s � c� ����s� � �1
2 ���s����s�.

Note that g�2(s) � �kg2(s) 	 �(s)(1 	 ks) and g2(0) � 0.
Let �n � �(nh) and g2n

� g2(nh); the following discretized version of above differential equations can
be used to obtain �(s):

�� g2n	1 � �� �n	1 � �r�0�n � 1�h � c� �
��n	1 � �n�

h
� �

1
2

��n	1 � �n�

h
��n	1,

�n	1 �
�r�0�n � 1�h � c� �

1
2��n��n � ��hg2n	1

r�0�n � 1�h � c� �
1
2��n	1 � ��h

, (24)

g2n	1 � g2n � h��kg2n � �n�1 � knh��. (25)
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Example 3.2

For a gamma claim-size distribution, let � � 0.1, r0 � 0.04, � � 0.3, n � 2, k � 1, � � 3, 
 � 0.2, and
h � 0.01. Then c � (1 	 
)�E(Y) � 1.2(3 � 2) � 7.2. The optimal investment strategy is shown in
Figure 2.

3.3 Pareto Claim-Size Distribution
As shown by Embrechts, Klüppelberg, and Mikosch (1997), a heavy-tailed distribution should be used
to model the claim distribution. In this subsection we discuss the Pareto distribution, which is often
more appealing because it allows the occurrence of extreme events, an important feature of claims in
the real world. Here the procedures employed in the case of a gamma distribution cannot be directly
applied to transform the integro-differential equation into a system of ordinary differential equations,
because the Pareto distribution function is not an exponential function. However, the procedures above
do provide a way of stabilizing the integro-differential equation.

The probability density function of the Pareto distribution is f(x) � [���/(x 	 �)�	1], where � � 0
and � � 0, and the distribution function is F(x) � 1 � (�/(x 	 �))�. Hence, H(x) � (�/(x 	 �))�.
Substitute them into equation (8), and we have

��� �
0

s

u�s � y�� �

y � ��
�

dy � �r�0s � c��u�s� � c�� �

s � ��
�

�
1
2

�u�s��2

u��s�
. (26)

If we try to solve this equation directly by discretization, the algorithm obtained is not stable. Inspired
by the procedures in the gamma case, we try to stabilize the equation by differentiating it with respect
to s, which gives

1
2

u�s� �
1
4

u�s�
���s�

���s�
� ��� �

0

s

u��s � y�� �

y � ��
�

dy � ��� �

s � ��
�

� �r�0s � c��u��s� � r�0u�s�

� c��
��

�s � ���	1 ,

where �(s) is the same as in the exponential and gamma cases. As in the gamma case, we divide both
sides of the equation above by u�(s). After some calculation, we obtain

Figure 2
Optimal Investment Strategy for a Gamma Distribution
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���s� � 4���� �
0

s 1

���s � y�

u�s � y�

u�s� � �

y � ���

dy � ��� �

s � ���
1

u�s�
� c��

��

�s � ���	1

1
u�s�

� r�0 �
1
2�

� ���s� � 4�r�0s � c��. (27)

Let

m�s� � �
0

s 1

���s � y�

u�s � y�

u�s� � �

y � ��
�

dy. (28)

Then

���s� � 4����m�s� � ��� �

s � ��
� 1

u�s�
� c��

��

�s � ���	1

1
u�s�

� r�0 �
1
2����s� � 4�r�0s � c��. (29)

Together with ��(s) � �[u(s)/u�(s)], we have a system of integro-differential equations for functions
u(s), �(s), and m(s).

Now we discretize the system of equations and solve it numerically. Define �n � �(nh), un � u(nh),
mn � m(nh). Then

�n	1 � �n � 4h����mn � ��� �

nh � ��
� 1

un
� c��

��

�nh � ���	1

1
un

� r�0 �
1
2���n � 4h�r�0nh � c��, (30)

mn � �
0

nh 1

���nh � y�

u�nh � y�

un
� �

y � ��
�

d y 	 

i�1

n 1

��n�i

un�i

un
� �

ih � ��
�

h, (31)

1

��n

� �
un	1 � un

hu�s�
, un	1 � un�1 �

h

��n
�. (32)

To find the optimal investment strategy, we use An � ((� � r0)/�2)��n. To find the survival probability,
we can use �(s) � �0

s u(y) dy or �n �¥i�1
n ui.

Example 3.3

For a Pareto claim-size distribution, let � � 0.1, r0 � 0.04, � � 0.3, � � 3, � � 2, � � 3, 
 � 0.2, and
h � 0.01. Then c � (1 	 
)�E(Y) � 1.2(3 � [2/(3 � 1)]) � 3.6. The optimal investment strategy is
shown in Figure 3.

Unlike the exponential and gamma cases, when the claim-size distribution is Pareto, the optimal
investment strategy is to invest more in stocks when the initial surplus is large. Due to the heavy-tailed
property of Pareto distribution, we cannot expect that the initial surplus will be enough to cover the
claims, even when the initial surplus is relatively large.

4. EFFECTS OF UNDERLYING FACTORS

In this section we illustrate the effects of underlying factors, such as interest rate and stock price
volatility, on optimal investment strategies and ruin probabilities. Although some of the properties can
be proved analytically, we will focus on the numerical results here.
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4.1 Effects of Underlying Factors on Optimal Investment Strategies
By substituting the solution of HJB equation into A*(s), we obtain

A*�s� �
2

� � r0
��

��s� � E���s � Y��

���s�
� r0s � c� . (33)

From this expression, it is clear that as r0 changes, all (2/(� � r0)), �(s) � E[�(s � Y)], ��(s), and r0s
will change. In particular, the relative ratio of changes in the terms �(s) � E[�(s � Y)] and ��(s) will
depend on the claim-size distribution. This expression reveals that the effect of r0 on the optimal
investment strategy is more complex than our intuition suggested. Changes in other parameters would
also affect the degree of change in �(s) � E[�(s � Y)] and ��(s). There may be two counterforces in
determining the optimal investment strategy, and the actual effect of factors cannot be determined until
we assume a claim-size distribution, plug in the actual values of parameters, and work out the result
numerically. Here we use reasonable and realistic parameters and study the effects of each factor’s
change (in reasonable ranges) on the optimal investment strategy.

To illustrate, except for studying the effects of interest rate, we use a gamma distribution as the
claim-size distribution when we study the influence of other factors. The effects for other claim-size
distributions are similar. In the rest of this section we will give some numerical examples. The reference
setup is given below. For each parameter, we consider its influence by varying it in a reasonable range,
keeping other parameters constant. Note that these conclusions are only valid under the assumption
that the parameters are in a reasonable range. Exaggerated parameters could give different results.

Reference setup:

● Exponential: � � 0.1, r0 � 0.04, � � 0.3, k � 1, � � 3, 
 � 0.2, c � (1 	 
)�E(Y) � 1.2(3 � 1) � 3.6
● Gamma: � � 0.1, r0 � 0.04, � � 0.3, k � 1, � � 3, 
 � 0.2, c � (1 	 
)�E(Y) � 1.2(3 � 2) � 7.2
● Pareto: � � 0.1, r0 � 0.04, � � 0.3, � � 3, � � 2, � � 3, 
 � 0.2, c � [1 	 
)�E(Y) � 1.2 � 3 � (2/3 �

1)] � 3.6.

(a) Risk-Free Interest Rate

We use exponential and Pareto distributions to illustrate the results: it is clear from Figures 4 and 5 that
as the risk-free interest rate rises, investment in stocks decreases, and vice versa. This result seems
intuitive. Keeping stock return and stock price volatility constant, a higher risk-free interest rate means
that an insurer needs not invest as much in the stock market to survive because it can enjoy a high
return on the riskless bond market. This can be viewed as a substitution effect. If the risk-free interest
rate becomes lower, then an insurer will, in contrast, prefer to invest more in stocks.

Figure 3
Optimal Investment Strategy for a Pareto Distribution with Support (0, �)
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(b) Stock Price Volatility

Figure 6 shows that as stock price volatility increases, investment in stocks decreases, and vice versa. (Figure
6 is for a gamma distribution as mentioned before. For other distributions the results are similar.)

In a certain sense, volatility is a measure of the riskiness of a stock. If the volatility of the stock
price increases but the expected rate of return of the stock stays the same, then the insurer will find
the reward for accepting the risk unattractive and would rather invest less in stocks and invest more
in bonds. Conversely, if the volatility of the stock price decreases, then the insurer will receive the
same return but with a lower risk and will find it in its interest to invest in the stock.

(c) Security Loading

Figure 7 indicates that as security loading increases, investment in stocks decreases, and vice versa.
Increasing the security loading means higher stable income from premiums, and so the insurer does not
have to take the risk to invest a lot in stocks.

(d) Expected Claim Frequency

Figure 8 shows that as � increases, investment in stocks increases, and vice versa. If � decreases,
then the expected claim frequency increases. This will not only increase the average shock from

Figure 5
Effect of r0 on the Optimal Investment Strategy for a Pareto Distribution

Figure 4
Optimal Investment Strategy for an Exponential Distribution
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claims, but also raise the premium rate. However, the effect of increase in the expected claim seems
to be greater. Because bankruptcy can occur due to an above-average claim, a premium rate that
reflects only an average claim is not sufficient to cover the additional bankruptcy risk. Therefore,
the insurer must invest more in stocks to withstand the increase of the bankruptcy threat.

(e) Parameter of Gamma Distribution

As the parameter k of the gamma distribution decreases (i.e., expected claim size increases),
investment in stocks increases, and vice versa (see Figure 9). The reason is the same as that given
in (d). If k decreases, then the expected claim size increases. The difference between (d) and here
is only the sensitivity of the investment in stocks to the changes of these two parameters.

REMARK

If we change our premium formula, then the result may be different. For example, if the premium rate
is constant and independent of the claim-size distribution, then there is no so-called security loading.

In this case, as premium income increases, investment in stocks decreases, and vice versa. The reason is
simple: higher-premium income means that an insurer needs not rely so much on the risky stock market to
survive because of its premium income. If premium income decreases, it will rely more on the profit from

Figure 7
Effect of � on the Optimal Investment Strategy

Figure 6
Effect of � on the Optimal Investment Strategy
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the stock market to prevent bankruptcy. This is similar to the case of increasing the risk-free interest rate,
but there are two differences. First, premium income is fixed here, and return from risk-free interest rate is
a multiple of surplus. Second, if premium income increases, then the total amount of surplus will increase
at a fixed amount. In our model the objective is to increase the survival chance, instead of maximizing the
expected return as in many economic models. In some cases this objective function makes the insurer
regard stock as an inferior good; this may look quite ridiculous. However, if the objective function can be
changed after attaining a sufficiently high survival probability, then the result will change.

4.2 Effects of Underlying Factors on the Survival Probability
The corresponding changes in the survival probability that are caused by the changes in parameters can
also be computed. The result of this section is more intuitive than that of the previous section. Here only
results for gamma(2, k) distribution will be shown, but the result is valid for the other distributions.

(a) As the Risk-Free Interest Rate Increases, the Survival Probability Increases, and Vice Versa

Figure 10 indicates that as the risk-free interest rate increases, the survival probability increases. This
is because the return is higher if the interest rate is higher, thus the survival probability is higher.

Figure 8
Effect of � on Optimal Investment Strategy

Figure 9
Effect of k (of Gamma(2, k) Distribution) on Optimal Investment Strategy
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(b) As the Expected Rate of Return of Stocks Increases, the Survival Probability Increases, and
Vice Versa

See Figure 11. The reason is similar to (a).

(c) As the Volatility of the Stock Price Increases, the Survival Probability Decreases, and Vice Versa

Because all other factors remain the same, the risk from stocks increases, and the survival probability
decreases (see Figure 12).

(d) As the Security Loading Increases, the Survival Probability Increases, and Vice Versa

When the security loading increases, the company receives more premiums. Because all other factors
are the same, the survival probability will obviously be higher (see Figure 13).

(e) As � Increases, the Survival Probability Decreases, and Vice Versa

The reason is the same as that given in (d) of the previous subsection (see Figure 14).

(f) As k Decreases (i.e., Expected Claim Size Increases), the Survival Probability Decreases, and
Vice Versa

The reason is the same as that given in (e) of the previous subsection. Note that the survival probability is the
same at s � 0 for any level of k. This is consistent with the result from the classical model (see Figure 15).

Figure 10
Effect of r0 on the Survival Probability

Figure 11
Effect of � on the Survival Probability
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Figure 13
Effect of � on the Survival Probability

Figure 14
Effect of � on the Survival Probability

Figure 12
Effect of � on the Survival Probability
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5. MODEL EXTENSIONS

5.1 Borrowing Constraint
In the previous sections we assumed there was no constraint on borrowing. However, in reality there
may be. For simplicity, here we assume the insurer cannot borrow at all, that is, A(s) � s. Therefore,
the HJB equation becomes

max
0�A�s

��E���s � Y� � ��s�� � ���s��c � �� � r0�A � r0s �
1
2 ���s��2A2�� � 0. (34)

For s, such that

�
�� � r0����s�

�2���s�
� s,

A*(s) equals the upper bound s. Substituting A*(s) � s into the equation above, we have

�� �
0

s

u�s � y�H�y� dy � cH�s� � ��s � c�u�s� �
1
2 �2s2u��s� � 0. (35)

The initial condition is ��(0) � c.
For simplicity, we assume that the claim-size distribution is exponential with parameter 1, and

v(x) � u(x)es; then the HJB equation becomes

1
2 �2s2v��s� � ��s � c �

1
2 �2s2�v�s� � � �

0

s

v� y� d y � c � 0. (36)

Let z(s) � �0
s v(y) dy. Then z�(s) � v(s), z(0) � 0, and z�(0) � 1. The equation becomes

1
2 �2s2z��s� � ��s � c �

1
2 �2s2� z��s� � �z� y� � c � 0, (37)

which can be readily solved by the finite-difference method. We use this equation to find the
survival probability, until �[(� � r0)��(s*)/�2��(s*)] � s*. For s � s*, we can use the HJB
equation for the unconstrained case again, and its initial conditions can also be obtained by the
principle of smooth fit.

Figure 15
Effect of k (of Gamma(2, k) Distribution) on the Survival Probability
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Example 5.1

We provide the numerical solution of the optimal investment strategy and the survival probability
for Exp (1) here. Let � � 1, r0 � 0.1, � � 1, � � 1, 
 � 1, and h � 0.01. Then c � (1 	 
 )�E(Y) �
2 � 1 � 1 � 2. The result is shown in Figure 16 and 17.

The survival probability with constraint is smaller than that without constraint because the optimal
strategy cannot be adopted.

5.2 Reinsurance
It is a common for insurance companies to purchase reinsurance from other insurance companies to
reduce the risk that they face. In this subsection we study the effect of reinsurance on the optimal
investment strategy.

We consider the stop-loss reinsurance: in this case the insurance company needs to pay for the
reinsurance. If the risk loadings for insurance and reinsurance companies are 
1 and 
2, respectively,
then the net rate of premium received by the insurance company is

c � ���1 � 
1� E�Y� � �1 � 
2� E�Y � Yd��. (38)

After buying reinsurance, the net claim size becomes

Yd � �d, Y � d
Y, Y � d. (39)

For 0 � s � d,

E���s � Yd� � ��s�� � ���0�HY�s� � �
0

s

HY�y����s � y� dy.

For s � d,

E���s � Yd� � ��s�� � ��
0

d

���s � y�HY�y� dy.

Figure 16
The Optimal Strategy When Borrowing

Constraint Exists

Figure 17
The Survival Probability When Borrowing

Constraint Exists
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The HJB equation becomes, for s � d,

��� �
0

s

���s � y�HY�y� dy � �r�0s � c�����s� � c�HY�s� �
����s��2

2���s�
,

and for s � d,

��� �
0

d

���s � y�HY�y� dy � �r�0s � c�����s� �
����s��2

2���s�
.

As an illustration, we assume the claim-size distribution is exponentially distributed. For s � d, the
HJB equation is the same as the one without reinsurance, that is,

���s� � �2k��s� � 4����� � r�0� � k�r�0s � c�� �
1
2����s� � 4�r�0s � c��, (40)

and it can be readily solved numerically. For s � d, the HJB equation becomes

��� �
0

d

v�s � y� dy � �r�0s � c��v�s� � �1
2 v�s����s�.

Differentiating both sides with respect to s, we have

�� v�s � d� � �� v�s� � �r�0s � c� �v��s� � r�0v�s� � �
1
2 �v��s����s� �

v�s�

2���s�
���s��.

Divide both sides by v(s). After some calculation, we have

���s� � �2k��s� � 4��� v�s � d�

v�s�
� �� � r�0 � k�r�0s � c�� �

1
2����s� � 4�r�0s � c��. (41)

Let z(s) � v(s � d)/v(s); we have

z��s� � z�s�� 1

���s�
�

1

���s � d�� . (42)

By the principle of smooth fit, �(d�) � �(d), ��(d�) � ��(d), ��(d�) � ��(d). Thus,

��d�� � ��d�, v�d�� � v�d�, z�d� �
v�0�

v�d�
�

1
v�d�

. (43)

The numerical results can be obtained by discretizing this system of ordinary differential equations,
that is, let (d � mh):

zn	1 �
zn

1 � h� 1

��n	1

�
1

��n	1�m
� , (44)

�n	1 � �n � h��2k��s� � 4���zn � �� � r�0 � k�r�0nh � c�� �
1
2���n � 4�r�0nh � c���, (45)

vn	1 �
vn

1 � h�k �
1

��n	1
� . (46)
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Example 5.2

Suppose that the claim size is exponential with parameter 1; let � � 0.1, r0 � 0.01, � � 0.3, � � 3, 
 �
0.2, and h � 0.01. Then c � (1 	 
)�E(Y) � 1.2 � 3 � 1 � 3.6. The level of reinsurance is d � 3. The
result is shown in Figure 18.

Figure 18 indicates that the optimal investment drops rapidly once the surplus level exceeds the
safety level, which is the level of reinsurance bought.
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