ASSURANCE NON-VIE

(Partie de Pierre THEROND)

ISFA 3A - Examen du 9 mai 2005 - 1^{re} session

Durée : 1,5 h - Calculatrices interdites.

Seuls documents autorisés : 2 feuilles recto-verso manuscrites

Exercice 1 (~8 pts)

Considérons un portefeuille regroupant exclusivement des bons risques et des mauvais risques. Notons B l'événement « être un bon risque » et B^c son complémentaire « être un mauvais risque ». Supposons que la probabilité d'être un bon risque est de 50 %, soit $\mathbf{Pr}[B] = 1/2$. Notons N_k le nombre de sinistres déclarés par un assuré au cours de l'année k et supposons que :

$$\begin{cases}
\mathbf{Pr} \left[N_k = 1 \mid B \right] = 0, 1 = 1 - \mathbf{Pr} \left[N_k = 0 \mid B \right] \\
\mathbf{Pr} \left[N_k = 1 \mid B^c \right] = 0, 9 = 1 - \mathbf{Pr} \left[N_k = 0 \mid B^c \right].
\end{cases}$$

Supposons enfin que les montants de sinistres sont des variables aléatoires indépendantes et identiquement distribuées de moyenne 1 et que, conditionnellement à la qualité d'un risque, les variables aléatoires N_k sont mutuellement indépendantes.

- 1. Déterminez la prime pure d'un nouvel assuré appartenant à la population étudiée.
- 2. Considérons un assuré avec l'historique suivant : $(N_1 = 0, N_2 = 1, N_3 = 0)$. Compte tenu de cet historique, quelle est la probabilité qu'il s'agisse d'un bon risque ?
- 3. Quelle prime *a posteriori* exigeriez-vous de cet assuré pour la 4^e année ?

Exercice 2 (~4 pts)

Considérons un couple $X = (X_1, X_2)$ dont la fonction de répartition F_X appartient à la classe de Fréchet $\mathbf{F}(F_1, F_2)$. Rappelons l'expression de la fonction de répartition W de la borne supérieure de Fréchet de $\mathbf{F}(F_1, F_2)$: $W(x_1, x_2) = \min \{F_1(x_1), F_2(x_2)\}$. Montrez que

$$X$$
 comonotone $\Rightarrow F_X = W$.

Exercice 3 (~10 pts)

Considérons deux vecteurs aléatoires $X = (X_1, X_2)$ et $Y = (Y_1, Y_2)$, de fonctions de répartition F_X et F_Y , et de mêmes marginales exponentielles de paramètre 1, i. e. tels que

$$P[X_i \le z] = P[Y_i \le z] = 1 - \exp\{-z\} \text{ pour } z \in \mathbb{R}_+ \text{ et } i \in \{1; 2\}.$$

Supposons que le couple X soit indépendant et que le couple Y soit comonotone.

- 1. Déterminez la fonction de répartition de $Y_1 + Y_2$.
- 2. Déterminez la fonction de répartition de $X_1 + X_2$.
- 3. Comparez F_X et F_Y . Que peut-on en déduire concernant X et Y? Que peut-on en déduire concernant $X_1 + X_2$ et $Y_1 + Y_2$?