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Abstract

For the pricing of interest rate derivatives, various stochastic inter-
est rate models are used. The shape of such a model can take very
different forms, such as direct modeling of the probability distribution
(e.g. a generalized beta function of second kind), a short rate model
(e.g. a Hull-White model), or a forward rate model (e.g. a LIBOR
market model).

This paper describes the general structure of optimization in the
context of interest rate derivatives. Optimization in finance finds its
particular application within the context of calibration problems. In
this case, calibration of the (vector-valued) state of a given stochastic
model to some target state, which is determined by available relevant
market data, implies a continuous optimization of the model parame-
ters such that, a global minimum of the distance between the target
state and the model state is achieved.

In this paper, a novel numerical algorithm for the optimization of
parameters of stochastic interest rate models is presented. The opti-
mization algorithm operates within the model parameter space on an
adaptive lattice with a number of lattice points per dimension which
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is both, low and fixed. In this way, a considerable performance gain
is achieved, as compared to algorithms working with non-adaptive lat-
tices requiring increasing and/or large numbers of lattice points. As
compared to standard algorithms, e.g. those of Levenberg-Marquardt
type, the presented adaptive lattice algorithm reduces also the danger
to get trapped near a wrong local minimum.

As a numerical example, its application is demonstrated by op-
timizing volatility and mean reversion parameters of the Hull White
model, such that the latter becomes calibrated to the swaption volatil-
ity market relevant for a given OTC bond option.

1 Calibration problems in interest rate models

The most widely used classes of valuation models for interest rate derivatives
are either short rate models, with the (normally distributed) Hull White (ex-
tended Vasicek) model [1] and the (log-normal) Black Karasinski model [2]
as their most prominent representatives, or forward rate models, such as
the LIBOR market (rate) model [3, 4]. In both classes, calibration of the
model parameters to specific market data is required. Typical financial in-
struments that are priced by short rate models are Bermudan swaptions or
bond options. The LIBOR market model is typically applied to evaluate (of-
ten via a simulation) structured rate legs with caps, floors, barriers, triggers
or other exotic payoff structures. Sometimes, alternatively to the underly-
ing normal or log-normal processes, also more general Levy processes are
modeled directly via a modified probability distribution.

Traders of interest derivatives and risk controllers usually have some ex-
pectation about the market of the products they are dealing with. Although
with different emphasis, both traders and risk controllers, require their pric-
ing models to reflect the realities of the market segments underlying to their
products. This implies that the free parameters of the models have to be
calibrated in such a manner as to be as much as possible consistent with the
market. Note that, the necessity for calibration here is similar to that with
models in fundamental science, particularly physics. There usually exist sev-
eral model parameters which must be calibrated such that certain related
observable ”constants” really take their actually observed values. E.g. a re-
cent problem, in the context of quantum gravity models, is the appropriate
calibration of the fundamental length of quantum geometry (see e.g. [5]). In
general, all models have to be calibrated, in order to be consistent with the
relevant fundamental constants of nature. This fine-tuning of fundamental
theories (like the standard model of particle physics), such that the fun-
damental constants match their observed values (of our present universe),
is nothing but a special type of calibration. Here, the present universe is
playing a role analogously to the current markets in finance.

Requirements of traders and risk controllers however may differ on their
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choice of priorities, between the ability of the model to match the market
at any instant and its ability to make a fair prediction of the market from
a given instant to the near future. This choice usually depends on the ac-
tual requirements. E.g. frequent recalibration of the model parameters to
the prices quoted in the market may be perfectly suited in order to sat-
isfy directly an explicit mark-to-market pricing view (e.g. inherent in most
prescriptions of risk reporting). Nevertheless, it may be unsatisfactory for
a trader who needs his model to provide a volatility surface which is as
time-stable as possible, or (similarly) for a risk controller trying to hedge
the vega-parameter, i.e. the sensitivity of prices with respect to volatility
changes. The recalibration method is usually also rejected for all serious
fundamental model of nature. Fundamental models are usually supposed
to make reasonable predictions during the typical time scale of their ap-
plicability without any recalibration of their parameters, which are in fact
determined once-for-all. Some fundamental cosmological theories may in-
volve running coupling constants, where some parameters change during
time. But this change happens through an a priori predetermined func-
tional relation for time dependence, whence there is no space for recalibra-
tion of the parameters. Similarly to finance, where a model strictly needs
to match at a given time only actual market values, a cosmological model is
required only at present time to match the fine-tuned values of the actual
universe. Nevertheless, in both cases it is desirable to calibrate not only
just the current values, but also to some extent the very functional relation
of time dependence which then provides a relation to past and/or future.
The prominent example for calibration of time dependence in finance is the
volatility surface (see [6]). The afore mentioned situation of practitioners
requiring time-stability of the volatility surface is in fact very close to the
fundamental view, although in finance applications often a compromise be-
tween frequent recalibration and an once-for-all calibration has to be taken.
For fundamental cosmological models one would require a one-for-all cali-
bration of time-dependence being direct and exact at all times, while with
interest rate models, a calibrated volatility surface is usually only obtained
via optimization, and calibration usually can not avoid some increasing de-
viation from markets as time passes, unless the model is recalibrated.

Furthermore, depending on the requirements, the calibration can be done
either once for a whole portfolio of interest rate derivatives, or it can be done
for each trade separately. The choice of calibration may also depend on
whether the trades are standardized (exchange traded), or whether trades
are not standardized (OTC trades). In the former case, the trades may
be considered as a part of the market to which they are linked. In the
portfolio case, the relevant (market) instruments together with their quotes
are taken directly from market data providers. In the single trade case,
the structure of the derivative itself (i.e. its relevant events like exercise
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dates, underlying maturity) determines the relevant instruments, for which
relevant target values then have to be interpolated from directly observable
market instruments.

Sometimes calibration to the target values of the market can be achieved
exactly, by a direct method, i.e. by solving directly the relevant equations.
This is e.g. the case, when a volatility parameter of some model is tuned to
a single European option price quoted in the market.

However, in many cases a direct and exact calibration to the target val-
ues is not possible. This is the situation, where optimization techniques
become important in mathematical finance. An optimization method gen-
erally consists of certain search algorithms, which are targeted to optimize
certain model parameters, such that the deviation between model and target
values of certain state variables becomes minimal. The typical difference of
an optimization as compared to a direct calibration is that, in general, a
zero deviation can not be enforced.

Calibration problems requiring optimization can vary considerably in
their details. Some very different calibration problems in the context of
interest rate models are e.g. given by the following three examples:

• Example 1: calibration of the parameters of a model’s probability
distribution, such that, for any given European option maturity, pre-
determined market values (determined by caplet/floorlet volatilities)
quoted for different strikes (cap/floor rates) are matched in an optimal
manner;

• Example 2: calibration of volatility and mean reversion of an (arbitrage-
free) short rate model applied to Bermudan options (swaptions or bond
options), such that the implied market values of the relevant European
options (determined by swaption volatilities) are matched in an opti-
mal manner;

• Example 3: calibration of volatilities and correlations of the forward
rates of a LIBOR market model such that the volatility term structure
matches exactly to European caplet/floorlet prices, while the forward
rate correlation matrix matches a target correlation function in an
optimal manner.

Nevertheless, a common feature of the above examples for typical cal-
ibration problems is the optimization of some special model parameters θ

with respect to some distance function

d(θ) := f(Qmodel(θ) − Qtarget) (1)

between a target (market determined) state variable Qtarget and the cor-
responding state Qmodel(θ) of the model depending on its parameters θ.

4



Here both Qtarget and Qmodel(θ) are vector states within a state space
V ⊂ R

n of finite dimension n, and f is a non-negative function on V

such that f(x) = 0 ⇒ x = 0. Generally f should depend on the indi-
vidual distance functions fi on Vi ⊂ R, which are measuring the distance
fi(Qmodel,i(θ) − Qtarget,i) between the individual model and target states
components, Qmodel,i(θ), Qtarget,i ∈ Vi, i = 1, . . . , n.

A standard choice on finite-dimensional real vector spaces is the Eu-
clidean distance, specified by setting f := || · ||2, the Euclidean l2-norm [7]
on V ⊂ R

n, and correspondingly also fi := | · |, the Euclidean norm on
Vi ⊂ R.

In some cases (Example 1 and 2), particular state components corre-
sponds to particular individual benchmark instruments. But this does not
need always to be the case. E.g. for the calibration of the correlation ma-
trix of example 3, an individual state component corresponds to a matrix
element, and an individual matrix element is related to a symmetric pair of
benchmark instruments with different maturity. In this case it is important
to distinguish between the components of the target states (i.e. the corre-
lation matrix elements) and the benchmark instruments (i.e. the interest
forwards of different maturities).

Equivalently to (1), one can also consider its square

d2(θ) := ||Qmodel(θ) − Qtarget||22

=

n∑

i=1

(Qmodel,i(θ) − Qtarget,i)
2

=

∫

χ∈P (M)
(Qmodel,χ(θ) − Qtarget,χ)2dχ . (2)

In the last line of (2), P (M) is a parameter space labeling all theoretically
possible different components of a state, and dχ is the measure on P (M)
selecting just those components, for which the target quote Qtarget,χ is ac-
tually provided. For specific values of parameters of χ the index i = i(χ) of
a particular state space components is obtained.

Here and below it is always assumed that P (M) indeed can be derived
by a suitable construction (e.g. powers) from a more elementary space M

parametrizing the different benchmark instruments. (Nevertheless, this does
not mean that P (M) is isomorphic to M . E.g. the term structure correlation
components are indexed by symmetric pairs of maturities (T1, T2) ∈ M×M ,
while M is the space of maturities of the underlying instruments of the term
structure.) Since indices of state space components are given as points in
P (M), states Qmodel/target are also considered as functions Qmodel/target,· on
(a discrete subspace of) P (M).

Alternatively to the absolute distance (2), one might rather want to use
a relative distance measure which does not depend on the absolute size of
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the vector-states themselves. The symmetric relative deviation

δ(θ) :=

√
2d(θ)

√

||Qtarget||2 + ||Qmodel(θ)||2
(3)

is a choice which neither prefers the state of the model nor that of the
market. (It implies a neutral view on the question of whether the target
market is more right or the prediction of the model.)

Below, the algorithm presented in Section (3) will be based on the latter
choice (3), and likewise also the example calibration of the Hull White model
(see Section 4).

In general, the dimension n := dimV with V 3 Qtarget is determined by
the total number nmarket of relevant market values.

In practice, the most important calibration problems are related to mar-
ket instrument parameter space M which is (at most) 3-dimensional, with
its dimensions specified by option maturity T , underlying maturity t, and
strike X as parameters. Let nT , nt, nX be the number of different option
maturities, underlying maturities, and strikes, respectively, quoted in the
market. Let us assume that the nT × nt × nX lattice cube is complete
(without degeneracies), then

nmarket = nT · nt · nX .

If the states Qmodel/target are given via functions on P (M) = M , then n =
nmarket. Since the benchmark instruments quoted in the market form a
discrete set, here

dχ =

nT∑

j=1

nt∑

k=1

nX∑

l=1

δ(Tj ,tk,Xl)(χ)dTdtdX .

However, the states Qmodel/target may also be given as function on a (sub-
space of a) higher-dimensional power P (M) of M (see Example 3 below).
For example, if the target space is given by square matrices, then the dif-
ferent state components are labeled by a space P (M) ⊂ M × M , where
M is the space of market parameters. With Ψ1,Ψ2 ∈ M , the parame-
ters of P (M) are given as χ = χ(Ψ1,Ψ2). If M contains nmarket relevant
indices, i.e. I ⊂ M is a discrete subset labeling |I| = nmarket different
instruments, then P (M) contains at most n2

market relevant component in-
dices, since |χ(I, I)| ≤ n2

market. Hence the number of state components is
n ≤ n2

market. For example, correlation matrices are a maximal-dimensional
subspace within the symmetrical matrices. Hence P (M) ⊂ Sym(M × M)
where M ⊂ R. The measure dχ here has nonvanishing support only at in-
dices χ(I, I) ∈ Sym(I × I). Therefore, here the state space has dimension

n = dimV = nmarket·(nmarket−1)
2 .

For the examples above the optimization specializes as follows:
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• Example 1: At a single fixed maturity T , the comparing state variables
Qtarget/model ∈ R

2n are given by the caplet values PVc
target/model(T,Xi)

and floorlet values PVc
target/model(T,Xi) for different strikes Xi, i =

1, . . . , n. The components of θ are the free parameters of the probabil-
ity distribution. E.g. for the generalized beta of second kind in Section
2.1 below, θ := (z, p, q) with z ∈ R and p, q ∈ R

+. Here, P (M) = M .
Since for any (X,T ) ∈ [R+]

2
there is both a caplet value and a floorlet

value, the instrument parameter space is M = Z2 × M0 = M0 ⊕ M0,
the direct double of the common parameter space M0 of caplets and
floorlets. Calibrating a European option (i.e. a single maturity T ),
then dim M = dim M0 = 1 and n = nX . More generally, when cali-
brating a Bermudan option (i.e. considering simultaneously different
exercise times T1 < · · · < TnT

= T ), then dimM = 2 and n = nT ·nX .

• Example 2: The comparing state variables Qtarget/model ∈ R
n are given

by the European option values PVtarget/model,i := PVtarget/model(Ti) for
different maturities Ti, i = 1, . . . , n. The relevant short rate model are
arbitrage-free and hence mean reverting. Hence, θ := (a, σ) with a the
mean reversion and σ the short rate volatility parameter (see Section
2.2 below). Here P (M) = M with dim M = 1 and n = nT .

• Example 3: Here the comparing state variables are correlation matrices
Qtarget/model := ρtarget/model ∈ R

n, for forward rates fi of different
maturities Ti, i = 1, . . . , nT . For a m-factor model (1 < m ≤ nT ),
θ := (θij) is the symmetric matrix of angular coordinates on S

m−1 ⊂
R

m (see Section 2.3 below). Here the state component parameter space
is P (M) = Sym(M ×M) with an instrument parameter space M with

dim M = 1. With nmarket = nT , then n = nT ·(nT −1)
2 .

Once the distance function (1) is specified, the optimization problem
amounts to finding (an approximation to) a global minimum

dmin := min
θ∈S

d(θ) (4)

over the space of admissible model parameters S. Within a calibration
problem, all parameter values θ should a priori be equally plausible. There
should not be any distinguished values or critical points within S. Hence S

will be an open space.
Nevertheless, in general there may be a boundary ∂S constraining the

variation of θ. However, in some situations S may be reparametrized S′ → S

by a parameter transformation θ′ 7→ θ, such that ∂S′ is located at infinity
w.r.t S′. Thus the constrained optimization over S implied by (4) can be
replaced by an unconstrained optimization over S′.

If some model parameter s ∈ S (e.g. a volatility parameter σ) is con-
strained to s > 0, by a re parametrization s = er with r ∈ R, the constrained
calibration over R

+ is replaced by an unconstrained calibration over R.

7



The global optimization problem, of finding θ such that d(θ) = dmin,
has no unique solution in general. Some (local) minimum of a function over
its parameter space may be detected by a standard Levenberg-Marquardt
algorithm [8, 9] or some modification involving Tikhonov regularization [10].
This requires to compare at any point θ in parameter space not only the state
Q(θ), but also its Jacobi matrix ∇T

θ Q(θ). The corresponding Sobolev norm
might then be considered instead of the distance function (1). However, a
well-known problem with the search for a global minimum is the possibility
of getting trapped within a wrong local minimum. In order to solve this
problem, a simulated annealing algorithm has been proposed in [11]. Further
deterministic approaches are described in [12]. Below we will present another
algorithm, which is based on an adaptive refinement of a lattice L ⊂ S. This
algorithm is particularly useful in the case when p := dimS is not too large.
The method is described in detail in Section 3.

In the following sections, three example cases for the calibration of in-
terest models are discussed.

2 Example cases for the calibration of interest rate

models

2.1 Calibrating the probability distribution of the model

A log-normal probability distribution is completely determined by its first
and second momentum. Therefore with a log-normal probability distribu-
tion, there are no remaining degrees of freedom for an additional calibration
beyond ATM prices (i.e. normalized strike equal to 1).

Therefore, an extension of the space of admissible probability distribu-
tions is required (within in the range of Levy processes), in order to calibrate
to options prices quoted at different strike values. One possible extension
(proposed by [13]) enlarges the space of probability density distributions
from the log-normal density to the generalized beta density of the second
kind, defined as the following 4-parameter family on R

+:

x 7→ ρa,b,p,q(x) :=
|a|xap−1

bapB(p, q)[1 + (x
b )a]p+q

, (5)

with real parameters a, b, p, q with p, q > 0.

With (5) the expected payoff of a call/put at maturity T is

PT,X = Ea,b,p,q(ZT,X) =

∫ ∞

0
(±(y − X))+ρa,b,p,q(y)dy (6)

= ±
∫ ∞

X
yρa,b,p,q(y)dy ∓

∫ ∞

X
Xρa,b,p,q(y)dy .
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The arbitrage-free condition for the forward rate implies

F = Ea,b,p,q[ST ] = b · B(p + 1
a , q − 1

a)

B(p, q)
︸ ︷︷ ︸

=:λ−1

,

admitting to define a new parameter as

z :=

(
λ F

X

)a

1 +
(
λ F

X

)a (7)

From (5), (6) and (7) the value of a caplet/floorlet (i.e. a call/put) at
maturity T is obtained as

P c,p
z,p,q(T,X) = ±F

(
1

2
∓ 1

2
± Iz(q − 1

a
, p +

1

a
)

)

∓ X

(
1

2
∓ 1

2
± Iz(q, p)

)

.

With θ = (z, p, q) ∈ R × R
+ × R

+, the corresponding present value then is

PV
c,p
θ (T,X) = PV c,p

z,p,q(T,X) = dfT P c,p
z,p,q(T,X) , (8)

where dfT is the discount factor up to maturity T .

For a given time-to-maturity T , let the available market data include
the implied present values of caplets PV c

m(T,Xi) and floorlets PV p
m(T,Xi)

for different strike rates Xi, i = 1 . . . , n. A weight factor wi ≥ 0 may be
assigned to each strike in order to account for variations in the quality of
the quoted prices. Hence, using (8) for n > 1, the relevant calibration then
amounts to minimizing a (square of the Euclidean) distance

d2
w;T (θ) = d2

w;T (z, p, q) :=
n∑

i=1

wc
i [PV c

z,p,q(T,Xi) − PV c
m(T,Xi)]

2

+ w
p
i [PV p

z,p,q(T,Xi) − PV p
m(T,Xi)]

2 (9)

over parameters z, p, q.

Note that minimization of (9) amounts to a calibration for a fixed time-
to-maturity. More generally, if the interest rate derivative implies several
relevant maturities Tk, k = 1 . . . ,m, then a linear combination

d2
v,w(z, p, q) :=

m∑

k=1

vk · d2
w;Tk

(z, p, q) , (10)

with additional linear weights vk ≥ 0 for different maturities Tk, may provide
a suitable distance function for optimization.
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2.2 Calibration of a short rate model

Any stochastic short rate model depends on the percentage volatility σ of
the short rate. The most competitive current short rate models are all no-
arbitrage models of mean-reverting type. The short rate follows a process

d(f(r)) = (b(t) − af(r))dt + σdz , (11)

where a is the mean reversion, σ is the volatility of the short rate, and
b(t) is determined by the current term-structure. The short-rate process for
Hull-White model is normally distributed, i.e. f(r) = r, and for the Black-
Karasinski model log-normal, i.e. f(r) = ln r. In the former case, σ is the
volatility rate of dr, i.e. of instantaneous changes of the short rate, in the
latter case of dr

r , i.e. of the instantaneous return of the short rate.
For European options (depending only on a single exercise date), it is

market standard to quote the implied Black volatility derived from market
prices by the Black price model. Within this model the arbitrage-free as-
sumption is met by the condition that the forward price (for a Bond option)
or the forward rate (for a swaption) is equal to the expected value of the spot
price or spot rate at option maturity T . The implied Black volatility σBlack

of the spot underlying is the finally relevant parameter of the Black model.
Given maturity and forward value, the implied Black volatility corresponds
one-to-one to the present value PV Black.

For European options, such as bond options or swaptions, market prices
or corresponding implied Black volatilities are available. These market prices
should also be matched by the short rate model.

This poses the following calibration problem:
Given the market prices PV i

target = PV i
Black for a series of European

options, with different maturities Ti, i = 1, . . . , n, on the same underlying,
volatility σ and mean reversion a of the short rate model should be chosen
such that all n market prices are matched with PV i

target = PV i
Black. Here

θ := (a, σ) ∈ R
+ × R

+ and

d2(θ) := ||Qmodel(θ) − Qtarget||22

=

n∑

i=1

(PV HW,i(a, σ) − QBlack,i)
2 . (12)

Hence, the calibration involves optimizing a and σ such that d(θ) = dmin.

2.3 Calibration of a LIBOR market model

A LIBOR market model is a model for evolving a given set of forward rates
fi(t) := L(t, Ti, Ti+1), i = 1, . . . , n. Here Ti−1 is the beginning of the i-th
LIBOR period, Ti is its end. Given m independent stochastic factors (i.e.
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Wiener processes dzk, k = 1, . . . ,m), the general evolution is described by
the stochastic vector process

dfi

fi
= µidt + σi

m∑

k=1

bikdzk . (13)

In (13), µi are deterministic drift factors, σi is the volatility rate of the
instantaneous return of the forward rate fi, satisfying

σ2
Black(Ti) =

∫ Ti

0
σ2

i (u)du , (14)

and bik are the components of an n× k matrix B of Brownian shocks satis-
fying the condition

m∑

k=1

b2
ik = 1 , (15)

ensuring that caplets have the correct prices.
The correlation matrix of the forward rates is given as

ρij = [bbT]ij =

m∑

k=1

bikbkj , i, j = 1, . . . , n. (16)

The assumption of stochastically independent forward rates amounts to
bik = δik. Clearly this assumption is in general not satisfied. If however
it is imposed, after fitting their instantaneous volatilities σi via (14) to ter-
minal Black prices (of caplets), no degrees of freedom are left, and hence no
further calibration is necessary.

Therefore, the calibration problem arises due to the correlation of the
forward rates, that is in the case of some bik 6= δik. On the one hand, it is
only in the case of nonvanishing correlation that the number of stochastic
factors m can be lower than the number of forward rates n. On the other
hand, the full n × n covariance matrix introduces more degrees of freedom
than one can deal with in practice, and often also more than the number
of available additional market instruments (e.g. swaptions) for calibration.
Therefore, the case of nonvanishing correlation requires to reduce drastically
the number of stochastic factors m and the degrees of freedom of the cor-
relation matrix by a parametrization and calibration to a suitably chosen
target correlation ρtarget. The latter is parametrized in such a form that the
market situation is represented. One choice which takes into account the
decay of correlation with rate β, for increasing distance between the option
maturities Ti and Tj , is

ρtarget,ij := ρlong + (1 − ρlong)e
−β|Ti−Tj | , i, j = 1, . . . , n. (17)
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Here ρlong is the limit correlation for |Ti − Tj| → ∞.
Using (16) and (17), the calibration task for the LIBOR market model

implies minimizing

d2(B) :=

n∑

i,j=1

(ρB,ij − ρtarget,ij)
2

=

n∑

i,j=1

([bbT]ij − ρtarget,ij)
2 . (18)

Due to the constraint (15), the optimization of d(B) appears quite difficult.
However the constraint can be solved explicitly by reparametrizing the ma-
trix B. Condition (15) implies that the vectors bi, i = 1 . . . , n all lie on a
hypersphere S

m−1 ⊂ R
m. Hence polar coordinates provide the appropriate

reparametrization:

bik = cos θik

k−1∏

j=1

sin θij, k = 1, . . . ,m − 1

bim =

m−1∏

j=1

sin θij . (19)

Hence the constraint optimization of (18) becomes equivalent to an uncon-
strained optimization of

d2(Θ) :=

n∑

i,j=1

(ρΘ,ij − ρtarget,ij)
2 (20)

over the symmetric matrix Θ with elements θik.

3 Adaptive lattice calibration algorithm

In this section we describe an adaptive lattice calibration algorithm for solv-
ing the unconstrained optimization of the relative (symmetric) deviation be-
tween model and target space towards a global minimum over parameters
θ ∈ S.

In the following algorithm, the parameter space S is assumed to only
consist of positive parameters, i.e. S ⊂ [R+]p. Let p = dimS. The algorithm
uses the following calibration parameters:
- li prescribed log span of parameter si, i = 1, . . . , p
- ni (odd) number grid values for parameter si, i = 1, . . . , p

The start value s0 ∈ L ⊂ S with components si,0, i = 1, . . . , p, has been fixed
in advanced. The following steps (i) - (iv) are repeated until the accuracy δ

or the maximal number of iteration Imax is reached:
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1. Generate a lattice L ⊂ S of n1 × · · · × np grid points, in which each
dimension is log-equidistant. For k = 1, . . . , p the grid values are
s
i,−

ni−1

2

, · · · , si,0, · · · , si,
ni−1

2

with a logarithmic distance log10 si,k+1 −
log10 si,k = li

ni−1 .

2. For each point θ ∈ L the symmetric distance between target and model
state is calculated as follows:

- Determine the n-dimensional vector Qtarget of target values.

- Determine the n-dimensional vector Qmodel(θ) of model values.

- Compute the l2-distance (according to (2) between the Black and
Hull White vector as d(θ) := ||Qmodel(θ) − Qtarget||2.

- Compute the symmetric (relative) deviation (3) between the states,

δ(θ) :=

√
2d(θ)

√

||Qtarget||2 + ||Qmodel(θ)||2
.

3. Determine θ0 such that δ(θ0) is minimal.

4. Modify the grid values of all parameters as follows:

- For θ0 ∈ L − ∂L: Set the new start point to s0 := θ0, and for
i = 1, . . . , p the new log span li := li · 2f

ni−1 .

- For θ0 ∈ ∂L: For i = 1, . . . , p:

- If θi,0 = s
i,±

ni−1

2

, reset the start value to si,0 := si,0 ·10±
ni−2

ni−1
li

respectively and leave the log span li unchanged.

- If s
i,−

ni−1

2

< θi,0 < s
i,

ni−1

2

leave the start value si,0 un-

changed and set li := li · 2f
ni−1 .

The factor f above is included in order to admit a tuning of the rescaling
factor 2f

ni−1 of li. An appropriate rescaling factor is essential, in order to
ensure that after each iterations step the optimal point is contained in the
new lattice, and in order to obtain a sufficient fast down scaling of the
lattice size. In order to enable sufficient capability of lattice moves to escape
from a wrong local minima, the rescaling factors 2f

ni−1 should not be too
small as compared to the number of lattice points. On the one hand, this
escape capability is increasing with the number of neighbour generations
around the optimal point that are also contained in the lattice of the next
iteration, when the lattice spacing is reduced. On the other hand, the speed
of the optimization is decreasing with the number of lattice points taken
into account. For odd ni, a convenient choice is a rescaling factor of 0.5,
which is obtained for f = ni−1

4 .
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Care is also necessary in order to set an appropriate stopping criterion
for the optimization: If the calibration yields a deviation less than an ex-
ternally specified value δ, this would mean that all target values are met
by the model exactly up to accuracy δ. However, within a non-trivial cal-
ibration problem, an externally given accuracy δ can not be enforced. In
this case, which should be considered as the generic one, the deviation (3)
does not provide a safe stopping criterion. Alternative, additional stopping
criteria could be added, such as bounds for the size of the lattice spacing.
However, as a final safe stopping criteria, the calibration should stop after
a pre-specified number Imax of iterations. The next section gives a practical
example demonstrating how this algorithm works.

4 Numerical example: calibration of the Hull-White

model

The Hull White model is a very common short rate model with 2 parameters,
the volatility, θ1 := σ ∈ R

+, and the mean reversion rate, θ2 := a ∈ R
+. As

a mean reverting short rate model, it allows to reduce the dissipation of the
volatility term structure (related to forward rates of different maturities).
Mean reversion is commonly considered as a necessary ingredient of a rea-
sonable short rate model. In order to keep a short rate model (in particular
the Hull White model) mean reverting, the mean reversion a either should
be calibrated separately, on the basis of additional input from market data
(as to obtain maximal homogeneity of vola surfaces with time), or (as this
additional input often is not available) a should be bounded from below
a > amin. This point being taken care about, mean reversion and volatility
can be calibrated simultaneously by the adaptive lattice algorithm described
in Section 3.

As a numerical example, the Hull White model is calibrated as to fit in
an optimal manner to a volatility term structure, with synthetic calibration
instruments derived according to the structure of a given (OTC) Bermudan
bond option. The calibration is done at end-of-day for a given evaluation
date, which is fixed for this example to 2007-08-29.

The underlying bond is assumed to pay on a notional of 1000000 EUR
a semiannual coupon of 5% with day count convention 30/360, for interest
periods starting at 2005-04-01, and ending at 2015-04-01.1 Corresponding
to typical termination rights at 1 to 5 years before maturity of the bond,
the exercise dates and times of the Bermudan option are given as in Table
1. Furthermore, the strike-price of the option is set to 100%.

1Although for calibration itself such details about the underlying bond are in fact
irrelevant, some rough description is included here, in order to give a feeling for the
context of a typical application.
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Table 1: Exercise date and time (in years), corresponding swaption volatility
σswaption and related bond price volatility σprice, and components (in EUR)
of target state QBlack and calibrated model state QHW(θc) after 15 iterations.
exercise date exercise time σswaption σprice QBlack,i QHW,i(θc)

2010-04-01 2.5890411 0.1342176 0.02632104 26785.51 26683.10
2011-04-01 3.5890411 0.1322203 0.02139749 22003.80 21971.07
2012-04-01 4.5938244 0.1312164 0.01644428 16742.50 16797.64
2013-04-01 5.5890411 0.1296219 0.01120726 11242.18 11329.75
2014-04-01 6.5890411 0.1278247 0.00571640 5614.99 5743.81

The set of calibration instruments is derived from the Bermudan option.
It consists of corresponding European bond options, each with a maturity
corresponding to one of its exercise dates. All European options have the
same strike and same underlying bond as the Bermudan option.

The interest term structure is a standard EUR curve for the valuation
date (2007-08-29). Since OTC bond options are not a standardized mar-
ket segment by themselves, their volatilities are derived from the related
swaption market. Hence, the fundamental market reference for volatilities
is given by the implied swaption volatilities quoted for the given valuation
date. For each European option, with its given option and bond maturity,
first a corresponding swaption volatility σswaption,i is interpolated from avail-
able market quotes. Then, σswaption,i is converted into a corresponding price
volatility σprice,i for the bond (see Table 1).

The target values QBlack,i of the corresponding benchmark options are
their present values according to the standard Black model, computed with
the volatility σprice,i derived from interpolated implied swaption volatilities.
The resulting components of the target state QBlack,i are listed in Table 1.

The calibration algorithm of Section 3 is applied with 15 iterations, start-
ing from (σ0, a0) = (0.15, 0.03). During computation, the algorithm was
configured to a number of lattice points per dimension n = nσ = na = 5, i.e.
for each iteration the lattice just consists from its center point (σ0, a0) and
its surrounding neighbours up to second degree. Hence, the log-span of the
lattice is lσ = log10

σ2

σ−2
for volatility, and la = log10

a2

a−2
for mean reversion.

The starting value for both is equal to 0.6 · (n − 1) = 2.4. Furthermore,
with f = 1, for both log-spans, the rescaling factor is set to 2f

n−1 = 0.5. This
choice assures that, the optimal lattice point and its nearest neighbours are
still points of the lattice also during the next iteration.

For each iteration step, Table 2 shows the actual lattice values in volatil-
ity and mean reversion, plus the actual log-spans of the lattice. In each step,
for all actual lattice points, the Hull White model state is computed and
compared with the target state, using the relative symmetric deviation (3).
The index [i0, j0] of the optimal lattice point, and the corresponding value
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Table 2: Numerical values during the example calibration.
Iteration 1 2 3 4 5

σ−2 0.00946436 0.00015000 0.00237734 0.00474342 0.00670025
σ−1 0.03767830 0.00059716 0.00474342 0.00670025 0.00796327
σ0 0.15000000 0.00237734 0.00946436 0.00946436 0.00946436
σ1 0.59716076 0.00946436 0.01888388 0.01336876 0.01124841
σ2 2.37733979 0.03767830 0.03767830 0.01888388 0.01336876
log10

σ2

σ−2
2.40000000 2.40000000 1.20000000 0.60000000 0.30000000

a−2 0.00189287 0.03000000 0.05985787 0.08455149 0.11943215
a−1 0.00753566 0.05985787 0.08455149 0.10048963 0.13020308
a0 0.03000000 0.11943215 0.11943215 0.11943215 0.14194538
a1 0.11943215 0.23829847 0.16870240 0.14194538 0.15474665
a2 0.47546796 0.47546796 0.23829847 0.16870240 0.16870240
log10

a2

a−2
2.40000000 1.20000000 0.60000000 0.30000000 0.15000000

[i0, j0] [−2, 1] [1, 0] [0, 0] [0, 1] [0, 0]
δ(ai0 , σj0) 0.03982438 0.03982438 0.03982438 0.00602651 0.00602651

iteration 6 7 8 9 10

σ−2 0.00796327 0.00868143 0.00906445 0.00926224 0.00936276
σ−1 0.00868143 0.00906445 0.00926224 0.00936276 0.00941342
σ0 0.00946436 0.00946436 0.00946436 0.00946436 0.00946436
σ1 0.01031790 0.00988192 0.00967089 0.00956707 0.00951557
σ2 0.01124841 0.01031790 0.00988192 0.00967089 0.00956707
log10

σ2

σ−2
0.15000000 0.07500000 0.03750000 0.01875000 0.00937500

a−2 0.13020308 0.13594751 0.13594751 0.13891408 0.13966578
a−1 0.13594751 0.13891408 0.13742279 0.13966578 0.14004315
a0 0.14194538 0.14194538 0.13891408 0.14042155 0.14042155
a1 0.14820787 0.14504283 0.14042155 0.14118141 0.14080096
a2 0.15474665 0.14820787 0.14194538 0.14194538 0.14118141
log10

a2

a−2
0.07500000 0.03750000 0.01875000 0.00937500 0.00468750

[i0, j0] [0, 0] [0,−1] [0, 1] [0, 0] [0,−1]
δ(ai0 , σj0) 0.00602651 0.00550853 0.00504732 0.00504732 0.00502304

iteration 11 12 13 14 15

σ−2 0.00941342 0.00941342 0.00941342 0.00939439 0.00937540
σ−1 0.00943886 0.00942613 0.00941977 0.00940073 0.00938172
σ0 0.00946436 0.00943886 0.00942613 0.00940707 0.00938806
σ1 0.00948993 0.00945160 0.00943249 0.00941342 0.00939439
σ2 0.00951557 0.00946436 0.00943886 0.00941977 0.00940073
log10

σ2

σ−2
0.00468750 0.00234375 0.00117188 0.00117187 0.00117188

a−2 0.13966578 0.13910162 0.13853974 0.13798014 0.13742279
a−1 0.13985434 0.13928942 0.13872678 0.13816642 0.13760832
a0 0.14004315 0.13947747 0.13891408 0.13835296 0.13779410
a1 0.14023222 0.13966578 0.13910162 0.13853974 0.13798014
a2 0.14042155 0.13985434 0.13928942 0.13872678 0.13816642
log10

a2

a−2
0.00234375 0.00234375 0.00234375 0.00234375 0.00234375

[i0, j0] [−1,−2] [−1,−2] [−2,−2] [−2,−2] [−1,−2]
δ(ai0 , σj0) 0.00502039 0.00496791 0.00492933 0.00490104 0.00486930
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δ(σi0 , aj0) of the deviation are then listed, too.
After each iteration, the point (σi0 , aj0) is becoming the center point for

the lattice of next iteration. In general both, the center point of the lattice
and its log-spans, lσ and la, can change. The freedom to change the lattice
after each iteration is essential to the adaptive flexibility of the optimization.
Furthermore, considerable performance can be saved by using small (here
5 × 5) flexible lattices.

In the present example, after iterations 2, 4, 7, 8, and 10, the center
point and both log-spans are changed, after iteration 11 and 12 only lσ is
changed, after iteration 1 only la is changed, and after iterations 13 and
14 none of them is changed. After iterations 3, 5, 6, and 9 the center
point is not changing, while the lattice is contracting in size (decreasing
both log-spans). After Imax = 15 iterations the optimization is stopped
with calibrated θc = (0.00938172, 0.13742279), yielding a Hull White present
value of 30097.21 EUR for the Bermudan bond option, which is (as expected)
still more than the most valuable European option from Table 1.

5 Conclusions and further studies

In Section 1, the general structure of mathematical finance calibration prob-
lems involving optimization was described and discussed. For three examples
it was demonstrated how they fit into the general scheme. Each example
represents a fundamental and typical class of stochastic models as applied
in the valuation of interest rate derivatives:

• direct models for the probability density (see Example 1 and Section
2.1)

• short rate models (see Example 2 and Section 2.2)

• forward market rate models (see Example 3 and Section 2.3)

There exist different equivalent approaches to describe a stochastic model.
In the first case, a direct ansatz (5) was made for the probability distribution.
In the other two cases, it was convenient to start initially from a stochastic
differential equation for the process, as in (11) or (13). Finally however, the
latter approach also implies a definite probability distribution for the model.

All three examples require the optimization, i.e. minimization, of some
Euclidean distance function (2) on a state space. For Example 1, this dis-
tance is explicitly given by (9) in the European case (single event at maturity
T ), or by (10) in the Bermudan case (several events at T1 < · · · < TnT

= T ).
With Example 2, the distance is given through (12), and in Example 3, via
(20). In the latter example, constrained optimization could be replaced by an
unconstrained optimization, thanks to a reparametrization (19) of the space
of calibration parameters, which in fact forms a hypersphere S

m−1 ⊂ R
m.
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In Section 3 a new adaptive lattice algorithm was presented as some
example for an optimization algorithm. Unlike the standard Levenberg-
Marquardt algorithm [8, 9], it operates on a lattice which adapts after in
each iteration step both, its location and its lattice spacing. The algorithm
explores on a double-logarithmic lattice not only the nearest neighbours
of a minimum, but also further lattice points beyond. With appropriately
chosen rescaling factor, one can assure that the lattice points of the next
iteration contain the optimal point from the last iteration. This ensures
that in each iteration, the deviation is not increasing. Since the lattice is
moving, the algorithm has furthermore the ability to hop out of a current
(true or apparent) sink around a wrong local minimum to another sink
around another, more optimal, local minimum. Therefore, the risk to get
trapped in a wrong local minimum, although theoretically still present, is
reduced considerably in practical applications.

The numerical example of Section 4 demonstrates the application of this
algorithm for a calibration of the Hull White 1-factor short rate model. For
a given Bermudan (OTC) bond option, the mean reversion and the volatility
are optimized, such as to minimize the symmetric relative Euclidean devi-
ation (3) between the Hull White model state and the target state. Both
states are determined with the European instruments present values as com-
ponents. For the former, these values depend on the model parameters, for
the latter, they are derived from interpolated market quotes via the Black
model. The latter is used in the market to imply volatilities one-to-one from
prices and vice versa.

In practice, with complicated optimization problems and larger portfo-
lios of trades, it is inevitable to increase performance of calibration as much
as possible. This can be partially achieved by an economic design of op-
timization algorithms, such as using small adaptive lattices (as e.g. in the
algorithm presented above) rather than the traditional large and rigid ones.
Another strategy is to reduce the application of optimization (and other ex-
pensive algorithms) just to the extent they are really needed. For example,
it may be recommended, first to exploit direct calibration methods as much
as possible in advance, before starting with the optimization itself. In the
best case, then just a fine-tuning is left for optimization.

Effective variants of the algorithm of Section 3 have been implemented
and tested for both, C++ and Java, within several applications. The Java
implementation is part of the current commercial software library of Value
& Risk [14]. It is applied both, within the Value & Risk Valuation Engine
(for pricing), and at the heart of further other applications using the same
pricing kernel. The Value & Risk applications are used productively at
several major banks for more than 10 years.

The general structure of calibration with both, optimization methods
and direct methods, is also at the heart of a modularly structured calibra-
tion engine, used for the calibration of different interest models of the three

18



typical classes described above. In particular advanced calibration methods
for market forward rate models are a topic of current and further investiga-
tions.

In practice, very fast calibration can often be achieved by appropriately
combining different algorithms of both types. For this purpose however, a
strict modularization of the calibration engine is a necessary condition. Cur-
rently a modular calibration engine [15] is developed at Value & Risk as a
separate commercial application, which is extending its calibration function-
ality both, to new interest rate models, and from interest rate derivatives
to other asset classes, including inflation-linked products, credits and credit
derivatives.
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