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We apply the classical model proposed by Cox-Ingersoll-Ross (CIR) to the European

Fixed Income Market following two different approaches. In the first case, we apply the
non-linear least squares method to cross section data (i.e., all the rates of a single day).

In the second case, we consider the short rate obtained by means of the first procedure
as a proxy of the real market short rate. Starting on this new proxy, we evaluate the

parameters of the CIR model by means of martingale estimation techniques.

An estimate of the market price of risk is provided by comparing the results obtained
with these techniques.

1. Introduction

The Cox-Ingersoll-Ross (CIR model) model proposed in 3 and 4 is based on the
stochastic differential equation:

drt = k(µ− rt)dt + σ
√

rtdWt, (1.1)

where Wt is a standard Brownian motion; k is the speed of adjustment, µ is the
long-term average rate (the mean-reverting level) and σ

√
rt is the implied volatility.

The Local Expectation Hypothesis states that:

E(
dP

P
) = rt + λrt

Pr

P
, (1.2)

where P (t, T ) is the price at time t of a zero-coupon with maturity T . It is possible
to prove that, in the framework provided by the CIR model, P (t, T ) can be written
as:

p(t, T ) = F (t, T )eG(t,T )rt , (1.3)

where 
F (t, T ) =

[
φ1eφ2(T−t)

φ2(eφ1(T−t)−1)+φ1

]φ3
,

G(t, T ) =
[ (eφ1(T−t)−1)

φ2(eφ1(T−t)−1)+φ1

]
.

(1.4)

φi, i = 1, 2, 3 depends on the parameters of the model:
φ1 =

√
(k + λ)2 + 2σ2,

φ2 = k+λ+φ1
2 ,

φ3 = 2kµ
σ2 .

(1.5)
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where −λ represents the market price of risk.
In 13 we applied the CIR model and the Nelson-Siegel model (see 12) to the Italian
Treasury fixed income securities market. In that case we employed the price of
bonds quoted from November 1999 to November 2000 that, hereafter we denote as
”Dataset-A”. In this paper we apply the CIR model to another dataset with the
main goals of getting an estimate of the market price of risk.

The present dataset, that we call ”Dataset-B”, is composed by daily Euribor
and swaps rates in the period from January 1999 to December 2002 (the whole
archive is composed by 1042 days). More to the point, for each day we have a set of
16 maturities: Euribor rates for 3 and 6 months and swap rates from 1 to 10 plus
15, 20, 25 and 30 years.

The main reason of such choice is that the corresponding securities are very
liquid.

We implemented the CIR model following two approaches:

1. in the first case, we apply the non-linear least squares method by cross section
to each day of our archive. We denote this method as static, to highlight that
data used to implement the model correspond to the rates of a single day;

2. in the second case, we consider the short rate obtained following the first
approach as a “proxy” of the real market short rate. Starting on this new
proxy, we evaluate the parameters of the CIR model by means of martingale
estimation techniques. We denote this method as dynamic, to highlight that
the set of data used to implement the model is composed by the last n daily
values of the short rate.

We estimate the short rate rt by applying the static method to the Dataset-B.
The resulting value is very close to the 3- and 6-month Euribor rate and to the
1-year swap rate. This confirms that the CIR model provides a good description of
the market. Due to the theoretical features of the CIR model, the description of the
term structure is more precise for the medium and long term maturities than for
the short term maturities (we discuss this issue in section ), especially when there
is an inversion of the curve on the very short term (for example, when the 3-month
Euribor rate is higher than the 6-month Euribor rate).

The original part of the present paper is the evaluation of the market price of
risk. Following the static approach, it is not possible to separate the market price
of risk (−λ) from the speed of adjustment k (see (1.5)), since we can only obtain
kStatic = (k+λ). By comparing this value with the speed of adjustment k obtained
following the dynamic approach, we can separate the market price of risk. This
is possible thanks to the different financial meaning of the two approaches and to
a careful choice of the number of days used to calibrate the model. In particular,
the static approach represents the situation of a single day, whereas the dynamic
approach represents the average situation of the term structure.

Finally, we evaluate, according to the Local Expectations Hypothesis, the risk
premium of the market.

2. Static implementation of the CIR model

The original method to implement the CIR model (see 3 and 4) is based on
formula 1.3. By using the non linear least squares method it is possible, starting on
the market price (or the return) for each maturity, to obtain the parameters of the
model from (1.4) and (1.5).

In this section we show the results for rt,m, k and σ obtained from the Dataset-
B following this approach. Then, we compare these results with those obtained in
13 and 1.
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Figure 1:

Short rate rt

Dataset and Period Mean St. Dev. Rel. Var. Min Max
Archive-B 1999-2002 3.309 0.878 26.5% 1.838 5.189
Archive-B 11/99-11/00 4.162 0.738 17.7% 2.952 5.189
Archive-A 11/99-11/00 4.232 0.421 9.9% 3.255 5.114
BCZ 1984-1989 11.519 3.156 27.4% 8.071 16.129

Table 1: Short rate rt.

2.1. Evolution of the short rate rt

In the second row of table 1, we report the results for rt obtained with the whole
Dataset-B. In the third row we show the results obtained with the subset of the
same dataset corresponding to the period November 1999-November 2000. In the
fourth row, we report the results of 13 obtained with the same approach applied to
the Dataset-A (which includes data in the period November 1999-November 2000).
In the last row we report the results of Barone, Cuoco, Zautik (1) for the period
1984-1989 obtained by using Italian Treasury bonds. Note that the Reference Rate
was greater than 10% at that time.

For the period November 1999-November 2000, Dataset-B and Dataset-A pro-
vide a similar short rate (see figure 1 and table 1). This is an indication that, if
there are data for all maturities, it is possible to obtain a reasonable description of
the term structure from either the quoted bonds or the Swap and Euribor rates.
However, figure 1 shows that the fluctuations of the short rate obtained by the
Dataset-B are smaller than those obtained by the Dataset-A.

This is likely due to the greater liquidity of the Euribor and Swap rates with
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Comparison�between�the�CIR�short�rate�and�the�Euribor�rates
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Figure 2:

Implied volatility σ
√

rt

Model and Period Mean St. Dev. Rel. Var. Min Max
Archive-B 1999-2002 1.1522 0.2648 22.9% 0.6594 1.7872
Archive-B 11/99-11/00 1.4092 0.1704 12.1% 1.1579 1.7872
Archive-A 0.8098 0.3753 46.4% 0.2217 1.4807
BCZ 1984-1989 2.1004 0.3321 15.8% 1.1606 3.5880

Table 2: Implied volatility σ
√

rt.

respect to the quoted bonds. For this reason the Dataset-B appears more suitable
than Dataset-A to the calibration procedure.

Figure 2 shows the behavior of the short rate obtained from Dataset-B with
respect to the behavior of 3- and 6-month Euribor rate for the period January
1999-December 2002. The estimated short rate appears very close but lower than
the Euribor rates. This is coherent with the definition of short rate, that is the rate
of a security with “instantaneous maturity”.

2.2. Evolution of the implied volatility σ
√

rt

The implied volatility describes the behavior of the stochastic part of the model.
The results in table 2 are in agreement with the expectation that to a more stable
market situation corresponds a lower implied volatility (1999-2002 vs. 1984-1989).
It is also interesting to note that the implied volatility for Dataset-A is very similar
to that for Dataset-B. This is a confirmation of the model’s capability of describing
the real fluctuations regardless of the liquidity of the securities in the dataset.
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Speed of adjustment k
under the hypothesis λ = 0

Model and Period Mean St. Dev. Rel. Var. Min Max
Archive-B 1999-2002 0.3603 0.1301 36.1% 0.1791 0.6956
Archive-B 11/99-11/00 0.3913 0.1187 30.3% 0.2311 0.6956
Archive-A 0.2804 0.1192 42.5% 0.0386 0.4653
BCZ 1984-1989 0.2433 0.0031 1.3% 0.2269 0.2524

Table 3: Speed of adjustment k.

Long term average rate µ
under the hypothesis λ = 0

Model and Period Mean St. Dev. Rel. Var. Min Max
Archive-B 1999-2002 5.910 0.353 5.9% 5.149 6.565
Archive-B 11/99-11/00 6.187 0.115 1.8% 5.923 6.565
Archive-A 7.470 1.230 16.5% 6.192 14.454
BCZ 1984-1989 11.128 1.802 17.2% 4.261 16.837

Table 4: Long term average rate µ.

2.3. Evolution of the speed of adjustment k and of the average rate µ

Note that with the static procedure it is not possible to separate k from the
market price of risk −λ (see 1.5). ∗

Only when the market price of risk, −λ, is equal to 0, it is possible to study
independently the parameters k and µ. This is a severe restriction that we eliminate
in the following sections.

Looking at table 3, it is clear that the values obtained in 13 and 1 are very similar
to the results for Dataset-B. In table 4, we report the long-term average rate µ. For
this parameter the results are very similar to the results obtained in 13 and very
different from the results of 1. This is an obvious consequence of the completely
different macroeconomic situation of Italy in the two periods.

3. Dynamic implementation of the CIR model

It is possible to calibrate the CIR model by resorting to the time series of a bond
price (or return) as a proxy for the short rate. This approach entails three “critical
issues”:

1. It is not clear what is the best possible proxy of the short rate.

2. The model is, by construction, unable to describe dramatic changes in the
market (shock phenomena). If such changes appear in the time series, we can
expect that the model fails (and it does). We are going to come back to this
crucial point later.

3. If we use the historical series of a benchmark, we miss the information about
all the other securities.

∗From an practical point of view this is not a serious problem, since it is possible to obtain the
term structure directly from the parameters φ1, φ2, φ3 and r, if one is not interested in the values
of the model parameters.
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Very often these reasons are sufficient for a practitioner to prefer a static procedure.

3.1. The choice of the proxy

The natural choices for the proxy of the short rate are:

• The shortest maturity rate in the dataset: in our case the 3-month Euribor
rate

• The short rate obtained by the static implementation of the CIR model (we
denote it as “static short rate”).

The 3-month Euribor rate shows anomalous characteristics because in different
periods it is the only element of the term structure to remain very stable (figure
2). For instance, during the period between June 1999 and November 1999, the 3-
month Euribor rate is almost constant even though the 6-month Euribor rate shows
a clear up-trend. After this period, suddenly, the 3-month Euribor rate grows up
until it reaches the same value of the 6-month Euribor rate. A similar situation
occurs between mid November 2001 and mid April 2002.
In these periods, the short rate obtained by means of the static procedure follows
the same trend of the other longer maturities present in dataset-B (see figure 2).
Another problem is the so-called “inversion” on short term maturities (it occurs
when the 3-month Euribor rate is greater than the 6-month Euribor rate and, more
rarely, than the 1-year Swap rate). Since the CIR model can not describe term
structures with this characteristic, using the 3-month Euribor rate as a proxy of the
short rate could introduce a bias in the implementation of the model. For all these
reasons, the 3-month Euribor rate does not appear suitable for the description of
the term structure according to the Local Expectation Hypothesis.
On the other hand, figure 2 shows that the behavior of the static short rate is very
close to the behavior of both (3-month and 6-month) Euribor rates and the 1-year
Swap rate. Moreover, the behavior of the static short rate is determined by using
information coming from the whole term structure. For all these reasons, we believe
that the static short rate is a better proxy of the real short rate than the 3-month
Euribor rate.

We can estimate the parameters of the CIR model by means of martingale
estimations techniques (see 6 and 9). We denote this method as “dynamic”, to
highlight that the data belongs to the time series of the short rate proxy.

3.2. The Martingale Estimation

For the sake of simplicity, we formulate the CIR model (1.1) as follows:

drt = (a + brt)dt + σ
√

rtdWt, (3.6)

where:  b = −k,

a
b = −µ.

(3.7)

It is useful to remember that b < 0, a > 0 and σ > 0. To apply the martingale
estimation technique it is necessary to discretize the model (3.6). Since we add
more terms from the Ito-Taylor expansion to the Milstein scheme we end up with
the following formulation (see 6 and 9):

rt+1 = rt + ∆(a + brt) + σ
√

rtdW + σ2

4 (dW 2 −∆)
+bσ

√
rtdZ + 1

2∆2b(a + brt) + σ
2
√

rt
(a + brt − σ2

4 )(dW∆− dZ),
(3.8)



Static and dynamic approach to the CIR model

where:  dW = U1

√
∆,

dZ = ∆3/2(U1 + U2
2 ).

(3.9)

Here U1 and U2 are independent N(0, 1)-distributed random variables and ∆ is the
discretized time step. This approach guarantees the existence of closed formulas for
a and b. In 6 and 2 it is proved that:

b = 1
∆ ln

[n
P

t(
rt

rt−1
)−

P
t rt

P
t(

1
rt−1

)

n2−
P

t rt−1
P

t(
1

rt−1
)

]
,

a = b
1−eb∆

neb∆−
P

t(
rt

rt−1
)

1
rt−1

.

(3.10)

Moreover, the estimator for σ2 is:

σ2 =

∑
t

[
rt − (a+brt−1)e

b∆−a
b

]2
1

rt−1∑
t

[
(a+2brt−1)e2b∆−2(a+brt−1)eb∆+a

2rt−1b2

] . (3.11)

To assess the reliability of the martingale estimators, we studied, by means of
simulations of CIR paths, their convergence properties with respect to the number
of data used in (3.10) and (3.11).

From a theoretical viewpoint, it would be better to use a very large set of data in
order to obtain a reliable estimate of the parameters but, from a practical point of
view, this could be misleading: the market is not stable and it can suddenly change
its characteristics. The CIR model describes the average behavior of the market in
the period used to calibrate the parameters. If a shock occurs in that period, the
resulting parameters are a mix of two different market situations (before and after
the shock). As a consequence, we need to find out what is the number of data that
represents the best tradeoff between the following opposite requirements:

• use a large set of data to obtain reliable estimates;

• use a pretty limited set of data to reduce the impact of the market instability.

Another issue is the choice of the time step parameter ∆. This choice influences the
number of data required to ensure a reliable convergence of the martingale estimate.
In our case, with a dataset of 1042 daily data spanning a period of 4 years (from
1999 to 2002), we use ∆ = 1/250 = 0.004. In 14, we prove that, for ∆ = 0.004, at
least 550 daily data are necessary. In particular, if ∆ is equal to 1/250, the better
choice is N = 600 daily data.

3.3. Results of the dynamic implementation

Our dynamic procedure is applied to the time series of the short rate proxy and
works as follows:

1. starting on the 601st day we estimate the CIR parameters k, µ, σ by using the
martingale estimation formulas, applied to the last 600 data.

2. we repeat the procedure starting on the 602nd day using only the last 600
data;
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Dynamical Approach vs Static Approach
From 2/1/2001 to 31/12/2002, time step ∆=1/250

Parameter Method Mean St. Dev. Rel. Var. Min Max
Speed of adjustment Dynamic 0.7449 0.2812 37.8% 0.1975 1.6179

k Static 0.4078 0.1248 30.6% 0.1791 0.5937
Long term average rate Dynamic 3.5882 1.0179 28.4% 0.9159 6.6734

µ Static 5.7112 0.3441 6.0% 5.1494 6.4191
Implied volatility Dynamic 0.7798 0.0569 7.3% 0.6462 0.9016

σ Static 1.1552 0.2067 17.9% 0.8632 1.5650

Table 5: Dynamical Approach vs Static Approach.

3. the procedure continues until we reach the last day of our archive;

In the end, we obtain 3 new time series, respectively for the parameters k, µ, and
σ. Obviously, each triple {kt, µt, σt} describes the average market situation of the
last 600 days. The number of data for each time series is equal to 442 (1042, the
total number of days in our archive, - 600).

The results are reported in table 5 and 6. It is interesting to note that:

• The implied volatility of the dynamic procedure is lower than that of the static
procedure. The reason is probably that the dynamic method is influenced
mainly by the fluctuations of the short term maturities, whereas the static
method is based on the whole term structure and it may be influenced by the
fluctuations of each maturity. In other words, temporary fluctuations on the
medium or long term can influence more significantly the static method than
the dynamic one.

• The ratio between the standard deviation and the mean value of the implied
volatility is lower for the dynamic procedure (see table 6). In 14, we prove the
ability of the dynamic method to capture the volatility of the CIR model. It
appears that, as to the implied volatility, the results of the dynamic procedure
may be considered more reliable.

• The implied volatility obtained by means of the dynamic procedure is very
close to the historical volatility of the short rate proxy.

In (3.8) the implied volatility represents the annual volatility more than the daily
volatility. This becomes apparent if we consider in 3.8 only the terms up to first
order in ∆:

rt+1 = rt + ∆(a + brt) + σ
√

rt

√
∆dU, (3.12)

where U is a N(0, 1)-distributed random variable. The discretization introduces a
reduction of the implied volatility of a factor

√
∆. In table 6 it is possible to compare

the implied volatility obtained by the static implementation with that obtained by
the dynamic implementation and the historical annual volatility of the short rate
proxy. We highlight that the dynamic and the historical volatility are very close to
each other.

3.4. Comparison between the short rate proxy and the Euribor rates

We selected the static short rate as a proxy of the real short rate for three
reasons:



Static and dynamic approach to the CIR model

Comparison between the volatilities
From 23/04/2001 to 31/12/2002, time step ∆=1/250

Parameter Method Mean St. Dev. Relative Error
Implied (annual) volatility Static 1.1552 0.2066 17.9%
Implied (annual) volatility Dynamic 0.7798 0.05688 7.3%
Historical annual volatility Short rate proxy 0.6577 0.5872 89.3%

Table 6: Comparison between the volatilities.

Comparison among implementations with different short rate proxy
From 02/07/2001 to 31/12/2002

Parameter Method Mean St. Dev. Rel.Var. Min Max
Dynamic 0.7449 0.2812 37.8% 0.1975 1.6179

Speed of adjustment k Euribor 3m 0.4036 0.4019 99.5% 0.0227 1.5002
Euribor 6m 0.3632 0.3082 84.9% 0.0275 1.1609
Dynamic 3.5882 1.0179 28.4% 0.9159 6.6734

Long term average rate µ Euribor 3m 4.4346 2.0360 45.9% 0.2744 13.2694
Euribor 6m 3.7452 1.7658 47.1% 0.0162 7.8324
Dynamic 0.7798 0.0569 7.3% 0.6462 0.9016

Implied volatility σ
√

rt Euribor 3m 0.4386 0.0572 13.0% 0.3491 0.5226
Euribor 6m 0.4251 0.0197 4.6% 0.3761 0.4639

Table 7: Comparison between short rate proxy and Euribor rates.

1. The 6-month Euribor or the 1-year Swap rate are too long, considering the ex-
istence of the 3-month Euribor rate and considering the implicit instantaneous
nature of the short rate.

2. In some periods the 3-month Euribor rate shows an anomalous behavior with
respect to other maturities, so it may be not suitable to describe the whole
term structure.

3. The behavior of the CIR short rate seems to summarize quite well the infor-
mation inside the whole term structure.

To double check these assumptions, we also followed the dynamic approach by
using the 3-month Euribor rate and then the 6-month Euribor rate as a proxy of
the short rate. Finally, we compared the results obtained by using the Euribor rates
and the static short rate. The parameters obtained with the three different proxies
are reported in table 7.

• The speed of adjustment k: the speed of adjustment is similar in every
case. However, the relative errors obtained by using the 3-month and 6-month
Euribor rates are about twice the relative error obtained by using the static
short rate. So, from the stability viewpoint, the static short rate appears a
more suitable choice.

• The long term average rate µ: each proxy provides, with very good ap-
proximation, the same value for the long term average rate µ.
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• The implied volatility σ
√

rt: the implied volatility obtained by using the
static short rate is greater than the implied volatility obtained by using the
other proxies. Such result is not surprising. In the dataset B, the Euribor
rates (specially the 3-month) is very stable (almost constant) for pretty long
periods. This behavior reduces the total volatility. However, the rate for
other maturities behaves in a different way. (see, for instance, the 1 year swap
rate in figure 2). If the CIR model really represents the market, the short
rate behavior must reflect both the almost constant behavior of the short
term Euribor rates and the fluctuations of the rest of the term structure. As
a consequence, it is reasonable to obtain that the real short rate presents a
greater volatility than the Euribor rates.

4. The market price of risk

We have seen that in the CIR framework the expected return of a bond is equal
to (1.2), where the elasticity of the bond is given by:

el = r
Pr

P
= r

1
P

∂P

∂r
.

In general, for a long term investment, an investor expects a greater return with
respect to the short rate. For such reason, the second term of (1.2) is, almost always,
positive.

The Local Expectation Hypothesis equation contains the derivative of the price
P with respect to the short rate: it is well known that when the rates go down the
prices increase and vice-versa so, on average, the derivative in (1.2) is negative.

But, if the derivative of P with respect to r is negative, the second term of the
Local Expectation Hypothesis equation can be positive only if λ is negative. That
is the reason why the market price of risk is defined as −λ and not λ.

However, for very short periods, the market price of risk can be negative (that
is λ > 0). Usually this happens when the market firmly believes in a significant
decrease of the rates. In other words, the market price of risk provides a clue of the
market expectations about the term structure evolution.

4.1. Evaluation of the market price of risk

Under the Local Expectation Hypothesis, the daily variations of the term struc-
ture are mostly due to the variations of the market price of risk. In the static
implementation we can only obtain (k + λ), whereas in the dynamic implementa-
tion we can directly obtain the parameter k. By comparing the daily value of k
with (k + λ) we can derive an indirect estimation of the market price of risk −λ.
Since we have two time series, one for the speed of adjustment defined by the static
procedure and one (restricted to 442 days) for the speed of adjustment defined by
dynamic procedure, it is possible to obtain the value of λ for every day from July
2001 to December 2002.

We recall that the dynamic implementation provides a set of parameters that
represent the market “on average”, whereas the static implementation provides
parameters that represent the actual situation of the market, i.e., the term structure
of a single day. The comparison of such different viewpoints helps in understanding
the tensions and the expectations of the market.

The values of (k +λ) obtained with the static procedure, of k obtained with the
dynamic procedure and of the market price of risk are reported in table 8.

4.2. Considerations about the market price of risk
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Estimation of the market price of risk −λ
From 02/07/2001 to 31/12/2002

Parameter Mean St. Dev. Rel.Var. Min Max
Static speed of adjustment k 0.7449 0.2812 37.8% 0.1975 1.6179

Dynamic speed of adjustment k 0.4078 0.1248 30.6% 0.1791 0.5937
Market price of risk −λ 0.3236 0.3397 105.0% -0.2794 1.3493

Table 8: Comparison between short rate proxy and Euribor rates.
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Figure 3:

The behavior of the market price of risk shown in figure 3, seems to give a good
representation of the market situation in the period April 2001-December 2002.
Indeed:

• After September 11 2001, −λ goes down and shows a very unstable behavior
for (about) 3 months. This is probably caused by the situation after the ter-
roristic attacks with the expectation of a significant reduction of the Reference
Rate by the European Central Bank (ECB) in order to help the economy.

• After January 2002, −λ remains almost stable and pretty low according to
the idea of a still long crisis and of the stability of the rates.

• After August 2002, −λ becomes positive, but very volatile. In the end of
November there is another peak that indicates new expectations of a reduction
of the Reference Rate (that, actually, happened).

To verify if the market price of risk is able to represent the expectations of the
market, it is interesting to compare the market price of risk with the Reference Rate
of the ECB. The results are unexpected and interesting as shown in figure 4.
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Figure 4:

It is apparent that each movement of the ECB rate generates a reaction in the
market price of risk. Except in the first move, −λ always follows the direction of the
ECB rate. It is also interesting to note that during the period between December
2001 and November 2002, the market price of risk remains almost constant and low,
according to the idea of a stable market. Also the peak in November 2002 seems to
find a justification. From August 2002 the market price of risk increased, probably
due to the forecast of a possible increase of the Reference Rate. The reduction of
the ECB rate in November 2002 changed completely the expectations of the market,
which reacted with a new decrement of the market price of risk.

From these results, it appears that the market price of risk, evaluated by means
of the CIR model, is able to describe the reactions of the market to important events
like the changes in the monetary policy.

Apparently, it is surprising that the CIR model is able to provide a good estimate
of the market price of risk. However, we recall that Litterman and Scheinkman
(11) shown that the parallel movements explain more than 80% of the yield curve
movements. This means that, most of the time, a one factor model can describe
the term structure. This observation is confirmed by Dybvig (5), who shown that
one-factor models offer a reasonable first-order approximation of the term structure.

5. Conclusions

We estimated the market price of risk by comparing the results produced by two
different approaches to the calibration of the Cox-Ingersoll-Ross model.

Our present results are limited to the European market for the period 1999-
2002, but nothing prevents from using the same method with data coming from
other markets (e.g., the U.S. Treasury fixed income securities market).

The most critical issue remains the choice of the number of days to be used to
implement the model since it can seriously influence the quality of results. In our
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experience it is possible to identify the minimum number of days by looking at the
convergence of the martingale estimations. Finally, we shown that the best proxy
of the short rate is the short rate obtained from a cross-section analysis of all the
rates of a single day.
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