
The Bonferonni and Šidák
Corrections for Multiple Comparisons

Hervé Abdi1

1 Overview

The more tests we perform on a set of data, the more likely we are
to reject the null hypothesis when it is true (i.e., a “Type I” error).
This is a consequence of the logic of hypothesis testing: We reject
the null hypothesis if we witness a rare event. But the larger the
number of tests, the easier it is to find rare events and therefore
the easier it is to make the mistake of thinking that there is an ef-
fect when there is none. This problem is called the inflation of the
alpha level. In order to be protected from it, one strategy is to cor-
rect the alpha level when performing multiple tests. Making the
alpha level more stringent (i.e., smaller) will create less errors, but
it may also make it harder to detect real effects.

2 The different meanings of alpha

Maybe it is because computers make it easier to run statistical analy-
ses that researchers perform more and more statistical tests on a
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same set of data. For example, brain imaging researchers will rou-
tinely run millions of tests to analyze an experiment. Running so
many tests increases the risk of false alarms. To illustrate, imagine
the following “pseudo-experiment":

I toss 20 coins, and I try to force the coins to fall on the
heads. I know that, from the “binomial test," the null
hypothesis is rejected at the α= .05 level if the number
of heads is greater than 14. I repeat this experiment 10
times.

Suppose that one trial gives the “significant" result of 16 heads
versus 4 tails. Did I influence the coins on that occasion? Of course
not, because the larger the number of experiments, the greater the
probability of detecting a low-probability event (like 16 versus 4).
In fact, waiting long enough is a sure way of detecting rare events!

2.1 Probability in the family

A family of tests is the technical term for a series of tests performed
on a set of data. In this section we show how to compute the prob-
ability of rejecting the null hypothesis at least once in a family of
tests when the null hypothesis is true.

For convenience, suppose that we set the significance level at
α=.05. For each test (i.e., one trial in the example of the coins) the
probability of making a Type I error is equal to α= .05. The events
“making a Type I error" and “not making a Type I error" are com-

plementary events (they cannot occur simultaneously). Therefore
the probability of not making a Type I error on one trial is equal to

1−α= 1− .05 = .95 .

Recall that when two events are independent, the probability of
observing these two events together is the product of their proba-
bilities. Thus, if the tests are independent, the probability of not
making a Type I error on the first and the second tests is

.95× .95 = (1− .05)2
= (1−α)2 .
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With 3 tests, we find that the probability of not making a Type I
error on all tests is:

.95× .95× .95 = (1− .05)3
= (1−α)3 .

For a family of C tests, the probability of not making a Type I error
for the whole family is:

(1−α)C .

For our example, the probability of not making a Type I error
on the family is

(1−α)C
= (1− .05)10

= .599 .

Now, what we are looking for is the probability of making one or
more Type I errors on the family of tests. This event is the com-
plement of the event not making a Type I error on the family and
therefore it is equal to

1− (1−α)C .

For our example, we find

1− (1− .05)10
= .401 .

So, with an α level of .05 for each of the 10 tests, the probability of
wrongly rejecting the null hypothesis is .401.

This example makes clear the need to distinguish between two
meanings of α when performing multiple tests:

• The probability of making a Type I error when dealing only
with a specific test. This probability is denoted α[PT ] (pro-
nounced “alpha per test"). It is also called the testwise alpha.

• The probability of making at least one Type I error for the
whole family of tests. This probability is denotedα[PF ] (pro-
nounced “alpha per family of tests”). It is also called the fam-

ilywise or the experimentwise alpha.

3



Hervé Abdi: The Bonferonni and Šidák Corrections

Table 1: Results of a Monte Carlo simulation. Numbers of Type 1

errors when performing C = 5 tests for 10,000 families when H0 is

true. How to read the table? For example, 192 families over 10,000
have 2 Type 1 errors, this gives 2×192 = 384 Type 1 errors.

Number of families X : Number of Type I Number of
with X Type I errors errors per family Type I errors

7,868 0 0
1,907 1 1,907

192 2 384
20 3 60
13 4 52

0 5 0

10,000 2,403

2.2 A Monte Carlo illustration

A “Monte Carlo" simulation can illustrate the difference between
α[PT ] and α[PF ]. The Monte Carlo technique consists of running
a simulated experiment many times using random data. This gives
the pattern of results that happens on the basis of chance.

Here 6 groups with 100 observations per group were created
with data randomly sampled from the same normal population.
By construction, H0 is true (i.e., all population means are equal).
Call that procedure an experiment. We performed 5 independent

tests from these 6 groups. For each test, we computed an F-test. If
its probability was smaller than α = .05, the test was declared sig-
nificant (i.e., α[PT ] is used). We performed this experiment 10,000
times. Therefore, there were 10,000 experiments, 10,000 families,
and 5× 10,000 = 50,000 tests. The results of this simulation are
given in Table 1.

Table 1 shows that H0 is rejected for 2,403 tests over 50,000
tests performed. From these data, an estimation of α[PT ] is com-
puted as:
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α[PT ] =
number of significant tests

total number of tests

=

2,403

50,000
= .0479 . (1)

This value falls close to the theoretical value of α= .05.
For 7,868 families, no test reaches significance. Equivalently

for 2,132 families (10,000−7,868) at least one Type I error is made.
From these data, α[PF ] can be estimated as:

α[PF ] =
number of families with at least 1 Type I error

total number of families

=

2,132

10,000
= .2132 . (2)

This value falls close to the theoretical value of

α[PF ] = 1− (1−α[PT ])C
= 1− (1− .05)5

= .226 .

2.3 How to correct for multiple tests: Šidàk, Bonfer-
onni, Boole, Dunn

Recall that the probability of making as least one Type I error for a
family of C tests is

α[PF ] = 1− (1−α[PT ])C .

This equation can be rewritten as

α[PT ] = 1− (1−α[PF ])1/C .

This formula—derived assuming independence of the tests—is some-
times called the Šidàk equation. It shows that in order to reach a
given α[PF ] level, we need to adapt the α[PT ] values used for each
test.

Because the Šidàk equation involves a fractional power, it is dif-
ficult to compute by hand and therefore several authors derived
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a simpler approximation which is known as the Bonferonni (the
most popular name), or Boole, or even Dunn approximation. Tech-
nically, it is the first (linear) term of a Taylor expansion of the Šidàk
equation. This approximation gives

α[PT ] ≈
α[PF ]

C
.

Šidàk and Bonferonni are linked to each other by the inequality

α[PT ] = 1− (1−α[PF ])1/C
≥

α[PF ]

C
.

They are, in general, very close to each other but the Bonferonni
approximation is pessimistic (it always does worse than Šidàk equa-
tion). Probably because it is easier to compute, the Bonferonni ap-
proximation is more well known (and cited more often) than the
exact Šidàk equation.

The Šidàk-Bonferonni equations can be used to find the value
of α[PT ] when α[PF ] is fixed. For example, suppose that you want
to perform 4 independent tests, and you want to limit the risk of
making at least one Type I error to an overall value of α[PF ] = .05,
you will consider a test significant if its associated probability is
smaller than

α[PT ] = 1− (1−α[PF ])1/C
= 1− (1− .05)1/4

= .0127 .

With the Bonferonni approximation, a test reaches significance
if its associated probability is smaller than

α[PT ] =
α[PF ]

C
=

.05

4
= .0125 ,

which is very close to the exact value of .0127.

2.4 Correction for non-independent tests

The Šidàk equation is derived assuming independence of the tests.
When they are not independent, it gives a lower bound (cf. Šidàk,
1967; Games, 1977), and then:

α[PF ] ≤ 1− (1−α[PT ])C .
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As previously, we can use a Bonferonni approximation because:

α[PF ] <Cα[PT ] .

Šidàk and Bonferonni are related by the inequality

α[PF ] ≤ 1− (1−α[PT ])C
<Cα[PT ] .

The Šidàk and Bonferonni inequalities can also be used to find
a correction on α[PT ] in order to keep α[PF ] fixed. the Šidàk in-
equality gives

α[PT ] ≈ 1− (1−α[PF ])1/C .

This is a conservative approximation, because the following in-
equality holds:

α[PT ] ≥ 1− (1−α[PF ])1/C .

The Bonferonni approximation gives

α[PT ] ≈
α[PF ]

C
.

2.5 Splitting up α[PF ] with unequal slices

With the Bonferonni approximation we can make an unequal allo-
cation of α[PF ]. This works because with the Bonferonni approxi-
mation, α[PF ] is the sum of the individual α[PT ]:

α[PF ] ≈Cα[PT ] =α[PT ]+α[PT ]+·· ·+α[PT ]
︸ ︷︷ ︸

C times

.

If some tests are judged more important a priori than some oth-
ers, it is possible to allocate unequally α[PF ] (cf. Rosenthal & Ros-
now, 1985). For example, suppose we have 3 tests that we want
to test with an overall α[PF ] = .05, and we think that the first test
is the most important of the set. Then we can decide to test it
with α[PT ] = .04, and share the remaining value .01 = .05− .04 be-
tween the last 2 tests, which will be evaluated each with a value
of α[PT ] = .005. The overall Type I error for the family is equal to
α[PF ] = .04+ .005+ .005 = .05 which was indeed the value we set
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beforehand. It should be emphasized, however, that the (subjec-
tive) importance of the tests and the unequal allocation of the in-
dividual α[PT ] should be decided a priori for this approach to be
statistically valid. An unequal allocation of the α[PT ] can also be
achieved using the Šidàk inequality, but it is more computationally
involved.

3 Alternatives to Bonferonni

The Šidàk-Bonferonni approach becomes very conservative when
the number of comparisons becomes large and when the tests are
not independent (e.g., as in brain imaging). Recently, some al-
ternative approaches have been proposed (see Shaffer, 1995, for
a review) to make the correction less stringent (e.g., Holm 1979,
Hochberg, 1988). A more recent approach redefines the problem
by replacing the notion of α[PF ] by the false discovery rate (FDR)
which is defined as the ratio of the number of Type I errors by the
number of significant tests (Benjamini & Hochberg, 1995).
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