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1 Introduction

In this paper, we develop and implement a technique for closed-form maximum likelihood estimation of

multivariate affine yield models of the term structure of interest rates. Affine yield models are very popular

among both practitioners and academics, largely because they have very desirable analytical properties and

allow for straightforward pricing of bonds and other interest rate derivatives. These prices are solutions to

the Feynman-Kac partial differential equation. For most non-affine term structure models, solutions to this

differential equation must be found through numeric methods, which become increasingly impractical as the

number of factors underlying the model increases. However, affine yield models owe their popularity to the

fact that this partial differential equation decomposes into a system of ordinary differential equations, which

can be solved quickly, even with a large number of underlying factors.

Despite their relatively desirable analytic properties, estimation of affine yield models still poses many

challenges. The likelihood function of an affine yield model is known in closed-form only for a few special

cases. Most studies of estimation of affine yield models outside this relatively restricted subclass have therefore

focused either on numeric techniques or method of moments estimators. Each of these methods has its

advantages and disadvantages, which we now discuss in turn.

Moments of affine diffusions can be found in closed-form. Estimation of affine yield models through the

generalized method of moments is therefore feasible. As an early example, Gibbons and Ramaswamy (1993)

use this method to estimate the model of Cox, Ingersoll, and Ross (1985). Chacko and Viceira (2001) and

Singleton (2001) consider estimation methods based on moments derived from the characteristic function of

the transition density which is known in closed-form for affine diffusions, even though the density is not.

Dai and Singleton (2000) estimate several affine yield models using the simulation-based efficient method

of moments. At least in theory, efficiency can be achieved if the number of moment conditions goes to infinity

with the number of data observations. Because the method is computationally intensive, requiring heavy

simulations, and is highly flexible, requiring the a priori selection of an auxiliary model and resulting moment

conditions, little is known about its behavior in repeated simulation trials, although it has been shown to

perform poorly at least in the context of dynamic term structure models (see Duffee and Stanton (2001)). In

addition, most affine yield models have lower bounds on one or more state variables. Most implementations of

the method of moments techniques calculate moments of bond yields directly, and never explicitly calculate

the values of the state variables implied by the observed bond yields. The implied values of some of the state

variables may lie on the wrong side of the boundaries for some observations, in which case the estimated model

implies that the observed data could not have occurred. Duffee (2002) notes that the parameters estimated

by Dai and Singleton (2000) imply that many of the data observations could not have occurred.

One alternative to method of moments estimation is quasi-maximum likelihood (see e.g., Duffee (2002)).
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In this approach, the density of the state vector, conditional on the previous observation, is assumed to have a

multivariate Gaussian distribution, and the mean vector and covariance matrix of the state vector are assumed

to be proportional to the length of time between observations. If the number of observed yields is greater

than the number of state variables in the model being estimated (as is necessary for full identification for some

affine yield models), it is necessary to assume that at least some of the yields are observed with error; Piazzesi

(2002) discusses this issue. Quasi-maximum likelihood estimation has the advantages that it is feasible for all

affine yield models, and never estimates models that imply the state vector took on unattainable values for

some data observations. However, only some affine yield models have a Gaussian transition density, and even

for those models, the assumptions of QML estimation regarding the means and variances of the transition

density are not accurate.

Instead of quasi-maximum likelihood one can consider true maximum likelihood estimation, with the

likelihood function calculated numerically or estimated through simulation techniques. The transition function

can be found as the solution to the Kolmogorov forward equation; this partial differential equation must be

solved numerically. However, the transition density must be calculated for each data observation, and for each

value of the parameter vector considered during a likelihood search. Already computationally intensive for a

scalar diffusion, estimation by this method becomes extremely difficult for multivariate diffusions; see Jensen

and Poulsen (2002) for a comparison of different methods. Maximum likelihood estimation can be implemented

via simulations instead. Pedersen (1995) developed a technique for estimating the likelihood function of

discrete observations of a diffusion process by simulations, which Brandt and Santa-Clara (2002) extended

to multivariate diffusions. When applied to term structure models, likelihood methods usually assume, as

does Duffee (2002), that an arbitrary set of benchmark yields are observed without error, with all remaining

yields observed with some error; however, Brandt and He (2002) perform simulated maximum likelihood

estimation of a model when all yields are observed with some error. However, because new simulations are

required for each parameter vector considered during the likelihood search, the computing time required can

still be considerable. Finally, Liu, Pan, and Pedersen (2001) propose to numerically Fourier-invert the known

characteristic function of an affine diffusion to recover an approximation of its density.

As an alternative to the above techniques, we propose maximum likelihood estimation with the likelihood

function approximated by a series of highly accurate expansions for the log-likelihood function (or equivalent

the density) due to Aït-Sahalia (2001), which generalizes to arbitrary multivariate processes the univariate

results developed in Aït-Sahalia (2002) (see also Aït-Sahalia (1999) for examples of application of the univariate

method in finance). The key aspect of the method is that, unlike all the approaches described above, the

resulting density expansion from this approach is in closed form. While the method can be applied to any

multivariate diffusion, irrespectively of the particular specification adopted, we illustrate this technique here
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in the context of affine term structure models.

This class of models has been studied extensively by Dai and Singleton (2000). They show that there are

N + 1 non-nested families of affine models with N state variables, M of which entering the diffusion matrix.

Without parameter restrictions, the likelihood function is known in closed-form for only one of these N + 1

families, corresponding to M = 0. (The only exception is when N = 1, where both single-factor affine models

have closed-form likelihoods.) Duffie, Pedersen, and Singleton (2002) propose a decomposition of the likelihood

function of an affine model which requires independence of the volatility variables and the simulation of the

remaining part of the likelihood. The independence assumption is not satisfied as soon asM > 1. By contrast,

we derive closed-form approximations to the likelihood functions for all N + 1 families for all N ≤ 3 (a total
of nine models, four of which have known likelihood functions). No simulations are required in our approach,

and we are not limited to any particular affine model (such as those with independent volatility variables as in

Duffie, Pedersen, and Singleton (2002)), nor for that matter to affine specifications although this is our focus

here. We show how maximum-likelihood estimation can be implemented using for instance bond yields as the

observables.

The paper is organized as follows. We start with a brief review of affine term structure models in Section

2. Next, we describe our estimation technique in Section 3, before detailing in Section 4 the construction of

the closed-form likelihood expansions. We then test in Section 5 the accuracy of our technique by imposing

necessary parameter restrictions so that all nine models have closed-form likelihood functions, and compare

estimates derived using the true likelihoods on simulated data to those derived using our approximations

on the same data. We find uniformly that the maximum-likelihood estimates produced by our method are

extremely close to the estimates produced by the exact likelihood function, and conclude in Section 6. The

explicit formulae we obtain for the affine term structure models are contained in the Appendix. They are also

available in computer form from the authors upon request.

2 Affine Term Structure Models

At its most general level, a multivariate term structure model specifies that the instantaneous riskless rate rt

is a determinsitic function of an N−dimensional vector of state variables, Xt:

rt = r (Xt; θ) . (2.1)

Under the equivalent martingale measure Q, the state vector follows the dynamics

dXt = µQ (Xt; θ) dt+ σ (Xt; θ) dW
Q
t (2.2)
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where Xt and µ (Xt; θ) are N × 1 vectors, σ (Xt; θ) is an N × N matrix, θ is a p-dimensional parameter

and Wt is an N × 1 vector of independent Brownian motions. Let v (x; θ) ≡ σ (x; θ)σ0 (x; θ) where 0 denotes

transposition.

In order to avoid arbitrage opportunities, the price at t of a zero-coupon bond maturing at T is given by

the Feynman-Kac representation:

B (x, t, T ; θ) = E

"
exp

Ã
−
Z T

t

rudu

!¯̄̄̄
¯Xt = x

#
(2.3)

where the expectation is taken with respect to the risk-neutral dynamics of X specified in (2.2). It is also

well-known that B satisfies the partial differential equation:

∂B

∂t
+ µ (x; θ)0

∂B

∂x
+
1

2
Trace

·
v (x; θ)

∂2B

∂x∂x0

¸
− r (x, t; θ)B = 0 (2.4)

with the final condition B (x, T, T ; θ) = 1 for all x and θ. Such a model is well-defined provided that (2.2) is

well-defined, the expected value (2.3) is finite, or, equivalently, the PDE (2.4) has a well-defined solution.

Although there are several different ways to define affine yield term structure models, we shall use the

following definition. An affine yield model is any model where the short rate (2.1) is an affine function of the

state vector and the risk-neutral dynamics (2.2) are affine:

dXt = K̃
³
Ã−Xt

´
dt+

p
S (Xt;β)dW

Q
t (2.5)

where S (Xt;β) is the diagonal matrix with elements Sii = 1+X0
tβi. (Note that the requirement that S (Xt;β)

be diagonal does not result in a loss of generality.) Let β denote the N ×N matrix whose i-th column is the

vector βi, and let M denote the rank of β. M denotes the number of independent state variables entering the

diffusion structure for the state variables. With N factors, there are therefore N + 1 non-nested families of

affine models corresponding to M = 0, 1, ..., N , and we will consider one, two and three factor models. Even

holding the size of the state vector fixed, there are several distinct non-nested families of affine yield models,

each with its own form of likelihood function. We characterize all possible affine yield models with three or

fewer state variables in Appendix A.

It can then be seen that, in affine models, bond prices have the exponential affine form

B (x, t, T ; θ) = exp
¡−γ0 (τ ; θ)− γ (τ ; θ)0 x

¢
(2.6)

where τ = T − t is the bond’s time to maturity. That is, bond yields (non-annualized, and denoted by

g (x, t, T ; θ) = − ln (B (x, t, T ; θ))) are affine functions of the state vector:

g(x, t, T ; θ) = γ0 (τ ; θ) + γ (τ ; θ)0 x. (2.7)
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Alternatively, one can start with the requirement that the yields be affine, and show that the dynamics of the

state vector must be affine (see Duffie and Kan (1996)).

The final condition for the bond price implies that γ0 (0; θ) = γ (0; θ) = 0, while

rt = lim
τ→0

1

τ

©
γ0 (τ ; θ) + γ (τ ; θ)0 x

ª
=

∂γ0
∂τ

(0; θ) +
∂γ

∂τ
(0; θ)0 x

≡ δ0 + δ0x. (2.8)

Affine yield models undoubtedly owe much of their popularity to the fact that bond prices can be calculated

quickly as solutions to a system of ordinary differential equations. Under non-linear models, bond prices will

normally be solutions to a partial differential equation that is far more difficult to solve. Plugging the solution

(2.6) into the PDE (2.4), we see indeed that the functions γ0 and γ jointly solve the two ordinary Ricatti

differential equations:

∂γ0 (τ ; θ)

∂τ
= δ0 + Ã0K̃0γ (τ ; θ)− 1

2

NX
i=M+1

[γ (τ ; θ)]2i (2.9)

∂γ (τ ; θ)

∂τ
= δ + K̃0γ (τ ; θ)− 1

2

NX
i=M+1

[γ (τ ; θ)]2i βi. (2.10)

The solution can be evaluated rapidly by standard numerical techniques for ordinary differential equations,

yielding the functions γ0 and γ.

3 Estimation Procedure

3.1 From Yields to State

We propose to estimate the parameter vector θ based on a panel data of observed bond prices or equivalently

bond yields, recognizing that the state vector Xt is unobservable. The first task is therefore to infer the state

vector Xt at date t from the cross-section of bond yields at date t with different maturities. We estimate

the models using highly accurate approximations to the likelihood function of the state vector, applying the

technique of Aït-Sahalia (2001). Affine yield models, as their name implies, make yields of zero coupon bonds

linear functions of the state vector. Given this simple relationship between yields and the state vector, the

likelihood function of bond yields is a simple transformation of the likelihood function of the state vector.

If the number of observed yields at that point in time is smaller than the number N of state variables in the

model, then the state is not completely observed, and the vector of observed yields does not follow a Markov

process, even if the (unobserved) state vector does, enormously complicating maximum likelihood estimation.
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On the other hand, if the number of observed yields is larger than the number of state variables, then some

of the yields can be expressed as deterministic functions of other observed yields, without error. Even tiny

deviations from the predicted values have a likelihood of zero. A common practice (see, for example, Duffee

(2002)) is to assume that certain benchmark yields are observed precisely, whereas other yields are observed

with measurement error, where the error is generally held to be independent over time, of the error on other

yields, and of the model.

To avoid these issues, we propose to use a number of observed yields that is exactly equal to the number

N of state variables in the postulated model AM (N). At each date t, the state vector Xt is then exactly

identified, and the vector of observed yields follows a Markov process. However, the parameters of the model

will not always be completely identified. Specifically, there are affine yield models that generate identical

dynamics for the time series of observed yields, but different dynamics for additional yields. Equating N

observed yields with time to maturity τ1, ..., τN on the left hand side with their values under the model, given

in light of (2.7) by the affine expression on the right hand side, we have:
g (t, t+ τ1)

...

g (t, t+ τN)

 =


γ0 (τ1; θ)

...

γ0 (τN ; θ)

+


γ (τ1; θ)
0

...

γ (τN ; θ)
0




X1t

...

XNt

 (3.1)

or, in matrix form,

gt = Γ0t(θ) + Γt(θ)
0Xt. (3.2)

3.2 The Observed State Dynamics

While the only parameters entering the transformation from observed yields to the state variables are the

parameters of the dynamics of the state process under the risk-neutral measure Q, once we have constructed

our time series of values of Xt sampled at dates t0, t1, ..., tn the dynamics of the state variable that we will

be able to infer from this time series are the dynamics under the physical measure of the process, which we

denote as P. The first step in the estimation procedure is the only place where we rely on the tractability of the

affine bond pricing model. In particular, we can now specify freely (that is, without regard for considerations

of analytical tractability) the market prices of risk of the different Brownian motions, or equivalently the

Radon-Nykodym derivative dQ/dP :

dXt = µP (Xt; θ) dt+ σ (Xt; θ) dW
P
t

=
©
µQ (Xt; θ) + σ (Xt; θ)Λ (Xt; θ)

ª
dt+ σ (Xt; θ) dW

P
t . (3.3)
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We adopt the simple specification for the market price of risk

Λ (Xt; θ) = σ (Xt; θ)
0 λ (3.4)

with λ an N×1 vector of constant parameters, so that under P , the instantaneous drift of each state variables
is its drift under the risk-neutral measure, plus a constant times its volatility squared. Under this specification,

the drift of the state vector is then affine under both the physical and risk-neutral measures, since

µP (Xt; θ) = K̃
³
Ã−Xt

´
+ S (Xt;β)

0 λ

≡ K (A−Xt) . (3.5)

Following Dai and Singleton (2000), we consider the canonical affine models where K, A and β have the

normalized form

K =

 KM×M 0M×(N−M)

K(N−M)×M K(N−M)×(N−M)

 , A =
 AM×1

0(N−M)×1

 , β =
 IM×M βM×(N−M)

0(N−M)×M 0(N−M)×(N−M)

 .
The parameters governing the state variable dynamics are constrained as follows:

AMx1 ≥ 0 (3.6)

βM×(N−M) ≥ 0 (3.7)

KM×MAM×1 ≥ 1
2

(3.8)

Furthermore, the off-diagonal elements of κMxM must be non-positive. We further discuss these restrictions

in the Appendix.

As mentioned above, having an affine µP is not required for our likelihood expansions. Since we can derive

likelihood expansions for arbitrary diffusions, we can allow µP to contain terms that are non-affine, such as

square roots of linear functions of the state vector, as in Duarte (1999) for instance. Duffee (2002) also allows

for a more general market price of risk specification than Dai and Singleton (2000), where µQ and µP (and the

diffusion matrix) remain affine. However, we do rely on the affine character of the dynamics under Q because

those allow us to go from state to yields in the tractable manner given by (3.1).

3.3 Maximum-Likelihood Estimation

Since the relationship between the state vector and bond yields is affine, as given by (3.2), the transition

function of the bond yields can be derived from the transition function of the state vector by a change of

variables and multiplication by a Jacobian, which is a constant matrix in this case. Specifically, consider the

stochastic differential equation describing the dynamics of the state vectorXt under the measure P, as specified
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by (3.3). Let pX (∆, x|x0; θ) denote its transition function, that is the conditional density of Xt+∆ = x given

Xt = x0. Let pG(∆, g|g0; θ) similarly denote the transition function of the vector of yields observed ∆ units

apart. Since x = Γ0−1(θ)(g − Γ0(θ)), we have

pG(∆, g|g0; θ) = Γ0−1(θ) pX(∆,Γ0−1(θ)(g − Γ0(θ))|Γ0−1(θ)(g0 − Γ0(θ)); θ) (3.9)

Then, recognizing that the yields vector is Markovian and applying Bayes’ Rule, the log-likelihood function

for discrete data on the yield vector gt sampled at dates t0, t1, ..., tn has the simple form

cn (θ) ≡ n−1
Xn

i=1
lG
¡
ti − ti−1, gti |gti−1 ; θ

¢
(3.10)

where lG ≡ ln pG. We assume in this paper that the sampling process is deterministic (see Aït-Sahalia and
Mykland (2003) for a treatment of maximum likelihood estimation in the case of randomly spaced sampling

times). In typical practical situations, and in our Monte Carlo experiments below, these types of models are

estimated on the basis of weekly data, so that ti − ti−1 = ∆ = 7/365 is a fixed number. Figure 1 describes

our estimation method: for each parameter vector, we can evaluate the likelihood of the observed bond yields

using a combination of the affine pricing model and our closed form likelihood expansions. As the figure shows,

the only role the affine structure plays in our estimation method consists in allowing the transformation from

observed yields to state variables (i.e., the pricing model) to be easily solvable.

4 Closed-Form Likelihood Expansions

In the next Section, we explain how to derive closed-form approximations to lG, hence to the log-likelihood

function of the discretely sampled vector of yields in light (3.10). Closed-form approximations to lG are

obtained by applying to the different term structure models (3.3) the general method described in Aït-Sahalia

(2001), which extends to multivariate diffusions the univariate results of Aït-Sahalia (1999) and Aït-Sahalia

(2002). To construct an expansion for lG, we first construct an expansion for lX ≡ ln pX and then take logs

on both sides of (3.9) to recover the corresponding expansion for lG. So we can reduce the problem to one of

approximating lX , and we now turn to that question.

4.1 Reducibilty

As defined in Aït-Sahalia (2001), a diffusion X is reducible if and if only if there exists a one-to-one transfor-

mation of the diffusion X into a diffusion Y whose diffusion matrix σY is the identity matrix. That is, there

exists an invertible function γ (x; θ) such that Yt ≡ γ (Xt; θ) satisfies the stochastic differential equation

dYt = µY (Yt; θ) dt+ dWt. (4.1)
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Every univariate diffusion is reducible. However, this is not the case for every multivariate diffusion.

Whether or not a given multivariate diffusion is reducible depends on the specification of its σ matrix. Specif-

ically, Proposition 1 of Aït-Sahalia (2001) provides a necessary and sufficient condition for reducibility: the

diffusion X is reducible if and only if the inverse diffusion matrix σ−1 =
£
σ−1i,j

¤
i,j=1,...,m

satisfies on SX × Θ
the condition that

∂σ−1ij (x; θ)
∂xk

=
∂σ−1ik (x; θ)

∂xj
(4.2)

for each triplet (i, j, k) = 1, ...,m such that k > j, or equivalently

mX
l=1

∂σik (x; θ)

∂xl
σlj (x; θ) =

mX
l=1

∂σij (x; θ)

∂xl
σlk (x; θ) . (4.3)

Whenever a diffusion is reducible, an expansion can be computed for the transition density pX of X by

first computing it for the density pY of Y and then transforming Y back into X (see Section 4.2). When a

diffusion is not reducible, the situation is more involved (see Section 4.3).

Affine yield models of the class AM (N) with M = 0 or M = N are reducible. AM (N) models with

0 <M < N are reducible only if the βij coefficients are constrained to be zero.

4.2 Determination of the Coefficients in the Reducible Case

The expansion for lY is of the form

l
(K)
Y (∆, y|y0; θ) = −m

2
ln (2π∆) +

C
(−1)
Y (y|y0; θ)

∆
+
XK

k=0
C
(k)
Y (y|y0; θ) ∆

k

k!
. (4.4)

As shown in Theorem 1 of Aït-Sahalia (2001), the coefficients of the expansion are given explicitly by:

C
(−1)
Y (y|y0; θ) = −1

2

Xm

i=1
(yi − y0i)

2 (4.5)

C
(0)
Y (y|y0; θ) =

Xm

i=1
(yi − y0i)

Z 1

0

µY i (y0 + u (y − y0) ; θ) du (4.6)

and, for k ≥ 1,

C
(k)
Y (y|y0; θ) = k

Z 1

0

G
(k)
Y (y0 + u (y − y0) |y0; θ)uk−1du (4.7)

where

G
(1)
Y (y|y0; θ) = −

Xm

i=1

∂µY i (y; θ)

∂yi
−
Xm

i=1
µY i (y; θ)

∂C
(0)
Y (y|y0; θ)
∂yi

+
1

2

Xm

i=1

∂2C
(0)
Y (y|y0; θ)
∂y2i

+

"
∂C

(0)
Y (y|y0; θ)
∂yi

#2 (4.8)
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and for k ≥ 2

G
(k)
Y (y|y0; θ) = −

Xm

i=1
µY i (y; θ)

∂C
(k−1)
Y (y|y0; θ)

∂yi
+
1

2

Xm

i=1

∂2C
(k−1)
Y (y|y0; θ)

∂y2i

+
1

2

Xm

i=1

Xk−1
h=0

µ
k − 1
h

¶
∂C

(h)
Y (y|y0; θ)
∂yi

∂C
(k−1−h)
Y (y|y0; θ)

∂yi
. (4.9)

Given an expansion for the density pY of Y, an expansion for the density pX of X can be obtained by a

direct application of the Jacobian formula:

l
(K)
X (∆, x|x0; θ) = −m

2
ln (2π∆)−Dv (x; θ) +

C
(−1)
Y (γ (x; θ) |γ (x0; θ) ; θ)

∆

+
XK

k=0
C
(k)
Y (γ (x; θ) |γ (x0; θ) ; θ) ∆

k

k!
(4.10)

from l
(K)
Y given in (4.4), using the coefficients C(k)Y , k = −1, 0, ...,K given above, and where

Dv (x; θ) ≡ 1
2
ln (Det[v(x; θ)]) . (4.11)

4.3 Determination of the Coefficients in the Irreducible Case

In the irreducible case, we apply Theorem 2 of Aït-Sahalia (2001). The expansion of the log likelihood has

the form

l
(K)
X (∆, x|x0; θ) = −m

2
ln (2π∆)−Dv (x; θ) +

C
(−1)
X (x|x0; θ)

∆
+
XK

k=0
C
(k)
X (x|x0; θ) ∆

k

k!
. (4.12)

The approach is to calculate a Taylor series in (x− x0) of each coefficient C
(k)
X , at order jk in (x− x0). Such

an expansion will be denoted by C(jk,k)X at order jk = 2(K − k), for k = −1, 0, ...,K.

The resulting expansion will then be

l̃
(K)
X (∆, x|x0; θ) = −m

2
ln (2π∆)−Dv (x; θ) +

C
(j−1,−1)
X (x|x0; θ)

∆
+
XK

k=0
C
(jk,k)
X (x|x0; θ) ∆

k

k!
(4.13)

Such a Taylor expansion was unnecessary in the reducible case: the expressions given in Section 4.2 provide

the explicit expressions of the coefficients C(k)Y and then in (4.10) we have the corresponding ones for C(k)X .

However, even for an irreducible diffusion, it is still possible to compute the coefficients C(jk,k)X explicitly.

With v (x; θ) ≡ σ (x; θ)σT (x; θ) , define the following functions of the coefficients and their derivatives:

G
(0)
X (x|x0; θ) =

m

2
−
Xm

i=1
µi (x; θ)

∂C
(−1)
X (x|x0; θ)

∂xi
+
Xm

i=1

Xm

j=1

∂vij (x; θ)

∂xi

∂C
(−1)
X (x|x0; θ)

∂xj

+
1

2

Xm

i=1

Xm

j=1
vij (x; θ)

∂2C
(−1)
X (x|x0; θ)
∂xi∂xj

(4.14)

−
Xm

i=1

Xm

j=1
vij (x; θ)

∂C
(−1)
X (x|x0; θ)

∂xi

∂Dv (x; θ)

∂xj
,

10



G
(1)
X (x|x0; θ) = −

Xm

i=1

∂µi (x; θ)

∂xi
+
1

2

Xm

i=1

Xm

j=1

∂2vij (x; θ)

∂xi∂xj

−
Xm

i=1
µi (x; θ)

Ã
∂C

(0)
X (x|x0; θ)
∂xi

− ∂Dv (x; θ)

∂xi

!

+
Xm

i=1

Xm

j=1

∂vij (x; θ)

∂xi

Ã
∂C

(0)
X (x|x0; θ)
∂xj

− ∂Dv (x; θ)

∂xj

!
(4.15)

+
1

2

Xm

i=1

Xm

j=1
vij (x; θ)

(
∂2C

(0)
X (x|x0; θ)
∂xi∂xj

− ∂2Dv (x; θ)

∂xi∂xj

+

Ã
∂C

(0)
X (x|x0; θ)
∂xi

− ∂Dv (x; θ)

∂xi

!Ã
∂C

(0)
X (x|x0; θ)
∂xj

− ∂Dv (x; θ)

∂xj

!)

and for k ≥ 2 :

G
(k)
X (x|x0; θ) = −

Xm

i=1
µi (x; θ)

∂C
(k−1)
X (x|x0; θ)

∂xi
+
Xm

i=1

Xm

j=1

∂vij (x; θ)

∂xi

∂C
(k−1)
X (x|x0; θ)

∂xj

+
1

2

Xm

i=1

Xm

j=1
vij (x; θ)

∂2C
(k−1)
X (x|x0; θ)
∂xi∂xj

(4.16)

+
1

2

Xm

i=1

Xm

j=1
vij (x; θ)

(
2

Ã
∂C

(0)
X (x|x0; θ)
∂xi

− ∂Dv (x; θ)

∂xi

!
∂C

(k−1)
X (x|x0; θ)

∂xj

+
Xk−2

h=1

µ
k − 2
h

¶
∂C

(h)
X (x|x0; θ)

∂xi

∂C
(k−1−h)
X (x|x0; θ)

∂xj

)
.

For each k = −1, 0, ...,K, the coefficient C(k)X (x|x0; θ) in (4.12) solves the equation

f
(k−1)
X (x|x0; θ) = 0 (4.17)

where

f
(−2)
X (x|x0; θ) = −2C(−1)X (x|x0; θ)−

Xm

i=1

Xm

j=1
vij (x; θ)

∂C
(−1)
X (x|x0; θ)

∂xi

∂C
(−1)
X (x|x0; θ)

∂xj

f
(−1)
X (x|x0; θ) = −

Xm

i=1

Xm

j=1
vij (x; θ)

∂C
(−1)
X (x|x0; θ)

∂xi

∂C
(0)
X (x|x0; θ)
∂xj

−G
(0)
X (x|x0; θ)

and for k ≥ 1

f
(k−1)
X (x|x0; θ) = C

(k)
X (x|x0; θ)−

Xm

i=1

Xm

j=1
vij (x; θ)

∂C
(−1)
X (x|x0; θ)

∂xi

∂C
(k)
X (x|x0; θ)
∂xj

−G
(k)
X (x|x0; θ)

where the functions G(k)X , k = 0, 1, ...,K are given above. G
(k)
X involves only the coefficients C(h)X for h =

−1, ..., k − 1, so this system of equation can be utilized to solve recursively for each coefficient at a time.

Specifically, the equation f
(−2)
X = 0 determines C(−1)X ; given C

(−1)
X , G

(0)
X becomes known and the equation

f
(−1)
X = 0 determines C

(0)
X ; given C

(−1)
X and C

(0)
X , G

(1)
X becomes known and the equation f

(0)
X = 0 then

determines C(1)X , etc. It turns out that this results in a system of linear equations in the coefficients of the

11



polynomials C(jk,k)X , so each one of these equations can be solved explicitly in the form of the Taylor expansion

C
(jk,k)
X of the coefficient C(k)X , at order jk in (x− x0).

5 Monte Carlo Results

In order to determine the accuracy of our technique, we now consider models for which the likelihood function

is known in closed-form, and compare parameter estimates using our technique to those obtained using the

true likelihood functions. In all examples considered, we find our parameter estimates are very close to the

true maximum likelihood estimates for simulated data at the weekly frequency. Since our estimation approach

is based on Taylor expansions in the sampling interval ∆, observations at the daily frequency would result in

even greater accuracy.

As shown in (3.9), the likelihood function of a yield vector is simply the likelihood of the canonical state

variables times a Jacobian factor. The full parameter vector θ consists of all the elements of (K,A, β) . As

mentioned, we consider all nine models corresponding to N = 1, 2 and 3 and we estimate each AM (N) model

using n time series observations of N zero-coupon bond yields.

The individual models themselves are shown in Appendix A, the parameter restrictions are shown in Table

1, while the actual parameter values used in the simulations are contained in Table 2. The parameter values

satisfy all existence, boundary non-attainability, and stationarity conditions. For the purpose of studying

the accuracy of our likelihood expansion approach, we also consider further parameter restrictions whenever

necessary to obtain a closed-form likelihood to which we can then compare our expansion. These further

parameter restrictions are shown in Table 2. Note again that our expansion does not require these further

restrictions. The only reason we impose them is to have an exact likelihood to compare our expansion to.

For each canonical model, we simulate 5, 000 data series of 501 weekly observations each (∆ = 1/52) of the

vector of N state variables, giving n = 500 pairs of discrete transitions of that process. The parameter values

we use to generate the simulated data are specified in Table 2. Each of the simulated sample path samples

is produced by a Milshtein discretization of the process, using thirty intervals per week. Twenty nine out of

every thirty observations are discarded, leaving only the observations at the weekly frequency. Each simulated

data series is initialized based on the unconditional distribution of the yields.

We then proceed to estimate the model parameters, using both our approximate likelihood expressions

and the true likelihood functions. We go through all nine models, in Tables 3 through 6, reporting the results

in a common format that allows for the comparison of the sampling noise error in the parameter estimates,

θ̂
(MLE)−θ(TRUE), to the error due to the approximation of the true likelihood by our approach, θ̂(MLE)− θ̂(2).
The notation θ̂

(2)
indicates that we use an expansion at order 2 in ∆ (i.e., K = 2 in Section 4) to obtain the

approximate likelihood estimator. The bias and standard deviation of θ̂
(2)
around θ̂

(MLE)
are reported as a

12



percentage of the corresponding quantities for θ̂
(MLE) − θ(TRUE).

These tables show that our technique produces parameter estimates that are extremely close to the MLE

based on the true likelihood, both in absolute terms and relative to the sampling distribution of the latter

relative to the true parameter. The mean difference between the two estimates is very small compared to the

mean difference between the true maximum likelihood estimator and the true parameter value; the standard

deviation of the difference between the two estimators is also very small compared to the standard deviation

of the MLE itself. This means that the approximation error introduced by our likelihood approximation is

swamped by the sampling error of the MLE estimator, i.e., the noise resulting from the fact that the parameters

are estimated from random data. Consequently, the exact MLE can be replaced by our estimator at almost

no cost (and of course, our estimator can always be calculated, unlike the exact MLE which is only available

for models which have a known closed-form likelihood.)

Finally, we report in Figures 2, 3 and 4 the empirical distribution of the estimation of the exact MLE

around the true value (left column) and the approximation error from replacing the exact MLE with our

estimator (left column), for the parameters estimated under the two-dimensional models AM (2), M = 0, 1, 2

based on the same 5, 000 simulations as above. Results are similar for the one and three dimensional models

and are not reported to save space. As expected, the small sample distribution of the MLE estimates of the

mean reversion parameters κ tends to to be slightly skewed to the right, as is typical in a near unit root case

(our values of κ are all between 0.5 and 2.0). The right columns also show that the estimation error is largely

uneventful. The difference in the scale of the x axis between the left and right columns is another way of

showing that the approximation error induced by replacing the exact MLE estimator with our approximation

is negligible.

In summary, we find that any additional bias and variance introduced by the use of an approximate

likelihood are insignificant in magnitude relative to the bias and variance of the MLE estimator itself, so that

use of our approximations does not result in a degradation of the quality of the MLE estimates.

6 Conclusions

We have developed and implemented a technique for maximum likelihood estimation of affine yield models, and

implemented this technique for several families of such models. In those cases where the likelihood function for

a model is known in closed-form, we find through simulations that estimates obtained through our technique

are extremely close to the true maximum likelihood estimates. Our technique, which applies to all affine yield

models (including those for which the likelihood function is not known in closed-form), therefore promises to

be an accurate and computationally efficient estimation method. The bias and variance introduced by using

an approximation to the likelihood function, rather than the true likelihood function, are trivial compared to

13



the bias and variance of the true maximum likelihood estimator itself. And not only do we produce maximum-

likelihood estimates (as opposed to second-best solutions such as GMM or other estimators), but we do so at

a trivial computational cost given the closed form nature of our formulae.

Much remains to be done. Our technique can be applied to models that are non-affine. One special case

of this are models that are affine under Q but non-affine under P, since being affine is useful only for pricing;

it is irrelevant as far as deriving closed-form likelihood expansions, which are available for unconstrained

multivariate diffusions. Such models have been proposed by several papers, but have been estimated only in

restricted special cases. Our technique allows estimation of a much broader class of such models, and does so

in closed form.
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Appendix

A Families of Admissible Affine Diffusions
Several practical issues arise when we study affine yield models. First, as discussed in Duffie and Kan (1996),
existence considerations impose constraints on the coefficients of both the drift and diffusion coefficients. Fur-
thermore, there will typically be infinitely many model specifications that produce exactly the same interest
rate dynamics. Dai and Singleton (2000) consider these issues, and, for affine yield models with N state vari-
ables, specify N+1 non-nested canonical models that very nearly achieve three goals: (1) each canonical model
satisfies all existence and uniqueness requirements, (2) each affine yield model is observationally equivalent to
a canonical model, and (3) each canonical model is observationally different from all others. As we show in
this appendix, neither of the last two goals is completely achieved, although Dai and Singleton (2000) come
very close. We detail in Table 1 the parameter restrictions corresponding to the various models.
Using their notation, each affine diffusion can be assigned to a family AM (N), in which N is the number

of state variables andM is the number of those state variables that appear in the diffusion matrix. The vector
of state variables is premultiplied by a non-singular matrix of constants; the result is taken to be a new state
vector. If the diffusion is affine in the old state vector, the diffusion followed by the alternate state vector is
also affine, and by judicious choice of the matrix of constants, also corresponds to one of the canonical models.
Considering affine yield models with one, two, or three state variables, there are a total of nine observation-

ally distinct canonical models, not counting the trivial zero-factor model with a constant interest rate. The
likelihood function for each of the nine models is different, so we will discuss each model in turn. Although
the likelihood function is known in closed-form for four of the nine canonical models (as well as for special
cases of the other five), we nonetheless find it useful to explore all nine in full detail. Those models for which
a closed-form likelihood function is known provide useful test cases for evaluating our estimation technique.

A.1 One Factor Models

In single factor affine yield models, the interest rate is a linear function a single state variable:

rt = δ0 + δX1t

The dynamics of the state variable (under the physical measure P ) may take one of two distinct forms. In the
A0 (1) model, we have:

dX1t = −κ11X1tdt+ dWP
1t

This model is an Ornstein-Uhlenbeck process, corresponding to the model of Vasicek (1977), and has a Gaussian
transition function.
The A1 (1) model has the dynamics:

dX1t = κ11 [α1 −X1t]dt+
p
X1tdW

P
1t

When δ0 = 0, the A1 (1) model reduces to Feller’s square-root model, corresponding to the model of Cox,
Ingersoll, and Ross (1985), and the transition density of the state variable is non-central chi-squared. When
δ0 6= 0, the transition function readily follows by a simple change of variable. The likelihood function is
therefore known for all single-factor affine yield models.
Under Q, the dynamics of the A0 (1) and A1 (1) model are respectively.

dX1t = [−λ1 − κ11X1t] dt+ dWQ
1t

dX1t = [κ11α1 − (κ11 + λ1)X1t] dt+
p
X1tdW

Q
1t .
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A.2 Two Factor Models

There are three families of two factor affine yield models. In all three the interest rate is specified as:

rt = δ0 + δ1X1t + δ2X2t

In the A0 (2) family, the dynamics of the state variables are (under the physical measure P ):

d

·
X1t

X2t

¸
=

·
κ11 0
κ21 κ22

¸ · −X1t

−X2t

¸
dt+ d

·
WP
1t

WP
2t

¸
(A.1)

The transition function for this type of diffusion is known in closed-form, and is bivariate Gaussian.
The A1 (2) model has dynamics under P :

d

·
X1t

X2t

¸
=

·
κ11 0
κ21 κ22

¸·
α1 −X1t

−X2t

¸
dt+

· √
X1t 0

0
p
1 + β21X1t

¸
d

·
WP
1t

WP
2t

¸
. (A.2)

In general, the likelihood function for this type of diffusion is not known in closed-form; however, if we impose
the constraints κ21 = 0 and β21 = 0, then the two state variables are independent, and their joint transition
density is the product of the two marginal transition densities, which are Gaussian and non-central chi-squared,
respectively.
The A2 (2) model has the representation:

d

·
X1t

X2t

¸
=

·
κ11 κ12
κ21 κ22

¸ ·
α1 −X1t

α2 −X2t

¸
dt+

· √
X1t 0
0

√
X2t

¸
d

·
WP
1t

WP
2t

¸
(A.3)

The transition density of this type of diffusion is known only if κ12 = 0 and κ21 = 0, in which case the two
state variables are independent non-central chi-squared random variables.
The three canonical specifications are as presented in Dai and Singleton (2000); however, there are two

types of two variable affine diffusions that are not observationally equivalent to any of the three canonical
models. An example of the first type is:

d

·
X1t

X2t

¸
=

·
κ11 κ12
κ21 κ22

¸ · −X1t

−X2t

¸
dt+ d

·
WP
1t

WP
2t

¸
with the constraint (κ11 − κ22)

2 < 4κ12κ21. This diffusion shares many properties of the A0 (2) model (the
transition density is bivariate Gaussian, both state variables are unbounded, etc.), but cannot be expressed
in the A0 (2) canonical form unless we allow κ11 and κ22 to be complex conjugate pairs. An example of the
second type of non-conforming diffusion is:

d

·
X1t

X2t

¸
=

·
κ11 0
κ21 κ22

¸ ·
α1 −X1t

−X2t

¸
dt+

· √
X1t 0
0

√
X1t

¸
d

·
WP
1t

WP
2t

¸
This diffusion most closely resembles the A1 (2) canonical form, but no change of variables can generate the
constant coefficient in the diffusion term of the second state variable in the A1 (2) model.
In all but a few special cases, each canonical model is observationally unique. In the A2 (2) model,

the two state variables can switch places; in the A0 (2), model, there are infinitely many representations of
observationally equivalent models for some restricted values of the κ matrix.
Under Q, the dynamics of the state vector in the three models are respectively

d

·
X1t

X2t

¸
=

µ
−
·
λ10
λ20

¸
−
·
κ11 0
κ21 κ22

¸·
X1t

X2t

¸¶
dt+ d

·
WQ
1t

WQ
2t

¸

d

·
X1t

X2t

¸
=

µ·
α1κ11
−λ2

¸
−
·

κ11 + λ1 0
κ21 + λ2β21 κ22

¸ ·
X1t

X2t

¸¶
dt+

· √
X1t 0

0
p
1 + β21X1t

¸
d

·
WQ
1t

WQ
2t

¸
d

·
X1t

X2t

¸
=

µ·
κ11α1 + κ12α2
κ21α1 + κ22α2

¸
−
·
κ11 + λ11 κ11

κ21 κ22 + λ22

¸·
X1t

X2t

¸¶
dt+

· √
X1t 0
0

√
X1t

¸
d

·
WQ
1t

WQ
2t

¸
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A.3 Three Factor Models

In three factor affine yield models, the instantaneous interest rate is defined as:

rt = δ0 + δ1X1t + δ2X2t + δ3X3t.

The first of the four canonical three factor models is the A0 (3) family, in which the state variables have the
following dynamics:

d

 X1t

X2t

X3t

 =
 κ11 0 0

κ21 κ22 0
κ31 κ32 κ33

 −X1t

−X2t

−X3t

 dt+ d

 WP
1t

WP
2t

WP
3t


The transition density of the state vector is trivariate Gaussian.
The A1 (3) model has the following dynamics:

d

 X1t

X2t

X3t

 =
 κ11 0 0

κ21 κ22 κ23
κ31 κ32 κ33

 α1 −X1t

−X2t

−X3t

 dt+
 √X1t 0 0

0
p
1 + β21X1t 0

0 0
p
1 + β31X1t

d
 WP

1t

WP
2t

WP
3t


The transition density function is known in closed-form only if the first state variable is independent of the
other two, i.e., if κ21 = 0, κ31 = 0, β21 = 0, and β31 = 0. In this case, the joint transition density is the
product of a non-central chi-squared (the distribution of the first state variable) and a bivariate Gaussian (the
distribution of the other two).
In the A2 (3) model, the state vector has the following dynamics:

d

 X1t

X2t

X3t

 =
 κ11 κ12 0

κ21 κ22 0
κ31 κ32 κ33

 α1 −X1t

α2 −X2t

−X3t

dt+
 √X1t 0 0

0
√
X2t 0

0 0
p
1 + β31X1t + β32X2t

 d
 WP

1t

WP
2t

WP
3t


The transition density is known in closed-form only if the three state variables are independent of each other,
i.e., if κ12 = κ21 = κ31 = κ32 = β31 = β32 = 0. In this case, the density is the product of two non-central
chi-squared densities and a Gaussian density.
Finally, in the A3 (3) model, the dynamics are:

d

 X1t

X2t

X3t

 =
 κ11 κ12 κ13

κ21 κ22 κ23
κ31 κ32 κ33

 α1 −X1t

α2 −X2t

α3 −X3t

dt+
 √X1t 0 0

0
√
X2t 0

0 0
√
X3t

d
 WP

1t

WP
2t

WP
3t


The transition density is known in closed-form only if the three state variables are independent of each other,
i.e., if κ12 = κ13 = κ21 = κ23 = κ31 = κ32 = 0. In this case, the density is the product of three independent
non-central chi-squared densities.
As in the two factor case, there are two types of affine diffusions with three state variables that are not

observationally equivalent to any of the canonical models. The model

d

 X1t

X2t

X3t

 =
 κ11 κ12 κ13

κ21 κ22 κ23
κ31 κ32 κ33

 −X1t

−X2t

−X3t

 dt+ d

 WP
1t

WP
2t

WP
3t


is similar to the A0 (3) canonical model, but there is no change of variables that results in the A0 (3) model if
any two eigenvalues of the κ matrix are complex conjugate pairs. Similarly, the model

d

 X1t

X2t

X3t

 =
 κ11 0 0

κ21 κ22 κ23
κ31 κ32 κ33

 α1 −X1t

−X2t

−X3t

dt+
 √X1t 0 0

0
√
X1t 0

0 0
p
1 + β31X1t

 d
 WP

1t

WP
2t

WP
3t


is similar to the A1 (3) model, but the absence of a constant coefficient in the diffusion of the second state
variable make it impossible to convert this model into the A1 (3) model by a change of variables. Similar
variants of the A2 (3) model exist.
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Under Q, the dynamics of the state vector in the four models are respectively

d

 X1t

X2t

X3t

 =
 −λ1−λ2

−λ3

−
 κ11 0 0

κ21 κ22 0
κ31 κ32 κ33

 X1t

X2t

X3t

dt+ d

 WQ
1t

WQ
2t

WQ
3t



d

 X1t

X2t

X3t

 =

 κ11α1
−λ2
−λ3

−
 κ11 + λ1 0 0

κ21 + λ2β21 κ22 κ23
κ31 + λ3β31 κ32 κ33

 X1t

X2t

X3t

dt

+

 √X1t 0 0
0

p
1 + β21X1t 0

0 0
p
1 + β31X1t

d
 WQ

1t

WQ
2t

WQ
3t



d

 X1t

X2t

X3t

 =

 κ11α1 + κ12α2
κ21α1 + κ22α2

−λ3

−
 κ11 + λ1 κ12 0

κ21 κ22 + λ2 0
κ31 + λ3β31 κ32 + λ3β32 κ33

 X1t

X2t

X3t

 dt

+

 √X1t 0 0
0

√
X2t 0

0 0
p
1 + β31X1t + β32X2t

d
 WQ

1t

WQ
2t

WQ
3t



d

 X1t

X2t

X3t

 =

 κ11α1 + κ12α2 + κ13α3
κ21α1 + κ22α2 + κ23α3
κ31α1 + κ32α2 + κ33α3

−
 κ11 + λ11 κ12 κ13

κ21 κ22 + λ22 κ23
κ31 κ32 κ33 + λ33

 X1t

X2t

X3t

dt
+

 √X1t 0 0
0

√
X2t 0

0 0
√
X3t

d
 WQ

1t

WQ
2t

WQ
3t

 .
B Formulae for the Log-Transition Functions
In this Section, we give the coefficients of the closed-form expansions for the log-transition functions corre-
sponding to the three two-dimensional models. Expansions for the two univariate models (Vasicek and CIR
respectively) can be found in Aït-Sahalia (1999), while the expressions for the four three-dimensional models
are not reported here to save space. They are available from the authors upon request.

B.1 The A0(2) Model

The coefficients below correspond to the SDE (A.1).

C
(−1)
X (x|x0; θ) = −12 (x1 − x10)

2 − 1
2 (x2 − x20)

2

C
(0)
X (x|x0; θ) = −12 (x1 − x10)

2 κ11 − (x1 − x10)x10κ11 − 1
2 (x1 − x10) (x2 − x20)κ21

− 1
2 (x2 − x20)

2 κ22 + (x2 − x20) (−x10κ21 − x20κ22)

C
(1)
X (x|x0; θ) = 1

24 (x1 − x10)
2 ¡−4κ211 − 3κ221¢− 1

3 (x1 − x10) (x2 − x20)κ21κ22
− 1

2 (x2 − x20)κ22 (x10κ21 + x20κ22) +
1
2 (x1 − x10)

¡− ¡x10 ¡κ211 + κ221
¢¢− x20κ21κ22

¢
+ 1

24 (x2 − x20)
2 ¡κ221 − 4κ222¢+ 1

2(κ11 − x210κ
2
11 + κ22 − (x10κ21 + x20κ22)

2)

C
(2)
X (x|x0; θ) = − 1

12

³
(x1 − x10)

2 κ221κ22
´
+ 1

12 (x2 − x20)
2 κ221κ22

− 1
6 (x1 − x10)κ21κ22 (x10κ21 + x20κ22) +

1
6 (x2 − x20)κ21

¡
x10

¡
κ211 + κ221

¢
+ x20κ21κ22

¢
+ 1

12(−2κ211 − κ221 − 2κ222) + 1
12 (x1 − x10) (x2 − x20)κ21

¡
κ211 + κ221 − κ222

¢
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B.2 The A1(2) Model

The coefficients below correspond to the SDE (A.2).

C
(−1)
X (x|x0; θ) = −21(x1−x10)

6

256x510
+ 7(x1−x10)5

64x410
− 5(x1−x10)4

32x310
+ (x1−x10)3

4x210
+

x10(x2−x20)6β321(3−7x10β21)
11520(1+x10β21)

7

+ x10(x2−x20)4β221
96(1+x10β21)

4 + (x1−x10)(x2−x20)2β21
4(1+x10β21)

2 − (x1−x10)2(x2−x20)2β21(1+7x10β21)
48x10(1+x10β21)

3

+
(x1−x10)3(x2−x20)2β21(1+4x10β21+9x210β221)

96x210(1+x10β21)
4 +

(x1−x10)2(x2−x20)4β221(−7−114x10β21+193x210β221)
11520x10(1+x10β21)

6

+
(x1−x10)(x2−x20)4(β221−3x10β321)

192(1+x10β21)
5 − (x1−x10)4(x2−x20)2β21(15+71x10β21+133x210β221+149x310β321)

2304x310(1+x10β21)
5

− x10(x2−x20)2+(x1−x10)2(1+x10β21)
2(x10+x210β21)

C
(0)
X (x|x0; θ) = (x1−x10)(1+4x10κ11+4x210β21κ11−4α1κ11−4x10β21α1κ11)

−4x10−4x210β21 − x10(x2−x20)3β21(κ21+β21α1κ21−x20β21κ22)
24(1+x10β21)

4

+
(x1−x10)2(6−24α1κ11+x10β21(13−48α1κ11)−2x210β221(1+12α1κ11))

48x210(1+x10β21)
2

+
(x1−x10)3(−8+32α1κ11+4x310β321(1+8α1κ11)+3x210β221(−9+32α1κ11)+x10β21(−25+96α1κ11))

96x310(1+x10β21)
3

+
(x1−x10)4(x310β321(659−2304α1κ11)+2x210β221(461−1728α1κ11))

2304x410(1+x10β21)
4 + (x2−x20)(−(x10κ21)+α1κ21−x20κ22)

1+x10β21

+
(x1−x10)4(3x10β21(197−768α1κ11)+144(1−4α1κ11)−2x410β421(43+288α1κ11))

2304x410(1+x10β21)
4

− (x1−x10)(x2−x20)(κ21+β21α1κ21−x20β21κ22)
2(1+x10β21)

2

C
(1)
X (x|x0; θ) = (x2−x20)(x20κ22(β21−12κ22−24x10β21κ22−2x10β221(1+6x10κ22)))

24(1+x10β21)
3 +

(x2−x20)(κ21(−12x310β221κ22+12α1κ22))
24(1+x10β21)

3

+
(x2−x20)(κ21(12x210β21(−2+β21α1)κ22+2x10(β21+β221α1−6κ22+12β21α1κ22)))

24(1+x10β21)
3 + (x2−x20)(κ21(−1−β21α1))

24(1+x10β21)
3

+
(x1−x10)(x2−x20)(−16κ21κ22+β21(20x20κ222+κ21(5−28x10κ22−20α1κ22)))

48(1+x10β21)
4

+
(x1−x10)(x2−x20)(4x10β321(κ22(x20+x210κ21+5x10x20κ22)−α1(κ21+5x10κ21κ22)))

48(1+x10β21)
4

+
(x1−x10)(x2−x20)(−β221(−5α1κ21+5x20κ22+8x210κ21κ22+4x10(κ21+10α1κ21κ22−10x20κ222)))

48(1+x10β21)
4

− (x2−x20)
2(8x310β421(−1+30α1κ11−30α21κ211+60x10κ22+30x210(κ211+8κ222)))

11520x10(1+x10β21)
5

− (x2−x20)
2(+4x210β321(−79+60x310κ221−180α21(κ211+x10κ221)))

11520x10(1+x10β21)
5 − (x2−x20)2(−480x10(x10κ221−4κ222))

11520x10(1+x10β21)
5

− (x2−x20)
2(+4x210β321(−180x10κ22(−1+x220κ22)+180α1(κ11+2x10x20κ21κ22)+60x210(3κ211+32κ222)))

11520x10(1+x10β21)
5

− (x2−x20)
2(+15β21(−3−16α21κ211+16α1(κ11−6x210κ221)−16x10κ22+16x210(κ211+6x20κ21κ22+32κ222)))

11520x10(1+x10β21)
5

− (x2−x20)
2(x10β221(−113+720x310κ221−720α21(κ211+x10κ221)))

11520x10(1+x10β21)
5

− (x2−x20)
2(x10β221(−720x10x220κ222+720x210(κ211+2x20κ21κ22+16κ222)))

11520x10(1+x10β21)
5

− (x2−x20)
2(x10β221(720α1(κ11+2x10κ21(−(x10κ21)+x20κ22))))

11520x10(1+x10β21)
5

+
(x1−x10)(9−48α1κ11+48α21κ211+9x10β21(3−16α1κ11+16α21κ211))

192x210(1+x10β21)
3

+
(x1−x10)(−48x510β221(β21κ211+κ221)−16x410β21(9β21κ211+9κ221+β221κ22))

192x210(1+x10β21)
3

+
(x1−x10)(8x310(β321(1−6α1κ11+6α21κ211)−12κ221))

192x210(1+x10β21)
3

20



+
(x1−x10)(8x310(−6β21(3κ211+2κ21(−(α1κ21)+x20κ22))+2β221(3α21κ221−6x20α1κ21κ22+κ22(−2+3x220κ22))))

192x210(1+x10β21)
3

+
(x1−x10)(16x210(β221(2−9α1κ11+9α21κ211)−3(κ211+2κ21(−(α1κ21)+x20κ22))))

192x210(1+x10β21)
3

+
(x1−x10)(16x210(β21(3α21κ221−6x20α1κ21κ22+κ22(−1+3x220κ22))))

192x210(1+x10β21)
3

+
(x1−x10)2(−135(3−16α1κ11+16α21κ211)−540x10β21(3−16α1κ11+16α21κ211))

11520x310(1+x10β21)
4

+
(x1−x10)2(240x106β321(β21κ211+κ221)+480x510β221(2β21κ211+2κ221+β221κ22))

11520x310(1+x10β21)
4

+
(x1−x10)2(β221(−2461+12960α1κ11−12960α21κ211)−240β21(α1κ21−x20κ22)2+240(κ211−2α1κ221+2x20κ21κ22))

11520x10(1+x10β21)
4

+
(x1−x10)2(−4x310(β321(473−2160α1κ11+2160α21κ211)+240κ221−240β21(κ211+4κ21(−(α1κ21)+x20κ22))))

11520x310(1+x10β21)
4

+
(x1−x10)2(−4x310(120β221(4α21κ221−8x20α1κ21κ22+κ22(−1+4x220κ22))))

11520x310(1+x10β21)
4

+
(x1−x10)2(−8x410β21(β321(47−270α1κ11+270α21κ211)+30κ221−60β21(3κ211+7κ21(−(α1κ21)+x20κ22))))

11520x310(1+x10β21)
4

+
(x1−x10)2(−8x410β21(30β221(7α21κ221−14x20α1κ21κ22+κ22(−4+7x220κ22))))

11520x310(1+x10β21)
4

−9−48α1κ11+48α
2
1κ

2
11+48x

4
10β21(β21κ211+κ221)−48x310(−κ221+β221(2α1κ211+κ22)−2β21(κ211−α1κ221+x20κ21κ22))

96x10(1+x10β21)
2

−4x10(β21(5−24α1κ11+24α
2
1κ

2
11)+12(α21κ221+κ22(−1+x220κ22)−2α1(κ211+x20κ21κ22)))

96x10(1+x10β21)
2

−8x
2
10(β221(1−6α1κ11+6α21κ211)+6(κ211+2κ21(−(α1κ21)+x20κ22)))

96x10(1+x10β21)
2

−8x
2
10(6β21(α21κ221+κ22(−2+x220κ22)−2α1(2κ211+x20κ21κ22)))

96x10(1+x10β21)
2

C
(2)
Y (x|x0; θ) = −(45(3−16α1κ11+16α

2
1κ

2
11)+195x10β21(3−16α1κ11+16α21κ211))

5760x210(1+x10β21)
4 − 2x210(−120β21(α1κ21−x20κ22)2)

5760x210(1+x10β21)
4

− 2x210(β221(467−2520α1κ11+2520α21κ211)+120(κ211−2α1κ221+2x20κ21κ22+4κ222))
5760x210(1+x10β21)

4 − 960x10
6β421κ

2
22

5760x210(1+x10β21)
4

− 240x510β
2
21(κ221+β21(κ211+16κ222))
5760x210(1+x10β21)

4 − 8x310(β321(91−450α1κ11+450α21κ211)+120κ221+30β221(α1κ21−x20κ22)2)
5760x210(1+x10β21)

4

− 8x310(30β21(3κ211+2α1κ221−2x20κ21κ22+16κ222))
5760x210(1+x10β21)

4 − 8x410β21(β321(23−120α1κ11+120α21κ211))
5760x210(1+x10β21)

4

− 8x410β21(150κ221+60β221(α1κ21−x20κ22)2+30β21(3κ211+4α1κ221−4x20κ21κ22+24κ222))
5760x210(1+x10β21)

4

B.3 The A2(2) Model

The coefficients below correspond to the SDE (A.3).

C
(−1)
X (x|x0; θ) = −21(x1−x10)

6

256x510
+ 7(x1−x10)5

64x410
− 5(x1−x10)4

32x310
+ (x1−x10)3

4x210
− (x1−x10)2

2x10

− (x2−x20)2
2x20

− 21(x2−x20)6
256x520

+ 7(x2−x20)5
64x420

− 5(x2−x20)4
32x320

+ (x2−x20)3
4x220

C
(0)
X (x|x0; θ) = (x1−x10)4(1−4α1κ11+4x20κ12−4α2κ12)

16x410
+ (x1−x10)2(1−4α1κ11+4x20κ12−4α2κ12)

8x210

− (x1−x10)(1+4x10κ11−4α1κ11+4x20κ12−4α2κ12)
4x10

+ (x1−x10)3(−1+4α1κ11−4x20κ12+4α2κ12)
12x310

− (x1−x10)2(x2−x20)2(x20κ12+x10κ21)
48x210x

2
20

− (x1−x10)(x2−x20)(x20κ12+x10κ21)
2x10x20

+ (x1−x10)2(x2−x20)(7x20κ12+x10κ21)
24x210x20

− (x1−x10)3(x2−x20)(10x20κ12+x10κ21)
48x310x20

+ (x1−x10)(x2−x20)2(x20κ12+7x10κ21)
24x10x220

− (x1−x10)(x2−x20)3(x20κ12+10x10κ21)
48x10x320

+ (x2−x20)4(1+4x10κ21−4α1κ21−4α2κ22)
16x420

+ (x2−x20)2(1+4x10κ21−4α1κ21−4α2κ22)
8x220

− (x2−x20)(1+4x10κ21−4α1κ21+4x20κ22−4α2κ22)
4x20

+ (x2−x20)3(−1−4x10κ21+4α1κ21+4α2κ22)
12x320

21



C
(1)
X (x|x0; θ) = (x1−x10)(x2−x20)(16x320κ212+x220κ12(9−16α1κ11−16α2κ12)+x210κ21(9+16x10κ21−16α1κ21−16α2κ22))

48x210x
2
20

+
(x1−x10)(48x320κ212−48x220κ12(−1+2α1κ11+2α2κ12))

192x210x20
+

(x1−x10)(8x210κ21(−7−12x10κ21+12α1κ21+12α2κ22))
192x210x20

+
(x1−x10)(x20(9+48α21κ211−8x10κ12−48α2κ12+48α22κ212+48α1κ11(−1+2α2κ12)−48x210(κ211+2κ21κ22)))

192x210x20

+
(x1−x10)2(−144x320κ212+16x220κ12(−9+18α1κ11+2x10κ12+18α2κ12))

768x310x20

+
(x2−x20)(48x310κ221−48x210κ21(−1+2α1κ21+2α2κ22))

192x10x220
+

(x1−x10)2(−16x210κ21(−1+4x10κ21+2α1κ21+2α2κ22))
768x310x20

+
(x1−x10)2(x20(−144α21κ211+16x10κ12−144α1κ11(−1+2α2κ12)−9(3−16α2κ12+16α22κ212)))

768x310x20

− (x2−x20)2(x220κ12(−1+2α1κ11+4x20κ12+2α2κ12))
48x10x320

+
(x2−x20)2(16x210κ21(−9+2x20κ21+18α1κ21+18α2κ22))

768x10x320

+
(x2−x20)2(x10(16x20κ21+16x220(2κ11κ12−4κ12κ21+κ222)))

768x10x320
− (x2−x20)2(144x310κ221)

768x10x320

+
(x2−x20)2(x10(−9(3+16α21κ221−16α2κ22+16α22κ222+16α1κ21(−1+2α2κ22))))

768x10x320

+
(x2−x20)(8x220κ12(−7+12α1κ11−12x20κ12+12α2κ12))

192x10x220
+

(x2−x20)(48x310κ221−48x210κ21(−1+2α1κ21+2α2κ22))
192x10x220

+
(x2−x20)(x10(−8x20κ21−48x220(2κ11κ12+κ222)))

192x10x220
+

(x1−x10)2(x20(16x210(κ211−4κ12κ21+2κ21κ22)))
768x310x20

+
(x2−x20)(x10(3(3+16α21κ221−16α2κ22+16α22κ222+16α1κ21(−1+2α2κ22))))

192x10x220

− x20(3+16α21κ211−16α2κ12+16x220κ212+16α22κ212+16x20κ12(1−2α2κ12)−16α1κ11(1+2x20κ12−2α2κ12))
32x10x20

− 16x310κ
2
21+16x

2
10(κ21(1−2α1κ21−2α2κ22)+x20(κ211+2κ21κ22))

32x10x20
− x10(3+16α21κ221−16α2κ22+16α22κ222)

32x10x20

− x10(16α1κ21(−1+2α2κ22)+16x220(2κ11κ12+κ222))
32x10x20

− x10(−32x20(α1(κ211+κ21κ22)+α2(κ11κ12+κ222)))
32x10x20

C
(2)
X (x|x0; θ) = −16x10x

2
20κ12(1−2α1κ11+4x20κ12−2α2κ12)

384x210x
2
20

− (3x
2
20(3+16α21κ211−16α2κ12+16x220κ212+16α22κ212+16x20κ12(1−2α2κ12)−16α1κ11(1+2x20κ12−2α2κ12)))

384x210x
2
20

− (48x
4
10κ

2
21+16x

3
10κ21(3+4x20κ21−6α1κ21−6α2κ22))+(x210(−16x20κ21(−1+2α1κ21+2α2κ22)))

384x210x
2
20

− (x
2
10(16x220(κ211+2κ11κ12+4κ12κ21+2κ21κ22+κ222)))

384x210x
2
20

− (x
2
10(3(3+16α21κ221−16α2κ22+16α22κ222+16α1κ21(−1+2α2κ22))))

384x210x
2
20
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Model Existence Boundary Stationarity

A0 (1) − − κ11 > 0

A1 (1)
κ11α1 ≥ 0
α1 ≥ 0
δ1 ≥ 0

κ11α1 ≥ 1
2 κ11 > 0

A0 (2) − − κ11 > 0
κ22 > 0

A1 (2)

κ11α1 ≥ 0
α1 ≥ 0
δ1 ≥ 0
β21 ≥ 0

κ11α1 ≥ 1
2

κ11 > 0
κ22 > 0

A2 (2)

κ11α1 + κ12α2 ≥ 0
κ21α1 + κ22α2 ≥ 0
α1 ≥ 0, α2 ≥ 0
δ1 ≥ 0, δ2 ≥ 0
κ12 ≤ 0, κ21 ≤ 0

κ11α1 + κ12α2 ≥ 1
2

κ21α1 + κ22α2 ≥ 1
2

Eigen
·
κ11 κ12
κ21 κ22

¸
> 0

A0 (3) − −
κ11 > 0
κ22 > 0
κ33 > 0

A1 (3)

κ11α1 ≥ 0
α1 ≥ 0
δ1 ≥ 0

β21 ≥ 0, β31 ≥ 0
κ11α1 ≥ 1

2

κ11 > 0

Re

·
Eigen

·
κ22 κ23
κ32 κ33

¸¸
> 0

A2 (3)

κ11α1 + κ12α2 ≥ 0
κ21α1 + κ22α2 ≥ 0
α1 ≥ 0, α2 ≥ 0
δ1 ≥ 0, δ2 ≥ 0
κ12 ≤ 0, κ21 ≤ 0
β31 ≥ 0, β32 ≥ 0

κ11α1 + κ12α2 ≥ 1
2

κ21α1 + κ22α2 ≥ 1
2

Re

·
Eigen

·
κ11 κ12
κ21 κ22

¸¸
> 0

κ33 > 0

A3 (3)

κ11α1 + κ12α2 + κ13α3 ≥ 0
κ21α1 + κ22α2 + κ23α3 ≥ 0
κ31α1 + κ32α2 + κ33α3 ≥ 0
α1 ≥ 0, α2 ≥ 0, α3 ≥ 0
δ1 ≥ 0, δ2 ≥ 0, δ3 ≥ 0

κ12 ≤ 0, κ13 ≤ 0
κ21 ≤ 0, κ23 ≤ 0
κ31 ≤ 0, κ32 ≤ 0

κ11α1 + κ12α2 + κ13α3 ≥ 1
2

κ21α1 + κ22α2 + κ23α3 ≥ 1
2

κ31α1 + κ32α2 + κ33α3 ≥ 1
2

Eigen

 κ11 κ12 κ13
κ21 κ22 κ23
κ31 κ32 κ33

 > 0

Table 1: Parameter Restrictions

This table shows the parameter restrictions imposed on the different models under consideration. “Eigen” denotes the
eigenvalues of the matrix.
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Model Restrictions for Exact Density Parameter Values

A0 (1) none κ11 = 1.0
A1 (1) none κ11 = 0.50, α1 = 2.67
A0 (2) none κ11 = 1.00, κ21 = −0.50, κ22 = 2.00
A1 (2) κ21 = 0, β21 = 0 κ11 = 0.50, κ22 = 2.00, α1 = 2.00

A2 (2) κ12 = 0, κ21 = 0
κ11 = 1.00, κ22 = 2.00
α1 = 2.00, α2 = 3.00

A0 (3) none
κ11 = 0.50, κ21 = −0.20, κ22 = 1.00
κ31 = 0.10, κ32 = 0.20, κ33 = 2.00

A1 (3)
κ21 = 0, κ23 = 0, κ31 = 0,

β21 = 0, β31 = 0
κ11 = 0.50, κ22 = 2.00, κ32 = −0.10

κ33 = 5.00, α1 = 2.00

A2 (3)
κ12 = 0, κ21 = 0, κ31 = 0, κ32 = 0,

β31 = 0, β32 = 0
κ11 = 0.50, κ22 = 2.00, κ33 = 5.0

α1 = 2.00, α2 = 1.00

A3 (3) κ12 = κ21 = κ13 = κ31 = κ23 = κ32 = 0
κ11 = 0.50, κ22 = 2.00, κ33 = 1.00
α1 = 2.00, α2 = 1.00, α3 = 1.00

Table 2: Parameter Values for Monte-Carlo Simulations of Canonical Affine Processes

This table shows the parameter values used in the Monte Carlo simulations. For each model, the additional parameter
restrictions (relative to those in Table 1) needed to ensure existence of a known exact likelihood function are shown in
the second column. The sole purpose of imposing these restrictions is to allow us to test the accuracy of our expansion
in Monte Carlo simulations by comparing it to the exact, closed-form, likelihood function. The third column shows the
values of the remaining parameter values used in the simulations.
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Model Parameter θ(TRUE) θ̂
(MLE) − θ(TRUE) θ̂

(MLE) − θ̂
(2)

Mean Std. Dev. Mean Std. Dev.

A0 (1) κ11 1.00 0.1927 0.5419 0.09% 0.06%

A1 (1) κ11 0.5000 0.4843 0.5494 0.02% 0.06%
α1 2.6667 0.0792 1.3341 −0.06% 0.11%

Table 3: Monte Carlo Simulations for the One-Dimensional Models

This table reports the results of 5, 000 Monte Carlo simulations comparing the distribution of the maximum-likelihood

estimator θ̂
(MLE)

, based on the exact transition density for this model, around the true value of the parameters

θ(TRUE), to the distribution of the difference between the exact MLE θ̂
(MLE)

and the approximate MLE θ̂
(2)
, based

on the expansion with K = 2 terms, for the A0 (1) and A1 (1) models. The results in the table show that the difference

θ̂
(MLE) − θ̂

(2)
is several orders of magnitude smaller than the difference θ̂

(MLE) − θ(TRUE) due to the sampling noise.
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Model Parameter θ(TRUE) θ̂
(MLE) − θ(TRUE) θ̂

(MLE) − θ̂
(2)

Mean Std. Dev. Mean Std. Dev.

κ11 1.00 0.2131 0.5442 0.09% 0.06%
A0 (2) κ21 −0.50 −0.0386 0.5872 0.82% 0.09%

κ22 2.00 0.3301 0.7428 0.34% 0.16%

κ11 0.50 0.4931 0.5560 0.05% 3.34%
A1 (2) κ22 2.00 0.1976 0.6916 0.54% 1.64%

α1 2.00 0.1265 2.7746 0.90% 2.32%

κ11 1.00 0.4462 0.6277 0.09% 0.95%
A2 (2) κ22 2.00 0.4477 0.7615 0.36% 3.89%

α1 2.00 0.0190 0.4699 0.91% 2.78%
α2 3.00 0.0001 0.2802 −5.93% 0.32%

Table 4: Monte Carlo Simulations for the Two-Dimensional Models

This table reports the results of 5, 000 Monte Carlo simulations for the A0 (2) , A1(2) and A2(2) models comparing

the distribution of the maximum-likelihood estimator θ̂
(MLE)

around the true value of the parameters θ(TRUE), to the

distribution of the difference between the exact MLE θ̂
(MLE)

and the approximate MLE θ̂
(2)
, based on the expansion

with K = 2 terms. The results in the table show that the difference θ̂
(MLE) − θ̂

(2)
is much smaller, and often several

orders of magnitude smaller, than the difference θ̂
(MLE) − θ(TRUE) due to the sampling noise.
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Model Parameter θ(TRUE) θ̂
(MLE) − θ(TRUE) θ̂

(MLE) − θ̂
(2)

Mean Std. Dev. Mean Std. Dev.

κ11 0.50 0.1922 0.4229 0.03% 0.03%
κ21 −0.20 −0.0489 0.4730 0.47% 2.31%

A0 (3) κ22 1.00 0.3568 0.6090 0.17% 3.11%
κ31 0.10 0.0240 0.4893 0.47% 0.71%
κ32 0.20 0.0277 0.6268 0.59% 1.05%
κ33 2.00 0.5343 0.8227 0.29% 0.87%

κ11 0.50 0.4949 0.5565 −0.02% 0.74%
κ22 2.00 0.1963 0.6979 0.45% 0.45%

A1 (3) κ32 −0.10 0.0007 0.7284 −6.33% 3.08%
κ33 5.00 0.3781 1.1021 2.84% 0.94%
α1 2.00 0.0846 1.3796 −0.87% 7.16%

Table 5: Monte Carlo Simulations for the A0(3) and A1(3) Models

This table reports the results of 5, 000 Monte Carlo simulations for the A0 (3) and A1(3) models comparing the

distribution of the maximum-likelihood estimator θ̂
(MLE)

around the true value of the parameters θ(TRUE), to the

distribution of the difference between the exact MLE θ̂
(MLE)

and the approximate MLE θ̂
(2)
, based on the expansion

with K = 2 terms. The results in the table show that the difference θ̂
(MLE) − θ̂

(2)
is much smaller, and often several

orders of magnitude smaller, than the difference θ̂
(MLE) − θ(TRUE) due to the sampling noise.
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Model Parameter θ(TRUE) θ̂
(MLE) − θ(TRUE) θ̂

(MLE) − θ̂
(2)

Mean Std. Dev. Mean Std. Dev.

κ11 0.50 0.4923 0.5556 −0.04% 0.40%
κ22 2.00 0.4379 0.7703 0.30% 0.21%

A2 (3) κ33 5.00 0.2025 1.0681 4.64% 0.57%
α1 2.00 0.1141 2.6185 1.27% 2.98%
α2 1.00 −0.0011 0.1600 1.81% 0.01%

κ11 0.50 0.4918 0.5466 −0.04% 0.43%
κ22 2.00 0.4411 0.7658 0.29% 0.21%

A3 (3) κ33 1.00 0.4533 0.6231 −0.22% 0.76%
α1 2.00 0.0909 1.8325 1.03% 1.81%
α2 1.00 0.0016 0.1607 −1.30% 0.04%
α3 1.00 0.0179 0.3435 0.46% 0.59%

Table 6: Monte Carlo Simulations for the A2(3) and A3(3) Models

This table reports the results of 5, 000 Monte Carlo simulations for the A2 (3) and A3(3) models comparing the

distribution of the maximum-likelihood estimator θ̂
(MLE)

around the true value of the parameters θ(TRUE), to the

distribution of the difference between the exact MLE θ̂
(MLE)

and the approximate MLE θ̂
(2)
, based on the expansion

with K = 2 terms. The results in the table show that the difference θ̂
(MLE) − θ̂

(2)
is much smaller, and often several

orders of magnitude smaller, than the difference θ̂
(MLE) − θ(TRUE) due to the sampling noise.

28



Figure 1: The Likelihood-Based Estimation Method
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Figure 2: Empirical Distributions of the MLE Estimator (left column) and the Approximation Error (right
column) in the A0 (2) Model
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Figure 3: Empirical Distributions of the MLE Estimator (left column) and the Approximation Error (right
column) in the A1 (2) Model
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Figure 4: Empirical Distributions of the MLE Estimator (left column) and the Approximation Error (right
column) in the A2 (2) Model
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