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Abstract : We present and study a modelling framework for the evolution of 
credit spreads. The credit spreads associated with a given rating follow a 
multidimensional jump-diffusion process while the movements from a given 
rating to another one are modelled by a continuous time Markov chain with a 
stochastic generator. This allows for a comprehensive modelling of risky 
bond price dynamics and includes as special features the approaches of 
Jarrow, Lando and Turnbull (1997), Longstaff and Schwartz (1995 and, 
Duffie and Kan (1996)2. The main appealing feature is the ability to get 
explicit pricing formulas for credit spreads, thus allowing easier  
implementation and calibration. We present examples based on market data 
and some empirical assessment of our model specification with historical 
time series. 
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1.  Introduction 
 
This paper presents a modelling framework for the evolution of the credit risk spreads 

which are driven by an underlying credit migration process plus some 

multidimensional jump-diffusion process3. This framework is appropriate for pricing 

credit derivatives such as risky bonds, default swaps, spread options, insurance 

against downgrading etc. These instruments therefore have payoffs that depend on 

various things such as default events, credit spreads and realised credit ratings. It is 

also possible to look for the effect of default or downgrading on the pricing of 

convertible bonds, bonds with call features, interest rate or currency swaps. 

 

In order to design a model that can fulfil the above objectives it is necessary to 

consider the evolution of the risk free interest rates and of the credit spreads. In this 

analysis we will concentrate on developing a model for credit spreads, which can be 

coupled with any standard model for the risk free term structure such as Ho-Lee 

(1986), Hull-White (1990) or Heath, Jarrow and Morton (1992). To simplify the 

analysis we impose the restriction that the evolution of the credit spreads is 

independent of the interest rates4. 
 

Typically, the credit spread for a specific risky bond exhibits both a jump and a 

continuous component. The jump part may reflect credit migration and default, i.e. a 

discontinuous change of credit quality. Meanwhile, credit spreads also exhibit 

continuous variation so that the spread on a bond of a given credit rating may change 

even if the riskless rates remain constant. This may be due to continuous changes in 

credit quality, stochastic variations in risk premia (for bearing default risk) and 

liquidity effects.  

 

                                                           
3 We rely on hazard-rate models ; this allows to handle a wide variety of dynamics for credit spreads in 
a tractable way. The so-called structural approaches where default is modelled as the first hitting time 
of some barrier by the process of assets’ value leads to some practical difficulties. It may be 
cumbersome to specify endogenously the barrier, to handle jumps in credit spreads or non zero-short 
spreads (see Duffie and Lando (1998) for a discussion). 
4 Our analysis can be expanded when there is some correlation between credit ratings and riskless 
rates. We have simply to assume that r s E s( ) ( )+ Λ , where E  is a square matrix with unit elements, 
has constant eigenvectors ; see further. 
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Figure 1. Credit spread for a AA rated bond. 
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We consider a model that takes into account these two effects. In that sense, it is a 

natural extension of the Jarrow, Lando and Turnbull (1997, JLT thereafter) model 

where the spreads for a given rating are constant and of models like Longstaff and 

Schwartz (1995), Duffie and Kan (1996) where the credit spread follows a diffusion 

or a jump-diffusion process. A similar model is also presented in Lando (1998)5. In 

this framework, it is possible to get some explicit pricing formulas for the prices of 

risky bonds. Duffie and Singleton (1998) propose a related model, but in their 

approach, simulation of the credit rating is required. In these Markovian models, the 

credit spreads and risk neutral default probabilities are uniquely determined by the 

state variables, some of them being discrete, i.e. credit ratings and following a 

Markov chain, while the others follow jump-diffusion processes. In addition, the 

credit spreads depends on the recovery rate in the event of default, that will be 

assumed to be constant for the sake of simplification6.  

 

As usual, calibration to market data is an important issue. It is simplified since we 

deal with explicit pricing formulas but still have the problem that market data can be 

sparse and there are a relatively large number of unknown parameters. We adopt a 
                                                           
5 This model expands on a previous less general model of Lando (1994). 
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Bayesian approach where the prior is provided by historical information on credit 

migration and is marginally modified to fit prices of coupon bonds across different 

credit classes observed in the market. Thus, we are able to estimate a risk-neutral 

process. The inputs into the calibration algorithm are the prices of coupon bonds 

observed in the market across different credit classes and historical information on 

credit migration. The model can be used as a powerful stripping algorithm to generate 

yield curves consistently across asset classes by imposing an underlying economic 

structure. This is particularly useful in markets with sparse data. 

 

In section 2, we present Markovian models of credit spreads dynamics. We start from 

the standard textbook example, where the credit spread is constant up to default-time. 

This model can be extended to allow credit spreads to be piece-wise constant as in 

JLT. We also present a state space extension of this model, in order to take into 

account credit rating time dependency (see Moody’s (1997)). This allows a firm that 

has been recently upgraded to be assigned an upward trend and to therefore exhibit a 

lower credit spread than a firm with the same credit rating that has been recently 

downgraded. The previous models can be extended by considering a stochastic 

generator of the Markov chain, that depends on other state variables; in order to keep 

tractability, we consider a special family of generators where only the eigenvalues are 

stochastic. This framework allows explicit computation of credit spreads. 

 

In section 3, we focus on implementation issues. We present a calibration algorithm in 

the JLT framework and provide some examples of fitted curves. In the more general 

model where the credit spreads have a diffusion component, we discuss calibration to 

bond prices, look for the dimension required to explain the credit spreads and 

consider the modelling assumption that the eigenvectors of the generator remain 

constant through time. 

 

Section 4 describes the conclusions.  
  

2.  Modelling the credit spreads 

 

                                                                                                                                                                      
6 This assumption can be relaxed in different ways ; see further for a discussion. 
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In this section, we consider some approaches to the modelling of credit spreads, 

starting from the simplest case and developing the model in order to incorporate more 

realistic features of the dynamics of credit spreads.  

 

One may first consider a model where there are only two states, default and no 

default. A risky discount bond  promises to pay 1 unit at maturity T if there is no 

default ; in the event of default, the bond pays a constant recovery rate (δ) at maturity 

T7. Let us denote by v t T( , ) the price at time t of this risky bond, B t T( , )  the price of 

the risk free bond, and q t T( , ) the (risk-neutral) probability of default before time T as 

seen from time t. It is assumed that the default event is independent of the level of 

interest rates. This leads to the standard equation : 

 

[ ]v t T B t T q t T q t T( , ) ( , ) ( , ) ( , )= − +1 δ        (1) 

 

Equivalently, the implied risk-neutral default probabilities are given by: 

 

( )q t T

v t T
B t T

( , )

( , )
( , )

=
−

−

1

1 δ
         (2) 

 

In this framework, the first time to default can be represented by the first jump of 

some non homogeneous Poisson process. This simple model is useful for pricing 

default swaps. To be practical, it requires the knowledge of the prices of risky zero 

coupon bonds issued by the counterparty on which the default swap is based, whose 

maturities equal the payment dates of the default swaps. This approach may be 

difficult to implement since a given counterparty has usually only a few outstanding 

coupon bonds traded and so it is not possible to know the prices of the risky zero 

coupon bonds directly.  

 

                                                           
7 There are several standard ways to model the recovery. We follow here the presentation of JLT where 
in case of default, the holder of the risky bond receives a fraction δ of the riskless bond (with the same 
maturity). In Duffie and Singleton (1997), the recovery rate has a different meaning since, in case of 
default, the holder of a risky bond receives a fraction of the value just prior to default. At last, the 
holder of the risky bond may receive a fraction of par in case of default. The consequences of these 
assumptions are discussed below. 
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To be able to get over this requirement, one can make an important economic 

assumption such as “all firms in the same credit rating are on the same risky yield 

curve”. This allows us to take into account bonds issued by different firms in the same 

risky class as if there were a single issuer. 

 

Instead of using a standard stripping procedure that deals with bonds within each 

credit class separately, we may look in greater detail at the changes in credit quality 

that lead to default. This more structural modelling approach will guarantee that the 

different risky curves will be consistently estimated ; moreover, it will be possible to 

use information coming from bonds in different credit classes to build up the risky 

curves. 

 

The simplest model that considered only two possible states, default and no default 

can be expanded by introducing more states, such as credit ratings. The state 

dynamics can be represented by a continuous, time-homogenous Markov chain on a 

finite state space, { }S K= 1 2, , . This means that there are a finite number of 

possible states (K) and that being in a given state gives all the information relevant in 

the pricing of structures involving credit risk. In this modelling, the probability to go 

from one state to another depends only on the two states themselves (the so-called 

Markov property) and is assumed to be independent of time (time homogeneity). Such 

a model has been introduced by JLT and for the paper to be self contained, we briefly 

recall their presentation. 

 

The first state is the best credit quality and the ( )K −1  state the worst (before 

default). The ( )K state represents default, which is an absorbing state and provides a 

payment of δ at maturity.8 Once in this state, we impose the simplifying assumption 

that there is no chance of moving to a higher state, i.e. for the bankrupted firm to 

recover. For the purposes of the present paper, we will consider the states in the 

model to be equivalent to credit ratings although we emphasise that other descriptions 

are possible. 
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The transition matrices for any period from t to T, ( )Q t T, characterise the Markov 

chain. Its elements ( )q t Tij ,  represent the probability to go from state i at time t and 

be in state j at time T. We will further make the modelling assumption that the 

transition matrices can be written as : 

 

( )Q t T T t( , ) exp ( )= −Λ ,        (3) 

 

where Λ  is the generator matrix Λ  and is assumed to be diagonalisable9 (i.e. 

Λ Σ Σ= −D 1  where D is a diagonal matrix)10 ; the previous expression can be 

computed as :  

 

( )Q t T D T t( , ) exp ( )= − −Σ Σ 1 ,       (4) 

 

where the diagonal terms in D and the columns of Σ represent respectively the 

eigenvalues and (right) eigenvectors of Λ11. Most importantly, we see the generator 

matrix now defines all possible default probabilities. 

 

The generator matrix is the continuous time analogue of a discrete time, finite state 

transition matrix. It describes the evolution of the Markov chain during an infinitely 

small time period dt .  

 

                                                                                                                                                                      
8 For a coupon bond the assumption is that in the case of default the holder receives δ at maturity and 
δ×coupon  at each coupon payment date.  
9 It is possible to consider transition matrices which do not admit generator matrices, which may not be 
diagonalisable and transition matrices which admit a generator which is not diagonalisable. This model 
thus restricts to tractable transition matrices. 
10 JLT allow for some time dependence in Λ , while keeping it deterministic. 
11 Since the rows of Λ  sum up to zero, the unit vector is a right eigenvector of  Λ  associated to  
eigenvalue d K = 0 . The rows of  Σ−1  are the left eigenvectors of Λ . There is one left eigenvector 

corresponding to d K = 0  (the last row of Σ−1 ) which can be interpreted as the invariant (or 
stationary) measure of the Markov chain. Since default is an attainable absorbing state, we can readily 
construct the invariant measure and deduce that the last row of  Σ−1  is equal to ( )0 0 0 1, , , , . Since 
all last column terms are positive, it can be shown that this invariant measure is unique. In the long-
term, regardless of their initial rating all firms go to default. 
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The probability of going from state i to state j  ( )i j≠ between the dates t and t dt+ is 

λijdt . The probability of staying in state i is 1− λiidt . The transition matrix over a 

small period dt is I dt+ Λ  (I is the K K×  identity matrix).  

 

In the modelling framework some extra constraints are imposed on the generator 

matrix used to ensure that the evolution of the credit spreads is appropriate. These 

constraints are summarised below. 

1)  The transition probabilities are non-negative : λij i j i j≥ ∀ ≠0     , , . 

2)  The sum of transition probabilities from any state is unity : 

λij
i

K

i K = 0,   ∀ =
=
∑ 1

1
,..., . 

3)  The last state (default) is absorbing : λKj j K= ∀ =0 1, ,     . 

4)  A state i+1 is always more risky than a state i : λ λij i j
j kj k

i k k i≤ ∀ ≠ ++
≥≥
∑∑ 1 1, ,,      . 

 

Using the previous properties, it is possible to write more explicitly the probabilities 

of default. If we denote respectively by σ ij  and ~σ ij the i,j elements of Σ and Σ−1 , and 

by d j  the eigenvalues of Λ, we can obtain : 

 

( )[ ]q t T d T t i KiK ij jK j
j

K

( , ) ~ exp ( ) , .= − − ≤ ≤ −
=

−

∑σ σ 1 1 1
1

1

  12,13    (6) 

                                                           
12 This can readily be shown by noting that ( ) ( )( )Q t T I D T t I, exp− = − − −Σ Σ 1  and d K = 0 . 

13 Let us remark that some eigenvalues may be complex ( ) ( )d d i dj j j= +Re Im . Thus terms like 

( )( )[ ] ( )[ ]exp Re cos Im ( )d T t d T tj i− − appear in the expression of ( )q t TiK , , implying some 

cycles in the default probabilities. As a by-product, we notice that ( )Re d j ≤ 0 , since the ( )q t TiK ,  
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We can now express the price of a risky zero-coupon bond, ( )ν i t t h, ,+ Λ , of any 

maturity h for any credit class i according to equation (1) which we re-write:  

 

( )v t t h B t t h q t t h q t t hi
iK iK( , , ) ( , ) ( ( , )) ( , )+ = + − + + +Λ 1 δ    (7) 

 

As can be seen from the previous equation the credit spread for any given risky class 

and given maturity remains constant. The only changes in credit spreads occur when 

there are changes in credit ratings. 

 

Though we have emphasised on the use of credit ratings to represent the state space 

some other approach can be used as detailed below. Credit ratings can exhibit 

memory in that a firm that has been recently upgraded is in an upward trend and 

therefore exhibits a lower credit spread than a firm with the same credit rating that has 

been recently downgraded. 

 

                                                                                                                                                                      
should stay in [ ]0 1, . Indeed, a stochastic matrix has a spectral radius equal to one (see Horn and 
Johnson (1985), p. 493). Since the eigenvalues of the generator are obtained as logarithms of the 

eigenvalues of the transition matrix, we get ( )Re d j ≤ 0 . More can be said about the eigenvalues of 

Q t T( , )  : Though this matrix is not positive nor irreducible (due to the absorbing state), we can show 
that 1 (= exp0 ) is a simple (algebraically) eigenvalue and that all other eigenvalues have modulus 

strictly smaller than 1. Moreover, the second eigenvalue (in modulus), [ ]( )= −−exp ( )d T tK 1  shares 

similar properties to the first one ; it is real,  simple, associated to a non negative right eigenvector and 
all further eigenvalues have smaller modulus.  

Proof : Firstly, the matrix Q t T( , )  can be written as 
Q t TK K

K

− × −

× −

⎛
⎝
⎜

⎞
⎠
⎟

1 1

1 10 1
( , ) .

 ; for sufficiently large T, 

the matrix Q t TK K− × −1 1 ( , )  has positive coefficients, meaning that all credit ratings are strongly 
connected (every rating is attainable with positive probability, whatever the initial rating). 

( ) ( ) ( )det ( , ) det ( , )I Q t T I Q t TK K− ≡ − − − × −λ λ λ1 1 1 and Perron theorem applies for 

Q t TK K− × −1 1 ( , ) . Moreover since the rows of  Q t TK K− × −1 1 ( , ) sum up to quantities less than one (the 
last column of Q t T( , )  has positive terms), the spectral radius of  Q t TK K− × −1 1 ( , ) is strictly less than 
one. The associated positive eigenvector completed with 0 provides a non negative eigenvector of 
Q t T( , ) .  
Now, it can be proven that d K−1  is related to the long-term credit spread. 
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A tractable way to incorporate this information into the model is to split some or all 

credit states into two new states; in one state the company is in an improving trend 

(X+) and in the other in a deteriorating trend (X-). Note that X+ and X- are not 

themselves standard credit ratings but different versions of the rating X, according to 

the outlook for a particular X rated company. This new approach  requires estimation 

of more independent parameters although, since a downgraded issuer cannot be in a 

positive trend and an upgraded issuer cannot be in a negative trend, some terms in the 

generator matrix are constrained to be zero. We refer to this model as pseudo non-

Markovian since the population of one of the new states gives additional information 

about the previous state in the process14. 

 

In order to illustrate these ideas, we have calibrated both Markovian and pseudo non-

Markovian models to the same set of data. Tables 2a and 2b show calibrated generator 

matrices for the general and pseudo non-Markovian models, using US bank data with 

ratings AAA, A and BBB. Note that in the non-Markovian model, it is not possible to 

migration from BBB to A- or from AAA to A+.  

 

Table 1a. Generator matrix for Markovian model. 

 

 AAA A BBB D

AAA -0.046 0.042 0.003 0.002

A 0.027 -0.111 0.081 0.003

BBB 0.012 0.025 -0.047 0.011

D 0.000 0.000 0.000 0.000

 

Table 1b. Generator matrix for pseudo non-Markovian model. 

 

 AAA A+ A- BBB D

AAA -0.055 0.000 0.051 0.003 0.001

A+ 0.035 -0.157 0.070 0.050 0.002

                                                           
14 An alternative way to expand the state space would be to make use of extra-information provided by 
the rating agencies ; for example, we might distinguish between a AA bond with negative perspective 
and a AA bond with a positive outlook. 
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A- 0.027 0.065 -0.180 0.081 0.002

BBB 0.012 0.039 0.000 -0.058 0.007

D 0.000 0.000 0.000 0.000 0.000

 

Figure 2 shows the calibrated credit spread curves. The non-Markovian extension 

enables us to estimate the yield curves corresponding to the positive and negative 

trends and fit the observed prices exactly. In class A, there are 4 bonds which cannot 

be fitted with the basic model because they come from 2 companies, one in a negative 

trend and one in a positive trend. In the pseudo non-Markovian model, the bonds can 

be fitted well since there are now two states of A rating.  

 

Figure 2. Illustration of the credit risky spreads using the Markovian (left) and the 

pnon-Markovian (right) models. 
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Up to now the credit spread for a given credit rating class has been assumed non-

stochastic and therefore the credit spread for a given credit class is constant. As 

market participants are constantly exposed to ever changing market conditions they 

require different compensation in order to bear default risk. An intuitive interpretation 

would be that the risk premia are stochastic. A more realistic model would be for the 

credit spread to move even if the credit rating does not change. We will show that this 

credit spread volatility can be modelled by introducing a random generator matrix 

( )Λ t as follows : 

 

( )Λ Σ Σ( ) ( )t DU t= −1 .         (8) 
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where U t( ) follows some scalar jump-diffusion process. Let us notice that in this 

modelling framework, the eigenvectors of the generator ( )Λ t  remain unchanged. This 

allows to get some simple expressions of the conditional probabilities to default : 

 

q t T U t E d U s ds i KiK ij jK t j t

T

j

K

( , ) ( ) ~ exp ( ) , .= ⎡
⎣⎢

⎤
⎦⎥
−⎛

⎝⎜
⎞
⎠⎟ ≤ ≤ −∫∑

=

−

σ σ 1 1 1
1

1

  15     (9) 

 

Further simplifications arise when the computation of the Laplace transform of 

U s ds
t

T

( )∫ is explicit16. These are very similar to those involved in bond pricing and 

U t( ) can be chosen to follow a square root or an Ornstein-Uhlenbeck process in order 

to get exponential affine type functions of the state variable U t( ) . 

 

Let us remark that the short spreads are of the form : 

 

( ) ( ) ( )1 1
1

1

− = −
=

−

∑δ λ δ σ σiK ij jK j
j

K

t U t d( ) ~ .              (10) 

 

They are thus proportional to U t( ) which can for example be taken as a square root 

process to guarantee that the credit spreads are positive. 

 

We now deal with a model where the credit spreads associated to a given rating are 

stochastic.  However, movements in credit spreads across rating classes are perfectly 

correlated which is not supported by empirical evidence.  

 

The model can be easily expanded in order to get more complex dynamics of the 

credit spreads by assuming that the stochastic generator ( )Λ t  is of the form : 

 

( ) ( )Λ Σ Σt D t= −1 ,                  (11) 

                                                           
15 Where Et denotes conditional expectation. 
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where ( )D t d t( ) ( )= diag  is a diagonal matrix such that the vector of non positive 

eigenvalues d t( )  follows a K − dimensional jump-diffusion process17,18. The 

transition probabilities may be computed as : 

 

q t T d t E d s ds i KiK ij jK t jt

T

j

K

( , ) ( ) ~ exp ( ) ,= ⎡
⎣⎢

⎤
⎦⎥
−⎛

⎝⎜
⎞
⎠⎟ ≤ ≤ −∫∑

=

−

σ σ 1 1 1
1

1

  .            (12) 

  

The short spreads take the form : 

 

( ) ( ) ( ) ( )1 1
1

1

− = −
=

−

∑δ λ δ σ σiK ij jK j
j

K

t d t~ .                (13) 

  

A simple modelling that includes the scalar case arises when d t( ) can be expressed in 

linear form, i.e. d t Mf t( ) ( )= , where M is a K N×  matrix and f t( )  is a 

N − dimensional diffusion process with orthogonal components. The short spreads 

then appear to be linear combinations of orthogonal factors. 

 

We can  consider (as an example) that the factors ( )f t follow some multidimensional 

Ornstein-Uhlenbeck process, i.e. ( )df t A B f t dt CdWt( ) ( )= − + , where A C,  are 

diagonal N N× square matrices and B a N - dimensional vector, the expressions 

[ ]E d s dst jt

T
exp ( )∫  can be computed as exp ( , ) ( , ) ( )B t T A t T f tj jn n

n

N

+
⎡

⎣
⎢

⎤

⎦
⎥

=
∑

1
where 

A Bjn j, are deterministic functions. 

                                                                                                                                                                      
16 We know that the Laplace transform is defined on an interval including 0 ; Thus the ( )Re d j  must 

belong to this interval for the q t TiK ( , )  to be well defined. 
17 This model also appears in Lando (1998) ; in Duffie-Singleton (1998), the K K− × −1 1 matrix 
governing the transitions between credit ratings (excluding default) is constant. The last column of 
( )Λ t governing transition to default can be made more general. Since the eigenvectors of  ( )Λ t are 

no more constant, numerical simulation of transition times is required to get the default probabilities. 
18 An interesting special case arises when D t( ) is deterministic. We then get a non homogeneous 
Markov chain that can be seen as an extension of the non homogeneous Poisson model that is often 
used to calibrate separately risky yield curves, and as a tractable modification of the non homogeneous 
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It is important to note that analytical tractability comes from the explicit computation 

of the terms E d s dst jt

T
exp ( )∫⎡
⎣⎢

⎤
⎦⎥

. This question is addressed for instance in Duffie-Kan 

(1996), and thus we can allow for jumps in the d t( )  and keep exponential affine form 

for the previous quantities. In that case, the prices of zero-coupon bonds appear as 

linear combinations of exponential affine terms. Practically, it means that we can 

handle jumps in credit spreads, even if the credit rating remains unchanged. 

 

The knowledge of the matrix Q t T( , ) allows a direct price computation at time t of 

contracts contingent of the realised credit rating at time T. Let us denote by α j  the 

amount received at time T if we are in credit class j and by α  the vector of  α j . The 

pricing formula19 of such a contract is given by ( ) ( )B t T Q t T, , α . If α j =1 when 

j j= 0  and 0 otherwise, we have a contingent zero-coupon. These form a basis of 

payoffs. Another basis is made of the eigenvectors of Q t T( , ) , i .e. the columns of Σ . 

These former payoffs share the property such that the associated pricing formula is 

proportional to the payoff itself whatever the payment dates. 

 

The model degenerates when there are only two states in the Markov chain (default 

and no default) to the Longstaff and Schwartz (1995) or Duffie and Kan (1996) type 

models where the credit spread follows a diffusion or a jump-diffusion model. 

 

Let us remark that the model can quickly be expanded in various ways while keeping 

analytical tractability. One way is to consider both stochastic recovery rates δ ( )t  in 

the form of Duffie and Singleton (1997) and correlation between  riskless interest 

rates and default events. We can start from the general representation of the price of 

the risky bond ( )ν t T,  as : 

( ) ( )ν λ δt T E r s s s dst
t

T

, exp ( ) ( )( ( )= − + −
⎡

⎣
⎢

⎤

⎦
⎥∫ 1  

                                                                                                                                                                      
Markov chain of JLT, especially when there are few credit classes and a relatively large number of 
bonds. 
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where r s( ) is the riskless short rate and λ( )s is the hazard rate. We can make r s( ) , 

λ( )s , δ ( )s  depend on some continuous state variables f t( )  and λ( )s , δ ( )s of the 

current credit rating i. Let us denote by ( )Ξ t  the matrix whose general term is 

( ) ( ) ( ) ( )( )Ξij ij it r f t f t f t= + −( ) ( ) ( )λ δ1  and let us assume that this matrix can 

diagonalised with constant eigenvectors, ( )Ξ Σ Σt D t= −( ) 1 . Then we can readily apply 

the previous computations of the default probabilities and get explicit pricing 

formulas for the risky bonds20. It can be noticed that R s r s s s( ) ( ) ( )( ( ))= + −λ δ1 is the 

risky short rate and that one may go for a direct specification of this rate (as the last 

column of matrix ( )Ξ t ) without regarding it as the sum of a riskless rate plus some 

spread21. Such a modelling might also be used for the riskless short rate, for instance 

in order to take into account switching regimes in the monetary policy. 

 

3.  Model implementation. 

 

The simplest approaches to the pricing of structures involving credit risk makes few 

modelling assumptions, but needs a lot of input market prices. More structured 

approaches based on the dynamics of credit ratings can be implemented even when 

the observed market provides only sparse data. 

 

We first present the calibration of the model with constant generator, from observed 

risky bond prices of different maturities and credit ratings, and from an historical 

                                                                                                                                                                      
19 By pricing formula, we mean the price expressed as a function of the current state. See Darolles and 
Laurent (1998) for a more systematic use of eigenvectors of pricing operators. 
20 Another way to deal with correlated interest rates and credit risk is to make use of the forward 
measure. The price of the risky bond can be written as if interest rates where not correlated with 
default risk, provided that the expectations are taken under the forward measure QT : 

( )ν λ δ( , ) ( , ) exp ( ) ( )t T B t T E s s dst
Q

t

T
T= − −
⎡

⎣
⎢

⎤

⎦
⎥∫ 1 . Now, let us consider the matrix ( )Ψ t  whose 

general term is ( ) ( )Ψij ij it t t= −λ δ( ) ( )1 . If this matrix can be written with constant eigenvectors, 

( )Ψ Σ Σt D t= −( ) 1  (this property is purely algebraic and does not depend on the choice of measure, it 
is only the distribution of D t( ) that changes), we can again obtain explicit computations of the risky 
bond prices. Lando (1998) proposes a third way to handle correlation between riskless rates and 
default. He conditions first on the paths of the state variables and then takes the expectation of the 
explicit expression obtained. 
21 This can lead to some simplification and may be the only sensible approach in markets where 
government bonds are illiquid and risky. 
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generator matrix. We then examine the implementation issues when the generator of 

the Markov chain is itself stochastic. 

 

3.1 Model with constant generator 

 

For risky bond pricing, the effective use of the model requires the estimation of 

default probabilities. We want the model to be both able to match observed market 

prices of risky bonds and be similar to historical data on transition probabilities 

provided by ratings agencies. We will denote by Λhist a generator estimated from 

historical data22 (see Table 1a). The next step is a calibration procedure to estimate a 

generator matrix Λ. In order to perform a stable calibration we use both current bond 

prices and historical transition probabilities Λhist.  

 

The price of a bond { }j j J, , , ∈ 1  in credit class i can be expressed as : 

 

P F h v hj
i

j
i i

h

T

, ( ) ( ) ( , )model Λ Λ=
=
∑

1
,                (14) 

 

where ( )F hj
i  is the coupon of bond j in state i at date h and ( )v hi ,Λ  is the price of a 

zero coupon bond in state i with maturity h. 

 

A least squares optimisation can be used to calibrate the model as shown, 

 

( ) ( )
min ( )~ , ,

,Λ
ΛP Pj

i
j
i

j

J

i

k
ij ij

hist

iji j

k

model market− +
−⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎫
⎬
⎪

⎭⎪

⎧

⎨
⎪

⎩
⎪ == =

∑∑ ∑
2

11

2

1

λ λ
β

23,             (15) 

 
                                                           
22 A historical generator matrix can be easily computed from a historical transition matrix. The rating 
agencies do not reproduce historical generator matrices directly. 
23 Once the matrix of eigenvectors Σ is fixed, the eigenvalues dk must satisfy the following linear 

constraints, λ σ σij ik
k

K

kj kd i j i j= ≥ ∀ ≠
=

−

∑
1

1

0~ , , ,  . The extra constraints  take the same form : 

λ λij i j
j kj k

i k k i≤ ∀ ≠ ++
≥≥
∑∑ 1 1, ,,      . Thus, the eigenvalues must belong to a closed convex cone. 
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where we minimise the deviation between the model and market prices while keeping 

the generator matrix close to historical data. Normally the calibrated Λ is not very 

different form the historical Λhist. This is a desirable property of the calibration 

procedure because it implies risk premia close to one. The term 
( )λ λ

β
ij ij

hist

iji j

k −⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟=

∑
2

1,
can 

be interpreted as a the square of a norm distance24 between the risk-neutral measure 

Λ and an a priori measure Λhist. Thus this approach is related to the Bayesian 

approach recently introduced for model calibration.  

 

This has nice consequences when we consider the spectra of the estimated generator 

Λ . In the general case the spectra of Λ  may not be real (since Λ is not a symmetric 

matrix). However, it happens that the historical generator provided by Moody’s has a 

real spectra with disjoint eigenvalues. It can be shown that there is exists a 

neighbourhood (for instance in the sense of the norm distance introduced before) such 

that all matrices in it have real and distinct eigenvalues25. 

 

Other kinds of matching procedures may be used ; one of particular interest consists 

in looking for : 

( )min ( )~ , ,Λ
Λ ΛΛ Λ ΛP Pj

i
j
i

j

J

i

k
hist hist

model market− + −
⎫
⎬
⎭

⎧
⎨
⎪

⎩⎪ ==
∑∑

2

11

2
α , 

where α is a positive number. A standard result in matrix algebra indeed states that 

two matrices with distinct eigenvalues commute if and only if they share the same 

eigenvectors. Thus our penalty term does not constrain the eigenvalues of the 

estimated matrix, while keeping the eigenvectors close to their historical counterparts. 

One may use matrix norms that lead to fast numerical computations. 

 

                                                           
24 Of Hilbert-Schmidt type. 
25 The reason for this is the continuity of the roots of the characteristic polynomial with respect to its 
coefficients plus the fact that complex roots are conjugate. In other words the space of matrices with 
distinct real eigenvalues is an open subspace of the space of matrices. This guarantees in turn that our 
estimated generators, that are close to the historical one, have real eigenvalues. Now, why Moody’s 
generator has real eigenvalues ? It is very close to a diagonal matrix since the most likely event by far 
is to remain in the same rating. Moreover, the eigenvalues are likely to be distinct, since the space of 
real matrices with multiple eigenvalues has a zero-measure. From before, it is not surprising that 
Moody’s generator has real and distinct eigenvalues. 
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If the number of bonds is relatively large compared to the number of parameters then 

the bond prices will probably not be matched exactly. However, since the number of 

independent parameters26 in the generator matrix is (K-1)2, it is likely that the number 

of bonds is considerably smaller than this. This means that there may be more than 

one solution to the calibration. By using historical data, our procedure will give a 

solution that is close to the historical one. 

 

The model has been calibrated on data from the US telecommunications industry 

covering all ratings from CCC to AAA. Table 1a and 1b show the historical generator 

matrix estimated from Moody’s data and the generator matrix calibrated to the market 

prices. 

 

Let us emphasise that we have been able to use all prices of bonds, including bonds 

with different ratings, to estimate jointly the risky term structures.27 We are also 

guaranteed that a more risky curve will be above a less risky curve28. It is even 

possible, due to the richness of the default dynamics, to estimate risky curves with no 

or very few price observations within this risky class (of course, such a result should 

be treated with caution). Although 49 parameters may seem like a lot, quite a large 

number of bonds have been used in the estimation procedure and we are now able to 

derive thousands of default probabilities (corresponding to different current ratings 

and different time horizons). 

                                                           
26 This is due to the fact that the bottom row is identically zero and each row sums to zero. 
27 Unlike the usual stripping procedure. 

28 Provided that λ λij i j
j kj k

i k k i≤ ∀ ≠ ++
≥≥
∑∑ 1 1, ,,       (see JLT or Anderson (1991)) and that the 

recovery rate does not depend on credit rating prior to default. 
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Table 2a. Historical generator matrix based on Moody’s data. 

 

 AAA AA A BBB BB B CCC D

AAA -0.0683 0.0615 0.0066 0.0000 0.0002 0.0000 0.0000 0.0000

AA 0.0169 -0.0993 0.0784 0.0027 0.0009 0.0001 0.0000 0.0002

A 0.0007 0.0237 -0.0786 0.0481 0.0047 0.0012 0.0001 0.0000

BBB 0.0005 0.0028 0.0585 -0.1224 0.0506 0.0075 0.0008 0.0016

BB 0.0002 0.0005 0.0045 0.0553 -0.1403 0.0633 0.0026 0.0138

B 0.0000 0.0004 0.0014 0.0059 0.0691 -0.1717 0.0208 0.0741

CCC 0.0000 0.0000 0.0000 0.0074 0.0245 0.0488 -0.3683 0.2876

DEF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

 

Table 2b. Calibrated generator matrix. 

 

 AAA AA A BBB BB B CCC D

AAA -0.1322 0.1265 0.0033 0.0012 0.0005 0.0004 0.0002 ≈10-5

AA 0.0507 -0.1267 0.0588 0.0141 0.0002 0.0023 0.0002 0.0004

A 0.0046 0.0385 -0.0825 0.0281 0.0061 0.0033 0.0005 0.0015

BBB 0.0006 0.0103 0.0323 -0.0998 0.0437 0.0101 0.0009 0.0019

BB 0.0006 0.0023 0.0088 0.0663 -0.2093 0.0817 0.0232 0.0264

B 0.0006 0.0020 0.0041 0.0068 0.0294 -0.2473 0.1768 0.0277

CCC 0.0005 0.0001 0.0017 0.0111 0.0294 0.0188 -0.1632 0.1016

D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

 

The estimated credit spread curves are shown by Figure 3. The crosses show the 

bonds used in the calibration procedure plotted according to the difference between 

the yield corresponding to the market price and the model price. The accuracy of the 

fit is indicated by the fact that all crosses lie on the actual credit spread curves. Figure 

3 illustrates that the model has adequate underlying economic structure in order to 

estimate curves even with few or no data inputs for certain credit classes. 
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Figure 3. Illustration of the credit spreads as predicted by the model calibrated to 

risky bonds issued by US telecommunications companies. 
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Figure 4 represents an estimation of generic credit spread curves for the US industrial 

sector using 73 bonds in total. 

 

Figure 4. Illustration of the credit risky spreads calibrated for the US industrial 

sector. 
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We have also performed the calibration over time for many days of bond data. Figure 

5 provides estimated credit spread curves for AAA and BBB ratings. The period 

includes the Asian crisis. We can see that long-term BBB bonds are very affected by 

the crisis while short-term BBB bonds are not. AAA bonds are almost unaffected, 

even showing a decreasing tendency illustrating a “flight to quality”. This means that 

the sensitivity to some state variables might be opposite reflecting portfolio 

rebalancing between high and low quality bonds. 

 

Figure 5. Evolution of credit spread curves with time for AAA (left) and BBB (right) 

ratings. 
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3.3 Model with stochastic generator. 

 

As we have seen, a model with constant generator is appropriate to strip risky bonds. 

However, it will clearly lead to inappropriate bond option prices or options on credit 

spreads, since spreads are constant unless the credit rating changes. The model with 

stochastic premia better accounts for the dynamics of credit spreads. We will now 

discuss about estimation of the dynamics of the underlying processes, the 

dimensionality required and specification assessment of our modelling assumption. 

 

Firstly, we intend to show that cross-calibration of the dynamics of the underlying 

diffusion processes from only risky bond prices is almost impossible and that some 

bond option prices are required for such a task. 

 

If we consider (as in the example considered before) that the factors ( )f t follow some 

multidimensional Ornstein-Uhlenbeck process, then we obtain the constant generator 

case by letting C B f= =0 0, ( ) .  

 

Let us assume that we try to estimate the unknown parameters, A B C M, , , ,Σ from 

some standard cross calibration on observed bond prices procedure. We may think of 

minimising a least square distance between the theoretical and observed prices. Since 

we get obtain almost perfect calibration with a constant generator, this implies that an 

iterative calibration algorithm starting from the estimated constant generator will not 

move any further.  
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There is not a unique solution to the calibration problem. The parameters A,B,C have 

only some small influence of the shape of the risky yield curves and a rather wide 

range of parameters are likely to fit the risky bond prices. In other words, the 

information in risky bonds is too poor to properly estimate such parameters and extra 

prices more sensitive to the parameters29 would be useful. 

 

On the other hand, it is possible to get very good fit to bond prices for a variety of 

parameters. In particular, the constant generator model can provide good estimates of 

short term spreads (provided that we have included short term bonds in the estimation 

sample). Figure 4 shows that a reasonable range for short-term spreads obtained by a 

smooth model for risky curves is narrow. 

  

The short spreads can be written as ( ) ( )1
1

1

1
−

⎛

⎝
⎜

⎞

⎠
⎟

=

−

=
∑∑δ σ σij jK jn
j

K

n
n

N

m f t~ where mjn  are the 

elements of M and ( )f tn are the components of f t( ) . Figure A plots the dynamics of 

the short spreads.  

 

We know that the dynamics of the short spreads under the historical probability may 

be different from what it is under its risk-neutral counterpart. But since there are 

equivalent and if we assume second order stationarity of f t( )  under the historical 

probability, we can get an idea of the number of factors required (provided it is less 

than K) through a simple PCA. The first three factors explain 99 % of the total 

variance and their dynamics is presented in Figure B. 

 

At last, we can try to check the key assumption of the constancy of the eigenvectors. 

From the previous cross-calibration procedure, we have obtained day per day 

estimates of the generator matrix ( )Λ t  and we want to look for the constancy of the 

eigenvectors. Thus, we compute the quantities : 

                                                           
29 Bond options for instance are likely to be very sensitive to the volatility parameters C since they 
create most of short term volatility. 
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 ( )r t t
t t t t

t t
( ), ( ' )

( ) ( ' ) ( ' ) ( )

( ) ( ' )
Λ Λ

Λ Λ Λ Λ

Λ Λ
=

−

×
30.  

This quantities are equal to zero if ( )Λ t  and ( )'Λ t  have the same eigenvectors, 

regardless of their eigenvalues and are always smaller than 2. Figure C shows that this 

indicator is small (less than 0.08 whatever t and t’) suggesting that the eigenvectors 

vary only by a small amount over time. 
 

                                                           
30 Λ  is taken as the spectral norm of the matrixΛ  which corresponds to the uniform norm of the 

linear operator associated to Λ . It is equal to the square root of the largest eigenvalue of tΛΛ . 
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4. Conclusions 
 

We have described a general model for the evolution of credit spreads that may 

account for the memory observed in the changes in credit ratings.  The model 

involves a jump component for sudden changes in the credit spread that result from a 

change in the credit rating of the issuer or default and a jump-diffusion component 

arising from the variability of the eigenvalues of the generator. Due to the analytical 

expressions of credit spreads, it is rather easy to implement the model. We have 

explored the dimension required to get an appropriate fit to the dynamics of credit 

spreads. We have also provided empirical evidence justifying the main modelling 

assumption, i.e. the constancy of the eigenvectors of the generator.  

This model allows us to price default swaps with arbitrary payment dates, asset swaps 

taking into account credit risk and more complex kinds of derivative structures, such 

as payments contingent on a change of rating. 
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Figure A : Estimated short term spread (The x-axis is in days).  
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Figure B : Dynamics of the principal components 
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The x-axis is in days ; The PCA has been performed on the levels on the eigenvalues 

assuming second order stationarity. 
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Figure C : Analysis of the constancy of the eigenvectors hypothesis 

 


