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Multi-state models for event history analysis
Per Kragh Andersen Department of Biostatistics, University of Copenhagen, Denmark and
Danish Epidemiology Science Centre, Copenhagen, Denmark
Niels Keiding Department of Biostatistics, University of Copenhagen, Denmark

An introduction to event history analysis via multi-state models is given. Examples include the two-state
model for survival analysis, the competing risks and illness–death models, and models for bone marrow
transplantation. Statistical model speci�cation via transition intensities and likelihood inference is
introduced. Consequences of observational patterns are discussed, and a real example concerning mortality
and bleeding episodes in a liver cirrhosis trial is discussed.

1 Introduction

Event history analysis deals with data obtained by observing individuals over time,
focusing on events occurring for the individuals. Thus, typical outcome data consist of
times of occurrence of events and the types of events that occur. Frequently, an event
may be considered as a transition from one state to another and, therefore, multi-state
models will often provide a relevant modeling framework for event history data. Multi-
state models are discussed from several points of view in the books by Andersen et al.,1
Blossfeld and Rohwer,2 Courgeau and Lelièvre3 and Hougaard4 (Chapters 5 and 6);
see Hougaard5 and Commenges6 for recent survey papers.

The purpose of the present article is to provide an overview of the topic and to serve
as an introduction to the other articles in this issue.

2 Survival data

The most simple multi-state model is the two-state model for survival data with one
transient state ‘0: alive’ and one absorbing state ‘1: dead’ (see Figure 1). In general, an
absorbing state is a state from which further transitions cannot occur while a transient
state is a state that is not absorbing. The observation for a given individual will here in
the most simple form consist of a random variable, say T, representing the time from a
given origin (time 0) to the occurrence of the event ‘death’. The distribution of T may be
characterized by the probability distribution function F…t† ˆ Prob…T µ t† or, equiva-
lently, by the survival distribution function S…t† ˆ 1 ¡ F…t† ˆ Prob…T > t†. It is seen
that S…t† and F…t†, respectively, correspond to the probabilities of being in state 0 or 1 at
time t. If every individual is assumed to be in state 0 at time 0 then F…t† is also the
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transition probability from state 0 to state 1 for the time interval from 0 to t. In
continuous time the distribution of T may also be characterized by the hazard rate
function

¬…t† ˆ ¡d log S…t†=dt ˆ lim
¢t!0

Prob…T µ t ‡ ¢tjT ¶ t†
¢t

that is,

S…t† ˆ exp ¡
…t

0
¬…u†du

³ ´

Thus, ¬…¢† is the transition intensity from state 0 to state 1, i.e., the instantaneous
probability per time unit of going from state 0 to state 1.

In general, event history analysis deals with inference for transition intensities and
transition probabilities in multi-state models. This includes estimation and hypothesis
tests for these quantities and analysis of regression models where these quantities are
related to (possibly time-dependent) explanatory variables observed for the individuals
under study. Most frequently, multi-state models are de�ned by their transition
intensities from which transition probabilities may or may not be derived depending
on the modeling assumptions. This latter activity is sometimes denoted survival
synthesis.

A typical feature of event history analysis is the inability to observe complete event
histories, for example by the end of the observation period all individuals under study
may not have reached an absorbing state. In survival analysis this would correspond to
individuals still being alive by the end of the study and this kind of incomplete
observation is known as right-censoring. Furthermore, all individuals may not have
been observed from the same time origin. This kind of incomplete observation where
individuals are only observed conditionally on not having reached an absorbing state by
the time of initiation of the study is known as left-truncation. Restricting attention to
right-censoring a crucial problem is whether the available incomplete data enables one
to make valid inference on parameters in the multi-state model for the complete data.
The condition for this is known as independent right-censoring and the interpretation is
that a sample observed after independent right-censoring is ‘representative’ for the
population without censoring. This means that individuals who are censored should
have neither lower nor higher risk of future events than individuals who are not
censored, see for example, Andersen et al.,1 Chapter III and Kalb�eisch and Prentice,
p. 120.7

Figure 1 The two-state model for survival data.
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3 Multi-state models

In this section we will present a number of different multi-state models. We will begin
with a few heuristic de�nitions, which may all be made rigorous within the framework
of so-called marked point processes.1 ,8

A multi-state process is a stochastic process …X…t†; t 2 T † with a �nite state space
S ˆ f1; . . . ; pgand with right-continuous sample paths: X…t‡† ˆ X…t†. Here, T ˆ ‰0; ½Š
or ‰0; ½† with ½ µ ‡ 1. The process has initial distribution ºh…0† ˆ Prob…X…0† ˆ h†;
h 2 S. A multi-state process X…¢† generates a history X t (a ¼-algebra) consisting of the
observation of the process in the interval ‰0; tŠ. Relative to this history we may de�ne
transition probabilities by:

Phj…s; t† ˆ Prob…X…t† ˆ jjX…s† ˆ h; X s¡ †

for h; j 2 S; s; t 2 T ; s µ t and transition intensities by the derivatives

¬hj…t† ˆ lim
¢t!0

Phj…t; t ‡ ¢t†
¢t

which we shall assume exist. Some transition intensities may be 0 for all t. Graphically,
multi-state models may be illustra ted using diagrams with boxes representing the states
and with arrows between the states representing the possible transitions, i.e., the non-
zero transition intensities. 1 ,9 A state h 2 S is absorbing if for all t 2 T ; j 2 S;
j 6ˆ h; ¬hj…t† ˆ 0; otherwise h is transient. The state probabilities ºh…t† ˆ Prob
…X…t† ˆ h† are given by:

ºh…t† ˆ
X

j2S
º j…0†Pjh…0; t†

Notice that the Phj…¢; ¢† and thereby the ¬hj…¢† depend on both the probability measure
Prob and on the history, though this dependence has been suppressed in the notation. If
¬hj…t† only depends on the history via the state h ˆ X…t† occupied at t then the process is
Markovian. Sometimes one is interested in considering an extended history which also
includes observed covariates. If only time-�xed covariates Z are studied then the
observed history is F t ˆ X t _ Z0 whereas time-dependent covariates Z…t† give rise to
an extended history of the form F t ˆ X t _ Zt where in both cases Zt is the history
generated by the covariates in ‰0; tŠ. (Here, for ¼-algebras A and B, A _ B is the
smallest ¼-algebra containing both A and B). We shall here focus on the purely
endogeneous case where Zt » X t _ Z0 , i.e., the covariates are either all time-�xed or
the random development of the time-dependent covariates is fully speci�ed by the
history of the process itself (see, however, Section 5.4 for cases with time-dependent
covariates that are not endogeneous).
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3.1 The two-state model for survival data
This model, illustrated in Figure 1, has p ˆ 2 states and only one possible transition

from state 0 to 1. The corresponding transition intensity ¬01…t† is given by the hazard
rate function ¬…t†, while ¬10…t† ˆ 0 for all t, that is, state 1 is absorbing. The initial
distribution is degenerate in 0: º0…0† ˆ 1 and the process is Markovian. Covariates
may be entered into the model using a regression model for ¬…¢†. Examples of this simple
model are, of course, numerous and will not be considered here.

3.2 The competing risks model
This model has one transient state ‘0: alive’ and a number, k, of absorbing states,

state h; h ˆ 1; . . . ; k corresponding to ‘death from cause h’. Thus, there are p ˆ k ‡ 1
states. The model is illustra ted for k ˆ 2 in Figure 2.

The transition intensities ¬0h…t† for h ˆ 1; . . . ; k are given by the cause-speci�c hazard
functions:

¬h…t† ˆ lim
¢t!0

Prob…Dead from cause h by t ‡ ¢tjT ¶ t†
¢t

where T is the survival time. The initia l distribution is degenerate in 0, the only transient
state of the model, i.e., ¬hj…t† ˆ 0 for all h 6ˆ 0 and all j. The transition probabilities are
given by the survival function

P00…0; t† ˆ S…t† ˆ Prob…T > t† ˆ exp ¡
…t

0

Xk

hˆ1

¬h…u†du

Á !

Figure 2 Competing risks model for mortality from two causes.
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and the cumulative incidence functions

P0h…0; t† ˆ
…t

0
S…u¡†¬h…u†du; h ˆ 1; . . . ; k

Like the simple two-state model …k ˆ 1† the competing risks model is Markovian and
covariates may be included into the model via regression models for the cause-speci�c
hazards. This model, with examples, will be studied in detail in the companion paper.1 0

3.3 The illness–death model
This model is illustrated in Figure 3. Often the time t is the age of the individual, and

usually individuals will be assumed to be in state 0 at t ˆ 0. However, individuals will
not always be observed from t ˆ 0 as shall be further discussed in Sections 4 and 5. The
mortality ¬12…t† of the diseased (the lethality) may sometimes depend on duration d
since entry to state 1 in addition to the dependence on ‘age’ t. (Notice that, despite the
notation, ¬12…t† then depends on the random time of the most recent transition into 1).
If ¬12…t† does not depend on d the process is Markovian, otherwise it is a semi-Markov
process, an example of a purely endogeneous process.

In Figure 3 we have indicated the possibility of reversibility : the transition back from
state 1 to 0 is possible. It will turn out that the simple unidirectional model in Figure 4 is
rather easier to analyse statistically. Thus the transition probabilities in this model have
simple explicit expressions:

P00…s; t† ˆ exp ¡
… t

s
…¬02…u† ‡ ¬01…u††du

³ ´

and (in the Markovian case)

P01…s; t† ˆ
… t

s
P00…s; u¡†¬01…u†P11…u; t†du

³ ´
…1†

Figure 3 The illness–death or disability model.
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where

P11…s; t† ˆ exp ¡
…t

s
¬12…u†du

³ ´

More generally, the lethality ¬12…¢† may depend on both age and duration. If we then
de�ne

¬12…t; d† ˆ lim
¢t!0

Prob…X…t ‡ ¢t† ˆ 2jX…t† ˆ 1; 0 ! 1 transition at t ¡ d†
¢t

;

P11…u; t† in (1) should be replaced by exp…¡
„ t
u ¬12…s; s ¡ u†ds†. The illness–death

model is one of the most important multi-state models and it was discussed in early
papers by Fix and Neyman1 1 and Sverdrup.1 2

An example of the application of such a model is provided by the PROVA study
group.1 3 In brief, PROVA was a Danish multicenter clinical trial with the purpose of
evaluating the effect of propranolol and=or sclerotherapy versus no treatment on
bleeding and survival in patients with liver cirrhosis. Eligible patients included those
in whom cirrhosis was histologically veri�ed and where endoscopy had shown
oesophageal varices, but who had not yet experienced a transfusion-requiring bleeding
from the varices. Between 1985 and 1989, 286 patients were randomized as summar-
ized in Table 1, which also shows the number of events observed before 1 January
1990, i.e., the observed numbers of transitions in the multi-state model. We shall return
to this example in Section 5.5 below.

Figure 4 Unidirectional illness–death model.

Table 1 Treatment allocation and number of end-points observed in the PROVA trial

Treatment group Patients Bleedings
0 ! 1

Deaths without
bleeding 0 ! 2

Deaths after
variceal bleeding 1 ! 2

Sclerotherapy only 73 13 13 5
Propranolol only 68 12 5 6
Both treatments 73 12 20 10
No treatment (control) 72 13 8 8

Total 286 50 46 29
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3.4 Repeated events
If interest focuses on repeated occurrences of a given event, for example, hospital

admissions, childbirths, infections etc., then a model as illustra ted in Figure 5 (where
transitions to an absorbing ‘Dead’ state have been omitted) may be considered. In
applications of such a model an interesting functional is often the expected number of
occurrences of the event over the time interval ‰0; tŠ.1 4

3.5 Interaction between life history events
This Markov model, illustra ted in Figure 6, describes the joint behaviour of two life

events A and B; if ¬0B ˆ ¬A;AB but ¬0A 6ˆ ¬B;AB, A is called locally dependent on B but B
is not locally dependent on A. The temporal order of events allows for this asymmetric
concept of dependence, which yields more information for drawing causal inference
than the standard symmetric association concepts from cross-sectional studies. Similar
duration dependance as in the illness–death process might be added. A model of this
type has been discussed for a study of interaction between menopause and a certain
chronic skin disease.2 ,3 ,1 5

3.6 Bone marrow transplantation
A model combining most of the above features has been studied in detail as

describing some of the possible states of a leukaemia patient following bone marrow
transplantation (see Figure 7).1 6 ,1 7

Patients have been given various kinds of therapy to temporarily keep the disease
down; they are said to be in remission. In our context these patients are followed from
bone marrow transplantation …t ˆ 0†, initially considered in state 0. Two different types

Figure 5 A model for repeated events.

Figure 6 Interaction between life history events.
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of complications are considered: acute graft-versus-host disease (A), chronic graft-
versus-host disease (C), and a special state AC is de�ned for those patients acquiring
both A and C. Patients are followed until relapse of the leukaemia (R) or death ( D)
while still in remission. Relapsed patients are not followed further in this context. If all
transition rates depend only on time t since transplantation, we have again a Markov
process, but various kinds of duration dependence (semi-Markov process models) may
also be relevant. A model of this type will be discussed in more detail in the companion
paper by Klein and Shu.1 8

4 Counting process representation, likelihood

Assume that multi-state processes Xi…t† such as those described in Section 3 are
observed over intervals ‰0; ½iŠ for individuals i ˆ 1; . . . ; n. Assume �rst that ½i is a
�xed (i.e., non-random) time of termination of observation for individual i. Random
right-censoring (Section 2) and delayed entry are treated below. Since Xi…t† is
constant between transitions, it is equivalent to record Xi…0† and the counting processes

Ni
hj…t† ˆ # …direct transitions h ! j in ‰0; tŠ for i†;

described by the times T ik
hj of these transitions, where

0 < T i1
hj < ¢ ¢ ¢ < T

iN i
hj…½i†

hj µ ½i

Let Nhj…t† ˆ
Pn

iˆ1 Ni
hj…t†. It will also be useful to introduce Yi

h…t† ˆ IfXi…t¡† ˆ hg and

Yh…t† ˆ # …individuals ‘at risk’ in state h at time t¡† ˆ
Xn

iˆ1

Yi
h…t†

Note that, for t > ½i, Ni
hj…t† ˆ Ni

hj…½i† and Yi
h…t† ˆ 0; these can thus be considered to be

de�ned on …0; 1†.

Figure 7 A model for events following bone marrow transplantation: acute and chronic graft-versus-host
disease, relapse and death.
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For individual i denote the initia l distribution …ºi
h…0††, the density of time-�xed

covariates f …Z i†, and the transition intensities ¬i
hj…t†, then the likelihood is1

Yn

iˆ1

f …Zi†ºXi…0†
Y

h 6ˆj

YNi
hj

…½i†

kˆ1

¬i
hj…T

ik
hj†exp ¡

…½i

0
¬i

hj…t†Y
i
h…t† dt

³ ´
…2†

It is very common to condition on Z i and on the initial values Xi…0† (the dis-
tribution of which may often be degenerate anyway), and consequently omit the
factors f …Z i†ºXi…0† from the likelihood. We shall do so without further comment in
the sequel.

Recall from above that the notation ¬i
hj…t† represents possible dependence of the

transition intensity on the whole history X i
t of the process. Thus, ¬i

hj…t† may well contain
covariates and other random elements, as already exempli�ed.

Two patterns of incomplete observations are particularly easily tractable, because
they lead to only minor modi�cation of this likelihood: delayed entry, where individual
i enters at some time Vi; and right-censoring where nothing is known about i after some
time Ui. Both Vi and Ui may be random although either only dependent on the previous
history of the process or independent of the process (see for example Andersen et al.,1
Chapter 3, for precise speci�cation of this and further discussion). The reason for
the particular tractability of these mechanisms is that the ‘at risk’ indicator
Yi

h…t† ˆ IfXi…t¡† ˆ hg in the likelihood just needs to be amended to

Yi
h…t† ˆ IfXi…t¡† ˆ h; Vi < t µ Uig:

5 Statistical model speci� cation

As indicated in the introduction the �rst purpose of event history analysis is to gain
insight into the dynamics of the processes by quantifying transition intensities and
perhaps assessing their dependence on covariates, possibly using various strati�cations.
Sometimes additional functionals are useful, particularly various types of transition
probabilities obtained by integrating certain functions of the transition intensities. A
�nal purpose may be prediction, both as illustra tion of the dynamics and for concrete
practical purposes.

5.1 Markov processes
The most important class of models is the (continuous time) Markov process X…t† on

the �nite state space S ˆ f1; . . . ; pg where the dependence of ¬i
hj…t† on the history X t

introduced at the beginning of Section 3 is only via the current state of X…t† (and
possibly via time-�xed covariates). Statistical models are usually obtained by specifying
the class of transition intensities …¬i

hj…t†† for each individual i.
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5.1.1 Constant and piecewise constant transition intensities
The simplest class of models is obtained by keeping the transition rates constant:

¬i
hj…t† ˆ ¬i

hj. Piecewise constant intensities

¬i
hj…t† ˆ ¬

i…l†
hj ; thj

l¡1 < t µ thj
l ; all t0 ˆ 0

form the next step up and this choice is of widespread use, particularly in large
studies in econometrics, epidemiology, sociology and demography.1 ,9 ,1 9 ,2 0

Assume �rst that all individuals have the same transition intensities, ¬
i…l†
hj ˆ ¬

…l†
hj . The

likelihood (2) then simpli�es to
Y

l

Y

h 6ˆj

…¬…l†
hj †

N…l†
hj e¡¬

…l†
hj

S…l†
h

where N…l†
hj ˆ Nhj…t

hj
l † ¡ Nhj…t

hj
l¡1† and

S…l†
h ˆ

X

i

…thj
l

thj
l¡1

Yi
h…t† dt

Since this likelihood looks like one resulting from observing N…l†
hj events in a Poisson

process with intensity ¬
…l†
hj observed over the interval …0; S…l†

h †, except that here S…l†
h

is random, this likelihood, and even the model, are often associated with Poisson’s
name. Maximum likelihood estimation is elementary, yielding

¬̂¬
…l†
hj ˆ

N…l†
hj

S…l†
h

the classica l occurrence=exposure rate. Asymptotic inference may be obtained from the
observed information

¡D2 log L ˆ
N…l†

hj

…¬…l†
hj †

2

yielding variance estimates

Var…¬̂¬…l†
hj † ¹

…¬…l†
hj †

2

N…l†
hj

¹
N…l†

hj

…S…l†
h †2

and all estimators asymptotically independent.
Transition probabilities for the constant and piecewise constant Markov process

models are explicit functions of the transition intensities, 2 1 allowing direct ‘plug-in’
maximum likelihood estimation, as well as calculation of standard error estimates via
the delta method.
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5.1.2 Other parametric models for the transition intensities.
Although the piecewise constant model is often suf�cient to describe the dependence

of intensities on time, other possibilities exist. Certain mathematical functions of time
may generate the model, such as the Gompertz–Makeham model for mortality

¬…t† ˆ ¬ ‡ ­ ® t

but except for mortality studies in actuarial and some demographic contexts such
parametric models are little used. One reason for this may be the powerful development
of methodology for ‘nonparametric’ statistica l inference, where ¬hj…t† is left unspeci�ed.

5.1.3 Freely varying (‘nonparametric’) transition intensities.
Assume �rst that the transition intensities are the same for all individuals but that

they are allowed to vary freely with time: ¬i
hj…t† ˆ ¬hj…t†. Statistical inference is then

conveniently phrased in terms of the counting process approach pioneered by
Aalen2 2 ,2 3 (see Andersen et al.1 for a detailed exposition). Estimators (which may be
given a nonparametric maximum likelihood interpretation) of the integrated intensities

Ahj…t† ˆ
…t

0
¬hj…u† du

are obtained as the Nelson–Aalen estimators

ÂAhj…t† ˆ
…t

0

Jh…u†
Yh…u†

dNhj…u† ˆ
X

i

X

k:0<T ik
hj<t

1
Yh…T ik

hj†
…3†

Jh…u† ˆ IfYh…u† > 0g, with variance estimators

¼̂¼2…ÂAhj…t†† ˆ
…t

0

Jh…u†
Yh…u†2 dNhj…u† ˆ

X

i

X

k:0<T ik
hj<t

1

Yh…T ik
hj†

2

An elaborate mathematical theory based on stochastic integrals and martingales is
available to study exact and asymptotic properties of these estimators.

When estimates are desired of the transition intensities ¬hj…t† themselves rather than
their integrals, smoothing techniques are necessary.1

An important feature of the nonparametric approach is its elegant generalization,2 4

to estimating transition probabilities . The basic tool is the (matrix) product integral. Let
I be the identity matrix and G a matrix-valued function. The corresponding product
integral is de�ned as

¦t
0…I ‡ G…ds†† ˆ lim

max jt¸¡t¸¡1 j!0

Y
…I ‡ G…t¸† ¡ G…t¸¡1††
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where 0 ˆ t0 < t1 < ¢ ¢ ¢ < tn ˆ t is a partition of ‰0; tŠ. In particular, if G is continuous
and scalar

¦t
0…1 ‡ G…ds†† ˆ eG…t†¡G…0†

and if G is a scalar step function

¦t
0…1 ‡ G…ds†† ˆ

YK

kˆ1

…1 ‡ ¢G…t…k†††

where t…0† ˆ 0 and 0 < t…1† < ¢ ¢ ¢ < t…K† µ t are the jump times of G and

¢G…t…k†† ˆ G…t…k†† ¡ G…t…k¡1††

De�ne ¬hh…t† ˆ ¡
P

j 6ˆh ¬hj…t† and the intensity matrix function A…t† ˆ …¬hj…t††; then the
matrix P…s; t† ˆ …Phj…s; t†† of transition probabilities

Phj…s; t† ˆ Prob…Xi…t† ˆ jjXi…s† ˆ h†

is given by

P…s; t† ˆ ¦t
s…I ‡ A…du††

The Aalen–Johansen estimator of P…s; t† is obtained by plugging the matrix of
Nelson–Aalen estimators …ÂAhj…t†† into the formula:

P̂P…s; t† ˆ ¦t
s…I ‡ ÂA…du††

For the simple two-state model for survival data P̂P00…0; t† reduces to the classical
Kaplan–Meier2 5 estimator ŜS…t† ˆ

Q
Ti µ t…1 ¡ dN01…Ti†=Y0…Ti†† of the survival function

S…t†.
As documented in detail,1 there is a well-developed theory, again based on stochastic

integrals and martingales, about the asymptotic properties of the Aalen–Johansen
estimator.

5.1.4 Markov regression models.
For Markov models with several states, there will often be too little empirical basis

for estimating freely varying transition intensities between all states for all subgroups,
so that more parsimonious regression models are required. The most frequently used
regression models in event history analysis have a multiplicative structure with a
baseline h ! j transition intensity ¬hj0…t†, assumed common for all individuals. For
an individual, i, with time-�xed covariates Z i ˆ …Z im† the transition intensity is then
modelled as

¬i
hj…t† ˆ ¬hj0…t†exp…­ 0

hjZ i† …4†
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where the effect of a covariate Z im is described by factors of proportionality exp…­ hjm†.
In (4) the baseline hazard may be completely unspeci�ed as in the Cox proportional
hazards model for survival data or it may be assumed to be piecewise constant leading
to Poisson regression models.2 6 ,2 7 In both cases, inference may be based on the
likelihood (2), which for the Cox model leads to the so-called Cox’s partial like-
lihood.1 ,2 8 The choice between Cox and Poisson models is frequently a matter of
convenience, though the latter may be advantageous in large studies where a suf�ciency
reduction of data into tables of event counts and person-years within groups of
(categorical) covariates is feasible.1 9 In contrast (Section 5.6) application of the Cox
model requires one data record per individual for each transition.

In (4) the notation suggests that separate baseline hazards and regression coef�cients
are assumed for each possible transition. If that is the case then the parameters may be
estimated by �tting separate Cox or Poisson models for each transition. However, more
parsimonious models may be obtained by assuming some baseline transition intensities
proportional1 6 ,2 9 or by assuming some covariates to have the same effect on several
transitions.1 Also, models where the proportional hazards assumption is relaxed may be
considered. In the Poisson case this is simply an interaction between time and the
covariate giving rise to non-proportionality whereas, for the Cox model, the less
restrictive model is known as the strati�ed Cox model.

In Section 5.6 we describe how such �exible Cox models may be formulated in a way
that shows how standard computer software may be applied.1 In a similar way, Poisson
regression models may be analysed using standard generalized linear models
software.3 0 ,3 1

In Section 5.6 we also brie�y discuss how to perform ‘survival synthesis’, i.e., to
combine the regression estimates for the transition intensities into transition or state
probability estimates.

Another regression model for survival data that readily extends to multi-state models
is Aalen’s non-parametric additive model:1 ,3 2 ,3 3

¬hji…t† ˆ ¬hj0…t† ‡ ­ 0
hj…t†Z i

In this model both the baseline transition intensities ¬hj0…t† and the regression functions
­ hjm…t† are left unspeci�ed and non-parametric estimates may be obtained using a
generalized least squares procedure. Aalen et al. presented a review of this model and its
use in multi-state models.3 4

5.2 Beyond Markov processes
The most important deviations from the Markov property in practice are various

kinds of duration dependence, where transition intensities depend on other time origins
than t ˆ 0, typically the time at entry to the present state. There are two main
approaches to handling these.

As long as transition intensities depend only on one time origin each (for example, all
intensities depend only on duration in the present state), a model for the multistate
process may be obtained by combining independent submodels for each transition
intensity. These may, in turn, be modelled as constant or piecewise constant or by non-
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or semiparametric models, and as long as there is a unidirectional �ow in the model,
transition probabilities are still straightforward explicit functionals, which may be
estimated by plugging in the intensity estimates. Variance calculations may however
become less direct.

More elaborate models will include several time origins (such as age, disease
duration, calendar time), often in piecewise constant intensity (Poisson) models or
semiparametric regression models such as the Cox model.

In the Poisson models the various time variables all enter the models as explanatory
factors in a symmetrical way (and also symmetrical with respect to the other covariates
of the model). However, in Cox models, one of the time variables must be chosen as the
‘baseline’ time variable while the others may be included as time-dependent covariates.
The choice of baseline time variable may be governed by several considerations.
First, the effect of the baseline time variable is given by the unspeci�ed baseline
hazard and, therefore, no regression coef�cients are estimated for this variable. Thus,
a time variable whose effect is of particular interest may not be the obvious choice as the
baseline time variable. On the other hand, if a time variable is suspected to have an
irregular effect which may not be easy to model parametrically via a time-dependent
covariate, then this time variable may conveniently be chosen as the baseline time
variable.1 9

An example concerning mortality of diabetics with or without nephropathy was
studied by Andersen,3 5 cf. the consequences for Danish life insurance premiums.3 6

The heterogeneity between individuals cannot always be accounted for by observed
covariates, and at least some residual heterogeneity will have to be modelled as random
variation. An important class of models here is the multiplicative frailty models,
obtained by postulating random (usually transition-speci�c) frailties W i

hj, and
conditional transition intensities

¬i
hj…tjW i

hj† ˆ ¬0hj…t†W i
hje

­ 0Z i

Such models have been studied mainly for the survival data example, though some
multi-state extensions are available.4

5.3 Hypothetical calculations in multi-state models
As mentioned earlier, there is often considerable interest in studying the consequences

of the estimated transition intensities by calculating summary measures such as
transition probabilities. When a full model has been estimated, this can be done not
only for the model observed ‘in this world’. Rather, the consequences of an assumed (or
�tted) multi-state model may be usefully further illustrated by calculating transition
probabilities in hypothetical models obtained by changing some of the parameters.
An elaborate example of this was given by Keiding et al.1 7 for the bone
marrow transplantation context (see also the companion paper by Klein et al.1 8 ).
Similar calculations have in fact been performed in the competing risks model ever since
the �rst discussion by Bernoulli3 7 of the effect on population mortality of removing
smallpox through vaccination. The interpretational justi�cation of such calculations
was heatedly discussed, particularly in the 1970s.7 ,1 0 ,3 8 ,3 9
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5.4 Partial model speci� cation
We have so far assumed that the multi-state model was completely speci�ed through

statistica l modelling of all transition intensities and a speci�c probability mechanism for
the combination of these into transition probabilities. In a series of papers,4 0 –4 3 Pepe
and her colleagues have developed estimates of certain functionals in multi-state models
without assuming a full probability structure. One example is the prevalence of a
transient condition indicated by state c de�ned as

P0c…0; t†P
j2T

P0j…0; t†

where T is the set of transient states and 0 is a �xed ‘initia l’ state. The idea is to estimate
numerator and denominator separately by simple linear combinations of Kaplan–Meier
estimates. Easily applicable variance estimates are then available, which in one recent
application4 4 showed that the precision of the Pepe approach was close to the more
elaborate (and restrictive) complete Markov model.

The product integral (Section 5.1) of the Nelson–Aalen estimator (3) has been studied
by Datta and Satten4 5 ,4 6 who showed that, also for non-Markovian processes, this
combined with the initia l distribution ºh…0† provides consistent and asymptotically
normal estimators for the state probabilities ºh…t† (Section 3).

Andersen et al.4 7 showed how regression models for transition probabilities Phj…s; t†
or state probabilities ºh…t† may be obtained directly in multi-state Markov models
using jack-knife pseudo-observations (see also in the companion paper by Andersen
et al.,1 0 how this may be done for the special case of the competing risks model). In fact,
their approach may be extended to state probabilities in non-Markovian models using
the results of Glidden.4 8

Another example of partial model speci�cation occurs when the model contains time-
dependent covariates that are not purely endogenous. In fact, for time-�xed covariates
we just conditioned (cf. Section 3) on their observed values without specifying their
distribution f …Z i†, but for time-dependent covariates such a conditioning is more tricky.
Formally, the likelihood will contain factors for the stochastic development of Z i…t†
given the history F t¡ ˆ X t¡ _ Z t¡ and the likelihood (2) is not the full likelihood but
only a partial likelihood for the parameters for the transition intensities ¬i

hj…t†.
This means that inference for the transition intensities may be based on this partial
likelihood whereas the transition probabilities will typically depend also on the
parameters in the model for Z i…t†.

Thus, if the model contains time-dependent covariates that are not purely endogen-
ous then transition probabilities cannot be estimated using only a partial model
speci�cation. A joint model for the multi-state process Xi…t† and the time-dependent
covariates Z i…t† is needed. When Z i…t† only takes a �nite number of values this joint
model could, again, be a multi-state model where Z i…t† is now endogenous.4 9 ,5 0

Examples of more general joint models were presented by Wulfsohn and Tsiatis5 1

and Henderson et al.5 2
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5.5 Example: PROVA
The main endpoints in the PROVA trial (Section 3) are bleeding events and deaths

before bleeding, i.e., transitions out of state 0 on Figure 4. Figure 8 shows the Aalen–
Johansen estimates for the probabilities of staying in state 0 for the four treatment
groups in the trial. (This reduces, in fact, to the Kaplan–Meier estimator treating both
bleedings and deaths before bleeding as failures, i.e., there are in total 96 events, cf.
Table 1). It is seen that the estimated probabilities for patients who have received
sclerotherapy (either alone or in combination with propranolol) tend to be lower than
for other patients. Judged from a standard logrank test the differences between the four
curves are close to signi�cant (P ˆ 0:089).

Analysing the bleeding intensity (0 ! 1) and the intensity of death without bleeding
(0 ! 2) separately (Table 2) it is seen that it is the latter that is affected by treatment.
Eliminating the three treatment indicators from a Cox regression model for ¬02…t† also

Figure 8 Estimates of staying in the bleeding-free state 0 in an illness–death model for the PROVA data, 0:
control, 1: sclerotherapy, 2: propranolol, 3: both treatments.
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containing sex and age as explanatory variables is signi�cant (P ˆ 0:029) while a
similar test for the bleeding intensity ¬01…t† yields P ˆ 0:99.

Turning to the 1 ! 2 transition corresponding to death after bleeding there is a
choice to make about which kind of model (Markovian or not) that �ts the data. Table 3
(left column) shows estimates from an assumed Markovian model and it is seen that
both sex and age seem to have signi�cant effects. However, including time-dependent
covariates for the sojourn time (WAIT) spent in state 1 (Table 3, right column) it is seen
that, �rst of all, the Markov assumption is violated: the time-dependent covariates have
a strong effect on the intensity …P < 0:0001† and, further, that the effects of sex and age
are reduced when adjusting for WAIT. Therefore, a (semi-Markov) model with this
time as the basic time variable was also �tted (Table 4). Here, neither the treatment
variables, nor sex and age have signi�cant effects and including time-dependent
variables for time since randomization (TIME) has no effect either (P ˆ 0:79,
Table 4, right column). The explanation is that the mortality just after bleeding is
very high and this is not captured well by the time-dependent variables in the model of
Table 3. However, using the non-parametric baseline hazard in the Cox model to
capture that effect gives a much more satisfactory model (Table 4).

5.6 Using standard software to analyse Cox-type multi-state
regression models

Using the ‘tricks’ described in this section estimates for regression coef�cients ­ hjm and
integrated baseline hazards Ahj0…t† ˆ

„ t
0 ¬hj0…u†du in Cox-type models (4) may be

obtained using standard packages like SAS, S-PLUS and STATA.

Table 2 Estimates in Cox regression models for the PROVA data:
bleeding intensity and intensity of death before bleeding

Covariate a02(t) a01(t)

b̂b SE b̂b SE

Sclerotherapy 0.515 0.45 0.056 0.39
Propranolol ¡0.319 0.57 ¡0.049 0.40
Both 0.908 0.42 ¡0.022 0.40
Sex(Mˆ 1, F ˆ 0) 0.928 0.42 0.154 0.32
Age(y) 0.0255 0.014 ¡0.0059 0.012

Table 3 Estimates in Cox regression models for the PROVA data: intensity of
death after bleeding, time variable is time since randomization

Covariate b̂b SE b̂b SE

Sclerotherapy ¡0.736 0.66 ¡0.775 0.66
Propranolol 0.190 0.63 0.174 0.65
Both 0.711 0.54 0.427 0.58
Sex(Mˆ 1, F ˆ 0) 1.321 0.50 1.258 0.53
Age(y) 0.0398 0.018 0.0316 0.019
5 days > WAIT 2.844 0.68
10 days > WAIT ¶ 5 days 2.216 0.77
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Recall from Section 5.1 that if all baseline hazards ¬hj0…t† and all regression
parameters ­ hjm are distinct for the different transitions then the analysis may be
performed one transition at a time using, for each transition …h ! j† a data set with a
record for each individual, i, including: T in

hi ˆ time of entry into state h for i, Tout
hi ˆ time

of exit from state h for i, Dhji ˆ indicator for a h ! j transition for i, Zmi ˆ mhj
covariates for i; m ˆ 1; . . . ; mhj. Furthermore, if the desired model has non-propor-
tional strata then Shji ˆ stratum for i, is also needed. Note that the covariates need not
be the same for different …h; j†, i.e., mhj may depend on …h; j†.

This has also been described by, for example, Therneau and Grambsch.5 3 Here, we
shall go a step further in order to analyse more parsimonious models where some
baseline intensities are proportional or where some covariates have the same effect on
several transition intensities. In such cases, a similar data set is required, but now one
model is �tted to the large data set, which contains one record for each individual for
each transition. The record for transition …h; j† should still contain T in

hi; Tout
hi and Dhji. A

stratum variable is also needed to separate baseline hazards, which are not assumed
proportional. If two transition intensities are assumed proportional ¬hj…t† ˆ e® ¬h0j0…t†
then they should have the same stratum value and a dummy ‘covariate’ should be added
which is 1 for the data set corresponding to the h ! j transition and 0 for the h0 ! j0
transition and all other transitions. If a covariate Zm has different effects for the h ! j
and the h0 ¡ j0 transitions and does not affect other transitions then the data set should
contain two ‘type-speci�c covariates’ Z1

m, Z2
m de�ned by

Z1
m ˆ Zm; Z2

m ˆ 0 for h ! j

Z1
m ˆ 0; Z2

m ˆ Zm for h0 ! j0

Z1
m ˆ 0; Z2

m ˆ 0 for all other transitions.

To exemplify, consider the following hypothetical three-state model for the PROVA
data (Section 5.5, cf. Figure 4). Assume that:

(1) Death intensities (i.e., corresponding to transitions into state 2) are proportional,
i.e., the baseline hazards are

¬12;0…t† ˆ e®¬02;0…t†

Table 4 Estimates in Cox regression models for the PROVA data: intensity of
death after bleeding, time variable is waiting time in state 1

Covariate b̂b SE b̂b SE

Sclerotherapy ¡0.810 0.61 ¡0.810 0.62
Propranolol ¡0.400 0.59 ¡0.398 0.59
Both 0.613 0.49 0.691 0.51
Sex(M ˆ 1, F ˆ 0) 0.697 0.51 0.707 0.51
Age(y) 0.0030 0.016 0.0017 0.018
1 year> TIME 0.207 0.83
2 years > TIME ¶ 1 year 0.0459 0.79
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(2) A binary covariate Z1 ¹ f1; 2g gives rise to non-proportional bleeding …0 ! 1†
intensities, i.e.,

¬01;0…t† ˆ ¬01 ;1…t† if Z1 ˆ 1
¬01 ;2…t† if Z1 ˆ 2

»

and Z1 has no effect on the other transitions.
(3) A covariate Z3 has the same effect …­ 1† on the 0 ! 2 and the 1 ! 2 intensities but a

different effect …­ 2† on the 0 ! 1 intensity.
(4) A covariate Z3 has different effects …­ 3; ­ 4† on the 0 ! 1 and the 0 ! 2 intensities

and no effect on the 1 ! 2 intensity.

This means that for individual i the model is:

¬i
02…t† ˆ ¬02;0…t† e­ 1 Z2 i‡­ 4 Z3i

¬i
01…t† ˆ ¬01;Z1 i

…t† e­ 2 Z2 i‡­ 3 Z3 i …5†
¬i

12…t† ˆ ¬02;0…t† e®‡­ 1 ¢Z2 i

and the three data records for this individual are given in Table 5. Here, everyone is
assumed to be in state 0 at time 0 …T in

0i ˆ 1†, though delayed entry is easily handled as
mentioned in Section 4. Furthermore, Tout

0i is the time last seen in state 0, which is T01 i if
a 0 ! 1 transition is observed …D01i ˆ 1†, T02 i if a 0 ! 2 transition is observed
…D02i ˆ 1†, and the right-censoring time Ui if i is right-censored while being in state 0
…D01i ˆ D02i ˆ 0†. If a 0 ! 1 transition was observed then T in

1i ˆ T01 i and Tout
1i is either

the time of a 1 ! 2 transition …D12i ˆ 1† or the right-censoring time Ui…D12i ˆ 0†. If no
0 ! 1 transition is observed then both T in

1i and Tout
1i are missing. Note that the stratum

variable has three levels since there are three baseline hazards in the model; there is one
dummy variable, the effect of which is the log hazard ratio ® between ¬12 ;0…t† and
¬02;0…t†. This is, in fact, a purely endogeneous time-dependent covariate which is 1 when
i is in state 1, and 0 otherwise. Finally, there are four type-speci�c covariates since the
model has four unknown regression coef�cients ­ 1 ; . . . ; ­ 4 .

In this way estimates for the parameters for the transition intensities and their
standard errors may be obtained. Such estimates may be combined to form transition
probability estimates using the product integral as described by Andersen et al.1 see also

Table 5 Data records for individual i for � tting the three-state Cox model (5)

Transition Tin Tout D Stratum Dummy Type-speci� c covariates

1 2 3 4

0 ! 2 0 T0i
out D02i 02 0 Z2i 0 0 Z3i

0 ! 1 0 T0i
out D01i

01;1; Z1i ˆ 1
01;2; Z1i ˆ 2

»
0 0 Z2i Z3i 0

1 ! 2 T1i
in T1i

out D12i 02 1 Z2i 0 0 0
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the companion paper by Borgan.5 4 However, except for the simple case of survival data
no standard software exists for these computations (though, for the competing risks
model, the companion paper by Andersen et al.1 0 describes a SAS MACRO for this
purpose).

6 Observational patterns

As emphasized in the introduction, event history data are rarely observed completely.
Some patterns of incomplete observation are more easily handled than others, and this
�nal section aims at introducing some of the more important classes. As mentioned
above (cf. Section 4), independent delayed entry and right-censoring only modify the
likelihood slightly and the statistical methods then all go through.

6.1 Interval censoring
An important class of incomplete observational patterns consists in the times of some

(but often not all) transitions not being known exactly but only up to an interval, for
example, between visits to a clinic or between censuses. (The number of transitions is
usually assumed to be known precisely.) A classical approach in demography5 5 is to
approximate the ‘exposure’:

Si
h ˆ

…Ui^½i

Vi

Yi
h…t†dt

Another is to impute values in the observation interval for the time at risk. There are
a number of systematic studies of nonparametric maximum likelihood estimation
under interval censoring of the healthy ! diseased transition in the unidirect-
ional illness–death model.5 6 –5 9 Kay6 0 and Andersen et al.6 1 exempli�ed interval-
censored observation in the reversible illness–death model, using piecewise constant
intensity models. A particular example is panel data, see, for example Gentleman et al.6 2

and the references therein. Interval-censoring in multi-state models is discussed in the
companion paper by Commenges.6 3

6.2 Conditioning in multi-state models
Many observational patterns in event history analysis may be described by condi-

tional distributions in those simple models, which often describe ‘direct’ observations
that are practically unobtainable.6 4 –6 6 A prime example is the left truncation just
described, another is right truncation, with widespread use in studies of AIDS patients
whose development is often observed conditional on having contracted the disease
before the study entry. A more elaborate application of such retrospective observational
plans obtained by conditioning in an underlying ‘prospective’ Markov process model
was documented by Aalen et al.1 5 for the four-state interaction of life history events
example described above (Figure 6). These authors relied heavily on the concise but
important general framework of Hoem.6 7 We shall here brie�y outline how this
methodology works for a simple example of retrospective incidence estimation,
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obtained from the Markov illness–death model without recovery illustrated in Figure 4.
Assume that we study a random sample of individuals alive at same �xed age u; for
those who had by then contracted the disease the age at which this happened is
recorded. The observed multi-state model has state space K ˆ f0; 1g and transition
probabilities

Qhj…s; t† ˆ ProbfX…t† ˆ jjX…s† ˆ h; X…u† 6ˆ 2g

for h; j 2 f0; 1g and 0 < s < t < u. We get

Qhj…s; t† ˆ Phj…s; t†
PjK…t; u†
PhK…t; u†

where Phj…s; t† are the transition probabilities in the original illness–death process and
PhK ˆ Ph0 ‡ Ph1 . Hoem6 7 used the term purged for the conditional Markov process on
K with transition probabilities Qhj…s; t†. The transition intensity of the purged process is

¶01…t† ˆ ¬01…t† P11…t; u†
P1K…t; u†

and it may be proved that if the mortality of the diseased is never smaller than that of
the healthy, i.e., ¬02…t†µ ¬12…t† for all t µ u, then ¶01…t†µ ¬01…t†, with equality if and only
if ¬02…t† ² ¬12…t†. This documents the intuitively obvious result, that the retrospective
study will underestimate the disease incidence because of survivor selection. Andersen
and Green6 8 used such methodology to study robustness of diabetes incidence estimates
in a situation where diabetics were only observed conditionally on not emigrating
before a certain age.

6.3 The prevalent cohort study
An important sampling frame for the illness–death model without recovery is the

prevalent cohort study where a cross-sectional sample of diseased is taken at a �xed
calendar time. Keiding,6 9 cf. Lund,7 0 discussed the conditions for correct inference on
mortality ¬12…t† based on follow-up of the diseased, studied under left truncation, and
compared to inference based on the length-biased durations, which include the retro-
spective time from disease onset, as well as to the forward recurrence time from
sampling to death, assuming stationarity.

A comprehensive substantive discussion of biases in prevalent cohorts was given by
Brookmeyer.7 1 Retrospective estimation of incidence based on the disease onset
information of the survivors and independent lethality information was exempli�ed
by Keiding et al.,7 2 cf. Ogata et al.7 3

6.4 Some other partial information designs
Sometimes interval censoring is extreme: in a cross-sectional study it is for

all individuals only known whether or not an event has happened at age
of sampling. Such current-status data were discussed in detail by Diamond and
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McDonald,7 4 Keiding7 5 and Keiding et al.7 6 ; and there is an elaborate recent mathe-
matical-statistical development in this area, see for example, Groeneboom and Well-
ner7 7 and Lin et al.7 8 For time to pregnancy data, Keiding et al.2 9 proposed using the
current duration elapsed so far; under suitable stationarity conditions this distribution
can be considered a backward recurrence time.
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3 Courgeau D, Lelièvre E. Event history
analysis in demography. Oxford: Clarendon,
1992.

4 Hougaard P. Analysis of multivariate survival
data. New York: Springer, 2000.

5 Hougaard P. Multi-state models: A review.
Lifetime Data Analysis 1999; 5: 239–64.

6 Commenges D. Multi-state models in
epidemiology. Lifetime Data Analysis 1999;
5: 315–27.

7 Kalb�eisch JD, Prentice RL. The statistical
analysis of failure time data. New York:
Wiley, 1980.

8 Arjas E, Haara P. A marked point process
approach to censored failure data with
complicated covariates. Scandinavian Journal
of Statistics 1984; 11: 193–209.

9 Hoem JM. The statistical theory of
demographic rates. A review of current
developments (with discussion). Scandinavian
Journal of Statistics 1976; 3: 169–85.

10 Andersen PK, Abildstrom S, Rosthøj S.
Competing risks as a multi-state model.
Statistical Methods in Medical Research
2002; 11: 203–15.

11 Fix E, Neyman J. A simple stochastic model of
recovery, relapse, death and loss of patients.
Human Biology 1951; 23: 205–41.

12 Sverdrup E. Estimates and test procedures in
connection with stochastic models for deaths,
recoveries and transfers between different
states of health. Skandinavisk
Aktuarietidsskrift 1965; 48: 184–211.

13 PROVA Study Group. Prophylaxis of �rst
hemorrhage from esophageal varices by
sclerotherapy, propranolol or both in cirrhotic
patients: a randomized multicenter trial.
Hepatology 1991; 14: 1016–24.

14 Cook RJ, Lawless JF. Analysis of repeated
events. Statistical Methods in Medical
Research 2002; 11: 141–66.

15 Aalen OO, Borgan Ø, Keiding N, Thormann J.
Interaction between life history events:
nonparametric analysis of prospective and
retrospective data in the presence of
censoring. Scandinavian Journal of Statistics
1980; 7: 161–71.

16 Klein JP, Keiding N, Copelan EA. Plotting
summary predictions in multistate survival
models: Probabilities of relapse and death in
remission for bone marrow transplantation
patients. Statistics in Medicine 1993; 12:
2315–32.

17 Keiding N, Klein JP, Horowitz MM.
Multistate models and outcome prediction in
bone marrow transplantation. Statistics in
Medicine. 2001; 20: 1871–85.

18 Klein, JP, Shu Y. Multi-state models for bone
marrow transplantation studies. Statistical
Methods in Medical Research 2002; 11:
117–139.

19 Clayton D, Hills M. Statistical models in
epidemiology. Oxford: Oxford University
Press, 1993.

20 Lindsay JC, Ryan LM. A three-state
multiplicative model for rodent tumorigenicity
experiments. Applied Statistics 1993; 42:
283–300.

21 Chiang CL. Introduction to stochastic
processes in biostatistics. New York: John
Wiley & Sons, Inc, 1968.

22 Aalen OO. Statistical inference for a family of
counting processes. PhD thesis, University of
California, Berkeley, 1975.

112 PK Andersen and N Keiding

 © 2002 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at PENNSYLVANIA STATE UNIV on April 14, 2008 http://smm.sagepub.comDownloaded from 

http://smm.sagepub.com


23 Aalen OO. Nonparametric inference for a
family of counting processes. Annals of
Statistics 1978; 6: 701–26.

24 Aalen OO, Johansen S. An empirical
transition matrix for nonhomogeneous
Markov chains based on censored
observations. Scandinavian Journal of
Statistics 1978; 5: 141–50.

25 Kaplan EL, Meier P. Non-parametric
estimation from incomplete observations.
Journal of the American StatisticalAssociation
1958; 53: 457–81.

26 Cox DR. Regression models and life tables
(with discussion). Journal of the Royal
Statistical Society, Series B 1972; 34: 187–
220.

27 Cox DR. The statistical analysis of
dependencies in point processes. In: Lewis
PAW, ed. Stochastic point processes. New
York: John Wiley and Sons, 1972.

28 Cox DR. Partial likelihood. Biometrika 1975;
62: 269–76.

29 Keiding N, Hartvig H, Tvede M, Juul S.
Estimating time to pregnancy from current
durations in a cross-sectional sample. Research
Report 99=7, Department of Biostatistics,
University of Copenhagen, 1999.

30 Pierce DA, Preston DL. Joint analysis of site-
speci�c cancer risks for the atomic bomb
survivors. Radiation Research 1993; 134:
134–42.

31 Wohlfahrt J, Andersen PK, Melbye M.
Multivariate competing risks. Statistics in
Medicine 1999; 18: 1023–30.

32 Aalen OO. A model for non-parametric
regression analysis of counting processes.
Springer Lecture Notes Statistics 1980; 2, 1–
25. In: Klonecki W, Kozek A, Rosińiski J, eds.
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