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LIMIT THEOREMS FOR A RANDOM GRAPH EPIDEMIC MODEL

By Håkan Andersson

Stockholm University

We consider a simple stochastic discrete-time epidemic model in a
large closed homogeneous population that is not necessarily homoge-
neously mixing. Rather, each individual has a fixed circle of acquaintances
and the epidemic spreads along this social network. In case the number
of initially infective individuals stays small, a branching process approx-
imation for the number of infectives is in force. Moreover, we provide
a deterministic approximation of the bivariate process of susceptible
and infective individuals, valid when the number of initially infective
individuals is large. These results are used in order to derive the basic
reproduction number and the asymptotic final epidemic size of the process.
The model is described in the framework of random graphs.

1. Introduction. In this work, we consider a simple stochastic discrete-
time model of a so-called SIR epidemic, that is, an epidemic where individuals
receive lifelong immunity after having recovered from the disease. Imagine
a closed population consisting of n individuals, where each individual has a
random number of acquaintances. Let the ith individual have Di friends, the
variables Di being identically distributed and almost independent, and sup-
pose that two friends rarely have other friends in common. Now introduce an
infectious disease into the population by infecting a individuals. If a suscepti-
ble individual meets an infective acquaintance at time t; then she will become
infective at time t+1, and the infective will have recovered at this time point,
now being immune to the disease. The probability of an encounter between
any given pair of acquaintances at time t is simply given by a fixed number
p, and all encounters are independent of each other. The special case where
Di is binomially distributed with parameters n − 1 and λ/n corresponds to
the classical Reed–Frost process (cf. [9]).

Let us try to motivate our choice of model. The classical stochastic epidemic
models, such as the Reed–Frost process and the so-called general epidemic
(see, e.g., [4]), are far too simplified to be of any practical interest. When aim-
ing at a more realistic mathematical description of an epidemic, one is led
to consider effects caused by, for instance, multitype populations, general in-
fectious periods, heterogeneous mixing, births and deaths, immigration and
emigration, geographical structure, age-dependence, partial or temporary im-
munity, change of behavior, and so on. There is a growing literature on theo-
retical models for infectious diseases, many of the model formulations having
the purpose to incorporate one or several of these effects. In particular, gen-
eralizations to multitype populations, always assuming homogeneous mixing
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within types, and to general infectious periods have been performed with great
success.

We feel, however, that the extremely important phenomena that arise when
considering homogeneous populations that are not homogeneously mixing
have not received enough attention so far. Besides some interesting work on
household models (see, e.g., [8]), a model for the spread of venereal diseases in
[12] and the recent model of an epidemic on a neighborhood structure in [14],
very little has been done. Stochastic models where individuals infect only
their nearest neighbors on a spatial lattice have admittedly been carefully
studied (cf. [15]), but it is questionable if these interacting particle systems
have much relevance when it comes to describing the extremely irregular
spread of infection in a human population. A very interesting new class of
network models has recently been introduced by Rand [22]; in the discussion
at the end of this paper, we will give a brief account of his work.

The model in [14] does not assume any regularity of the neighborhood struc-
ture, but still each individual interacts only with a fixed group of others. More
precisely, all individuals are assumed to have exactly the same number of
acquaintances, and the epidemic spreads along this network. The model is
described on a stochastic basis but all results are based on deterministic con-
siderations, in principle assuming an infinite population. The purpose of the
present work is to retrieve and extend some of the results from [14] in the
form of rigorous limit theorems as the population size grows to infinity. See
also [1].

Assume first that the number of initially infective individuals stays small
while the total population size grows. Then we show that during the early
stages of the epidemic, the process of infectives is well approximated by a
branching process. This approximation, sometimes referred to as Kendall’s
approximation, has been widely discussed in the literature. Since the semi-
nal work by Bartlett [10] and Kendall [18], rigorous branching approximation
results have been obtained for the Reed–Frost process, the general epidemic
model and many other stochastic epidemic processes; see, for example, [3, 5,
6, 23, 19, 7]. In each of these papers, the technique of proof relies on the as-
sumption of homogeneous mixing in the sense that all susceptible individuals
run the same risk of being infected at all times. In the present model, only
neighbors of infective individuals may become infected at the next time point;
hence, somewhat different methods of proof are needed.

Suppose next that the epidemic is initiated by a fixed proportion of infec-
tive individuals. We prove a law of large numbers as the population size tends
to infinity, for the bivariate process of susceptible and infective individuals.
Again, for many epidemic models, such deterministic approximation results
are readily obtained by using standard convergence theorems; see, for exam-
ple, [16]. Note, however, that density-dependent transition rates are required
for these theorems to work, a property that is not fulfilled for network models.

Finally, we are interested in finding expressions for two fundamental quan-
tities: the basic reproduction number and the final epidemic size. The final
size of an SIR epidemic is defined as the number of individuals that have ever
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experienced the disease, counted at the end of the epidemic. Note that the
initially infective individuals are included in the final size. For many mod-
els, the qualitative behavior of the final epidemic size is closely related to the
basic reproduction number, R0, defined as the expected number of new cases
generated by one infective individual in a susceptible (large) population. More
precisely, we often observe the following threshold behavior in the limit where
the population size tends to infinity: if R0 ≤ 1; then the final size stays small,
while if R0 > 1; there is a risk of having a positive fraction of the population
infected, that is, a large outbreak may occur. It turns out that our model shows
such a threshold behavior, but the basic reproduction number R0 is not based
on the mean number of neighbors as in the Reed–Frost case, but rather on
a size-biased mean. Moreover, the general equation for the asymptotic final
size looks nothing like the equation for the corresponding Reed–Frost quantity
(cf. [4]).

In Section 2, we introduce a stochastic process for exposing one or several
given components of a random graph. Limit theorems for this process are
presented in Section 3. In Section 4, these results are applied to our epidemic
model, and we also give some examples. Section 5 is devoted to the proof of
the theorems, and we finish off with a short discussion in Section 6.

2. Preliminaries. Consider an undirected labelled graph W on n ver-
tices. Denote by N the set of vertices of W . Also, let Di be the set of vertices
that are adjacent to i, 1 ≤ i ≤ n. We are going to pick a number of vertices
of W and then expose the connected components containing these vertices in
a dynamic manner. Let X �t� and Y �t� be the set of unexposed and exposed
vertices, respectively, at time t, t = 0;1;2; : : : : Start the process by choosing
a random set A of vertices to represent the initially exposed vertices, so that
�X �0�;Y �0�� = �N \ A ;A �. We will always choose A to consist of a ver-
tices picked uniformly at random, where a is some fixed number. The time
dynamics are defined by

Y �t+ 1� = X �t� ∩
( ⋃

i∈Y �t�
Di

)
;

X �t+ 1� = X �t� \Y �t+ 1�; t ≥ 0:

The exposed vertices at time t enter a third state at time t+ 1, and can then
be regarded as removed from the system. Given a graph W and an initial con-
figuration A , the process is fully deterministic. We refer to it as the exposure
process on W . It is obvious that the process terminates in finite time; thus the
final size τ, defined as the total number of vertices ever exposed, is a finite
random variable.

As indicated in the Introduction, we wish to consider structures that meet
conditions on the number of neighbors of a given individual, that is, random
graphs that meet conditions on the number of vertices adjacent to a given
vertex. Define the degree of a vertex i to be the number of edges incident to i.
The totality of degrees of a graph W is called the degree sequence of W .
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Let us consider a triangular array of random variables Dn
i ; 1 ≤ i ≤ n, n ≥ 1,

where Dn
i takes its values in the set �0;1;2; : : : ; n − 1�. In the theorems to

come, we will make the following assumptions.

A1. For fixed n, the variables Dn
i , 1 ≤ i ≤ n, are exchangeable.

A2. The quantity
∑n
i=1D

n
i is always an even number.

A3. There exists a nonnegative integer-valued random variable D such
that Dn

1 → D in distribution.

A4. E�Dn
1� → E�D� = µ and Var�Dn

1� → Var�D� = σ2, with µ and σ2

finite.

A5. There exists δ > 0 such that supnE��Dn
1�4+δ� <∞.

A6. The variables Dn
i , 1 ≤ i ≤ n, are asymptotically pairwise independent

as n→∞.

Fix the number of vertices n. For a given n-tuple Dn = �Dn
1 ; : : : ;D

n
n�, pick a

uniformly random member W n from the set of all labelled graphs on n vertices
having Dn as degree sequence. Of course, (A2) is needed here. (Note carefully
that the set of graphs with given degree sequence can sometimes be empty.
However, for large n; there will with high probability exist a huge number of
graphs with the desired properties. This will be discussed further in the proof;
see Section 5.) We then take a set A n of initially exposed vertices and run
the exposure process �X n;Y n� on W n. Assume that the triangular array D =
�Dn

i y1 ≤ i ≤ n;n ≥ 1� is defined on the probability space ��1;F1;P1�. Then
put all of the involved variables on a common probability space ��;F ;P�. We
are interested in the asymptotic behavior of the process as n→∞.

A major difficulty in the study of random graphs with prescribed degree
sequences is that it is difficult to generate such graphs directly. Instead, one
usually studies so-called random configurations and then tries to translate
results about such random configurations to results about random graphs (see
Section 5). The configuration model was introduced by Bender and Canfield
[11]; see also [13].

3. Statement of the theorems. Let W n, n ≥ 1, be a sequence of graphs
derived from the triangular array Dn

i ; 1 ≤ i ≤ n, n ≥ 1, and for each n; let
�X n;Y n� be an exposure process on W n. Write

(
Xn�t�;Yn�t�

)
=
(
�X n�t��; �Y n�t��

)
; t ≥ 0:

Assume conditions (A1)–(A6); in particular, suppose that Dn
1 → D in dis-

tribution, where D is distributed according to the probability measure l =
�λ0; λ1; λ2; : : :�. Denote by ϕ the probability generating function of l.
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A simple branching approximation result for the number of exposed vertices
is in force. Let Y�t�, t ∈ N, be a Galton-Watson process with a ancestors, the
ancestors having offspring according to the distribution « and the members of
the subsequent generations having offspring according to «̂ = �λ̂0; λ̂1; λ̂2; : : :�,
where

λ̂k =
�k+ 1�λk+1∑∞

l=1 lλl
:

Write R0 =
∑∞
k=1 kλ̂k. We have the following result.

Theorem 1. If Yn�0� = a for all n, then Yn�t� → Y�t� in distribution for
each t ≥ 0. Also, the final size τn of �X n;Y n� converges in distribution to the
total progeny τ of Y. If R0 ≤ 1; then τ is finite a.s., whereas if R0 > 1; then
P�τ = ∞� = ϑ = 1− �ϕ�s��a, where s is the nontrivial root of

s = ϕ′�s�
ϕ′�1� :

Note that the basic reproduction numberR0 may be conveniently written as

R0 =
E�D2�
E�D� − 1:

Let us give an intuitive explanation of this branching approximation result.
Suppose a = 1 and assume that n is very large, so that with high probability,
all contacts are with unexposed vertices. Our initial vertex has, of course,
degree k with probability λk. Note, however, that henceforth vertices with a
large number of edges are more likely to become exposed than more isolated
vertices; more precisely, a vertex with degree k+1 is chosen with a probability
proportional to �k + 1�λk+1, and then in turn leads to k new vertices. This
explains the appearance of the distribution «̂. The reproduction mean for the
process Y�t�, t ≥ 1, is simply equal to R0, and the probability generating
function ϕ̂ of «̂ is given by

ϕ̂�z� =
∞∑
k=0

zkλ̂k

=
∑∞
k=0 z

k�k+ 1�λk+1∑∞
l=1 lλl

= ϕ
′�z�
ϕ′�1� :

The classical theory of branching processes (see, e.g., [17]), applied to Y�t�,
t ≥ 1, with Y�1� = 1, tells us that this process becomes extinct with probabil-
ity 1 ifR0 ≤ 1, and that the probability of extinction s is equal to the nontrivial
root of the equation s = ϕ̂�s� if R0 > 1. Finally, in order for the branching pro-
cess Y�t�, t ≥ 0, to become extinct, all branches originating from the ancestor
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have to become extinct; hence,

P�τ <∞� =
∞∑
k=0

P
(
τ <∞�Y�1� = k

)
P�Y�1� = k�

=
∞∑
k=0

skλk = ϕ�s�;

so that ϑ = 1− ϕ�s�.
We also have the following law of large numbers.

Theorem 2. If Yn�0� = an, where an/n → ā > 0 as n → ∞, then the
scaled process �Xn/n;Yn/n� converges in probability ( for each fixed t) to a
deterministic discrete-time process �x̄; ȳ�. Also, τn/n→ τ̄ in probability, where
τ̄ = 1− �1− ā�ϕ�s̄�, s̄ satisfies

s̄ = �1− ā�ϕ
′�s̄�
ϕ′�1� :

If R0 > 1; we expect that there exists a unique giant component of W n, that
is, a component containing Cn vertices, C > 0 (cf. [21], where, however, the
probability space differs slightly from ours). Starting up the process with one
single vertex picked at random then actually yields a probability of hitting
the giant component which is approximately equal to the proportional size of
this set. Hence it should come as no surprise that τ̄ tends to the explosion
probability ϑ as ā→ 0.

4. Application to epidemics. Turning to epidemics, we consider a pop-
ulation of n individuals where the ith individual has D̄i acquaintances; oth-
erwise, no regularity of the neighborhood structure is assumed. Take a ran-
dom member W̄ of the set of graphs with vertex set N (�N � = n) having
D̄ = �D̄1; : : : ; D̄n� as degree sequence to represent the social network. Denote
by X �t� and Y �t� the set of susceptible and infective individuals, respectively,
at time t, t = 0;1;2; : : : : A given individual who is infective at time t will
become immune at time t+1, and she will infect a given susceptible acquain-
tance with a fixed probability p, independently for distinct individuals. Thus,
it is natural to thin the graph W̄ , keeping a given edge of W̄ with probability
p. This gives rise to a subgraph W of W̄ with mixed binomial variables Di as
degree variables:

P�Di = l � D̄i = k� =
(
k

l

)
pl�1− p�k−l;(1)

an edge between vertices i and j having the following interpretation: “if i
becomes infected, then i will try to infect j, and vice versa.” If we start up
the process by putting �X �0�;Y �0�� = �N \ A ;A �, where A consists of
a individuals picked at random, then evidently �X ;Y � is equivalent to an
exposure process on W .
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We wish to consider a sequence �X n;Y n� of epidemic processes. Assume
that the triangular array D̄n

i ; 1 ≤ i ≤ n, n ≥ 1, satisfies (A1)–(A6), and
denote the limiting variable by D̄. Define Dn

i and D to be random variables
derived from D̄n

i and D̄, respectively, by the thinning procedure above [cf. (1)],
and, for each n, let �X n;Y n� be an exposure process on the random graph
W n corresponding to �Dn

1 ; : : : ;D
n
n�, with initial configuration A n. It is easily

checked that the variables Dn
i ; 1 ≤ i ≤ n, n ≥ 1, satisfy (A1)–(A6) (with

limit D); thus, Theorems 1 and 2 may be applied. Note that

R0 = pR̄0;

ϕ�z� = ϕ̄�1− p+ pz�;

where R0 (R̄0) is the basic reproduction number and ϕ (ϕ̄) is the probability
generating function associated with D (D̄). At the end of Section 5, we will
show that if R0 is above 1 at the start of the epidemic and if a large outbreak
occurs, then R0 will always be below 1 when the epidemic is over.

Example 1. As a first example, consider the ordinary Reed–Frost epidemic
process in a homogeneously mixing population of n individuals and with in-
fection parameter p̄. It is well known (see, e.g., [9]) that this process can be
realized by invoking the classical G �n; p̄� random graph, that is, the ran-
dom graph on n vertices with independent undirected links of probability p̄
(cf. [13]). Indeed, by picking a vertices at random, running the exposure pro-
cess �X ;Y � on G �n; p̄� and taking cardinalities,

(
X�t�;Y�t�

)
=
(
�X �t��; �Y �t��

)
; t ≥ 0;

a process coinciding in law with the Reed–Frost process is obtained.
The degree variables Di corresponding to the graph G �n; p̄� are binomially

distributed with parameters n− 1 and p̄. To translate to the present setting,
we generate uniformly random members W of the set of graphs with degree
sequence �D1; : : : ;Dn� and run the exposure process on W . We might as well
let our infection probability p be equal to 1, since by tradition the edges of
G �n; p̄� indicate links for transmission of the infection rather than social links.
It may feel frustrating that the underlying probability space is not exactly
the same for these two models. On the other hand, it is not obvious that
the G �n; p̄� formulation is the superior one—it seems just as natural to first
prescribe the degrees and then choose the graph according to the maximum
entropy (“unknown = uniform”) principle.

Take a sequence of epidemic processes indexed by n, putting p̄ = p̄n = λ/n,
λ > 0, in order to keep the number of neighbors bounded as n grows. With D
Poisson distributed with parameter λ, the conditions (A1)–(A6) are fulfilled so
that the theorems apply. Let us announce the basic reproduction number R0
and the asymptotic probability ϑ of a large outbreak (a = 1):

R0 = λ; 1−ϑ = e−λϑ;
by easy calculation.
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Example 2. In [14], the case with a constant number of acquaintances
is investigated. Actually, the rules for the spread of infection are much more
general than in the present work, but the conclusions are very similar to ours.
Let k be a fixed positive integer and, for each n, put D̄n

i = k, 1 ≤ i ≤ n. If the
total degree

∑n
i=1 D̄

n
i is an odd number, pick a vertex j at random and add 1

to the number D̄n
j . The triangular array so obtained satisfies the conditions

(A1)–(A6), and Theorem 1 (a = 1, p arbitrary) yields that R0 = �k− 1�p and
ϑ = 1− �1− p+ ps�k, where s satisfies

s = �1− p+ ps�k−1:

Example 3. In the recent paper by Andersson and Britton [2], heterogene-
ity in epidemic models and its impact on the spread of infection is investigated.
Some examples are considered where it turns out that, for a highly infectious
disease, a homogeneous process renders a larger outbreak than the equivalent
heterogeneous counterparts, while if the disease is less contagious, the max-
imal final size is obtained in a heterogeneous setup. This contradicts partly
the general opinion that the size of an epidemic is always reduced when het-
erogeneities are introduced into the population.

Incidentally, our random graph epidemic model lends itself to such consid-
erations, and the result is in accordance with the ones proved in [2]. Actually,
here we are dealing with a population that is homogeneous by definition, since
the degree variables are identically distributed, but the situation where the
number of acquaintances is fixed, D̄ = D̄0 ≡ k, can obviously be regarded as
the homogeneous extreme. Write f�s� = 1−p+ps, where p is the probability
of infection. In order to simplify the calculations somewhat, we imagine a lim-
iting situation where the proportion ā of initial infectives tends to zero. The
final size proportion, τ̄0 say, then satisfies τ̄0 = 1−fk�s0�; where s0 = fk−1�s0�.
We assume that k ≥ 3; otherwise, τ̄0 will always be zero irrespective of the
value of p, since the basic reproduction number R0 = �k − 1�p then keeps
below 1. Let us perturbate D̄0 slightly. For given δ > 0; we define D̄ = D̄δ to
be a degree variable with

P�D̄δ = k� = 1− 2δ;

P�D̄δ = k− 1� = P�D̄δ = k+ 1� = δ:
Then the corresponding final size proportion τ̄δ satisfies

τ̄δ = 1− fk�sδ� − fk−1�sδ�
(
1− f�sδ�

)2
δ;

where

sδ = fk−1�sδ� + fk−2�sδ�
[
k− 1
k
− 2f�sδ� +

k+ 1
k

f2�sδ�
]
δ:

By simple but rather tedious algebraic manipulations, we find that

τ̄0 − τ̄δ =
fk−1�s0��1− s0�p2

1− �k− 1�fk−2�s0�p
(
1− s0 − 2fk−1�s0�

)
δ+ o�δ�:
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The leading term is equal to zero for 0 ≤ p ≤ 1/�k−1�, since s0 = 1 if the basic
reproduction number R0 = �k−1�p is below 1. For p larger than 1/�k−1�, the
sign of τ̄0 − τ̄δ is determined by the sign of the expression 1− s0 − 2fk−1�s0�.
Using that s0 = fk−1�s0� = �1−p+ps�k−1; we see that this quantity increases
with p, changing its sign at the point

pc =
3
2

(
1− 1

k−1
√

3

)
:

[It is easily checked that indeed pc > 1/�k − 1� for k ≥ 3.] To conclude, this
local analysis indicates that the homogeneous situation D̄0 yields the largest
final size if and only if p ≥ pc.

5. Proofs of the results. First a few definitions. A multigraph is a col-
lection of vertices and edges, where a vertex may be connected to itself (loop),
and two given distinct vertices may be joined by more than one edge (multiple
edges). Graphs without loops and multiple edges are henceforth called sim-
ple, in order to distinguish them from the other multigraphs. Let us describe
the configuration model. In order to generate a random configuration with n
vertices and fixed degree sequence D = �D1; : : : ;Dn�; we do the following:

1. form a set L containing Di copies of the ith vertex, 1 ≤ i ≤ n;
2. choose a random pairing of the elements of L .

Each configuration corresponds to a multigraph whose edges are defined by
the pairs above. It is clear that the vertices of the multigraph so obtained have
the correct degrees. Also, since any simple graph with given degree sequence
D can be represented by exactly

∏n
i=1Di! configurations, it follows that all

the simple graphs are equally probable in the set of multigraphs with degree
sequence D. The point is that random configurations are easy to work with,
and results for simple graphs can often be inferred using corresponding results
for random configurations.

Exposure process on a random configuration. Let us define the exposure
process �X ;Y � on a random configuration. A given vertex copy may be in one
of three states, which we denote by closed, open and discarded, respectively.
Intuitively, we will visit the vertex copies as time goes by. These are initially
closed, but they are opened when visited and they are then discarded—see
the algorithm below. A vertex is called unexposed if it is isolated or if all of its
vertex copies are closed. Copies of the same vertex are said to be associated.

Now define X �t�, t ≥ 0, to be the set of unexposed vertices at time t. Also,
let Y �t�, t ≥ 1, be the set of vertices that have remained unexposed exactly
up to time t−1. The set Y �0� is chosen at random from the set of all vertices.
We refer to the members of Y �t� as the exposed vertices at time t. These
vertices enter a third state at the next time point, and can then be regarded
as removed. The members of X �t� with degree k are collected in the set Xk�t�,
k ≥ 0. Evidently, Xk�t� = \ if k ≥ n. We write

X�t� =
(
X0�t�;X1�t�; : : :

)
=
(
�X0�t��; �X1�t��; : : :

)
:
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Finally, V�t� is defined to be the total number of open vertex copies at time t,
t ≥ 0.

The dynamics are as follows: pick a vertices at random. These vertices
may be isolated, and in this case nothing happens. Otherwise, we follow the
algorithm below:

t = 0 x open the vertex copies of the a vertices (all the other ver-
tex copies are assumed to be closed);

t ≥ 1 x choose partners to the open copies from among open
and closed copies. The members of these pairs may have
closed associates. Open these associates while you discard
the pairs.

The random pairing (or, rather, a part of it) is thus generated dynamically
in time. Everything interesting happens along the borderline defined by the
open copies, and the process stops when there are no such copies left. Fig-
ure 1 shows a realization of the process. Here N = �a; b; : : : ; h� and D =

Fig. 1. Realization of the exposure process and the underlying multigraph. White = closed;
light gray = open; dark grey = discarded:
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�3;3;2;0;2;1;1;2� (vertex d is isolated). Also,

X �0� = �a; c; d; e; f;g;h�; Y �0� = �b�;
X �1� = �d;f;g;h�; Y �1� = �a; c; e�;
X �2� = �d;f;g�; Y �2� = �h�:

It is easy to verify that, in case the random configuration gives a simple graph
W without loops and multiple edges, the process coincides with the exposure
process of Section 2. Also, the process �X�t�;V�t�� is Markov, since the tran-
sition rule above is fully specified if we know the number of closed copies
belonging to the various vertices together with the overall number of open
copies.

For a given n-tuple Dn = �Dn
1 ; : : : ;D

n
n�, pick a random configuration (i.e., a

multigraph) W̃ n with n vertices and with Dn as degree sequence. We then take
a set A n of initially exposed vertices and run the exposure process �X n;Y n�
on W̃ n. Remember that the triangular array D = �Dn

i y1 ≤ i ≤ n;n ≥ 1� is
defined on the probability space ��1;F1;P1�. If we write Xn

k�0� =
∑n
i=1J

n
ki,

where

Jnki =
{

1; if Dn
i = k;

0; otherwise;

then using the assumptions (A1), (A3), (A4) and (A6) and applying a standard
Chebyshev argument, we see that Xn

k�0�/n→ λk in distribution.
By Skorokhod’s representation theorem, there exists a probability space

��̃1; F̃1; P̃1� and a sequence of variables defined on this space that are dis-
tributed like the variables Xn

k�0�/n and that converge to λk almost surely
�P̃1�. For simplicity, we keep the old notation for these new variables. It is le-
gitimate to change the sample space in this way, since we are aiming at weak
convergence results anyway. Note that Xn�0�/n → « almost surely �P̃1�. In
the sequel, it will often be convenient to fix a member D of the convergence
set, indicating the corresponding conditional quantities with a subscript D .
Assume that the probability space ��̃; F̃ ; P̃� holds all of the variables above.

Occasionally, the number Un�t� of closed copies and the proportion Pn�t� of
closed copies among copies that are either closed or open will be needed:

Un�t� =
∞∑
k=1

kXn
k�t�;

Pn�t� = Un�t�
Un�t� +Vn�t� :

Proof of Theorem 1 for random configurations. The proof will be performed
for the case a = 1, the general case being similar. Our purpose is to show
that Vn converges in distribution to a Galton–Watson process V with initial
distribution « and offspring distribution «̂. We then note that Vn�t�−Yn�t+1�
tends to zero almost surely for each t ≥ 0. Together with the fact that Yn�0� =
a = 1 for each n; this will give the desired result.
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By the definition of Vn,

P̃D �Vn�0� = k� → λk as n→∞:
Now consider the conditional probability

P̃D

(
Vn�t+ 1� = vt+1 �Xn�t� = x;Vn�t� = v

)
:

Put Un�t� = u = ∑∞
k=1 kxk and fix one of the v open vertex copies. With

probability

�k+ 1�Xn
k+1�t�

Un�t� +Vn�t� − 1
= �k+ 1�xk+1

u+ v− 1
;(2)

this copy is paired with some closed copy having k associates. Since Xn
k+1�0�/

n→ λk+1, it follows readily thatXn
k+1�t�/n→ λk+1 almost surely, and likewise

Un�t�/n→∑∞
l=1 lλl almost surely. Thus the probability in (2) converges to

�k+ 1�λk+1∑∞
l=1 lλl

= λ̂k:

Now fix two of the v open copies. Then one checks that, with a probability tend-
ing to 1 as n→∞, these open copies are paired with closed copies belonging
to distinct vertices. Thus, by induction,

LD

(
Vn�t+ 1� �Xn�t� = x;Vn�t� = v

)
→ L

( v∑
m=1

Am

)
;

where Am are independent with common distribution «̂, and we have proved
that Vn�t� → V�t� in distribution for each fixed t ≥ 0.

Also, these distinct vertices form precisely the set Y n�t+1�, by construction.
Hence, Vn�t� −Yn�t+ 1� → 0 almost surely for each t ≥ 0.

Proof of Theorem 2 for random configurations. We wish to prove a law
of large numbers for the process �Xn/n;Vn/n�; this will give the first part
of Theorem 2, since Xn�t� = ∑∞

k=0X
n
k�t� and Yn�t� = Xn�t − 1� − Xn�t�.

According to the assumption an/n→ ā > 0,

1
n
Xn
k�0� → �1− ā�λk;

1
n
Vn�0� → ā

∞∑
k=1

kλk;

in probability as n→∞. FixXn
k�t�, k ≥ 0, andVn�t�. Also write xk =Xn

k�t�/n,
v = Vn�t�/n, u = Un�t�/n and p = Pn�t�/n. Fix an unexposed vertex of degree
k ≥ 1. Define Jnl to be equal to 1 if the lth vertex copy of this vertex is paired
with an open copy, and 0 otherwise, 1 ≤ l ≤ k. Then it is easily shown that

P̃D �Jnl = 1� = v

u+ v− 1/n
→ 1− p
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as n → ∞, and that C̃ovD �Jnl ;Jnl′� = O�1/n� if l 6= l′. Hence, Bn = ∑k
l=1J

n
l

converges in distribution to a random variable B that is binomially distributed
with parameters k and 1− p.

Note that we obtain zero new open copies if Bn = 0, and otherwise k − j
new open copies if Bn = j, 1 ≤ j ≤ k; hence, the asymptotic expected number
of new open copies is given by

k∑
j=1

�k− j�π�j� =
k∑
j=0

�k− j�π�j� − kπ�0�

= k− �1− p�k− kpk
= kp�1− pk−1�;

where �π�0�; : : : ; π�k�� is the distribution of B. It follows that

ẼD

(
1
n
Vn�t+ 1�

∣∣∣∣X
n�t� = x;Vn�t� = v

)

→
∞∑
k=1

kp�1− pk−1�xk;

as n→∞. Also, the probability that our vertex will remain unexposed at time
t+ 1 is given by P̃D �Bn = 0� → π�0� = pk, so that

ẼD

(
1
n
Xn
k�t+ 1�

∣∣∣∣X
n�t� = x;Vn�t� = v

)
→ pkxk;

as n → ∞. Finally, we write Vn and Xn
k as sums of indicator functions and

note that the covariances of these indicators are O�1/n� to get

ṼarD

(
1
n
Vn�t+ 1�

∣∣∣∣X
n�t� = x;Vn�t� = v

)
→ 0

and

ṼarD

(
1
n
Xn
k�t+ 1�

∣∣∣∣X
n�t� = x;Vn�t� = v

)
→ 0;

as n→∞, which proves the convergence in probability to the following deter-
ministic process:

xk�t+ 1� = pk�t�xk�t�;

v�t+ 1� =
∞∑
k=0

kp�t�
(
1− pk−1�t�

)
xk�t�;

(3)

where

u�t� =
∞∑
k=0

kxk�t�;

p�t� = u�t�
u�t� + v�t� :
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The initial conditions are given by

xk�0� = �1− ā�λk;

v�0� = ā
∞∑
k=0

kλk:

Also note that u�0� = �1− ā�∑k kλk and p�0� = 1− ā.
Now for the proof of the second part of Theorem 2. In order to determine

limt→∞
∑
k xk�t�, we essentially follow [14]. Define Gt�z� =

∑
k xk�t�zk. Then,

by (3), we have the following fundamental recurrence relation:

Gt+1�z� =
∑
k

pk�t�xk�t�zk = Gt

(
p�t�z

)
;

hence Gt�z� = G0 �s�t�z�, where s�t� = ∏t−1
t′=0p�t′� if t ≥ 1, s�0� = 1. Also note

that

G′t�z� =
dGt�z�
dz

= s�t�G′0
(
s�t�z

)
:(4)

By heavily using (4), we next find a nice recurrence relation for s�t�. Since

u�t+ 1� =
∑
k

kxk�t+ 1� = G′t+1�1� = s�t+ 1�G′0
(
s�t+ 1�

)

and

v�t+ 1� = p�t�
[∑
k

kxk�t� −
∑
k

kpk−1�t�xk�t�
]

= p�t�
[
G′t�1� −G′t�p�t��

]

= s�t+ 1�
[
G′0�s�t�� −G′0�s�t+ 1��

]
;

it follows that

p�t+ 1� = u�t+ 1�
u�t+ 1� + v�t+ 1� =

G′0 �s�t+ 1��
G′0�s�t��

:

Finally, by cancellation of factors,

s�t+ 1� = p�0�G
′
0�s�t��

G′0�s�0��
= �1− ā�G

′
0�s�t��
G′0�1�

;(5)

which is the promised equation. The sequence s�t� is obviously nonnegative
and decreasing; hence, we may let t → ∞ and write s = limt→∞ s�t�. Taking
limits in (5) yields

s = �1− ā�G
′
0�s�

G′0�1�
:

The theorem now follows immediately by noting that

lim
t→∞

∑
k

xk�t� = lim
t→∞

Gt�1� = G0�s�;

and that G0�z� = �1− ā�ϕ�z�.
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From random configurations to random graphs. It is shown in [20] that,
for a fixed triangular array D , if the maximum degree Mn = max1≤i≤nD

n
i is

o
(
n1/4

)
, then the set of simple graphs forms a nonnegligible subset of the set

of multigraphs W̃ n, at least in the limit:

P̃
(
W̃ n simple

)
→ ρ > 0 as n→∞:

In our setting, this means we have to show that there exists ε > 0 such that

P̃
(
Mn ≤ Cn1/4−ε)→ 1 as n→∞:(6)

We proceed to show (6). For fixed n, the degree variables Dn
1 ; : : : ;D

n
n are iden-

tically distributed; thus,

P̃
(
Mn > c

)
= P̃

( n⋃
i=1

{
Dn
i > c

})

≤ n P̃�Dn
1 > c�:

Put c = cn = Cn1/4−ε and note that it is enough to show that the last proba-
bility above is o�1/n�. For this we use Markov’s inequality together with (A5):

P̃�Dn
1 > Cn

1/4−ε� ≤ E��Dn
1�4+δ�

C4+δn�1/4−ε��4+δ�
= o�1/n�;

if ε > 0 is chosen small enough. Equation (6) follows. (Note that, as pointed out
in [20], the condition on the maximum degree Mn is sufficient but certainly
not necessary. We are not aware of any later results where this condition is
weakened.)

Theorem 1 for random graphs now follows easily from Theorem 1 for ran-
dom configurations. Indeed, by the branching approximation result, the prob-
ability that the set Y n�0� ∪ · · · ∪ Y n�t� is free from loops and multiple edges
tends to 1 as n→∞. Hence, the value taken by Yn�t� is asymptotically inde-
pendent of whether the entire graph W̃ n is simple or not. In other words,

P̃
(
Yn�t� = k

∣∣ W̃ n simple
)
− P̃

(
Yn�t� = k

)
→ 0 as n→∞:

The corresponding deduction for Theorem 2 is even simpler. It suffices to note
that

P̃
(∣∣∣∣
Xn�t�
n
− x̄�t�

∣∣∣∣+
∣∣∣∣
Yn�t�
n
− ȳ�t�

∣∣∣∣ > ε
)
→ 0 as n→∞

implies

P̃
(∣∣∣∣
Xn�t�
n
− x̄�t�

∣∣∣∣+
∣∣∣∣
Yn�t�
n
− ȳ�t�

∣∣∣∣ > ε
∣∣ W̃ n simple

)
→ 0

as n→∞.
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Fig. 2. The quantity s satisfies h′�s� < h�s�/s.

Basic reproduction number. Finally, we wish to show that two successive
large epidemics can never occur in a closed population, since a major outbreak
always brings the basic reproduction number below 1. Consider the limiting
situation ā→ 0. The basic reproduction number is given by

R0 =
∑∞
k=0 k�k+ 1�λk+1∑∞

l=0 lλl
= ϕ

′′�1�
ϕ′�1� :

Assume R0 > 1. By letting t tend to infinity in (3), we see that after a large
outbreak, the basic reproduction number is changed to

R∗0 =
∑∞
k=0 k�k+ 1�sk+1λk+1∑∞

l=0 ls
lλl

= sϕ
′′�s�
ϕ′�s� ;

where s solves the equation s = ϕ′�s�/ϕ′�1�. In order to show that R∗0 < 1, we
put h�z� = ϕ′�z�. Since s is the nontrivial solution to the equation

h�s�
s
= h�1�

1
;

comparing slopes at the point s in Figure 2 reveals that h′�s� < h�s�/s, that
is, R∗0 < 1.

6. Short discussion and open problems. Even though the model of
this work is superior to the classical Reed–Frost process when it comes to
heterogeneous mixing, it is still a toy model far too simple to have any practical
implications. Therefore, it is essential to proceed to study various kinds of
generalizations. For instance, it would probably be fairly straightforward, even
though notationally inconvenient, to adopt the model to a multitype population
setting; here we choose, however, to bring out possible generalizations in two
other directions.
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First, it would be interesting to study continuous-time epidemic models
(such as the general epidemic) on a random graph. In such a model, an infected
individual typically remains infective for a time period that could have some
arbitrary distribution, and during that time tries to infect a given acquain-
tance according to a time-homogeneous Poisson process. It is then appealing
to try to adopt the techniques of [14] to a finite population situation, but it is
not evident how to proceed. However, if we are only interested in the final size
of the epidemic and not the evolution in time, then some results are certainly
within reach, since we may create a directed graph indicating infections on
top of the graph describing the acquaintance structure and calculate compo-
nent sizes of this new graph. More precisely, each individual that becomes
infected generates a value P from some distribution on �0;1� and then infects
a given susceptible acquaintance with probability P. In that case, we draw an
arrow from the infective to the susceptible friend. The flow of the epidemic is
traced by simply following the arrows. Different choices of the distribution of
P give the final epidemic size for many interesting continuous-time epidemic
processes, including the general epidemic model (cf. [3]).

Another serious drawback of the model under consideration is that the pos-
sibility of having small social groups with complete mixing is not taken into
account. When we pick a graph at random from the set of all graphs with
prescribed degree sequence, the number of short cycles (such as triangles)
will with overwhelming probability be very small; in fact, this is the reason
why our technique of proof works. In reality, there are many triangles and
other short cycles in a social network. Of course, for a general network, it is
impossible to make any progress at all in finding analytical expressions, but
nevertheless there are some points to be made here. First of all, it is clear
that, in some sense, our model provides overestimates of the component sizes
for structures with the same degrees but with short cycles present. Also, it is
not unreasonable that the vertices of a typical social network may be lumped
together in small groups, so that when the various groups are identified, the
resulting graph of “super vertices” fits nicely into our original setting (see
Fig. 3). Instead of choosing among graphs with given degrees according to the
uniform measure, one should try to find a feasible way to reward graphs con-
taining a certain amount of triangles and then derive connectivity properties
of these graphs.

In this connection, let us finally discuss the recent model of Rand [22]. In
[22], a social network similar to the structure of the present paper is consid-
ered, with the important difference that there is a fixed probability that two
friends of a given individual are themselves acquainted with each other. Then
a general epidemic is run on this neighborhood structure and a rather simple
system of ordinary differential equations, with the number of pairs of individ-
uals of the various types (susceptible–susceptible, susceptible–infective, and
so on) as state variables, is derived in a heuristic manner. Even though these
equations are to be treated merely as crude approximations of the real dy-
namics, the modelling approach is indeed very interesting and could show to
be extremely fruitful in the future.
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Fig. 3. Lumping together vertices of a social network.
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