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Abstract

Insurance companies hold reserves to be able to fulfill future liabilities with respect to the
policies they write. Micro-level reserving methods focus on the development of individual
claims over time, providing an alternative to the classical techniques that aggregate the
development of claims into run-off triangles. This paper presents a discrete-time multi-state
framework that reconstructs the claim development process as a series of transitions between
a given set of states. The states in our setting represent the events that may happen over the
lifetime of a claim, i.e. reporting, intermediate payments and closure. For each intermediate
payment we model the payment distribution separately. To this end, we use a body-tail
approach where the body of the distribution is modeled separately from the tail. Generalized
Additive Models for Location, Scale and Shape introduced by Stasinopoulos and Rigby (2007)
allow for flexible modeling of the body distribution while incorporating covariate information.
We use the toolbox from Extreme Value Theory to determine the threshold separating the
body from the tail and to model the tail of the payment distributions. We do not correct
payments for inflation beforehand, but include relevant covariate information in the model.
Using these building blocks, we outline a simulation procedure to evaluate the RBNS reserve.
The method is applied to a real life data set, and we benchmark our results by means of a
back test.

Keywords: micro-level reserving, extreme value theory, splicing, multi-state model

1 Introduction

An important feature in the insurance market is the precedence of premium income to the claim
costs of an insurance policy. This characteristic is commonly referred to as an inverted production
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cycle. Due to this feature, it is important insurance companies hold sufficient reserves in order
to be able to fulfill future liabilities with respect to claims that occur within the insurance
coverage period. These reserves are a key factor on the liability side of the balance sheet of the
insurance company. Accurate, reliable and stable reserving methods for a wide range of products
and lines of business are crucial to safeguard solvency, stability and profitability. For example,
according to Swiss Re (2008) deficient loss reserves were the main cause of financial insolvency
in the US property and casualty (also called: general or non-life) market during the period
1969–2002. With the introduction of new regulatory guidelines for the European insurance
business in the form of Solvency II, the insurance industry has regained interest in using more
elaborate methodology to model future cash flows and meet regulators’ increasing requirements.
Insurance companies are strongly encouraged to replace their ad hoc, deterministic methods
with fully stochastic approaches, aiming at accurately reflecting the riskiness in the portfolio
under consideration. Current techniques for loss reserving will have to be improved, adjusted or
extended to meet the requirements of the new regulations. This paper fits within this research
avenue and contributes to the literature on statistical models for reserving in general insurance.
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Figure 1: Time line representing the development of a non-life claim and summarized in a run-off
triangle.

Figure 1 illustrates the run-off (or development) process of a non-life insurance claim (see Taylor
(2000), England and Verrall (2002) and Wüthrich and Merz (2008)). A non-life insurance claim
starts its lifetime or development at a certain point in time with the occurrence of an accident or
claim event (e.g. a car accident). The occurrence date (soc in Figure 1) of a claim refers to the
date at which the claim event occurs. After the occurrence, the insured reports the claim to the
insurance company. The reporting date (s0 in Figure 1) refers to the date at which this happens.
Once the insurer is aware of the claim and accepts the claim for reimbursement, some payments
follow (at times s1, s2, s3, s4 in Figure 1) to compensate the insured for his loss. Eventually,
when the loss covered by the policy is completely compensated for, the claim closes. The closing
date (sc in Figure 1) refers to the date at which the claim closes. This finalizes the development
of a claim. At the moment of evaluation (typically: end of a quarter, mid year or end of book
year), say s?, the insurer has to set reserves aside to fulfill his future liabilities and safeguard the
solvency of the company. Loosely speaking, the insurer must predict, with maximum accuracy,
the outstanding loss amount with respect to claims not yet closed at the moment of evaluation.
Our interest goes out to the reserve necessary to cover outstanding liabilities from incurred
claims that are not yet finalized.

Existing methods for claims reserving (see England and Verrall (2002) and Wüthrich and Merz
(2008)) are designed for aggregated data, conveniently summarized in a so-called run-off triangle.
A run-off triangle summarizes the information registered on individual claims by aggregating
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payments into two-dimensional cells, representing the year of occurrence of the claim and the
period of development during which the payment took place. See Figure 1 for a visualization
of this process. Through this data compression many useful information of the claim is lost. In
particular, policy(holder) characteristics (e.g. own risk or deductible, policy limit), characteris-
tics of the accident, the claim, and expert information are ignored, or heavily compressed, in the
run-off design. Recent literature challenges the appropriateness of reserving methods based on
run-off triangles. For example, both Halliwel (2007) and Schiegl (2015) discuss and demonstrate
conditions under which the traditional reserving methods for aggregated data, in particular the
chain ladder method, are biased.

A recent focus within the literature on loss reserving is the possible added value of using more
extensive data when calculating reserves. Such data are available within insurance companies,
as the left part of Figure 1 illustrates, and it fits within the avenue of big data and insurance
analytics to explore their use, see Frees (2015).

On the one hand, initiated by the work of Verrall et al. (2010), Mart́ınez Miranda et al. (2012)
and Mart́ınez Miranda et al. (2013) extend the traditional chain ladder framework to Double
Chain Ladder (DCL) and even continuous chain ladder setting. The DCL method combines the
information of a classical run-off triangle with reported count data, whereas the continuous chain
ladder improves the classical actuarial technique, which can be formulated as a histogram type
of approach, by replacing this histogram by a kernel smoother. Hiabu et al. (2016a) and Hiabu
et al. (2016b) show different ways to extend the traditional chain ladder framework through the
inclusion of extra data resources in an aggregated format such as reporting delay and expert
knowledge in the form of incurred payments.

On the other hand, micro-level loss reserving models focus on the development of individual
claims over time, as launched originally by Norberg (1993) and Norberg (1999). Haastrup and
Arjas (1996) and Larsen (2007) model the development of a set of claims over time as a marked
Poisson process. Antonio and Plat (2014) apply the continuous time framework of Norberg
(1993) and Norberg (1999) to a real life data set, using maximum likelihood estimation, and
add a discussion of distributional choices made in their analysis. In their approach, hazard rates
drive the time to ‘events’ in the development of a claim (e.g. a payment, or settlement) and a
lognormal regression is used to model intermediate payments (e.g. those at time s1, s2, s3 and
s4 in Figure 1) corrected for inflation using the Consumer Price Index (CPI). Zhao et al. (2009)
and Zhao and Zhou (2010) also work in continuous time and propose a semi-parametric model
to develop individual claims. Another strand within the micro-level reserving literature works
in discrete time and aggregates payments per development period (e.g. a development year)
while keeping focus on the development of an individual claim. Pigeon et al. (2014) extend
the work of Pigeon et al. (2013), who introduce a claim specific run-off viewpoint with chain
ladder like development factors, by including information on incurred losses. Drieskens et al.
(2012) follow up on the work of Murphy and McLennan (2006) and propose to develop individual
large claims through a non-parametric method based on historical simulation. Rosenlund (2012)
presents a deterministic reserving method that allows to condition on specific characteristics of
an individual claim. Godecharle and Antonio (2015) integrate this conditioning approach with
the historical simulation used in Drieskens et al. (2012). Recent methodological work shows
how the use of micro-level claims reserving methods significantly improves accuracy compared
to the aggregate methods. Jin and Frees (2013) evaluate the performance of traditional run-
off triangle techniques compared to a micro-level model, highlighting scenarios in which the
latter outperform the former. Jin (2013) contribute to this topic in the form of a case study
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on a workers compensation insurance portfolio. Huang et al. (2015a), Huang et al. (2015b) and
Huang et al. (2016) demonstrate, theoretically and numerically, the advantage one can gain from
using a micro-level approach compared to the traditional run-off triangle techniques.

We extend the micro-level loss reserving model of Antonio and Plat (2014) in multiple ways
and connect it to recent contributions in the statistical literature on multiple state models, the
framework of Generalized Additive Models for Location, Scale and Shape (GAMLSS) introduced
by Stasinopoulos and Rigby (2007) and tools from Extreme Value Theory (EVT). As such, we
avoid some of the rigid choices made in previous work on this topic. First, we adjust the loss
reserving model of Antonio and Plat (2014) to a discrete-time framework. To this end, we
propose a multi-state framework such that the claim development process can be reconstructed
as a series of transitions between a given set of states. The use of a multi-state framework
for pricing and reserving is common in a health insurance context (see Haberman and Pitacco
(1999), Olivieri and Pitacco (2009), Chapter 6 in Pitacco (2014) and Czado and Rudolph (2002))
and in life insurance (see Chapter 8 in Dickson et al. (2013) and Chapter 20 in Frees et al.
(2014)). Hesselager (1994) was one of the first to apply this popular actuarial model to the
non-life insurance reserving context. A second extension lies in the modeling of the distribution
of each subsequent payment in the development process. Contrary to Antonio and Plat (2014),
we model the claim size distribution for each subsequent payment of the claim development
process separately. Because the insurer is often confronted with heavy-tailed data and should
safeguard the company against extreme losses, an accurate description of the upper tail of
the payment distribution is of utmost importance. Therefore, as Larsen (2007) suggests, we
model small and large payments separately and have specific attention for the tail of each of
the payment distributions. Splicing (see Klugman et al. (2012) and Panjer (2006)) allows the
use of a body-tail approach where the body of the distribution is modeled separately from the
tail. GAMLSS introduced by Stasinopoulos and Rigby (2007) allow for flexible modeling of the
the body distribution while incorporating covariate information in the location, scale and shape
parameters for a wide collection of distributions. We use the toolbox from EVT (see McNeil
et al. (2005) and Beirlant et al. (2006)) to determine the threshold separating the body from
the tail and to model the tail of the payment distributions. Whereas our previous contributions,
Antonio and Plat (2014), Pigeon et al. (2014) and Godecharle and Antonio (2015), corrected
the observed payments beforehand for inflation based on the Consumer Price Index (CPI), we
now do not apply any discounting and capture inflation effects directly by including appropriate
covariates in our model.

The paper is organized as follows. In Section 2 we describe the multi-state model for the
development of a non-life insurance claim. Section 3 introduces the payment distribution model.
We demonstrate our methodology in a case study on a data set from a European insurance
company in Section 4 and end with a conclusion in Section 5.

2 A multi-state model for the development of a non–life insur-
ance claim

2.1 Claim dynamics

Consider the non-life claim for which the development is illustrated in Figure 1. Insurance
companies distinguish three types of claims depending on how far a claim is in the development
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process at the moment of evaluation s?. For an ‘IBNR’ or ‘Incurred But Not Reported’ claim
a claim event has happened, but the insurer is not aware of it yet at the moment of evaluation
(i.e. s? ≥ soc and s? < s0). We call a claim ‘RBNS’ or ‘Reported But Not Settled’ when the
insurer is aware of the claim, but the claim is not closed yet (i.e. s? > s0 and s? ≤ sc). Lastly,
a claim is closed when we have observed its complete development at the moment of evaluation
(i.e. s? > sc). The insurer has to set a reserve for both the IBNR and RBNS claims. In this
paper, we present a framework to evaluate the RBNS reserve. We refer to Pigeon et al. (2013),
Pigeon et al. (2014) and Antonio and Plat (2014) for a method to evaluate the IBNR reserve.

2.2 The multi-state approach

We model the development of a non-life insurance claim as a sequence of events using the multi-
state model (S ,T ) in Figure 2 with state space S and set of direct transitions T (Haberman
and Pitacco (1999) and Denuit and Robert (2007)).

At occurrence the claim starts its development in state Soc. Afterwards it is reported to the in-
surance company, corresponding to a transition to the reporting state Sre := S0. Once reported,
a first payment can occur, implying a transition from state S0 to state S1. Just like Soc and S0,
the states Sj (j ∈ {1, . . . , npmax−1}) are strictly transient, i.e. the claim can leave the state but
not re-enter. Index j refers to the number of payments made in the past; thus a transition to
state Sj represents the jth payment of a claim. A claim in such a state can move on to another
strictly transient state Sj+1 or to one of the absorbing states, Stn or Stp, which are impossible to
leave once entered. Index tn stands for ‘Terminal, No payment’, a transition to Stn means the
claim closes without payment. The claim closes with a payment in case of a transition to Stp
where tp stands for ‘Terminal with Payment’. The maximal number of payments throughout
the development of a claim is denoted by npmax. Therefore, the only possible transitions from
state Snpmax−1 are to the absorbing states (see Figure 2). A claim that moves from state S0
directly to the absorbing state Stn does not receive any payments.

The state space S is given by:

S = {Soc, Sre ≡ S0, S1, S2, . . . , Snpmax−1, Stn, Stp}. (1)

An event refers to the transition from one state in S to another. These events include claim
occurrence, reporting, the jth payment (j ∈ {0, 1, . . . , npmax − 1}) and closure with or without
a payment. The set of direct transitions T defines all possible transitions in the multi-state
model which are indicated by the arrows in Figure 2.

We detect the three types of claims discussed in Section 2.1. A claim in state Soc is an IBNR
claim because a claim event has happened, but the insurer is not aware of it as the claim did
not make the transition to state S0 yet. A claim in state Sj (j ∈ {1, . . . , npmax − 1}) is an
RBNS claim. The insurer is aware of the claim, but the claim is not settled as it did not reach
an absorbing state yet. Hence, the transition from Soc to S0 terminates the IBNR part, but
initializes the RBNS part in the development of a claim. A claim is closed when it reaches one
of the absorbing states Stp or Stn. When a claim is in the RBNS part of the multi-state model
in Figure 2 it faces competing risks (Klein and Moeschberger (2003), Pintilie (2006), Steele
et al. (2006), Beyersmann et al. (2011) and Durrant et al. (2013)). A transition out of state Sj
implies no turning back. Moreover, the transition out of this state into Sj+1, Stn or Stp are three
competing events, as choosing one of the three for the latter transition excludes the possibility
of choosing the other two events for the same transition.
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Figure 2: Multi-state model for the development of a non-life insurance claim: states and hazard func-
tions driving transitions between states.

2.3 A multinomial logit model for discrete-time transitions

Time discretization As an insurer does not always record data from Figure 1’s timeline in
continuous time, we approach the multi-state model in Figure 2 in discrete time. We use calender
years in this paper, but the framework is easily extendable to other time discretizations. Denote
the occurrence year of a claim κ by i(κ) ∈ {0, 1, . . . , n}. Hereby, n+1 is the number of occurrence
years observed in the data set. We also record information on the development of the claim in
discrete time and denote the development year by t ∈ {0, 1, . . . n} for which 0 corresponds to
the occurrence year itself. To obtain a single payment per discrete time period, we aggregate all
individual payments within the same time period (here: one calender year) into a single overall
payment for that period. Define S(κ, t) ∈ S as the state occupied by claim κ at the end of
development year t (∈ {0, . . . , n}). Then, S = {S(κ, t)|t = 0, 1, . . . , n} is a discrete-time process
describing the evolution of claim κ. As it is common for a claim to be reported and to receive
its first payment within the same year, we allow the claim to transition from Soc to S0 and from
S0 to S1 in the same development year. For later transitions we consider a single transition per
time period.

We illustrate the time discretization and corresponding notation in Table 1 (see Section 4 for
empirical illustrations using these data). Let us consider a data set where the observation
period starts at 01/01/1997, making 1997 the first observed occurrence year. Therefore, claim
κ originating in 1998 corresponds to occurrence year i(κ) = 1. Note that a double transition
occurs in 1999: first the claim transitions from Soc to S0 as the claim is reported, followed by
a first payment in the same year implying a transition from S0 to S1. A transition from S1 to
S2 happens in 2001 and corresponds to the second payment in the development of this claim
for an amount of e400 (in total). Finally, a third payment follows in 2002 and the claim closes,
which translates to a transition from S2 to Stp in the multi-state framework. The transition
into state Stp corresponds to the third payment. The other notation used in Table 1 is clarified
throughout the remainder of the text.
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Event Date Development Payment Payment S(κ, t) Time to

period t number event

Continuous Discrete T

Occurrence 08/23/1998 0 Soc

Reporting 01/13/1999
1

S0 Toc = 1

Cash flow e200 09/31/1999 1 Y1 = 200 S1 T0 = 0

e150 03/15/2001
3 2 Y2 = 400 S2 T1 = 2

e250 10/20/2001

e100 12/03/2002
4 3 Y3 = 100 Stp T2 = 1

Closing 12/13/2002

Table 1: Illustration of the development of a claim κ as registered in continuous time (first three
columns). Column 4 demonstrates the discrete time notation, columns 5 & 6 the payment
number and corresponding payment amount, column 7 the stochastic process S(κ, t) and col-
umn 8 the development year Ta at which the claim transitions out of a state Sa given that
time is reset upon arrival in state Sa (Section 2.3 paragraph ‘Multinomial logit model’). This
claim is fictional.

Multinomial logit model We use the hazard function λa,b to model the transition from state
Sa to state Sb in the multi-state model in Figure 2. Let Ta denote the development year at which
the claim moves out of state Sa. We reset time at each transition. Ta equal to zero implies the
claim transitions into and out of state Sa in the same year, which is the case for state S0 in the
illustration in Table 1. As Toc = T2 = 1 in this example, the claim transitions out of respectively
state Soc and S2 in development year 1 since entering the latter state. The claim transitions
out of state S1 in development year 2 since entry in this state, so T1 = 2. The label δa tells us
which of the competing risks the claim transitions to, where δa = b means a transition to state
Sb. The hazard function from state Sa to Sb evaluated in τ ,

λa,b(τ) = P (Ta = τ, δa = b|Ta ≥ τ) , τ ∈ {0, 1, . . . , n} (2)

is the probability the claim transitions from Sa into Sb in year τ , given that the transition out
of state Sa did not happen in the years before τ .

We allow the hazard functions to depend on covariate information and use a multinomial logit
framework to model the discrete-time hazard functions (Allison (1982) and Beyersmann et al.
(2011), Chapter 7):

λa,b(τ |xa,κ(τ)) =
exp{αa,b(τ) + β′a,bxa,κ(τ)}

1 +
∑

l exp{αa,l(τ) + β′a,lxa,κ(τ)}
(3)

where xa,κ(τ) is the (possibly) time-dependent covariate information for claim κ in year τ since
transition into state Sa, αa,b(τ) and βa,b are the regression parameters and the sum over l in
the denominator runs over all possible states claim κ can directly transition into from state Sa.
For each transient state Sa, the parameters used in the discrete-time hazard functions λa,b(τ)
are estimated simultaneously for all possible subsequent states Sb using maximum likelihood1.

1 We fit this model using the function ‘multinom’ from the nnet R package introduced by Venables and Ripley
(2002).
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We hereby treat all observed time periods of the individual claims as separate, independent
observations.

Without additional covariate information xa,κ(τ), the specification in (3) simplifies to the Nelson-
Aalen estimator (Nelson (1969), Aalen (1976)):

λ̂a,b(τ) =
da,b(τ)

na(τ)
(4)

with na(τ) the number of claims in state Sa at the start of the τ th year since transition into
state Sa and da,b(τ) the number of these claims transitioning into state Sb during year τ .

3 A flexible body-tail model for the payment distribution

In the second part of our internal model, we model the payments in the development of a
claim as visualized in Figure 1. We aggregate a claim’s intermediate payments (at s1, . . . , s4
in Figure 1) within the same calendar year and obtain a single payment for that period. We
label the payments consequently with a payment number, i.e. the first, second, . . . payment
in the development of a claim. A separate model is built for each payment number. Let Yj
(j ∈ {1, . . . , npmax}) denote the jth payment of a random claim. For the example discussed in
Section 2.3, Table 1 illustrates these payments in the fifth column. We need a model for Yj that
is flexible, allows for the inclusion of claim-specific covariate information and correctly captures
the skewness of the right tail. In the context of micro-level reserving Antonio and Plat (2014)
include covariate information in the location and scale parameter of a lognormal distribution for
intermediate payments which are not stratified by payment number. Distributional models for
payments are also highly relevant in insurance pricing. Frees and Valdez (2008) model payments
with a Generalized Beta of the second kind (GB2) distribution, with four parameters, including
covariate information. Klein et al. (2014) use Generalized Additive Models for Location, Scale
and Shape (GAMLSS) in a Bayesian framework for their observed claim severities, and specifi-
cally investigate the use of zero-adjusted versions of the gamma, inverse-Gaussian and lognormal
distributions where covariate information is included in three parameters (location and shape
or scale parameter, as well as probability of a claim). Verbelen et al. (2015) propose mixtures
of Erlangs as a flexible, yet tractable tool for loss modeling, while accounting for truncation
and/or censoring. A model that fits the attritional losses (i.e. the ‘small’ payments, also called
the body of the loss distribution) does not necessarily capture large payments well. Pigeon and
Denuit (2011) consider a composite lognormal-Pareto model to capture both attritional and
large losses. EVT (McNeil (1997), McNeil et al. (2005) and Beirlant et al. (2006)) suggests the
use of the Generalized Pareto Distribution (GPD) to model the tail of the loss distribution,
i.e. the losses above a certain, high threshold. As we want a flexible model for both attritional
and large payments, we naturally opt for a global loss model, obtained as a spliced distribution
with a body – below the threshold – and a tail – above the threshold – component. This way, we
allow the density function of Yj to be a spliced distribution with two components (see Klugman
et al. (2012), Panjer (2006) and Peters and Shevchenko (2015), Nadarajah and Bakar (2014),
Aue and Kalkbrener (2006) for examples in modeling operational risk data):

fYj (y) =

{
pj,1 · fj,1(y), if 0 < y ≤ uj
pj,2 · fj,2(y), if uj < y.

(5)
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fj,1(y) is a well-defined density function on the interval (0, uj ]. The tail of the distribution is
treated separately by a well-defined density function fj,2(y) on the interval (uj ,∞). We call uj
the threshold which separates the body of the data from the tail, or the attritional losses from
the large losses. The support of the body of the distribution is therefore (0, uj ] whereas the
support of the tail is given by (uj ,∞). pj,1 is the probability (or weight) that Yj pertains to
the body of the distribution whereas pj,2 expresses the probability of Yj belonging to the tail
of the distribution, hence pj,1 + pj,2 = 1. We describe the choice of the splicing thresholds uj ,
components fj,1 and fj,2, probabilities pj,1 and pj,2 and the inclusion of claim specific covariate
information in the remainder of this section.

3.1 Modeling the tail: threshold selection and GPD fit

Let Fj denote the cdf of Yj , the jth payment in the discretized development of a claim. We use
the excess distribution over a threshold u to model the tail of Fj :

Fju(y) := P (Yj − u ≤ y|Yj > u) =
Fj(y + u)− Fj(u)

1− Fj(u)
. (6)

We determine the optimal threshold uj from which the tail of Yj starts by state of the art
techniques from EVT (McNeil (1997), McNeil et al. (2005) and Beirlant et al. (2006)). The
selected threshold, uj , is included in (5) as the threshold separating the body from the tail of
the distribution.

Balkema and de Haan (1974) and Pickands III (1975) prove that the excess distribution of
common continuous distribution functions used in loss modeling converges to a Generalized
Pareto Distribution (GPD) if the threshold u is high enough. Following their theorem, we
assume Fju(y) = G(y) for some high threshold u where G is the GPD, defined as

G(y) =


1−

(
1 + γy

σ

)−1
γ , y ∈ (0,∞) if γ > 0

1− exp
(
− y
σ

)
, y ∈ (0,∞) if γ = 0

1−
(
1 + γy

σ

)−1
γ , y ∈ (0,−σ

γ ) if γ < 0

(7)

where γ is the Extreme Value Index (EVI) and σ is a scale parameter. The selection procedure
for the optimal threshold uj depends on the sign of the EVI. Graphical tools to determine this
sign include the mean excess plot and the exponential QQ plot (see Section 4.1 in McNeil (1997),
Section 7.2 in McNeil et al. (2005) and Section 1.2 in Beirlant et al. (2006)).

For data with a GPD tail, the mean excess plot2 becomes increasingly linear. The trend in the
mean excess plot gives an indication of the sign of the EVI: a downward trend is associated with

2The mean excess function of a random variable Y with finite mean, is defined as

e(u) = E (Y − u|Y > u) . (8)

The mean excess function is empirically estimated as

ênY (u) =

∑nY
i=1 yi1(u,∞)(yi)∑nY
i=1 1(u,∞)(yi)

− u (9)

where yi is the ith observation and nY the number of observations of Y . The mean excess plot is given by
{YnY −k,nY , ênY (YnY −k,nY ), 1 ≤ k ≤ nY − 1} where YnY −k,nY denotes the (nY − k)th order statistic or the
(k + 1)th largest observation of Y .
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γ < 0, a horizontal trend with γ = 0 and an upward trend with γ > 03.

We illustrate this approach with the observations on the first payment, i.e. Y1, from the case
study presented in Section 4. Figure 3 shows the empirical mean excess plot (left) and the
exponential QQ plot (right). The increasing empirical mean excess function indicates a heavy-
tailed distribution (i.e. γ > 0), which is confirmed by the convex shape of the exponential QQ
plot. We therefore conclude that the data used in this illustration are heavy-tailed (γ > 0).
When modeling insurance losses (or: payments in a claim’s run-off) we rarely observe the other
cases in (7), i.e. γ = 0 or γ < 0.
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Figure 3: Graphical tools to determine the sign of the EVI γ: sample mean excess plot (left) where
the vertical line displays the selected threshold uj , and the exponential QQ plot (right). We
illustrate the tools on first payment (Y1) observations for the data set from Section 4

Threshold selection In the γ > 0 case, we determine the optimal threshold uj using the Hill
(Section 7.2.4 in McNeil et al. (2005) and Section 4.2 in Beirlant et al. (2006)), Zipf (Section 4.3
in Beirlant et al. (2006)) and second order Hill estimator (Section 4.5.1 in Beirlant et al. (2006))
for the EVI γ in (7). We plot these estimators as a function of the number of tail observations
taken into account, denoted by k, and look for a stable region in the graphs of these three γ-
estimators. Figure 4 (top) visualizes the resulting estimates on the Y1 data from our case study.
We choose the threshold u1 to be e15,273.90 (the 30th largest observation of Y1), indicated with
the vertical line in the graph, at the point where the Hill and the second order Hill estimator
meet. For other threshold selection methods we refer to Beirlant et al. (2006) and Scarrott and
MacDonald (2012).

Fitting the GPD tail Given the selected threshold uj , we use maximum likelihood estimation
to determine the parameters in the GPD distribution for the exceedances above this threshold4.
Figure 5 shows the Peaks Over Threshold (POT) plot for the observations of Y1 and the selected
threshold. The horizontal line in this plot corresponds to the selected threshold u1, whereas the
height of each bar represents an observation on the first payment Y1. For a payment above the
selected threshold u1, the length of the peak over the threshold represents the exceedance of the
payment above u1. The payments are grouped and color-coded per calendar year. We examine
the goodness of fit of the GPD distribution using a QQ and PP plot as in Figure 4 (bottom).

3The last observations in the mean excess plot average over a small number of excesses. As these values can
distort the graph of the mean excess plot, we often do not consider these.

4The gpd.fit function from the ismev package allows for this estimation in R.
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Figure 4: Graphical tools to determine the optimal threshold uj separating the body of the distribution
from its tail: Hill, Zipf and second order Hill plot for the 200 largest observations (top) where
the vertical line displays the selected threshold uj . The PP plot (bottom, left) and the QQ
plot (bottom, right) of the GPD fit for exceedances above selected threshold uj . We illustrate
the tools on the first payment (Y1) observations for the data set from Section 4.

These plots underline the good fit for the tail of the data observed on the first payment number,
Y1.
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Figure 5: The exceedances over the selected threshold uj as a Peaks Over Threshold (POT) plot: the
length of each bar represents the height of an Yj observation, grouped and color-coded per
calendar year. The horizontal line corresponds to the selected threshold uj . We illustrate the
tool on the first payment (Y1) observations for the data set from Section 4

3.2 Modeling the body: a GAMLSS approach

We use a parametric GAMLSS fit (Stasinopoulos and Rigby (2007)) in the body distribution,
denoted by fj,1(y) in (5). These flexible models extend the framework of Generalized Linear
Models (GLM), widely used in actuarial tarification and reserving (De Jong and Heller (2008),
Kaas et al. (2008) and Ohlsson and Johansson (2010)), by not restricting the distribution of
the response variable to the exponential family. Moreover, they allow the inclusion of covariate
information in up to four model parameters. Recent research demonstrates the usefulness of
these models in a wide range of applications. For example to model mortgage loan losses as
in Tong et al. (2013), to estimate measures of market risk as in Scandroglio et al. (2013), to
analyze insurance data as in Klein et al. (2014) and income data as in Klein et al. (2015).

We investigate the GAMLSS model specifications where the density function fj,1(y|xκ(t)) is
conditional on at most four distribution parameters θκ = (θ1κ, θ2κ, θ3κ, θ4κ) = (µκ, σκ, νκ, τκ).
The first two parameters µκ and σκ in the density of claim κ are usually referred to as respectively
location and scale parameter, whereas the remaining parameters, if present, are additional shape
parameters. Notice that we drop the subscript j, 1 (see (5)) for these parameters to ease notation.
We incorporate claim specific covariates in a linear way, namely gr(θrκ) = β′rxκ where the
parametric link function gr for r ∈ {1, 2, 3, 4} expresses the relation between the systematic
component β′rxκ and the distribution parameter θrκ.

Let xκ(t) be the vector with (possibly) time-dependent covariate information of claim κ in
development year t. Given the covariate information, we model fj,1(y|xκ(t)) with a truncated
parametric GAMLSS model since the observation on the jth payment in the development of a
claim is left truncated by 0 and right-truncated by uj . We examine the goodness of fit of a
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selection of distributions commonly used in loss modeling that are available within R’s GAMLSS

package5. We use the AIC (see Akaike (1974)) to choose the preferred GAMLSS distribution
for fj,1.

3.3 Probability of belonging to the body or tail of a payment distribution

The probabilities pj,r(xκ(t)) in (5) depend on covariate information xκ(t) of claim κ in develop-
ment year t. We use a binomial logit framework to model these probabilities:

pj,2(xκ(t)) =
exp{α+ β′xκ(t)}

1 + exp{α+ β′xκ(t)}
pj,1(xκ(t)) = 1− pj,2(xκ(t)). (10)

where α and β are the model parameters which we estimate by maximum likelihood6. pj,1(xκ(t))
and pj,2 represent the probability of belonging respectively to the body or tail of the distribution.

4 Case study

We demonstrate the methodology on a data set from a European insurance company. The
data consist of the bodily injury (BI) claims arising from general liability insurance contracts.
Within the actuarial literature, Antonio and Plat (2014), Pigeon et al. (2013), Pigeon et al.
(2014) and Godecharle and Antonio (2015) work with the same data set. These papers first
discount payments using the relevant Consumer Price Index (CPI) and then model discounted
payments. We choose not to correct the observed payments for inflation beforehand but instead
want to capture inflation effects from the data at hand, using appropriate covariate information
in our regression models. We split the data set in a training (January 1997 – December 2004)
and a validation data set (January 2005 – August 2009) and we discretize time using annual
periods starting from 01/01/1997 and running until 31/12/2004. As such we have eight full
years of observations in the training data set. At the moment of evaluation, i.e. at the end of
the day at 31/12/2004, the training data set contains 4,483 claims of which 3,452 are closed.
The 1,031 remaining claims are RBNS claims for which we will simulate the reserve. One full
simulation of the RBNS reserve consists of two steps. Starting from the multi-state model as
depicted in Figure 2, we first use the estimated hazard functions from Section 2 to complete the
stochastic process S(κ, t) for each RBNS claim κ by simulation. Define the maximum number
of development years observed in the data set by n. In this application, when a claim reaches
development year t = n = 8 and the claim is still open, we force a transition to closure without
payment in the next development year such that S(κ, 9) = Stn, limiting the development of
a claim in time. As a consequence npmax = 9 in the multi-state model represented by Figure
2. Second, we use the calibrated distributions from Section 3 to simulate a payment for each
simulated transition involving a payment. We incorporate the policy limit of e2.5 million from
policy conditions underneath our data set. We construct the distribution for the RBNS reserve
by repeating this two-step simulation process.

5The gamlss.tr package in R allows for maximum likelihood parameter estimation of a GAMLSS distribution
left-truncated by 0 and right-truncated by uj .

6The nnet R package introduced by Venables and Ripley (2002) allows to compute the maximum likelihood
estimators of these parameters.
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4.1 The multi-state model: estimation and simulation

Summary statistics Table 2 shows summary statistics on the number of claims transitioning
out of state S0 (left) and state S1 (right). Similar tables can be constructed for states Sj
(j ∈ {2, . . . , 8}). We recall the notation introduced in Section 2.3: na(τ) is the number of claims
in state Sa at the start of the τ th year since transition into state Sa and da,b(τ) is the number
of these claims transitioning into state Sb during year τ . The top left cells in each table show
the number n0(0) and n1(0) of claims we observe entering respectively state S0 and S1. Note
that n1(0) consists of the claims that entered state S0 (i.e. n0(0)) and did not transition into an
absorbing state nor were censored before transitioning out of state S0. Our model does not allow
a claim to transition out of state Sj in the year of entrance into this state when j ≥ 1. As a
consequence, d1,2(0) = d1,tp(0) = d1,tn(0) = 0. We do allow a claim to transition out of state S0
in the same year this state was entered, explaining the non-zero values for d0,1(0), d0,tp(0), d0,tn(0)
in the left table. From the claims that entered state S0, 1, 705 received a payment which did
not close the claim (i.e. transition to S1), 1,028 received a payment which closed the claim
(i.e. transition to Stp) and 309 claims closed without a payment (i.e. transition to Stn) within
the same year, τ = 0, of entrance into state S0. The columns corresponding to τ = 1, 2 and
≥ 3 (left) and τ = 1, 2, 3 and ≥ 4 display these same numbers for claims that have been one,
two and at least three years in state S0, respectively state S1. To make sure we have enough
observations for each value of τ , we do not distinguish values of τ beyond 3 for S0 and beyond
4 for S0, but consider these as a single group.

τ 0 1 2 ≥ 3

n0(τ) 4,483 1,185 151 83
d0,1(τ) 1,705 388 36 11
d0,tp(τ) 1,028 439 36 12
d0,tn(τ) 309 177 15 12

τ 0 1 2 3 ≥ 4

n1(τ) 2,140 1,834 242 84 82
d1,2(τ) 0 635 41 8 10
d1,tp(τ) 0 540 57 12 3
d1,tn(τ) 0 381 37 14 13

Table 2: Summary statistics on the transition out of S0 (left) and out of S1 (right).
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Figure 6: Left, with τ the time since entry in state S0: λ̂0,1(τ) (full black line), λ̂0,tn(τ) (dotted green

line), λ̂0,tp(τ) (dashed blue line) and the probability of not making a transition 1− λ̂0,1(τ)−
λ̂0,tn(τ)− λ̂0,tp(τ) (dotted-dashed red line). Right, as a function of time since entry τ in state

S1: λ̂1,2(τ) (full black line), λ̂1,tn(τ) (dotted green line), λ̂1,tp(τ) (dashed blue line) and the

probability of not making a transition 1− λ̂1,2(τ)− λ̂1,tn(τ)− λ̂1,tp(τ) (dotted-dashed red line).

Estimation results We use the multinomial logit model from (3) without additional covariate
information xa,κ(τ), resulting in the Nelson-Aalen estimator (4), to estimate the hazard functions
λa,b(τ). We leave the inclusion of covariate information as a subject for future research. To
illustrate our results, Figure 6 visualizes the estimated hazard functions for transitions out of
state S0 and S1.

Simulation of future paths for RBNS claims The stochastic process S(κ, t) describes the
movement of a claim κ through the multi-state model as time evolves. For an RBNS claim,
this process did not yet reach an absorbing state at the moment of evaluation. We simulate
the further run-off of such an RBNS claim by simulating its future path – driven by estimated
hazard functions λ̂a,b – until S(κ, t) reaches an absorbing state or until t reaches the maximum
number n of observed development years. The simulation procedure for claim κ starts with
determining the last state this claim occupies in its development process S(κ, t), say Sa, and
the first unobserved development period τ since entrance into this state. We then select the
relevant hazard function values λ̂a,b(τ) for all possible transitions to some state b out of state
Sa in development period τ . Given these probabilities we simulate what happens in period τ :
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Figure 7: Distribution for the number of payments from the RBNS claims per calendar year obtained by the simulation procedure (2,000 simulations)
based on the estimated hazard rates. The point labeled ‘Obs’ is used to indicate number of payments observed in the validation data set
of RBNS claims. Note that the validation data set contains observations until August 2009. As a consequence, the number of payments
observed in 2009 is incomplete and we do not observe payments in 2010 and 2011. The total number of payments is therefore also
incomplete.
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a non-terminal payment transition (to state Sa+1), a terminal payment transition (Stp), closure
without payment (Stn) or no transition at all (Sa). In case the simulated state is an absorbing
one, the stochastic process S(κ, t) ends here as the claim closes. If the development period t
reaches the maximum number n = 8 of observed development years without the claim attaining
an absorbing state, we close the claim by a transition to state Stn in the following period. When
the claim did not reach an absorbing state and t < n, we repeat the procedure and simulate the
next state in the stochastic process of the open claim.

For each RBNS claim observed in the training data set, we simulate its future path through
the multi-state model. By repeating this procedure, we can construct empirical distributions
of quantities of interest using the simulated paths. For example, Figure 7 shows the empirical
distribution of the number of payments per calendar year (i.e. 2005, 2006, and so on). Table
3 shows summary statistics of these empirical distributions per calendar year. We simulate
2,000 paths and compare the simulated number of payments to the actual observed number of
payments in the validation data set. Note that the year 2009 is only observed until August in
the validation data set, making the observed number for this calendar year incomplete.

Calendar year 2005 2006 2007 2008 2009 2010 2011 Total

Minimum 538 234 122 68 31 12 4 1,129
25% quantile 583 276 155 92 54 29 11 1,220
Median 594 286 163 97 58 33 14 1,245
Mean 594 286 163 97.5 58.6 32.7 13.9 1,245
75% quantile 603 295 171 103 63 36 16 1,269
95% quantile 618 309 182 112 71 42 20 1,307
Maximum 649 344 199 135.0 86 50 28 1,388
Observed 595 238 140 81 ≥ 31 NA NA ≥ 1, 085

Table 3: Summary statistics for the number of payments from the RBNS claims per calendar year
obtained by the simulation procedure (2,000 simulations) based on the estimated hazards.
The row labeled ‘Observed’ shows the number of payments observed in the validation data set
of RBNS claims for the corresponding calendar year.

Figure 7 and Table 3 show the empirical distribution captures the number of payments observed
in the validation data set in calendar year 2005 very well. For calendar year 2006, 2007 and
2008 the observed value lies more in the left tail of the distribution. Results may probably be
improved by introducing covariate information in the hazard functions, as suggested in Section
5. The observed number of payments in 2009 and in total are also in the left tail of the empirical
distribution. Note, however, that we only observe 2009 until August in the validation data set,
making these observed numbers incomplete. As a consequence, we do not observe any payments
in 2010 and 2011 and the total observed number is incomplete as well.

4.2 Flexible payment distributions: estimation and simulation

Descriptive statistics Table 4 summarizes the empirical distribution per payment number
as observed in the training data set. Recall from Section 3 that we stratify the distribution of
non-zero payments in a claim’s run-off based on payment number and use notation Yj for the
jth payment during the development of a claim.

We construct the spliced density function of Yj (see (5)) per payment number j, following
the procedure outlined in Section 3. Because we have very few payment observations for high
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payment numbers, in particular: payment numbers 5–8 in this data set, we fit one body-tail
model on the collection of these observations. We denote the payment distribution of these
payment numbers by fY5 and the corresponding random variable by Y5.

Payment Y1 Y2 Y3 Y4 Y5

] observed 3,655 1,306 399 154 98
Minimum 6.58 8.09 11.60 26.32 30.00
Mean 1,419.24 3,562.92 6,446.61 12,075.07 12,615.79
Median 442.44 1,130.04 1,956.31 3,624.73 5,000.00
95% quantile 5,530.02 14,225.36 25,705.87 39,165.62 41,707.68
Maximum 162,274.50 135,583.00 230,137.40 394,788.80 234,509.99

Table 4: Training data set, with occurrence years 1997–2004: summary statistics of the empirical dis-
tribution per payment number.

Tail of the distribution We apply the strategy from Section 3.1 to all payment number
distributions. Graphics illustrating this strategy were shown in Section 3.1. We apply the same
strategy to Y2, Y3, Y4 and Y5. In all cases we observe an increasing mean excess plot and
convexity of the exponential QQ plots (cfr. our illustration in Figure 3 with data observed on
Y1). Thus, we conclude that Y1, Y2, Y3, Y4 and Y5 are heavy-tailed. Table 5 shows the selected
thresholds. For example, the threshold splicing the distribution of Y2 is u2 = e12,320.11 which
corresponds to the 83rd largest observation. The GPD fit on the tail of Y1, . . . , Y5 is verified
by means of a QQ and a PP plot. Table 6 shows the corresponding parameter estimates and
their standard error (in brackets). Note that the standard errors for the highest two payment
numbers (Y4 and Y5) becomes large as a result of the low number of observations included in
the fit.

u1 u2 u3 u4 u5

Threshold e15,273.90 e12,320.11 e19,129.6 e28,815.35 e29,226.73
Order statistic 30 83 32 12 9

Table 5: Optimal splicing thresholds uj for j ∈ {1, 2, 3, 4, 5} together with their corresponding order
statistic.

f1,2 f2,2 f3,2 f4,2 f5,2

γ̂ 0.46 (0.27) 0.51 (0.17) 0.51 (0.26) 0.54 (0.36) 0.49 (0.74)
σ̂ 10,068.95 (3,258.57) 7,416.94 (1,420.20) 12,633.43 (3,229.18) 24,151.34 (7,844.73) 25,760.67 (28,345.51)

Table 6: Parameter estimates and their standard error (in brackets) for f·,2 in equation (5) with the
GPD distribution given by (7).
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f1,1 f2,1 f3,1 f4,1 f5,1

µ σ µ σ µ σ µ σ µ σ

α̂ 5.54 (0.07)? 0.38 (0.03)? 6.76 (0.14)? 0.62 (0.05)? 7.94 (0.26)? 0.66 (0.10)? 11.33 (0.90)? 1.30 (0.16)? 14.96 (0.95)? 1.50 (0.18)?

t 1 β̂1 0.73 (0.06)? 0.16 (0.03)?

2 β̂2 1.68 (0.16)? 0.30 (0.06)? 0.33 (0.14)? 0.22 (0.05)?

3 β̂3 2.01 (0.21)? 0.11 (0.09) 0.74 (0.25)? 0.11 (0.09) -0.09 (0.22) -0.07 (0.09)

4 β̂4 0.16 (0.31) 0.01 (0.12) -0.34 (0.47) 0.46 (0.12)? 2.76 (0.57)? 0.36 (0.12)?

5 β̂5 -0.75 (0.58) -0.02 (0.15)

i 1 δ̂1 0.09 (0.09) -0.09 (0.05)◦ 0.02 (0.19) -0.11 (0.07) -0.17 (0.35) -0.05 (0.12) 0.19 (1.15) -0.01 (0.19) -6.15 (1.00)? -0.55 (0.20)?

2 δ̂2 0.33 (0.10)? -0.07 (0.05) 0.18 (0.19) -0.08 (0.07) -0.84 (0.33)? -0.13 (0.13) -3.94 (0.95)? -0.71 (0.19)? -5.62 (0.96)? -0.66 (0.19)?

3 δ̂3 0.37 (0.09)? -0.07 (0.04) 0.16 (0.19) -0.04 (0.07) -0.17 (0.32) -0.11 (0.12) -1.51 (0.99) -0.28 (0.18)

4 δ̂4 0.48 (0.09)? -0.10 (0.05)? 0.82 (0.20)? -0.02 (0.07) 0.26 (0.38) 0.23 (0.13)◦

5 δ̂5 0.42 (0.09)? -0.11 (0.05)? 0.23 (0.19) -0.17 (0.08)? -0.12 (0.33) -0.65 (0.17)?

6 δ̂6 0.47 (0.09)? -0.10 (0.05)? 0.23 (0.20) -0.21 (0.08)?

7 δ̂7 0.44 (0.10)? -0.10 (0.05)?

Distribution log-normal log-normal log-normal log-normal log-normal
] obs. 3626 1224 368 143 90

] parameters 22 20 16 10 8
AIC 56698 20855 6631 2737 1746

Table 7: Body – Tail split: Parameter estimates and their standard error (in brackets) for f·,1 in equation (5). Covariate information consists of
development year t (as factor information) and occurrence year i (as factor information). Significance of the parameter at 5% level is
denoted by ◦, at 1% level is denoted by ?.
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Body of the distribution We examine the fit of five truncated GAMLSS error distributions7

to the body distribution of Yj . We include the same set of (possibly) time-dependent covariate
information in the model for the location parameter µ and scale parameter σ of each of the five
distributions under investigation. The vector of covariate information, say xκ(t), is observed
for each individual claim κ at the start of development period t, where t is the development
period in which the claim’s intermediate payment Yj is registered. Our case study examines the
use of the occurrence year i and development year t since occurrence, both expressed as factor
information. Inclusion of these two variables allows us to capture inflation in the model through
the combined i+ t effect. Based on the AIC we determine the preferred model for the body of
Yj . The selected GAMLSS distribution is the log-normal distribution for all j ∈ {1, 2, 3, 4, 5}.

Table 7 shows the parameter estimates and their standard errors for the selected distributions.
We explain the coding of the covariates for the case of f4,1(y), which is the body distribution for
the fourth payment in a claim’s development process. This model uses five regression parameters
(α, β4, δ1, δ2 and δ3). Remember that occurrence year i = 0 corresponds to the first occurrence
year observed in the data set, i.e. 1997. Development year t since occurrence has value 0 at the
year of occurrence, 1 the year afterwards, and so on. As the fourth payment can be made earliest
in development year t = 3, the reference category captured by the intercept α is t = 3, i = 0.
To have enough observations in each level of the factor variables we combine levels representing
longer tailed run-off lengths. For example, in the density f4,1(y), β4 captures the effect of
development periods t ≥ 4. More generally the parameter βl with the highest l in Table 7
corresponds to the effect of development periods t ≥ l. The parameter δl with the highest l
corresponds to the effect of occurrence period i ≥ l. For example, for fY4(y), δ3 captures the
effect of i ≥ 3, whereas the remaining parameters δ1 and δ2 correspond to occurrence year i = 1
and i = 2 respectively.

We discuss some striking features in Table 7. As development period t increases, so does the
location parameter µ in the body distribution of the first payment Y1. Up until i = 4, the
occurrence year i has the same effect on the location parameter. The effect stabilizes more or
less from i = 5 onwards. For the second payment Y2, we see the location parameter µ increases
with development year up until t = 3. We detect significant effects of i and t in the systematic
component of the location and scale parameter. We do not simplify the model in this case study

7 The table below displays the GAMLSS error distributions, including their pdf and the link functions used in
the GAMLSS framework, we investigate as possible models for the body of the various payment distributions.

link function
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by regrouping factor levels. This is the subject of future research, together with the search of
other relevant covariates to include in the model and the use of non-linear covariate effects.

Probability of belonging to the body or tail of a payment distribution Table 8 shows
the parameter estimates (and their standard errors) for the probabilities of belonging to the
tail of the distribution pj,2(xκ(t)) given in equation (10). Interpretation of the notation used in
this table is analogous to the interpretation of Table 7. Given that the selected threshold uj is
constant over time, the inclusion of the development year t and occurrence year i as covariates
allows the probability of a payment Yj to belong to the tail of the distribution to increase over
time as a consequence of inflation. The results show that the probability of a payment being in
the tail of the distribution increases with the development year t for this specific data set. The
effect of the occurrence year i is less outspoken.

Simulation of payments We explain at the end of Section 4.1 how to simulate a path for an
RBNS claim through the multi-state model from Figure 2. If a claim makes a transition that
corresponds to a payment (e.g. a transition to state S1 implies a first payment is made), we
simulate a payment from the relevant payment distribution constructed in Section 3. Consider
an RBNS claim κ for which we simulated a transition involving a payment in development period
t. We start by determining the payment number j corresponding to this payment and the vector
of covariate information xκ(t) at the start of development period t. Next, we simulate a payment
from the distribution fYj (y|xκ(t)). When all future payments of RBNS claim κ are simulated,
we cap the total paid amount on claim κ at the policy limit of the policy under consideration,
namely e2,500,000.

p1,2 p2,2 p3,2 p4,2 p5,2

α̂2 -6.81 (0.76) -2.85 (0.29) -2.95 (0.52) -2.08 (0.70) -3.85 (1.25)

Development 1 β̂2,1 2.28 (0.56)

year t 2 β̂2,2 2.97 (0.73) 0.63 (0.27)

3 β̂2,3 3.77 (0.81) 0.93 (0.44) 0.68 (0.47)

4 β̂2,4 1.29 (0.66) 1.51 (0.57) 0.09 (0.67)

5 β̂2,5 1.84 (0.56) 1.56 (1.11)

Occurrence 1 β̂2,6 -0.24 (0.93) -0.62 (0.45) -0.57 (0.68) -0.39 (0.86) 0.55 (0.97)

year i 2 δ̂2,1 0.21 (0.83) -0.00 (0.38) 0.17 (0.62) -1.57 (1.19) 0.12 (1.05)

3 δ̂2,2 -0.12 (0.84) -0.37 (0.40) -0.71 (0.68) -0.35 (0.86) 1.91 (1.65)

4 δ̂2,3 0.57 (0.76) -0.52 (0.44) 0.29 (0.62) -0.69 (1.25)

5 δ̂2,4 1.01 (0.75) 0.15 (0.40) 1.04 (0.75)

6 δ̂2,5 1.28 (0.75) 0.03 (0.48)

7 δ̂2,6 -8.87 (0.00)

Table 8: Parameter estimates and their standard error (in brackets) for the probability of belonging to
the tail of the distribution, p·,2 in equation (10).

4.3 RBNS reserve

One full simulation of the total RBNS reserve for this portfolio consists of two steps: (1) we
simulate the future path in the multi-state model for each RBNS claim as explained in the last
paragraph of Section 4.1, (2) for each of these simulated transitions involving a payment, we
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simulate a corresponding payment as discussed in the last paragraph of Section 4.2. By repeating
this procedure, we generate a large number of possible values for the total RBNS reserve and the
reserve per calendar year which can be summarized and represented by empirical distribution
functions or densities. Figures 8, 9, 10 and 11 show the distribution of the RBNS reserve per
calendar year (i.e. 2005 until 2011) as well as the distribution of the total RBNS reserve over
the complete run-off.

To check robustness of our model, we also fit a density function of Yj consisting of only one
GAMLSS component that is left-truncated at 0. In this case, there is no distinction between the
body and the tail of the distribution. Table 9 shows the fitting results for j ∈ {1, 2, 3, 4, 5}. We
select the best fit based on the AIC, resulting in the log-normal distribution for fY1(y), fY2(y)
and fY3(y) and the Weibull distribution for fY4(y) and fY5(y). Interpretation of the results is
analogous to Table 7.

We compare our results to the distribution for the RBNS reserve per calendar year as obtained
from a bootstrap implementation of the Double Chain Ladder (DCL) method with and without
including parameter uncertainty (see Mart́ınez Miranda et al. (2012)8). This method works
on aggregate data and combines the classical payments run-off triangle with a reported counts
triangle. We use DCL as a benchmark because it explicitly allows to distinguish the IBNR from
the RBNS reserve and most classical methods, such as the chain ladder method, do not allow
this explicit separation. Figures 8 and 9 compare the micro-level results to the results of the
bootstrap DCL method where parameter uncertainty is not taken into account, whereas Figures
10 and 11 compare the micro-level results to the results of the bootstrap DCL method where
parameter uncertainty is taken into account. Table 10 and Table 11 show summary statistics on
the empirical distribution of the RBNS reserve shown in blue in Figures 8 and 9 or 10 and 11. On
the other hand, Table 12 and Table 13 show summary statistics on the empirical distribution of
the RBNS reserve shown in red in Figures 10 and 11 respectively in Figures 8 and 9. A striking
feature is that the observed value for the calendar year 2009 contains an extreme observation of
e1,022,376.36 corresponding to a deadly accident9.

Discussion We first compare the RBNS distributions with a single GAMLSS component to
the body-tail split (as in equation (5)). The former approach leads to a slightly heavier tail when
aggregated per calendar year. For each calendar year the distributions in blue in Figures 8, 9,
10 and 11 capture the observed value in the validation data set, even the extreme observation
in 2009. However, the observed value for this year is very far in the right tail. Recall that the
observed number of payments in Figure 7 for calender year 2006, 2007 and 2008 were in the
left tail of the empirical distribution. Therefore, a reasonable consequence is that the RBNS
reserve as observed in the validation data set for these calendar years is also in the left tail of
the micro-level distribution.

8Mart́ınez Miranda et al. (2012) implement the DCL method in the R package DCL.
9In the multi-state model represented by Figure 2 the claim corresponding to this extreme event arrives in

state Soc in 2002 and makes a transition to state S0 in the same year. The claim transitions from state S0 to state
S1 by a first payment of e5,083.11 in the year 2004. In 2005 (i.e. the first year in the validation data set) the
claim transitions from S1 to S2 with a payment of e17,325.15. The year after, a transition to state S3 takes place
with a payment of e8,406.67. The claim then transitions from state S3 to S4 and from S4 to S5 with payments
of respectively e20,750.44 and e159,564.04. Finally, the claim closes by a transition from state S5 to state Stn
with a sixth payment of e1,022,376.36 bringing the total paid amount to e1,233,505.77.
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f1,1 f2,1 f3,1 f4,1 f5,1

µ σ µ σ µ σ µ σ µ σ

α̂ 5.53 (0.07)? 0.38 (0.03)? 6.67 (0.13)? 0.56 (0.05)? 7.56 (0.22)? 0.50 (0.09)? 9.09 (0.44)? -0.73 (0.16)? 9.01 (0.38)? -0.34 (0.18)◦

t 1 β̂1 0.69 (0.06)? 0.13 (0.03)?

2 β̂2 1.36 (0.14)? 0.16 (0.06)? 0.10 (0.12) 0.15 (0.05)?

3 β̂3 1.81 (0.18)? -0.01 (0.09) 0.51 (0.21)? 0.08 (0.09) 0.21 (0.19) 0.05 (0.08)

4 β̂4 0.33 (0.42) 0.14 (0.16) -0.33 (0.38) 0.49 (0.12)? 0.06 (0.29) -0.08 (0.12)

5 β̂5 0.94 (0.45)? 0.20 (0.16) 0.21 (0.34) -0.29 (0.16)◦

i 1 δ̂1 0.10 (0.09) -0.09 (0.05)? 0.01 (0.18) -0.11 (0.07) -0.18 (0.29) -0.06 (0.12) -0.37 (0.52) 0.20 (0.19) -0.29 (0.45) -0.03 (0.20)

2 δ̂2 0.32 (0.09)? -0.08 (0.05)◦ 0.20 (0.18) -0.07 (0.07) -0.43 (0.30) 0.02 (0.12) -0.56 (0.50) 0.32 (0.19)◦ -0.14 (0.41) 0.05 (0.19)

3 δ̂3 0.36 (0.09)? -0.08 (0.04)◦ 0.09 (0.17) -0.09 (0.07) -0.21 (0.27) -0.15 (0.11) -0.16 (0.48) 0.32 (0.18)◦

4 δ̂4 0.48 (0.09)? -0.09 (0.05)? 0.45 (0.17)? -0.15 (0.07)? -0.16 (0.31) 0.14 (0.12)

5 δ̂5 0.43 (0.09)? -0.10 (0.05)? 0.35 (0.18)? -0.11 (0.07) 0.57 (0.32) -0.25 (0.16)

6 δ̂6 0.50 (0.09)? -0.08 (0.05)◦ 0.31 (0.18)◦ -0.18 (0.08)?

7 δ̂7 0.44 (0.10)? -0.11 (0.05)?

Distribution log-normal log-normal log-normal Weibull Weibull
] obs. 3655 1306 399 154 98

] parameters 22 22 16 10 8
AIC 57627 23188 7533 3085 1994

Table 9: No body-tail split, but a global fit with a GAMLSS model per payment number: parameter estimates and their standard error (in brackets)
for fYj for j ∈ {1, 2, 3, 4, 5}. Covariate information consists of development year t (as factor information) and occurrence year i (as factor
information). Significance of the parameter at 5% level is denoted by ◦, at 1% level is denoted by ?.
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Figure 8: RBNS reserve per calendar year (columns) obtained by 2,000 full simulations. We compare the results of our micro-level approach (full
blue line) to the results obtained by the bootstrap DCL method where parameter uncertainty is not taken into account (dashed red
line). The first row of figures shows the results of our micro-level approach where the payment distributions fYj are modeled by a single
truncated GAMLSS component. The second row of figures shows the results of our micro-level approach where the payment distributions
fYj are spliced in a body and tail component. The label ‘Obs’ indicates the corresponding observed RBNS reserve in the validation data
set.
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Figure 9: RBNS reserve per calendar year (first three columns) and in total (last column) obtained by 2,000 full simulations. We compare the
results of our micro-level approach (full blue line) to the results obtained by the bootstrap DCL method where parameter uncertainty
is not taken into account (dashed red line). The first row of figures shows the results of our micro-level approach where the payment
distributions fYj are modeled by a single truncated GAMLSS component. The second row of figures shows the results of our micro-level
approach where the payment distributions fYj are spliced in a body and tail component. The label ‘Obs’ indicates the corresponding
observed RBNS reserve in the validation data set.



4
C

a
se

stu
d
y

26

Obs
0.0e+00

5.0e−07

1.0e−06

1.5e−06

1 
G

A
M

LS
S

 c
om

po
ne

nt

2005

Obs

2006

Obs

2007

Obs

DCL

Micro

2008

Obs
0.0e+00

5.0e−07

1.0e−06

1.5e−06

2e+06 4e+06 6e+06 8e+06

B
od

y 
−

 ta
il 

sp
lit

Obs

2.5e+06 5.0e+06 7.5e+06

Obs

2e+06 4e+06 6e+06

Obs

1e+06 2e+06 3e+06 4e+06 5e+06

Figure 10: RBNS reserve per calendar year (columns) obtained by 2,000 full simulations. We compare the results of our micro-level approach
(full blue line) to the results obtained by the bootstrap DCL method where parameter uncertainty is taken into account (dashed red
line). The first row of figures shows the results of our micro-level approach where the payment distributions fYj are modeled by a
single truncated GAMLSS component. The second row of figures shows the results of our micro-level approach where the payment
distributions fYj are spliced in a body and tail component. The label ‘Obs’ indicates the corresponding observed RBNS reserve in the
validation data set.
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Figure 11: RBNS reserve per calendar year (first three columns) and in total (last column) obtained by 2,000 full simulations. We compare the
results of our micro-level approach (full blue line) to the results obtained by the bootstrap DCL method where parameter uncertainty
is taken into account (dashed red line). The first row of figures shows the results of our micro-level approach where the payment
distributions fYj are modeled by a single truncated GAMLSS component. The second row of figures shows the results of our micro-level
approach where the payment distributions fYj are spliced in a body and tail component. The label ‘Obs’ indicates the corresponding
observed RBNS reserve in the validation data set.
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Calendar year 2005 2006 2007 2008 2009 2010 2011 Total

Minimum 2,306 1,545 938 510 174 89 12 7,730
25% quantile 3,052 2,284 1,639 1,007 603 299 99 9894
Median 3327 2548 1866 1189 734 396 152 10,574
Mean 3,423 2,630 1,948 1,259 795 445 192 10,691
75% quantile 3,646 2,875 2,173 1,404 907 527 227 11,344
95% quantile 4,412 3,518 2,771 1,914 1,352 829 443 12,717
Maximum 6,789 5,934 5,268 4,060 3,411 3,360 2,784 17,067
Observed 3,372 1,762 1,196 1,293 1,742 9,366

Table 10: Summary statistics (in thousands) on the simulation results for the RBNS reserve per cal-
endar year using the micro-level reserving method introduced in this paper. The number of
simulations used: 2,000. The row labeled ‘observed’ corresponds to the total paid amount
observed in the validation data set.

Calendar year 2005 2006 2007 2008 2009 2010 2011 Total

Minimum 2,365 1,447 906 473 225 72 3 8,219
25% quantile 3,262 2,289 1,616 1,005 602 317 112 10,392
Median 3,675 2,605 1,848 1,209 757 417 169 11,325
Mean 3,978 2,792 2,001 1,335 839 458 204 11,609
75% quantile 4,348 3,014 2,174 1,476 963 550 246 12,523
95% quantile 6,136 4,637 3,410 2,393 1,456 839 422 14,841
Maximum 9,474 8,793 6,407 4,921 3,934 2,970 2,715 20,498
Observed 3,372 1,762 1,196 1,293 1,742 9,366

Table 11: Summary statistics (in thousands) on the simulation results for the RBNS reserve per calendar
year using the micro-level reserving method where the payment distributions fYj are modeled
by a single truncated GAMLSS component. The number of simulations used: 2000. The row
labeled ‘observed’ corresponds to the total paid amount observed in the validation data set.

Calendar year 2005 2006 2007 2008 2009 2010 2011 Total

Minimum 2,278 1,640 1,241 718 359 238 57 7,487
25% quantile 3,036 2,363 1,834 1,257 716 519 237 10,255
Median 3,269 2,563 2,027 1,414 835 630 314 11,071
Mean 3,280 2,576 2,043 1,429 851 643 337 11,161
75% quantile 3,494 2,774 2,224 1,588 974 746 413 12,008
95% quantile 3,872 3,105 2,553 1,872 1,179 955 596 13,449
Maximum 4,833 3,742 3,032 2,476 1,642 1,366 934 16,302
Observed 3,372 1,762 1,196 1,293 1,742 9,366

Table 12: Summary statistics (in thousands) on the simulation results for the RBNS reserve per calendar
year using the bootstrap DCL method including parameter uncertainty. The number of
simulations used: 2000. The row labeled ‘observed’ corresponds to the total paid amount
observed in the validation data set.
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Calendar year 2005 2006 2007 2008 2009 2010 2011 Total

Minimum 2,516 1,887 1,408 946 525 358 142 9,639
25% quantile 3,082 2,404 1,905 1,347 794 603 324 10,973
Median 3,249 2,546 2,038 1,463 880 679 372 11,260
Mean 3,254 2,559 2,042 1,467 886 686 377 11,270
75% quantile 3,421 2,704 2,175 1,578 974 761 426 11,545
95% quantile 3,680 2,944 2,370 1,766 1,120 892 509 11,987
Maximum 4,142 3,380 2,777 2,093 1,407 1,058 625 12,847
Observed 3,372 1,762 1,196 1,293 1,742 9,366

Table 13: Summary statistics (in thousands) on the simulation results for the RBNS reserve per calendar
year using the bootstrap DCL method without taking into account parameter uncertainty.
The number of simulations used: 2000. The row labeled ‘observed’ corresponds to the total
paid amount observed in the validation data set.

resulting from our simulation procedure. For calendar years 2006 and 2007 the observed value
is in the left tail of the distribution. However, this is not the case for calendar year 2008. Note
that year 2009 was only observed until August in the validation data set, implying the observed
RBNS reserve for this calendar year is incomplete.

Next, we compare the micro-level results with the results from the bootstrap DCL method.
Firstly, the distributions obtained with the bootstrap DCL method are generally more symmet-
rical in this particular case study compared to the resulting distributions from the micro-level
methods. Apart from being more symmetrical, they also seem to be more shifted to the right
which is in line with earlier results reported in Antonio and Plat (2014), Pigeon et al. (2014).
The distribution obtained with the bootstrap DCL method without parameter uncertainty is
more narrow compared to the resulting distribution from the bootstrap DCL method that does
take parameter uncertainty into account. Caution should be taken with the DCL method that
does not include parameter uncertainty: in this particular case study, the observed RBNS re-
serve is lower than the minimum value simulated for calendar years 2006 and 2007, whereas the
incomplete observed RBNS reserve for 2009 is above the maximum of the simulated values.

5 Conclusion

We propose a multi-state framework for RBNS claims reserving for time-discrete data. Herein,
we represent the claim development process by a series of transitions between a given set of
states. In this framework, we model the payments per payment number conditional on covariate
information and with attention for the tail of the distributions. For each payment number, we
combine a GAMLSS fit for the body of the payment distribution with a GPD fit for the tail.
Moreover, the parameters in the GAMLSS body of the distribution as well as the probability of
belonging to the tail of the distribution depend on covariate information. Covariate information
included in the model is meant to capture inflation effects and consists of the occurrence year
of the claim and the development period the payment is made in. Other covariate information
can be incorporated easily.

We investigate the performance of our micro-level RBNS reserving method in a case study with
a portfolio of general liability insurance policies for private individuals. We compare the results
obtained by our proposed micro-level method to a simplified method with no specific attention
to the tail of the payment distributions, as well as to results obtained by the DCL method with
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and without taking into account parameter uncertainty as introduced by Mart́ınez Miranda et al.
(2012). In this specific case study, we find that the micro-level reserving method performs well.
However, more case studies are needed to confirm this performance as well as simulation studies
to investigate the performance of the method in diverse circumstances.

To finish, we indicate some possible directions for future research. A first and obvious direction
is to extend our approach to the estimation of the Incurred But Not Reported (IBNR) reserve.
This would require modeling the claim arrival process and the distribution of reporting delays.
Second, we can investigate the inclusion of other covariate information in the hazard rates
included in the multi-state model as well as in the payment models. Besides these more or other
covariates, we could also investigate flexible effects of covariates through additive modelling
within the GAMLSS class. Third, we could examine strategies to project our reserve calculations
beyond triangle boundary.
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