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1 Appendix 1: probability change - theoretical reminder  

The objective of this section is to briefly recall the theoretical framework of probability 
change and deflator construction. We have relied on Duffie [2001] and El Karoui [2004] for 
this synthesis. 

Let 𝐹 be a sigma algebra and let 𝑃 and 𝑄 be two probability measures 𝐹-measurable. We 
say that 𝑃 and 𝑄 are equivalent if and only if for all 𝐴 ∈ 𝐹 we have: 𝑃(𝐴) = 0 ⟺ 𝑄(𝐴) = 0. 

If 𝑃 and 𝑄 are two equivalent probability measures on 𝐹 then there is a unique random 
variable 𝐿𝐹  on 𝐹, that is strictly positive and whose expectation under 𝑃 is equal to 1, such 
that for any 𝐴 ∈ 𝐹 : 𝑄(𝐴) = ∫ 𝐿𝐹𝑑𝑃

 

𝐴
. 

The random variable is then written: 𝐿𝐹 = 𝑑𝑄/𝑑𝑃 on 𝐹 and is called the Radon-Nikodym 
derivative of 𝑄 over 𝑃 (also known as the density or likelihood of 𝑄 over 𝑃).  

If 𝐺 ⊆ 𝐹 then we have, for any random variable 𝑋 𝐹-measurable: 

𝐸𝑄(𝑋|𝐺) =
 𝐸𝑃 (𝐿𝐹 . 𝑋|𝐺)

𝐸𝑃(𝐿𝐹|𝐺)
 

In particular: 𝐸𝑄(𝑋) = 𝐸𝑃(𝐿𝐹 . 𝑋). 

Furthermore, if 𝐺 ⊆ 𝐹 is a sub sigma-algebra of 𝐹 then 𝑄 and 𝑃 are equivalent on 𝐺 and the 
density of 𝑄 compared to 𝑃 on 𝐺 denoted 𝐿𝐺  is written: 𝐿𝐺 = 𝐸𝑝(𝐿𝐹|𝐺) = 𝐸𝑃(𝑑𝑄/𝑑𝑃|𝐺). 

Let  {𝐹𝑡}0≤𝑡≤𝑇 be a filtration and let 𝑃 and 𝑄 be two equivalent probability measures on 𝐹𝑇. 
We define the process {𝐿(𝑡)}0≤𝑡≤𝑇 by:  

𝐿(𝑡) = 𝐸𝑃(𝐿(𝑇)|𝐹𝑡) = 𝐸𝑃 (
𝑑𝑄
𝑑𝑃

|𝐹𝑡) 

The process of density (or likelihood) {𝐿(𝑡)}0≤𝑡≤𝑇 is a martingale under 𝑃. 

For all times (𝑡, 𝑠) ∈ [0, 𝑇[2 and 𝑡 ≤ 𝑠 and for any random variable 𝐹𝑠-measurable 𝑋 such 
as 𝐸𝑄(|𝑋|) < +∞: 

𝐸𝑄(𝑋|𝐹𝑡) =
𝐸𝑃(𝐿(𝑠)𝑋|𝐹𝑡)

𝐿(𝑡)
 

Thus, a process {𝑋(𝑡)}0≤𝑡≤𝑇 is a {𝐹𝑡}0≤𝑡≤𝑇-martingale under 𝑄 if and only if the process 
{𝐿(𝑡)𝑋(𝑡)}0≤𝑡≤𝑇 is a {𝐹𝑡}0≤𝑡≤𝑇-martingale under 𝑃. 

A probability measure 𝑄 equivalent to 𝑃 is an equivalent martingale measure for the pricing 
process 𝑋 of 𝑁 securities if 𝑋 is a 𝑄-martingale and if the Radon-Nikodym derivative 𝑑𝑄/𝑑𝑃 
has a finite variance3. An equivalent martingale measure is commonly referred to as a "risk 
neutral" measure. 

Suppose there is an instantaneous short interest rate process denoted {𝑟(𝑡)}0≤𝑡≤𝑇 and let 
{𝛿(𝑡)}0≤𝑡≤𝑇 be a process defined by:  

 
3 The finite variance condition is a technical property that is not uniformly adopted in the literature. 
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𝛿(𝑡) = exp (− ∫ 𝑟(𝑠)𝑑𝑠
𝑡

0

) 

Suppose after discounting by {𝛿(𝑡)}0≤𝑡≤𝑇, that there is a martingale measure 𝑄 equivalent 
to 𝑃 with the density process {𝐿(𝑡)}0≤𝑡≤𝑇. Then a deflator {𝐷(𝑡)}0≤𝑡≤𝑇 is defined by: 

𝐷(𝑡) =  𝐿(𝑡). 𝛿(𝑡) 

provided that 𝑣𝑎𝑟(𝐷(𝑡)) < +∞ for all 𝑡.  

Conversely, suppose that {𝐷(𝑡)}0≤𝑡≤𝑇 is a deflator for the process {𝑋(𝑡)}0≤𝑡≤𝑇 i.e., the 
process {𝐷(𝑡). 𝑋(𝑡)}0≤𝑡≤𝑇 is a 𝑃-martingale. 

Let {𝐿(𝑡)}0≤𝑡≤𝑇 be the process defined by: 

𝐿(𝑡) =  exp (∫ 𝑟(𝑠)𝑑𝑠
𝑡

0

) .
𝐷(𝑡)

𝐷(0)
 

So, provided that 𝑣𝑎𝑟(𝐿(𝑇)) < +∞, {𝐿(𝑡)}0≤𝑡≤𝑇 is the density process that defines a 

martingale measure equivalent to 𝑃. 

Let {𝑊𝑃(𝑡)}0≤𝑡≤𝑇 be a 𝑃-Wiener process and assume that the filtration {𝐹𝑡}0≤𝑡≤𝑇 is the 
completed natural filtration (𝐹𝑡  = 𝑉𝑒𝑐𝑡(𝑊(𝑠), 0 ≤ 𝑠 ≤ 𝑡)). 

So, for each process 𝑋 (𝑃, 𝐹𝑡)-martingale, there is a real number 𝑥 and an adapted process 
ℎ (respecting the condition of Novikov) such as: 

𝑋(𝑡) = 𝑥 + ∫ ℎ𝑠𝑑𝑊𝑃(𝑡)
𝑡

0

 

and so: 

𝑑𝑋(𝑡) = ℎ𝑡𝑑𝑊𝑃(𝑡) 

This theorem is known as the representation theorem. It guarantees the existence of a 
process ℎ checking the above equation but does not tell us how to find or build this process 
ℎ. This is what we propose in the following paragraph. 

Suppose we want to change the measure from 𝑃 to 𝑄 on 𝐹𝑇. To do this, we need a 𝑃-
martingale 𝐿 with 𝐿0  =  1 to be used as a likelihood process. To guarantee the strict 
positivity of the process 𝐿 and therefore the equivalence between 𝑃 and 𝑄 we can choose 
a suitable process 𝜃 and assume that the process 𝐿 is written: 

𝑑𝐿(𝑡) = 𝐿(𝑡). 𝜃(𝑡)𝑑𝑊𝑃(𝑡) 

The process 𝐿 is a 𝑃-martingale and we have by Itô’s lemma: 

 
𝐿(𝑡) = exp (∫ 𝜃(𝑡)𝑑𝑊𝑃(𝑠)

𝑡

0

−
1

2
∫ 𝜃(𝑠)2𝑑𝑠

𝑡

0

) (1) 

Now that we have defined the likelihood process of 𝑄, the question that naturally arises is 
what are the properties of {𝑊𝑃(𝑡)}0≤𝑡≤𝑇 under the new measure 𝑄? This problem is solved 
by Girsanov's theorem, which we will recall in the following. 

Let 𝑊𝑃 be a 𝑃-Wiener process and let 𝑇 be a horizon of interest. 
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Let 𝜃 be a suitable process and define the process 𝐿 by: 𝑑𝐿(𝑡) = 𝐿(𝑡)𝜃(𝑡)𝑑𝑊𝑃(𝑡) and 
𝐿(0) = 1. 

Suppose that 𝐸𝑃(𝐿(𝑇)) = 1 and let 𝑄 be a probability measure verifying: 

𝑑𝑄 = 𝐿(𝑡)𝑑𝑃 |𝐹𝑡 

Then 𝑄 is equivalent to 𝑃 and the process 𝑊𝑄 defined by: 

𝑊𝑄(𝑡) = 𝑊𝑃(𝑡) − ∫ 𝜃(𝑠)𝑑𝑠
𝑡

0

 

is 𝑄-Wiener and we can write: 𝑑𝑊𝑄(𝑠) = 𝑑𝑊𝑃(𝑠) − 𝜃(𝑠)𝑑𝑠. 

Finally, if the discounted cash flow process using the interest risk-free rate, 

exp (− ∫ 𝑟(𝑠)𝑑𝑠
𝑡

0
), is a martingale under 𝑄 then the process of the deflated cash-flows by 

exp (− ∫ 𝑟(𝑠)𝑑𝑠
𝑡

0
) 𝐿(𝑡), is a martingale under P. 

Under the assumptions of market completeness and the absence of arbitrage 
opportunities, the work of Harrisson and Kreps [1979] and Harrison and Pliska [1981] has 
shown that there is a unique probability measure equivalent to historical probability such 
that discounted prices by risk-free interest rates are, under this probability, martingales. 
This probability is known as the "risk-neutral probability measure". 

2 Appendix 2: the price of a zero coupon bond under P  

In this appendix, we present a demonstration of the closed formula of the price of a zero-

coupon bond. 

Let 𝑟(𝑡) be the instantaneous short interest rate at time 𝑡 defined by  𝑟(𝑡) = 𝑥(𝑡) + 𝜑(𝑡) 
where 𝑥 is a one-factor CIR process whose stochastic differential equation under the 
historical probability 𝑃 is written: 

𝑑𝑥(𝑡) = (𝑘 − 𝜆) (
𝑘𝜃

𝑘 − 𝜆
− 𝑥(𝑡)) 𝑑𝑡 + 𝜎𝑥√𝑥(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑡) ;  𝑥(0) = 𝑥0 

And 𝜑 is a deterministic function allowing the model to reproduce the term structure of 
interest rates. 

Suppose that the risk premium is written: 𝜆(𝑡) = 𝜆√𝑥(𝑡)/𝜎𝑥. 

Then the price of the zero coupon at time 𝑡 and maturity 𝑇 is written: 

 𝑃(𝑡, 𝑇) = 𝐴′̅ (𝑡, 𝑇)𝑒−𝐵(𝑡,𝑇)𝑥(𝑡) (2) 

where 

- 𝐴′̅(𝑡, 𝑇) =  (𝑡, 𝑇) =
𝑃𝑀(0,𝑇)𝐴(0,𝑡)𝑒𝑥𝑝{−𝐵(0,𝑡)𝑥0}

𝑃𝑀(0,𝑡)𝐴(0,𝑇)𝑒𝑥𝑝{−𝐵(0,𝑇)𝑥0}
𝐴(𝑡, 𝑇) ; 

- 𝑃𝑀(0, 𝑇) is the market price of the risk-free zero-coupon bond observed at time 0 
for maturity 𝑇 ; 
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- 𝐴(𝑡, 𝑇) and 𝐵(𝑡, 𝑇) are defined below: 

𝐴 (𝑡, 𝑇) = [
2ℎ𝑒𝑥𝑝 {

(𝑘 +  ℎ)(𝑇 −  𝑡)
2 }

2ℎ + (𝑘 + ℎ)(𝑒𝑥𝑝 {(𝑇 − 𝑡)ℎ} − 1)
]

2𝑘𝜃
𝜎2

  

𝐵 ( 𝑡, 𝑇)  =
2(𝑒𝑥𝑝 {(𝑇 −  𝑡)ℎ} −  1)

2ℎ +  (𝑘 +  ℎ)(𝑒𝑥𝑝 {(𝑇 −  𝑡)ℎ} −  1)
  

ℎ = √𝑘2 + 2𝜎2 

and 

exp (− ∫ 𝜑(𝑠)𝑑𝑠
𝑇

𝑡

) =
𝑃𝑀(0, 𝑇)𝐴(0, 𝑡)𝑒𝑥𝑝{−𝐵(0, 𝑡)𝑥0}

𝑃𝑀(0, 𝑡)𝐴(0, 𝑇)𝑒𝑥𝑝{−𝐵(0, 𝑇)𝑥0}
 

Demonstration 

Under the risk neutral probability 𝑄, the instantaneous short interest rate at 𝑡 is defined by 
𝑟 (𝑡) = 𝑥(𝑡) + 𝜑(𝑡) where 𝑥 is a one-factor CIR process whose stochastic differential 
equation under the probability 𝑄 is written as: 

𝑑𝑥(𝑡) = 𝑘(𝜃 − 𝑥(𝑡))𝑑𝑡 + 𝜎𝑥√𝑥(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒
𝑄 (𝑡) ;  𝑥(0) = 𝑥0 

The price of a zero-coupon bond at 𝑡 of maturity 𝑇 is written under the probability 𝑄 (Brigo 

and Mercurio [2006]): 

𝑃(𝑡, 𝑇) = 𝐴′̅ (𝑡, 𝑇)𝑒−𝐵(𝑡,𝑇)𝑥(𝑡) 

Note that: 

- 𝐵(𝑡, 𝑇) is the solution of the following differential equation: 

1 −
1

2
𝐵(𝑡, 𝑇)2𝜎𝑥

2 − 𝑘. 𝐵(𝑡, 𝑇) +
𝑑𝐵(𝑡, 𝑇)

𝑑𝑡
= 0 

- 𝑎(𝑡, 𝑇) = ln(𝐴 (𝑡, 𝑇)) is the solution of the following differential equation: 
𝑑𝑎(𝑡, 𝑇)

𝑑𝑡
− 𝐵(𝑡, 𝑇)𝑘𝜃 = 0 

Using Itô's lemma we can show that the differential equation of 𝑃(𝑡, 𝑇) under 𝑄 is written: 

𝑑𝑃(𝑡, 𝑇)

𝑃(𝑡, 𝑇)
= (𝑥(𝑡) + 𝜑(𝑡))𝑑𝑡 −  𝐵(𝑡, 𝑇)𝜎𝑥 √𝑥(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒

𝑄 (𝑡) 

We then have under the historical probability 𝑃: 

𝜆(𝑡) = 𝜆√𝑥(𝑡)/𝜎𝑥 

𝑑𝑊𝑟𝑎𝑡𝑒
𝑄 (𝑡) = 𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑡) + 𝜆(𝑡)𝑑𝑡 

and so: 

𝑑𝑃(𝑡, 𝑇)

𝑃(𝑡, 𝑇)
= 𝜑(𝑡)𝑑𝑡 + 𝑥(𝑡)(1 − 𝜆𝐵(𝑡, 𝑇))𝑑𝑡 −  𝐵(𝑡, 𝑇)𝜎𝑥 √𝑥(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑡) 
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By applying Itô's lemma to 𝑙𝑛(𝑃(𝑡, 𝑇)) we get:  

𝑑𝑙𝑛(𝑃(𝑡, 𝑇)) = 0. 𝑑𝑡 +
𝑑𝑃(𝑡, 𝑇)

𝑃(𝑡, 𝑇)
−

1

2
.

1

𝑃(𝑡, 𝑇)2
(𝐵(𝑡, 𝑇)𝑃(𝑡, 𝑇)𝜎𝑥 √𝑥(𝑡))

2

𝑑𝑡 

So : 

𝑑𝑙𝑛(𝑃(𝑡, 𝑇)) = 𝜑(𝑡)𝑑𝑡 + 𝑥(𝑡)(1 − 𝜆𝐵(𝑡, 𝑇))𝑑𝑡 −  𝐵(𝑡, 𝑇)𝜎𝑥 √𝑥(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡)

−
1

2
𝐵(𝑡, 𝑇)2𝜎𝑥

2 𝑥(𝑡)𝑑𝑡 

𝑑𝑙𝑛(𝑃(𝑡, 𝑇)) = 𝜑(𝑡)𝑑𝑡 + 𝑥(𝑡) (1 − 𝜆𝐵(𝑡, 𝑇) −
1

2
𝐵(𝑡, 𝑇)2𝜎𝑥

2) 𝑑𝑡 

−  𝐵(𝑡, 𝑇)𝜎𝑥 √𝑥(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡)  

Knowing that  

𝐵(𝑡, 𝑇)𝜎𝑥√𝑥(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡) = 𝐵(𝑡, 𝑇) (𝑑𝑥(𝑡) − (𝑘 − 𝜆) (

𝑘𝜃

𝑘 − 𝜆
− 𝑥(𝑡)) 𝑑𝑡) 

Then  

𝑑𝑙𝑛(𝑃(𝑡, 𝑇)) = 𝜑(𝑡)𝑑𝑡 + 𝑥(𝑡) (1 − 𝜆𝐵(𝑡, 𝑇) −
1

2
𝐵(𝑡, 𝑇)2𝜎𝑥

2) 𝑑𝑡 

−  𝐵(𝑡, 𝑇) (𝑑𝑥(𝑡) − (𝑘 − 𝜆) (
𝑘𝜃

𝑘 − 𝜆
− 𝑥(𝑡)) 𝑑𝑡) 

Thus 

𝑑𝑙𝑛(𝑃(𝑡, 𝑇)) = 𝜑(𝑡)𝑑𝑡 + 𝑥(𝑡) (1 −
1

2
𝐵(𝑡, 𝑇)2𝜎𝑥

2 − 𝑘. 𝐵(𝑡, 𝑇)) 𝑑𝑡 −  𝐵(𝑡, 𝑇)𝑑𝑥(𝑡)

+ 𝐵(𝑡, 𝑇)𝑘𝜃𝑑𝑡 

Using Itô's lemma we can write: 

𝐵(𝑡, 𝑇)𝑑𝑥(𝑡) = 𝑑(𝐵(𝑡, 𝑇)𝑥(𝑡) ) − 𝑥(𝑡).
𝑑𝐵(𝑡, 𝑇)

𝑑𝑡
. 𝑑𝑡 

So  

𝑑𝑙𝑛(𝑃(𝑡, 𝑇)) = 𝜑(𝑡)𝑑𝑡 + 𝑥(𝑡) (1 −
1

2
𝐵(𝑡, 𝑇)2𝜎𝑥

2 − 𝑘. 𝐵(𝑡, 𝑇)) 𝑑𝑡 −  𝑑(𝐵(𝑡, 𝑇)𝑥(𝑡))

+ 𝑥(𝑡).
𝑑𝐵(𝑡, 𝑇)

𝑑𝑡
. 𝑑𝑡 + 𝐵(𝑡, 𝑇)𝑘𝜃𝑑𝑡 

And we have 

1 −
1

2
𝐵(𝑡, 𝑇)2𝜎𝑥

2 − 𝑘. 𝐵(𝑡, 𝑇) +
𝑑𝐵(𝑡, 𝑇)

𝑑𝑡
= 0 
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𝑑𝑎(𝑡, 𝑇)

𝑑𝑡
− 𝐵(𝑡, 𝑇)𝑘𝜃 = 0 

𝑑𝑙𝑛(𝑃(𝑡, 𝑇)) = 𝜑(𝑡)𝑑𝑡 −  𝑑(𝐵(𝑡, 𝑇)𝑥(𝑡)) + 𝐵(𝑡, 𝑇)𝑘𝜃𝑑𝑡 

Knowing that 𝑃(𝑇, 𝑇) = 1 and exp (− ∫ 𝜑(𝑠)𝑑𝑠
𝑇

𝑡
) =

𝑃𝑀(0,𝑇)𝐴(0,𝑡)𝑒𝑥𝑝{−𝐵(0,𝑡)𝑥0}

𝑃𝑀(0,𝑡)𝐴(0,𝑇)𝑒𝑥𝑝{−𝐵(0,𝑇)𝑥0}
 we can write 

𝑃(𝑡, 𝑇) under P as: 

𝑃(𝑡, 𝑇) = 𝐴′̅ (𝑡, 𝑇)𝑒−𝐵(𝑡,𝑇)𝑥(𝑡) 

3 Appendix 3: the deflator form 

The stochastic differential equation of the deflator under the historical probability measure 

is: 

𝑑𝐷(𝑡)

𝐷(𝑡)
= −𝑟(𝑡)𝑑𝑡 − 𝜆(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑡) 

The stochastic deflator is written using Itô's lemma: 

𝐷(𝑇) = 𝐷(𝑡)𝑒𝑥𝑝 (− ∫ 𝑟(𝑠)𝑑𝑠
𝑇

𝑡

−
1

2
∫ 𝜆(𝑠)2𝑑𝑠

𝑇

𝑡

− ∫ 𝜆(𝑠)𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑠)

𝑇

𝑡

) 

and we have: 

- ∫ 𝑟(𝑠)𝑑𝑠
𝑇

𝑡
= ∫ 𝜑(𝑠)𝑑𝑠

𝑇

𝑡
+ ∫ 𝑥(𝑠)𝑑𝑠

𝑇

𝑡
; 

- 𝜆(𝑠) = 𝜆√𝑥(𝑡)/𝜎𝑥 so 
1

2
∫ 𝜆(𝑠)2𝑑𝑠

𝑇

𝑡
=

𝜆2

2𝜎𝑥
2 ∫ 𝑥(𝑡)𝑑𝑠

𝑇

𝑡
; 

- Using the differential equation of interest rates: 

𝜆(𝑠)𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡) =

𝜆

𝜎𝑥
√𝑥(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑡) =
𝜆

𝜎𝑥
2

(𝑑𝑥(𝑡) − (𝑘 − 𝜆) (
𝑘𝜃

𝑘 − 𝜆
− 𝑥(𝑡)) 𝑑𝑡)   

so: 

∫ 𝜆(𝑠)𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡)

𝑇

𝑡
=

𝜆

𝜎𝑥
2 (𝑥(𝑇) − 𝑥(𝑡)) −

𝜆𝑘𝜃

𝜎𝑥
2 (𝑇 − 𝑡) +

𝜆(𝑘−𝜆)

𝜎𝑥
2 ∫ 𝑥(𝑠)𝑑𝑠

𝑇

𝑡
. 

Thus: 

 
𝐷(𝑇) = 𝐷(𝑡) exp (

𝜆𝑘𝜃

𝜎𝑥
2

(𝑇 − 𝑡)) exp (− ∫ 𝜑(𝑠)𝑑𝑠
𝑇

𝑡

) exp (−
𝜆

𝜎𝑥
2

(𝑥(𝑇)

− 𝑥(𝑡))) exp (− (1 −
𝜆2

2𝜎𝑥
2

+
𝜆𝑘

𝜎𝑥
2

) ∫ 𝑥(𝑠)𝑑𝑠
𝑇

𝑡

) 

(3) 

with: 𝑒𝑥𝑝 (− ∫ 𝜑(𝑠)𝑑𝑠
𝑇

𝑡
) =

𝑃𝑀(0,𝑇)𝐴(0,𝑡)𝑒𝑥𝑝{−𝐵(0,𝑡)𝑥0}

𝑃𝑀(0,𝑡)𝐴(0,𝑇)𝑒𝑥𝑝{−𝐵(0,𝑇)𝑥0}
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4 Appendix 4: the price of the risky asset under P  

The risky asset process is written under the historical probability measure P: 

𝑑𝑆𝑡

𝑆𝑡
= (𝑟(𝑡) + 𝜆(𝑡)2)𝑑𝑡 + 𝜆(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑡) 

The price of the risky asset is written: 

 
𝑆(𝑇) = 𝑆(𝑡) exp (−

𝜆

𝜎𝑥
2

𝑘𝜃(𝑇 − 𝑡)) . exp (∫ 𝜑(𝑠)𝑑𝑠
𝑇

𝑡

) . exp (
𝜆

𝜎𝑥
2

(𝑥(𝑇)

− 𝑥(𝑡))) . exp ((1 −
𝜆2

2𝜎𝑥
2

+
𝜆𝑘

𝜎𝑥
2

) ∫ 𝑥(𝑠)𝑑𝑠
𝑇

𝑡

) 

(4) 

with: 𝑒𝑥𝑝 (− ∫ 𝜑(𝑠)𝑑𝑠
𝑇

𝑡
) =

𝑃𝑀(0,𝑇)𝐴(0,𝑡)𝑒𝑥𝑝{−𝐵(0,𝑡)𝑥0}

𝑃𝑀(0,𝑡)𝐴(0,𝑇)𝑒𝑥𝑝{−𝐵(0,𝑇)𝑥0}
 

Demonstration 

The risky asset process is written under the historical probability measure P: 

𝑑𝑆𝑡

𝑆𝑡
= (𝑟(𝑡) + 𝜆(𝑡)2)𝑑𝑡 + 𝜆(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑡) 

So 

𝑑𝑆𝑡

𝑆𝑡
= (𝜑(𝑡) + 𝑥(𝑡) (1 +

𝜆2

𝜎𝑥
2

)) 𝑑𝑡 + 𝜆√𝑥(𝑡)/𝜎𝑥𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡) 

Then 

√𝑥(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡) =

1

𝜎𝑥
(𝑑𝑥(𝑡) − (𝑘 − 𝜆) (

𝑘𝜃

𝑘 − 𝜆
− 𝑥(𝑡)) 𝑑𝑡) 

And so we have 

𝑑𝑆𝑡

𝑆𝑡
= (𝜑(𝑡) + 𝑥(𝑡) (1 +

𝜆2

𝜎𝑥
2

)) 𝑑𝑡 +
𝜆

𝜎𝑥
2

(𝑑𝑥(𝑡) − (𝑘 − 𝜆) (
𝑘𝜃

𝑘 − 𝜆
− 𝑥(𝑡)) 𝑑𝑡) 

𝑑𝑆𝑡

𝑆𝑡
= (𝜑(𝑡) −

𝜆

𝜎𝑥
2

𝑘𝜃) 𝑑𝑡 +  𝑥(𝑡) (1 +
𝜆2

𝜎𝑥
2

+
𝜆

𝜎𝑥
2

(𝑘 − 𝜆)) 𝑑𝑡 +
𝜆

𝜎𝑥
2

𝑑𝑥(𝑡) 

By applying Itô's Lemme to 𝑙𝑛(𝑆(𝑡)) we have  

𝑑𝑙𝑛(𝑆(𝑡)) = 0. 𝑑𝑡 +
𝑑𝑆(𝑡)

𝑆(𝑡)
−

1

2
.

1

𝑆(𝑡)2
𝜆(𝑡)2𝑆(𝑡)2𝑑𝑡 

Thus 
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𝑑𝑙𝑛(𝑆(𝑡)) = 0. 𝑑𝑡 +
𝑑𝑆(𝑡)

𝑆(𝑡)
−

1

2
.

𝜆2

𝜎𝑥
2

𝑥(𝑡)𝑑𝑡 

So 

𝑑𝑙𝑛(𝑆(𝑡)) = (𝜑(𝑡) −
𝜆

𝜎𝑥
2

𝑘𝜃) 𝑑𝑡 +  𝑥(𝑡) (1 +
𝜆2

𝜎𝑥
2

+
𝜆

𝜎𝑥
2

(𝑘 − 𝜆)) 𝑑𝑡 +
𝜆

𝜎𝑥
2

𝑑𝑥(𝑡)

−
1

2
.

𝜆2

𝜎𝑥
2

𝑥(𝑡)𝑑𝑡 

Thus 

𝑑𝑙𝑛(𝑆(𝑡)) = (𝜑(𝑡) −
𝜆

𝜎𝑥
2

𝑘𝜃) 𝑑𝑡 +  𝑥(𝑡) (1 +
𝜆2

2𝜎𝑥
2

+
𝜆

𝜎𝑥
2

(𝑘 − 𝜆)) 𝑑𝑡 +
𝜆

𝜎𝑥
2

𝑑𝑥(𝑡) 

Finally 

𝑆(𝑇) = 𝑆(𝑡) exp (−
𝜆

𝜎𝑥
2

𝑘𝜃(𝑇 − 𝑡)) . exp (∫ 𝜑(𝑠)𝑑𝑠
𝑇

𝑡

) . exp (
𝜆

𝜎𝑥
2

(𝑥(𝑇) − 𝑥(𝑡))) . exp ((1

−
𝜆2

2𝜎𝑥
2

+
𝜆𝑘

𝜎𝑥
2

) ∫ 𝑥(𝑠)𝑑𝑠
𝑇

𝑡

) 

with: 𝑒𝑥𝑝 (− ∫ 𝜑(𝑠)𝑑𝑠
𝑇

𝑡
) =

𝑃𝑀(0,𝑇)𝐴(0,𝑡)𝑒𝑥𝑝{−𝐵(0,𝑡)𝑥0}

𝑃𝑀(0,𝑡)𝐴(0,𝑇)𝑒𝑥𝑝{−𝐵(0,𝑇)𝑥0}
 

5 Appendix 5: Expected returns on risky assets  

Note 𝑠𝑡 the logarithmic return of the risky asset at 𝑡 on a one-year horizon. By definition: 

𝑠𝑡+1 = 𝑙𝑛 (
𝑆(𝑡 + 1)

𝑆(𝑡)
) 

The mathematical expectation of the random variable 𝑠𝑡+1 under the historical probability 
𝑃 is written:  

 
𝐸𝑝(𝑠𝑡+1) = 𝑅𝑀(𝑡, 𝑡 + 1) − (ln (

𝐴(0, 𝑡)

𝐴(0, 𝑡 + 1)
) + 𝑥0(𝐵(0, 𝑡 + 1) − 𝐵(0, 𝑡)))

+ (1 +
𝜆2

2𝜎𝑥
2

) (𝑒−(𝑘−𝜆)𝑡
(𝑘𝜃 − 𝑥0(𝑘 − 𝜆))

(𝑘 − 𝜆)2
(𝑒−(𝑘−𝜆) − 1) +

𝑘𝜃

𝑘 − 𝜆
) 

(5) 

With: 

- 𝑅𝑀(𝑡, 𝑡 + 1) the observed market risk-free interest rate between 𝑡 and 𝑡 + 1; 

- 𝐴(𝑡, 𝑇) and 𝐵(𝑡, 𝑇) are deterministic functions defined in section 2; 

- 𝑥0 is the initial value of the process 𝑥𝑡. 
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The expectation of excess return, denoted 𝑒𝑡, over market risk-free interest rate is 
therefore written: 

 
𝐸𝑝(𝑒𝑡+1) = − (ln (

𝐴(0, 𝑡)

𝐴(0, 𝑡 + 1)
) + 𝑥0(𝐵(0, 𝑡 + 1) − 𝐵(0, 𝑡)))

+ (1 +
𝜆2

2𝜎𝑥
2

) (𝑒−(𝑘−𝜆)𝑡
(𝑘𝜃 − 𝑥0(𝑘 − 𝜆))

(𝑘 − 𝜆)2
(𝑒−(𝑘−𝜆) − 1) +

𝑘𝜃

𝑘 − 𝜆
) 

(6) 

 

Demonstration 

We have under P:  

𝑆(𝑇) = 𝑆(𝑡) exp (−
𝜆

𝜎𝑥
2

𝑘𝜃(𝑇 − 𝑡)) . exp (∫ 𝜑(𝑠)𝑑𝑠
𝑇

𝑡

) . exp (
𝜆

𝜎𝑥
2

(𝑥(𝑇) − 𝑥(𝑡))) . exp ((1

−
𝜆2

2𝜎𝑥
2

+
𝜆𝑘

𝜎𝑥
2

) ∫ 𝑥(𝑠)𝑑𝑠
𝑇

𝑡

) 

And  

𝑑𝑥(𝑡) = 𝑘2(𝜃2 − 𝑥(𝑡))𝑑𝑡 + 𝜎𝑥√𝑥(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡);  𝑥(0) = 𝑥0 

With: 

- 𝑘2 = 𝑘 − 𝜆 ; 

- 𝜃2 =
𝑘𝜃

𝑘−𝜆
. 

We can write  

𝑠𝑡+1 =  −
𝜆

𝜎𝑥
2

𝑘𝜃 + ∫ 𝜑(𝑠)𝑑𝑠
𝑡+1

𝑡

+ (
𝜆

𝜎𝑥
2

(𝑥(𝑡 + 1) − 𝑥(𝑡))) + (1 −
𝜆2

2𝜎𝑥
2

+
𝜆𝑘

𝜎𝑥
2

) ∫ 𝑥(𝑠)𝑑𝑠
𝑡+1

𝑡

 

And therefore 

𝐸𝑝(𝑠𝑡) = Λ0 + Λ1 + Λ2 + Λ3 

With 

- Λ0 = −
𝜆

𝜎𝑥
2 𝑘𝜃 

- Λ1 = 𝐸𝑃 (∫ 𝜑(𝑠)𝑑𝑠
𝑡+1

𝑡
) 

- Λ2 = 𝐸𝑝 (
𝜆

𝜎𝑥
2 (𝑥(𝑡 + 1) − 𝑥(𝑡))) 

- Λ3 = 𝐸𝑝 ((1 −
𝜆2

2𝜎𝑥
2 +

𝜆𝑘

𝜎𝑥
2) ∫ 𝑥(𝑠)𝑑𝑠

𝑡+1

𝑡
) 

We have then:  

𝑒𝑥𝑝 (− ∫ 𝜑(𝑠)𝑑𝑠
𝑡+1

𝑡

) =
PM(0, t + 1)

Px(0, t + 1)
.

Px(0, t)

PM(0, t)
=

exp(−𝑅𝑀(𝑡, 𝑡 + 1))

exp(−𝑈𝑥(𝑡, 𝑡 + 1))
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Where: 

𝑈𝑥(𝑡, 𝑡 + 1) = ln(𝑃𝑥(0, 𝑡)) − ln(𝑃𝑥(0, 𝑡 + 1))

= ln (
𝐴(0, 𝑡)

𝐴(0, 𝑡 + 1)
) + 𝑥0(𝐵(0, 𝑡 + 1) − 𝐵(0, 𝑡)) 

And so: 

Λ1 = 𝐸𝑃 (∫ 𝜑(𝑠)𝑑𝑠
𝑡+1

𝑡

) = 𝑅𝑀(𝑡, 𝑡 + 1)−𝑈𝑥(𝑡, 𝑡 + 1) 

Also, the expectation of 𝑥 is written under P:  

𝐸𝑝{𝑥(𝑡)|𝐹𝑠} = 𝑥(𝑠)𝑒−𝑘2(𝑡−𝑠) + 𝜃2(1 − 𝑒−𝑘2(𝑡−𝑠)) 

So  

𝐸𝑝(𝑥(𝑡)) = 𝑥(0)𝑒−𝑘2𝑡 + 𝜃2(1 − 𝑒−𝑘2𝑡) 

 

 

and 

𝐸𝑝(𝑥(𝑡)) = 𝑥0𝑒−𝑘2𝑡 + 𝜃2(1 − 𝑒−𝑘2𝑡) 

And so 

Λ2 = 𝐸𝑝 (
𝜆

𝜎𝑥
2

(𝑥(𝑡 + 1) − 𝑥(𝑡))) =
𝜆

𝜎𝑥
2

𝑒−𝑘2𝑡(𝜃2 − 𝑥0)(1 − 𝑒−𝑘2) 

In addition 

𝐸𝑝 (∫ 𝑥(𝑠)𝑑𝑠
𝑡+1

𝑡

) = ∫ 𝐸𝑝(𝑥(𝑠))𝑑𝑠
𝑡+1

𝑡

= ∫ (𝑥(0)𝑒−𝑘2𝑠 + 𝜃2(1 − 𝑒−𝑘2𝑠))𝑑𝑠
𝑡+1

𝑡

 

Thus  

𝐸𝑝 (∫ 𝑥(𝑠)𝑑𝑠
𝑡+1

𝑡

) = 𝑒−𝑘2𝑡
(𝜃2 − 𝑥0)

𝑘2

(𝑒−𝑘2 − 1) + 𝜃2 

 

So :  

Λ3 = 𝐸𝑝 ((1 −
𝜆2

2𝜎𝑥
2

+
𝜆𝑘

𝜎𝑥
2

) ∫ 𝑥(𝑠)𝑑𝑠
𝑡+1

𝑡

) 

Λ3 = (1 −
𝜆2

2𝜎𝑥
2

+
𝜆𝑘

𝜎𝑥
2

) (𝑒−𝑘2𝑡
(𝜃2 − 𝑥0)

𝑘2

(𝑒−𝑘2 − 1) + 𝜃2) 

Λ3 = (1 +
𝜆2

2𝜎𝑥
2

+
𝜆𝑘2

𝜎𝑥
2

) (𝑒−𝑘2𝑡
(𝜃2 − 𝑥0)

𝑘2

(𝑒−𝑘2 − 1) + 𝜃2) 
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Λ3 = (1 +
𝜆2

2𝜎𝑥
2

) (𝑒−𝑘2𝑡
(𝜃2 − 𝑥0)

𝑘2

(𝑒−𝑘2 − 1) + 𝜃2)

+
𝜆𝑘2

𝜎𝑥
2

(𝑒−𝑘2𝑡
(𝜃2 − 𝑥0)

𝑘2

(𝑒−𝑘2 − 1) + 𝜃2) 

Λ3 = (1 +
𝜆2

2𝜎𝑥
2

) (𝑒−𝑘2𝑡
(𝜃2 − 𝑥0)

𝑘2

(𝑒−𝑘2 − 1) + 𝜃2) +
𝜆𝑘2

𝜎𝑥
2

(𝑒−𝑘2𝑡
(𝜃2 − 𝑥0)

𝑘2

(𝑒−𝑘2 − 1))

+
𝜆𝑘2𝜃2

𝜎𝑥
2

 

Λ3 = (1 +
𝜆2

2𝜎𝑥
2

) (𝑒−𝑘2𝑡
(𝜃2 − 𝑥0)

𝑘2

(𝑒−𝑘2 − 1) + 𝜃2) + 𝑒−𝑘2𝑡
𝜆(𝜃2 − 𝑥0)

𝜎𝑥
2

(𝑒−𝑘2 − 1) +
𝜆𝑘𝜃

𝜎𝑥
2

 

Λ3 = (1 +
𝜆2

2𝜎𝑥
2

) (𝑒−𝑘2𝑡
(𝜃2 − 𝑥0)

𝑘2

(𝑒−𝑘2 − 1) + 𝜃2) − Λ2 − Λ0 

Finally: 

(1 +
𝜆2

2𝜎𝑥
2

) (𝑒−𝑘2𝑡
(𝜃2 − 𝑥0)

𝑘2

(𝑒−𝑘2 − 1) + 𝜃2)

= (1 +
𝜆2

2𝜎𝑥
2

) (𝑒−(𝑘−𝜆)𝑡
(

𝑘𝜃
𝑘 − 𝜆

− 𝑥0)

𝑘 − 𝜆
(𝑒−(𝑘−𝜆) − 1) +

𝑘𝜃

𝑘 − 𝜆
) 

= (1 +
𝜆2

2𝜎𝑥
2

) (𝑒−(𝑘−𝜆)𝑡
(𝑘𝜃 − 𝑥0(𝑘 − 𝜆))

(𝑘 − 𝜆)2
(𝑒−(𝑘−𝜆) − 1) +

𝑘𝜃

𝑘 − 𝜆
) 

In conclusion: 

𝐸𝑝(𝑠𝑡+1) = Λ0 + Λ1 + Λ2 + Λ3 

so: 

𝐸𝑝(𝑠𝑡+1) = 𝑅𝑀(𝑡, 𝑡 + 1) − (ln (
𝐴(0, 𝑡)

𝐴(0, 𝑡 + 1)
) + 𝑥0(𝐵(0, 𝑡 + 1) − 𝐵(0, 𝑡)))

+ (1 +
𝜆2

2𝜎𝑥
2

) (𝑒−(𝑘−𝜆)𝑡
(𝑘𝜃 − 𝑥0(𝑘 − 𝜆))

(𝑘 − 𝜆)2
(𝑒−(𝑘−𝜆) − 1) +

𝑘𝜃

𝑘 − 𝜆
) 

Therefore: 

𝐸𝑝(𝑒𝑡+1) = − (ln (
𝐴(0, 𝑡)

𝐴(0, 𝑡 + 1)
) + 𝑥0(𝐵(0, 𝑡 + 1) − 𝐵(0, 𝑡)))

+ (1 +
𝜆2

2𝜎𝑥
2

) (𝑒−(𝑘−𝜆)𝑡
(𝑘𝜃 − 𝑥0(𝑘 − 𝜆))

(𝑘 − 𝜆)2
(𝑒−(𝑘−𝜆) − 1) +

𝑘𝜃

𝑘 − 𝜆
) 
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6 Appendix 6: excess return on risky assets  

In the long term, in a steady state (𝑡 >> 0), the excess return depends only on the risk 
factor 𝜆 and the parameters of the CIR model (𝑘, 𝜃 and 𝜎𝑥) and is written: 

 
𝐸𝑝(𝑒∞) =

𝑘𝜃

𝜎𝑥
2

(𝑘 −  ℎ) +
𝑘𝜃

𝑘 − 𝜆
(1 +

𝜆2

2𝜎𝑥
2

) (7) 

 

Demonstration 

The expectation of excess return is written:  

𝐸𝑝(𝑒𝑡+1) = − (ln (
𝐴(0, 𝑡)

𝐴(0, 𝑡 + 1)
) + 𝑥0(𝐵(0, 𝑡 + 1) − 𝐵(0, 𝑡)))

+ (1 +
𝜆2

2𝜎𝑥
2

) (𝑒−(𝑘−𝜆)𝑡
(𝑘𝜃 − 𝑥0(𝑘 − 𝜆))

(𝑘 − 𝜆)2
(𝑒−(𝑘−𝜆) − 1) +

𝑘𝜃

𝑘 − 𝜆
) 

𝐸𝑝(𝑒𝑡+1) = 𝐹1(𝑡 + 1) + 𝐹2(𝑡 + 1) + 𝐹3(𝑡 + 1) 

where: 

- 𝐹1(𝑡 + 1) = −ln (
𝐴(0,𝑡)

𝐴(0,𝑡+1)
) and so : 

𝐹1(𝑡 + 1) = −
2𝑘𝜃

𝜎𝑥
2

𝑙𝑛 [
𝑒𝑥𝑝 {

(𝑘 +  ℎ)𝑡
2 }

𝑒𝑥𝑝 {
(𝑘 +  ℎ)(𝑡 + 1)

2 }
×

2ℎ + (𝑘 + ℎ)(𝑒𝑥𝑝 {(𝑡 + 1)ℎ} − 1)

2ℎ + (𝑘 + ℎ)(𝑒𝑥𝑝 {𝑡ℎ} − 1)
] 

𝐹1(𝑡 + 1) = −
2𝑘𝜃

𝜎𝑥
2

𝑙𝑛 [𝑒𝑥𝑝 {
−(𝑘 +  ℎ)

2
} ×

2ℎ + (𝑘 + ℎ)(𝑒𝑥𝑝 {(𝑡 + 1)ℎ} − 1)

2ℎ + (𝑘 + ℎ)(𝑒𝑥𝑝 {𝑡ℎ} − 1)
] 

- 𝐹2(𝑡 + 1) = −𝑥0(𝐵(0, 𝑡 + 1) − 𝐵(0, 𝑡)) and so : 

𝐹2(𝑡 + 1) = −𝑥0 (
2(𝑒𝑥𝑝 {(𝑡 + 1)ℎ} −  1)

2ℎ +  (𝑘 +  ℎ)(𝑒𝑥𝑝 {(𝑡 + 1)ℎ} −  1)
−

2(𝑒𝑥𝑝 {𝑡ℎ} −  1)

2ℎ +  (𝑘 +  ℎ)(𝑒𝑥𝑝 {𝑡ℎ} −  1)
) 

- 𝐹3(𝑡 + 1) = (1 +
𝜆2

2𝜎𝑥
2) (𝑒−(𝑘−𝜆)𝑡 (𝑘𝜃−𝑥0(𝑘−𝜆))

(𝑘−𝜆)2 (𝑒−(𝑘−𝜆) − 1) +
𝑘𝜃

𝑘−𝜆
) 

In a steady state, 𝑡 >> 0 we can observe that: 

lim
𝑡→+∞ 

𝐹1(𝑡 + 1) = −
2𝑘𝜃

𝜎𝑥
2

𝑙𝑛 [𝑒𝑥𝑝 {
−(𝑘 +  ℎ)

2
} × 𝑒𝑥𝑝(ℎ)] 

lim
𝑡→+∞ 

𝐹1(𝑡 + 1) =
𝑘𝜃

𝜎𝑥
2

(𝑘 −  ℎ) 

lim
𝑡→+∞ 

𝐹2(𝑡 + 1) = 0 

lim
𝑡→+∞ 

𝐹3(𝑡 + 1) =
𝑘𝜃

𝑘 − 𝜆
(1 +

𝜆2

2𝜎𝑥
2

) 
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So, in the long term, in a steady state, excess return is written: 

𝐸𝑝(𝑒∞) =
𝑘𝜃

𝜎𝑥
2

(𝑘 −  ℎ) +
𝑘𝜃

𝑘 − 𝜆
(1 +

𝜆2

2𝜎𝑥
2

) 

7 Appendix 7: revaluation algorithm, a review of market practices  

An examination of the revaluation algorithms of certain major players in the French euro 
savings market has enabled to draw up a standard diagram of the revaluation process. This 
diagramm is presented below4. It presents the steps for optimizing profitability (referred 
to as "margin" in the following sections) under the constraints implemented in the models 
and reflects the contract revaluation processes implemented in practice by insurers. 

The first three steps aim to reassert the value of the contracts at the technical rate as 
shown in the next figure. It should be pointed out that the sub-step of margin 
abandonment on FP (financial products in the accounting sense) can occur for some 
companies after the UGL (Unrealized Gains or Losses) realization. 

Figure 1: Technical Rate Service 

 

If the financial production is enough to serve the technical rates, the profit sharing reserve 
(designated in the following by PPB for “Provision pour Participation aux Bénéfices”) is 
provided with the balance. The increased PPB is then used to serve the minimum 
guaranteed rates (some companies may give up their margin on FP after the UGL 
realization step). 

Figure 2: Guaranteed Minimum Rate Service 

 

If the PPB is enough to pay the minimum guaranteed rates, we can then look at what is 
called the "target revaluation rate"5. When the wealth (financial production and PPB) is 

 
4 Simbel uses the same algorithm to assess the revaluation rate. 
5 See below for a definition of the target revaluation rate and a presentation of market practices. 
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significant, some insurers realize unrealized losses to adjust the distributed wealth 
downwards and remove depreciated assets from the portfolio. If the wealth is significantly 
lower, we can observe a loss of margin on financial production or a realization of unrealised 
gains before considering a loss of margin on the result. 

Figure 3: Service of the target rate 

 

The last step is to verify distribution constraints of mandatory minimum profits (including 
PPB that has been provisioned for more than 8 years). 

Figure 4: Target rate correction to satisfy the minimum profit-sharing constraint 

 

In practice, there is little room for life insurance companies to revalue contracts using 
technical rates or minimum guaranteed rates. We observe little differences in financial 
products’ generating models: 

- On step 1 - financial production: systematic realisation of X% of UGL (systematic 
turnover on equities and real estate), reallocation of assets, etc. 

- On steps 3 and 5: some insurers realise UGL before any margin abandonment on 
financial products (FP). 

For step 6, heterogeneous approaches are observed on the market for the definition of the 
target revaluation rate. We usually distinguish between logics involving "a rate expected 
by the policyholder" and one or more references in the rate construction: 

- Interest rates possibly restated from the loadings rate (e.g. TME, 10-year swap or 
zero-coupon rate, weighted average of 1-year and 10-year swap rates, Livret A, 10-
year swap rate plus volatility adjustment, etc.); 

- Financial performance of an index (e.g., adjusting the CAC40 performance over 3 
years); 

- Internal benchmark (e.g., revaluation rate served to policyholders in year N or N-1); 

- Competitive rate such as the rate published by the ACPR (ACPR [2018]) or the 
market average revaluation rate. 

Further examples of references are provided by the French Institute of Actuaries ([2016], 
p. 42). 

The majority of the approaches used in practice use one or two indicators, including, very 
often, an interest rate indicator. This logic is justified in particular by the close relationship 
between OAT rate and revaluations observed in the past (see Borel-Mathurin and al. 
[2018]). 
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For instance, some insurers assume that the rate expected by policyholders is a weighted 
average of a "memory effect" and a rate served by the supposed competition equal to the 
10-year OAT rate: 

𝑇𝑥_𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑡) = 𝑚𝑎𝑥(𝑇𝑀𝐺, 𝑎 × 𝑡𝑥_𝑆𝑒𝑟𝑣𝑖(𝑡 − 1)  + (1 − 𝑎) × 𝑂𝐴𝑇(𝑡, 10𝑎𝑛𝑠))  

The final target rate corresponds to the expected rate minus a subjective 𝑆𝑝𝑟𝑒𝑎𝑑 that 
materializes product characteristics representing a brake on lapses, such as a rate 
guarantee or a particularly advantageous taxation. 

𝑇𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) = 𝑚𝑎𝑥(𝑇𝑀𝐺, 𝑇𝑥_𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑡)  − 𝑆𝑝𝑟𝑒𝑎𝑑(𝑡))  

The final revaluation rate may be different (upward or downward) from the target rate 
defined in Step 6. 

The difference between the revaluation rate and the rate expected by policyholders is used 
by practitioners as a dynamic lapse determinant variable. The following section 
summarizes market practices.  

8 Appendix 8: policyholders’ dynamic behaviour  

National guidelines (ACPR [2013]) specify that "In addition to the structural surrenders that 

the insurer may observe in a "normal" economic context on euro savings life insurance 

contracts, the insurer must take into account cyclical surrenders. These occur in particular in 

a highly competitive context when the policyholder arbitrates their insurance contract in 

favour of other financial supports (insurance, banking or real estate products)". ACPR 

recommends using experience or market tables to model structural surrenders. 

Policyholders’ dynamic behaviour is modelled by dynamic lapse. It is therefore assumed in 
market models that policyholders modulate their lapses upwards or downwards according 
to the financial arbitrage opportunities that occur.  

According to ACPR [2013], dynamic lapses are commonly modelled by a function exclusively 
depending on the difference between the paid revaluation rate and a rate dependent on 
the economic environment, often referred to as the policyholder’s expected revaluation 
rate (see section 7). The dynamic lapse rate should be added to the structural surrender 
rate.  

If the served rate (TS) is lower than the expected rate (TA) by the policyholder, the latter 
will tend to withdraw more than indicated by the structural lapse curve. 

Conversely, if policyholders are offered a higher rate than they expected, they will 
withdraw less in the following year than in the past. 

The ACPR (ACPR [2013]) proposes to maintain in the models the dynamic lapses as a 
function of the gap (𝑇𝑆 − 𝑇𝐴) inside a tunnel presented  in Figure 5.  
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The majority of organizations use the proposed legislation of ACPR (ACPR [2013]) to model 
dynamic lapse. This kind of model consists in assuming that the dynamic lapse is piecewise 
affine function of value (TS-TA). 

Figure 5: Min-max tunnel proposed by ACPR for dynamic lapse modelling 

 

Therefore the dynamic lapse model implemented by the market explicitly assumes that the 
lapse decision results from a reasoning based on historical data (the served revaluation 
rates and the rates of the competition to date) and not on the policyholder’s rational 
expectations.  

The modeling discrepancies that can be seen between insurers concern the setting of the 
piecewise affine reaction function (expected rate, thresholds, etc.), but not the basic 
framework. On the academic level, the few existing references on the subject concern the 
rationalization of the parameters of the piecewise affine function or the study of 
explanatory variables for lapses (e.g. Suru [2011] and Rakah [2015]). There are also some 
works proposing modeling using logistic regressions (see. Sakho [2018]). 
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