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Abstract

In this paper we present a pricing application analyzing, in a contingent-claims
framework, the two most common types of life policies sold in Italy during the last
two decades. These policies, characterized by different premium payment styles
(single and constant periodical), are endowments including both a bonus option and
a surrender option. The bonus option’s benefit is annually adjusted according to
the performance of a reference fund and a minimum return is guaranteed to the
policyholder. The surrender option is an American-style put option that enables
the policyholder to give up the contract receiving the surrender value. We propose
to price this American-style put option by Montecarlo simulation according to the
Longstaff and Schwartz Least-Squares approach [17] giving a comparative analysis
with the results obtained by Grosen and Jørgensen [15] according to a Recursive Tree
Binomial approach. We then proceed to present an application to a relevant por-
tion of a major Italian life policies’ portfolio. We make use of a Black&Scholes-CIR
economy to simulate the reference fund, composed by equities and bonds, according
to De Felice and Moriconi [14] and Pacati [21], and we estimate the fair value of
portfolio’s liabilities extending the framework in order to price also the embedded
surrender options.
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1 Introduction

The most common types of life policies issued by italian companies present two
intimately linked faces: one actuarial and the other financial. From an actuarial
point of view, these products provide a financial service to individuals that wish to
insure themselves against financial losses which could be the consequence of death,
sickness or disability. At the same time these products often include interest rate
guarantees, bonus distribution schemes and surrender options that represent liabil-
ities to the insurer. In the past, for example in the 1970’s and 1980’s when long
term interest rates were high, some of these options have been viewed by insurers
as far out of the money and were ignored in setting up reserves, but the value of
these guarantees rose as long as term interest rates began to fall in the 1990’s. If
the rates provided under the guarantee are more beneficial to the policyholder than
the prevailing rates in the market, the insurer has to make up the difference.

The problem of accurately identifying, separating and estimating all the compo-
nents characterizing the guarantees and the participation mechanism has attracted
an increasing interest both of researchers and practitioners from a risk manage-
ment and option pricing point of view. In their seminal contributions, Brennan and
Schwartz [9] and Boyle and Schwartz [7] have employed the techniques of contingent
claims analysis to provide a valuation framework in order to estimate the fair value
of a guaranteed equity-linked contract.

According to the recent literature (Grosen and Jørgersen [15], Bacinello [4]), a
life policy contract can be viewed as a participating american contract that can be
splitted into various components:

1. the basic contract, a risk free bond;

2. the bonus option, a participating European-style option where the benefit is
annually adjusted according to the performance of a reference fund and a
minimum return is guaranteed to the policyholder; the literature concerning
the bonus option is rich and we recall Norberg [18] and [19], Bacinello [3], De
Felice and Moriconi [14], Pacati [21], Consiglio, Cocco and Zenios [10] and [11]
and Consiglio, Saunders and Zenios [12];

3. the surrender option, an American-style put option that enables the policy-
holder to give up the contract receiving the surrender value; The literature
concerning the surrender option is more recent and we recall Albizzati and
Geman [1], Bacinello [4], Grosen and Jørgersen [15].

In addition, traditional italian policies enable the policyholder to give up the contract
either receiving the surrender value, a cash payment, or converting the surrender
value into a guaranteed annuity, payable through the remaining lifetime and cal-
culated at a guaranteed rate, which can be greater than market interest rate as
outlined recently by Boyle and Hardy [8] and Ballotta and Haberman [5]. Another
factor added to the cost of these guarantees, according to Ballotta and Haberman
[6], is the following: the mortality assumption implicit in the guarantee did not take
into account the improvement in mortality which took place in the last years.

In this paper we present a pricing application analyzing, in a contingent-claims
framework, the two most common types of life policies sold in Italy during the last
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two decades. These policies, characterized by different premium payment styles (sin-
gle and constant periodical), are endowments including both a bonus option and a
surrender option. We propose to price the surrender option by Montecarlo simu-
lation according to the Longstaff and Schwartz Least-Squares approach [17] giving
a comparative analysis with the results obtained by Grosen and Jørgensen [15] ac-
cording to a Recursive Tree Binomial approach. We then proceed to present an
application to a relevant portion of RAS SpA life policies’ portfolio. The results
are purely indicative and the comments do not represent the views and/or opinion
of RAS management. We make use of a Black&Scholes-CIR economy to simulate
the reference fund, composed by equities and bonds, according to De Felice and
Moriconi [14] and Pacati [21], and we estimate the fair value of portfolio’s liabilities
extending the framework in order to price also the embedded surrender options.

Section 2 discusses the Longstaff and Schwartz Least-Squares approach [17] to
price an American-style option by Montecarlo simulation and presents a compar-
ative analysis with the results obtained by Grosen and Jørgensen [15]. Section 3
describes the significant portion of life policies’ portfolio analyzing two types of life
insurance contracts. The approach followed in the simulation of the reference fund is
exposed and the estimates of the fair value of liabilities and the results are discussed.
Finally, Section 4 presents conclusions and possible future extensions.

2 A Longstaff Schwartz Approach to Price the Surren-
der Option

Our purpose is to value the surrender option embedded in the endowment policies
considered in this work. The surrender option is an American-style put option that
enables the policyholder to give up the contract and receive the surrender value. We
implement a method that uses Monte Carlo simulation, adapting it, so that it can
work also with products that present American-exercise features. In particular, we
follow the least squares Monte Carlo approach presented by Longstaff and Schwartz
[17].

We first adapt the above method trying to replicate the results in the article
by Grosen and Jørgensen [15], where only financial risks are treated, the effect of
mortality is not considered and the riskless rate of interest is assumed to be constant.
In subsection 3.1 we then apply the method to our model considering both financial
and actuarial uncertainty, and where the term structure of interest rates is assumed
to be stochastic.

We briefly summarize the problem analyzed by Grosen and Jørgensen [15]: at
time zero (the beginning of year one), the policyholder pays a single premium P0

to the insurance company and thus acquires a contract of nominal value P0. The
policy matures after T years, when the insurance company makes a single payment
to the policyholder. However, the contract can also be terminated depending on the
policyholder’s discretion before time T . The insurance company invests the trusted
funds in an asset portfolio whose market value A(t) is assumed to evolve according
to a geometric Brownian motion,

dA(t) = µA(t)dt + σA(t)dW (t), A(0) = A0, (1)
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where µ, σ and A(0) are constants and W (·) is a standard Brownian motion with
respect to the real-world measure. Under the risk neutral probability measure Q the
evolution is given by

dA(t) = rA(t)dt + σA(t)dWQ(t), A(0) = A0, (2)

where WQ(·) is a standard Brownian motion under Q and r is the instantaneous
spot rate. The interest credited to the policyholder from time t − 1 to time t,
t ∈ {1, . . . , T}, is denoted rP (t) and is guaranteed never to fall below rG, the con-
tractually specified guaranteed annual interest rate. In their paper, Grosen and
Jørgensen [15] define rP (t) as

rP (t) = max
{

rG, α

(
B(t− 1)
P (t− 1)

− γ

)}
, (3)

where α is called by the authors the distribution ratio, γ is the target buffer ratio
and B(t) = A(t)− P (t). P0 grows according to the following mechanism:

P (t) = (1 + rP (t)) · P (t− 1), t ∈ {1, 2, . . . , T}, P (0) = P0. (4)

Grosen and Jørgensen [15] define two contract types: the European contract and
the American contract. The former is simply the contract that pays P (T ) at the
maturity date T , whereas the latter can be exercised depending on the policyholder’s
discretion at any time t in the set {0, 1, 2, . . . , T}. If the policyholder decides to
exercise at time t, he receives P (t). The surrender option value is given by the
difference between the American contract value and the European contract value.

The time zero value of the European contract VE(0) is calculated by the authors
via Monte Carlo simulation under the risk neutral measure: they simulate the value
of the asset portfolio until time T with an annual step, determine ri

P (t) and P i(t)
at each step t and for each path i and then make the average and discount to find
the value of the contract:

VE(0) =
e−rT

M

M∑
i=1

P i(T ), (5)

M being the number of simulated paths. In order to price the American contract,
Grosen and Jørgensen [15] implement a binomial tree model á la Cox, Ross and
Rubinstein [13]. We note that, because of the dependence of the contract values on
both A(·) and P (·), the size of the trees which keep track of these variates grows
exponentially with T .

We now briefly describe the method suggested in the paper by Longstaff and
Schwartz [17] in order to price American options by Monte Carlo simulation (LSM:
least squares Monte Carlo approach), and then compare the numerical results we
have obtained with those presented by Grosen and Jørgensen [15]. The mechanism
underlying an option with american exercise features is the following: at any exercise
time, the holder of an American option compares the payoff from immediate exercise,
which we refer to as intrinsic value, with the expected payoff from continuation, and
exercises if the immediate payoff is higher. In other words, at each simulated time
instant, the value of the contract is the maximum between the intrinsic value and
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the continuation value. Thus, the optimal exercise strategy is determined by the
discounted conditional expectation under the risk-neutral probability measure of
the future cash flows, assuming an optimal exercise policy is adopted in the future.
For example, in the case of an American put option written on a single non-dividend
paying asset, the value (cashflow) Vi(Si) of the option at time i, conditional on the
current asset price Si, is given recursively by

Vi(Si) = max
{
Ii(Si), E

Q
i

[
e−r∆tVi+1(Si+1)|Si

]}
, (6)

where Ii(Si) is the intrinsic value and ∆t is the discretization step. The difficulty
in using Monte Carlo derives from the fact that we should know the conditional
expected value of the future option value, but this depends on the next exercise
decisions.

The approach developed by Longstaff and Schwartz [17] is that this conditional
expection can be estimated from the cross-sectional information in the simulation
by using least squares, that is by regressing the discounted realized payoffs from
continuation on functions of the values of the state variables (the current underlying
asset price in this example). For example, the use of a quadratic polynomial would
give

EQ
i

[
e−r∆tVi+1(Si+1)|Si

]
≈ a1 + a2Si + a3S

2
i . (7)

While the generation of sampled paths goes forward in time, the regressions go
backwards, starting from time T . At this time, the exercise strategy is trivial: the
option is exercised if and only if it is in-the-money. If the strike is X, the cashflows
for each path j are max{X−Sj

T , 0}, provided that the option has not been exercised
yet. Going backwards in time to time step T − 1, if on a path the option is in-
the-money, one may consider exercising it. The continuation value is approximated
regressing the discounted cashflows only on the paths where the option is in-the-
money. The important point is that the early exercise decision is based on the
regressed polynomial, in which the coefficients are common on each path, and not
on the knowledge of the future price along the same path. In subsection 2.1 we
compare the results obtained by Grosen and Jørgensen [15] with the binomial model
with those we have produced through LSM.

2.1 Numerical Results

In the section devoted to numerical results, Grosen and Jørgensen [15] analyse con-
tracts for which P0 = 100, B0 = 0, T = 20 years and rG = 4.5%. The volatility σ
of the reference portfolio is set to 15% and 30%, whereas the riskless interest rate
assumes values in the set {8%,6%,4%}.

In Tables 1-6 we present the results we obtain through LSM, simulating 50,000
paths, for different values of α and γ and compare them with Grosen and Jørgensen’s
[15] results (last column). In the column denoted by E.C. we report the values of the
European contract. The other columns contain the values of the American contract
we have produced using different combinations of A, P and rP as state variables.
The use, for example, of the two state variables A and P together, means that we
base the regression on the quadratic polynomial given by a linear combination of the
powers and cross products of A and P up to the second order. The reason for using
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more than one state variable is that, as pointed out by Longstaff and Schwartz [17],
if the regression involves all paths, more than two or three times as many functions
may be needed to obtain the same level of accuracy as obtained by the estimator
based on in-the-money paths. This is our case, since the intrinsic value is not, for
example, the standard payoff of a put, but is given by the surrender value, so we
cannot limit the number of values used in the regression to those where the option
is in-the-money, but we have to consider all of them.

We now look at the values in the tables. In the cases σ=15%, r=8% and σ=15%,
r=6%, our results are close to the values by Grosen and Jørgensen [15] when we use
as state variable the value A of the reference fund, but we obtain a better approx-
imation when we use two state variables A and P . Moreover, it seems that adding
a third state variable doesn’t improve the results. We observe that the choice of
P (the benefit) as state variable would significantly under-estimate the value of the
American contract. When we assume σ=15%, r=4% the situation is different: the
use of the state variable A produces an American contract value lower than the
corresponding European value. When we regress with respect to P only, either
to A and P , the results are more accurate. As in Grosen and Jørgensen [15], the
American contract has the same value as its European counterpart, meaning that
early exercise is never optimal when the riskless rate of interest r is lower than the
minimum guarantee.

The case σ=30% reflects the behaviour of the corresponding cases with σ=15%,
but the results are worse. In particular, in the cases r=8% and r=6% it is more
evident that the use of two state variables does better than using only A, even if the
values obtained are still lower than those given by the tree. This could be due to
the greater dispersion of Monte Carlo paths when the volatility is high. When we
assume r=4%, the use of the state variable P seems to work well, but the of A and
P together gives values for the American contract nearer to the European contract
values than those obtained using only A, but still lower.

In general, our results produce a not significant error, since the difference be-
tween the values obtained with the two approaches is less than 2.5%; except for
the cases with high volatility or interest rates close to the minimum guarantee, in
which cases the difference is higher. In addition, the differences are both positive
and negative. These results suggest that the LSM algorithm is able to approximate
closely the binomial tree values.

3 An Application to an Italian Life Policies’ Portfolio

In this section we explain the assumptions, the model and the method we follow in
our analysis, according to De Felice and Moriconi [14] and Pacati [21].

We consider two types of participating endowment policies, those payed by a
single premium and those payed by constant annual premiums, part of a significant
portion of a major Italian life portfolio. The premiums earned are invested into a
reference fund. The benefit is annually adjusted according to the performance of
the fund and a minimum return is guaranteed to the policyholder.

We define x as the age of the policyholder at the inception of the contract and n
as the term of the policy. We define a as the number of years between the inception
date of the contract and the 31 December 2002, which is our valuation date. We
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assume that a is integer and therefore the policy starts exactly a years before the
valuation date, which we denote by t. m = n − a is the time to maturity. We
suppose that all the contractually relevant future events (premium payments, death
and life to maturity) take place at the integer payment dates a + 1, . . . , a + m. In
particular, benefit payments occur at the end of the year of death, if the policyholder
dies within the remaining m years, or at the end of the m-th year, if he is alive after
m years. Premium payments occur at the beginning of the year. Finally, we do
not consider possible future transformations of the policies, such as reduction and
guaranteed annuity conversion options.

Let Ca be the sum insured at the payment date a. We define Ca+k and Fk

respectively as the benefit eventually paid at time a + k and the market value of
the reference fund at time t + k, k = 1, . . . ,m. We define i as the technical interest
rate, imin as the minimum guaranteed and itr as the minimum rate retained by the
company. β ∈ [0, 1] is the participation coefficient. The annual rate of return of the
reference fund at time t + k, Ik, is defined as:

Ik =
Fk

Fk−1
− 1, (8)

and the readjustment measure is

ρk = max
(

min(βIk, Ik − itr)− i

1 + i
, smin

)
, smin =

imin − i

1 + i
. (9)

For Ca+k, in the case of single premiums, we have

Ca+k = Ca+k−1(1 + ρk) = CaΦ(t, k), (10)

Φ(t, k) =
k∏

h=1

(1 + ρh), (11)

(full readjustment rule), whereas in the case of constant annual premiums, we have,
according to Pacati [21],

Ca+k = Ca+k−1(1 + ρk)−
m− k

n
C0ρk = CaΦ(t, k)− 1

n
C0Ψ(t, m, k), (12)

Ψ(t, m, k) =
k−1∑
l=0

(m− k + l)ρk−l ·
k∏

j=k−l+1

(1 + ρj). (13)

Our valuation consists in the calculation of American contract value and the
European contract value, defined also as stochastic reserve according to De Felice
and Moriconi [14] and Pacati [21]. We derive the surrender option as the difference
between American contract value and European contract value. The European put
option, the minimum guarantee, is a component of the European contract value.
We value the stochastic reserve on first order bases using conservative probabilities
excluding surrenders and considering net premiums. We define Pk as the net pre-
mium due at time a + k: since we suppose the valuation takes place soon after the
premium payment, Pk = 0 for single premiums and Pk = P constant for annual pre-
miums, k = 1, . . . ,m− 1. We define kpx+a as the probability that the policyholder,
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which age is x+a, is alive at time a + k, and k−1|1qx+a as the probability that the
policyholder, alive at time a + k− 1, dies between a + k− 1 and a + k. The policies
payed by constant annual premiums that we consider are also characterized by the
presence of a terminal bonus. We define bM as the bonus payed in case of death and
bV as the bonus payed in case of life at maturity; both expressed as percentages of
the benefit. The quantities Ca+kbM and Ca+mbV are also readjusted according to
equation (12), but are probabilized by modifying the survival probabilities with the
percistency frequencies in the contract. We will not explicitly derive the terminal
bonus and the relative probabilities, but the extension is immediate.

We assume that

F (t) = αS(t) + (1− α)W (t), 0 ≤ α ≤ 1, (14)

where S(t) is a stock index and W (t) is a bond index. According to De Felice and
Moriconi [14] and Pacati [21], we model W (t) as the cumulated results of a buy-
and-sell strategy, with a fixed trading horizon δ, of zero coupon bonds with a fixed
duration D ≥ δ.

Given the continuous-time perfect-market assumptions, we use a 2-factor arbi-
trage model, modelling interest rate uncertainty with the CIR model and stock price
uncertainty with the Black-Scholes model. Defining r(t) as the instantaneous inter-
est rate (spot rate) and S(t) as the stock index, we thus have the following stochastic
equations under the natural probability measure:

dr(t) = κ(ϑ− r(t))dt + ρ
√

r(t)dZr(t), r(0) = r0, (15)

where κ is the mean reversion coefficient, ϑ is the long term rate, ρ is the volatility
parameter, r0 is the initial spot rate, and

dS(t) = µS(t)dt + σS(t)dZS(t), (16)

where µ is the istantaneous expected return and σ is the volatility parameter. The
two sources of uncertainty are correlated:

Corr(dZr(t), dZS(t)) = ρrSdt. (17)

In order to estimate the American contract value and European contract value, we
consider the risk neutral measure, substituting the original drift coefficients with
κ(ϑ − r(t)) + πr(t) and r(t)S(t). π identifies the market price of interest rate risk
q(r(t), t): q(r(t), t) = π

√
r(t)/ρ. In this model, the price at time t of a deterministic

contract that pays at time s > t the amount Xs, is given by

V (t, Xs) = Et

[
Xse

−
∫ s

t
r(u)du

]
, (18)

where Et is the conditional risk-neutral expectation.
The stochastic reserve is the difference between the fair market value of the future

benefits payable by the insurance company and the fair market value of the eventual
future premiums payable by the policyholder, both multiplied for the corresponding
survival probabilities:

Vt = mpx+aCaV (t, Φ(t, m)) +
m∑

k=1

k−1|1qx+aCaV (t, Φ(t, k))

−
m−1∑
k=1

kpx+aPkv(t, t + k) (19)
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for single premiums, and

Vt = mpx+a(CaV (t, Φ(t, m)− C0

n
V (t, Ψ(t, m,m)))

+
m∑

k=1

k−1|1qx+a(CaV (t, Φ(t, k)− C0

n
V (t, Ψ(t, m, k)))

−
m−1∑
k=1

kpx+aPkv(t, t + k) (20)

for constant annual premiums. We can apply the survival probabilities after cal-
culating the non-probabilized values, since we suppose that actuarial and financial
uncertainties are independent.

We observe (see Pacati [21]) that we can decompose the expression for Ca+k into
the sum of two components. If we assume that it is always min(βIk, Ik− itr) ≥ imin,
we obtain the base component:

Ba+k = Ca

k∏
l=1

(
1 +

min(βIl, Il − itr)− i

1 + i

)
(21)

in the case of a single premium payment, and

Ba+k = Ca

k∏
l=1

(
1 +

min(βIl, Il − itr)− i

1 + i

)

− C0

n

k−1∑
l=0

[
(m− k + l)

min(βIk−l, Ik−l − itr)− i

1 + i
·

·
k∏

j=k−l+1

(
1 +

min(βIj , Ij − itr)− i

1 + i

)]
(22)

for constant annual premiums. Observing that Ba+k ≤ Ca+k, we define the put
component as

Pa+k = Ca+k −Ba+k. (23)

The equation (23) is the payoff of an european put option of annual cliquet type,
that guarantees a consolidation of the results obtained year by year, with annual
strike rate imin, and where the underlying is the minimum between the return of
the reference fund, multiplied by the participation coefficient, and the minimum
retained by the company.

3.1 An Extension of Longstaff Schwartz Approach

We now describe how we apply LSM to our model. In considering actuarial uncer-
tainty, we follow the approach adopted by Bacinello [4]. As Grosen and Jørgensen
[15], Bacinello [4] implements a binomial tree model, where the riskless interest rate
is constant, taking into account the survival probabilities. From a LSM point of
view, the approach is the following (to ease the notation, for a given policy we de-
note by T the time it expires): at step T − 1 and for path j (if the insured is alive),
the continuation value is given by

W j
T−1 = e

−
∫ T

T−1
r(u)du

Cj
T − PT−1, (24)
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since the benefit Cj
T is due with certainty at time T . PT−1 (zero in the case of

single premiums) is the premium due at time T − 1. The value of the contract F j
T−1

is therefore the maximum between the continuation value and the surrender value
Rj

T−1 (that is the benefit due in T − 1 eventually reduced):

F j
T−1 = max{W j

T−1, R
j
T−1}. (25)

Assume now to be at time t < T − 1: to continue means to immediately pay the
premium Pt and to receive, at time t+1, the benefit Cj

t+1, if the insured dies within
one year, or to be entitled of a contract whose total random value (including the
option of surrendering it in the future), equals F j

t+1, if the insured is alive. We
suppose that the benefit received in t + 1, in case of death between t and t + 1, is
Cj

t : we thus have a quantity known in t and we can avoid taking the conditional
discounted expectation of Cj

t+1. The continuation value at time t is then given by
the following difference:

W j
t =

{
1|1qx+te

−
∫ t+1

t
r(u)duCj

t + (1− 1|1qx+t)E(e−
∫ t+1

t
r(u)duF j

t+1)
}
− Pt. (26)

We use the regression to estimate the value of E(e−
∫ t+1

t
r(u)duF j

t+1). At each step and
for each path we compare the intrinsic value with the continuation value and take
the optimal decision. For those paths where the optimal decision is to surrender, we
memorize the time and the corresponding cashflow. When we arrive at time 1 (or
the time the insured can start to surrend from), we have a vector with the exercise
times for each path and a vector with the cashflows (benefits) corresponding to that
time. At this point, taking into account that the policyholder can survive until the
exercise time or die before, we multiply the benefits due until exercise time by the
corresponding survival or death probabilities, sum them all and finally calculate the
average on the number of paths.

3.2 Numerical Results

In Tables 7-14, we present the results we obtain analyzing 944 policies payed by
single premium and 1,000 policies payed by constant annual premiums. The values
are expressed in euro. We make the calculations on every policy without aggregating
and group the results by age layers. The two types of policies we consider are
characterized by: i=3%, imin=4%, β=80%. We suppose that the policyholder can
surrender after the first year from the inception of the contract and we assume
that itr=1%. We calibrate the parameters of the CIR model at 31 December 2002,
our valuation date, over a cross section of LIBOR interest rate swaps at different
maturities. We simulate 5,000 paths for the reference fund, discretizing the equations
for the spot rate and the stock index under the neutral probability measure according
to the stochastic Euler scheme with a monthly step. We assume ρrS=-0.1 and δ=4
months and analyze two different combinations of α, σ and D.

We choose to base the regression for the valuation of the continuation value at
time a+k on two state variables, the value of the reference fund Fk and the value of
the benefit Ca+k. The surrender value at time a + k is Ca+k(1 + jrisc)(k−m), where
jrisc represents an annual compounded discount rate. In the tables we compare
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the results we obtain making different assumptions about the composition of the
reference fund and the values of jrisc. In particular, we analyze the combinations
of jrisc=0 (no penalty in case of surrender) and jrisc=0.5%, with α=10%, σ=15%,
D=5 years or α=30%, σ=30%, D=10 years. We remark that when the value of jrisc

is greater than i, this penalty reduces the value of surrender options.
Looking at the values of the stochastic reserve, we observe that it increases as α, σ

and D increase. This is due to the fact that the insurance company’s liabilities grow.
The values of put options increase too, meaning that the weight of the minimum
guarantee becomes greater. Put option values too, become more valuable with
increasing uncertainty, due to increasing volatility of the underlying portfolio. In
the case of single premiums, the value of the surrender option decreases as jrisc

increases. We also note that the value of the surrender option decreases with a more
“aggressive” composition of the reference fund. This is pointed out also in Grosen
and Jørgensen [15] and is due to the fact that a more aggressive policy determines
an advantage for the policyholder only, and so his incentive to prematurely exercise
may be partly or fully reduced. In the case of constant annual premiums instead, the
effect of increasing values for α, σ, D and jrisc doesn’t seem to produce a lessening
of surrender option values. The future premiums to be paid could play a significant
role in leading the policyholder’s decision.

4 Conclusions

In this paper we have presented a pricing application analyzing, in a contingent-
claims framework, the two most common types of life policies sold in Italy. These
policies, characterized by different premium payment styles (single and constant pe-
riodical), are endowments including both a bonus option and a surrender option.
We have proposed to price the surrender option by Montecarlo simulation according
to the Longstaff and Schwartz Least-Squares approach [17] giving a comparative
analysis with the results obtained by Grosen and Jørgensen [15] according to a Re-
cursive Tree Binomial approach. Our results are preliminary but encouraging; the
differences between the binomial tree and LSM algorithm showed to be not signif-
icant. An extensive work has to be developed in order to make the Longstaff and
Schwartz Least-Squares approach [17] more accurate as outlined in Tables 1-6.

We have then proceeded to present the application to a significant portion of a
major Italian life policies’ portfolio. We have adopted a Black&Scholes-CIR econ-
omy to simulate the reference fund and we have estimated the fair value of portfolio’s
liabilities viewed as American contracts pricing the single components.

In our project we want to consider other types of policies and to extend the
Black&Scholes-CIR framework using a two-factor interest rate model. We also aim
to aggregate the single policies in “macro-policies” without a significant loss of pre-
cision and reducing the calculation time.

Software: The results in this paper were carried out in Matlab using functions
implemented by the authors. We are grateful to John Brunello for providing the
dataset of life policies.
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Tables 1 and 2

σ = 15%, r = 8%
α γ E.C. a L.-S. b L.-S. c L.-S. d L.-S. e G-J f

s.v.: A s.v.: P s.v.: A, P s.v.: A, P , (1 + rP )
0.5 0.05 94.29 109.04 99.09 109.82 109.91 109.49
0.5 0.15 88.28 104.18 96.47 104.96 105.04 104.61
0.5 0.25 83.25 101.02 96.47 101.64 101.70 101.15
0.75 0.05 101.00 115.07 104.45 115.89 115.94 115.69
0.75 0.15 94.09 108.88 98.13 109.68 109.71 109.23
0.75 0.25 88.32 104.24 96.47 105.03 105.08 104.50
1 0.05 105.46 119.48 108.39 120.25 120.26 119.79
1 0.15 98.01 112.35 101.08 113.17 113.16 112.05
1 0.25 91.81 106.89 96.51 107.73 107.78 106.65

aEuropean Contract
bLongstaff-Schwartz approach, state variable: A
cLongstaff-Schwartz approach, state variable: P
dLongstaff-Schwartz approach, state variables: A and P
eLongstaff-Schwartz approach, state variables: A, P and (1 + rP )
fGrosen-Jorgensen

σ = 15%, r = 6%
α γ E.C. a L.-S. b L.-S. c L.-S. d L.-S. e G-J f

s.v.: A s.v.: P s.v.: A, P s.v.: A, P , (1 + rP )
0.25 0.05 97.62 105.79 101.34 107.23 107.29 106.66
0.25 0.15 93.60 103.03 98.74 104.24 104.29 103.85
0.25 0.25 90.34 101.18 98.41 102.15 102.18 101.84
0.5 0.05 109.64 116.19 111.43 117.63 117.70 117.79
0.5 0.15 103.54 110.75 105.90 112.15 112.20 112.09
0.5 0.25 98.63 106.69 101.34 108.09 108.12 107.81
0.75 0.05 116.18 122.32 117.54 123.89 123.91 124.31
0.75 0.15 109.01 115.58 110.47 117.08 117.10 117.18
0.75 0.25 103.24 110.53 104.94 111.92 111.95 111.71
1 0.05 120.66 126.67 121.75 128.36 128.36 128.48
1 0.15 112.82 119.18 114.02 120.70 120.70 120.34
1 0.25 106.52 113.44 107.72 114.88 114.89 114.11

aEuropean Contract
bLongstaff-Schwartz approach, state variable: A
cLongstaff-Schwartz approach, state variable: P
dLongstaff-Schwartz approach, state variables: A and P
eLongstaff-Schwartz approach, state variables: A, P and (1 + rP )
fGrosen-Jorgensen
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Tables 3 and 4

σ = 15%, r = 4%
α γ E.C. a L.-S. b L.-S. c L.-S. d L.-S. e G-J f

s.v.: A s.v.: P s.v.: A, P s.v.: A, P , (1 + rP )
0.25 0.05 125.81 121.94 125.81 125.43 125.74 125.88
0.25 0.15 122.25 118.80 122.25 121.77 122.09 122.31
0.25 0.25 119.52 116.48 119.52 118.92 119.30 119.58
0.5 0.05 136.36 131.51 136.36 135.61 135.72 136.46
0.5 0.15 130.48 126.15 130.48 129.64 129.76 130.57
0.5 0.25 126.01 122.14 126.01 125.10 125.25 126.10
0.75 0.05 142.51 137.16 142.50 141.58 141.68 142.64
0.75 0.15 135.32 130.54 135.31 134.37 134.47 135.44
0.75 0.25 129.86 125.56 129.86 128.88 128.94 129.98
1 0.05 146.88 141.05 146.87 145.85 145.89 147.04
1 0.15 138.82 133.68 138.82 137.80 137.83 138.96
1 0.25 132.70 128.09 132.70 131.66 131.68 132.84

aEuropean Contract
bLongstaff-Schwartz approach, state variable: A
cLongstaff-Schwartz approach, state variable: P
dLongstaff-Schwartz approach, state variables: A and P
eLongstaff-Schwartz approach, state variables: A, P and (1 + rP )
fGrosen-Jorgensen

σ = 30%, r = 8%
α γ E.C. a L.-S. b L.-S. c L.-S. d L.-S. e G-J f

s.v.: A s.v.: P s.v.: A, P s.v.: A, P , (1 + rP )
0.25 0.05 101.47 121.39 110.55 122.66 122.75 124.32
0.25 0.15 97.07 117.49 106.04 118.63 118.73 119.99
0.25 0.25 93.25 114.26 102.50 115.28 115.36 116.60
0.5 0.05 123.10 142.19 129.27 144.08 144.14 148.48
0.5 0.15 116.31 135.40 122.14 137.05 137.14 141.02
0.5 0.25 110.48 129.72 117.33 131.15 131.18 134.91
0.75 0.05 135.76 154.74 140.42 157.23 157.26 163.63
0.75 0.15 127.63 146.58 132.46 148.68 148.72 154.39
0.75 0.25 120.71 139.62 125.76 141.57 141.56 146.50
1 0.05 144.95 164.36 148.97 167.31 167.21 174.43
1 0.15 135.94 155.04 140.02 157.52 157.48 163.63
1 0.25 128.29 147.17 132.58 149.46 149.49 154.35

aEuropean Contract
bLongstaff-Schwartz approach, state variable: A
cLongstaff-Schwartz approach, state variable: P
dLongstaff-Schwartz approach, state variables: A and P
eLongstaff-Schwartz approach, state variables: A, P and (1 + rP )
fGrosen-Jorgensen
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Tables 5 and 6

σ = 30%, r = 6%
α γ E.C. a L.-S. b L.-S. c L.-S. d L.-S. e G-J f

s.v.: A s.v.: P s.v.: A, P s.v.: A, P , (1 + rP )
0.25 0.05 124.54 132.11 127.84 134.38 134.26 136.34
0.25 0.15 119.70 127.72 123.06 129.68 129.58 131.46
0.25 0.25 115.54 124.01 118.83 125.68 125.62 127.50
0.5 0.05 147.50 154.10 149.40 157.26 157.09 161.91
0.5 0.15 139.91 146.80 141.98 149.62 149.50 153.79
0.5 0.25 133.47 140.61 135.64 143.21 143.11 147.02
0.75 0.05 161.21 167.35 162.31 171.14 170.94 177.73
0.75 0.15 152.03 158.26 153.36 161.81 161.68 167.74
0.75 0.25 144.30 150.77 145.86 154.07 153.95 159.20
1 0.05 171.23 176.75 171.76 181.44 181.21 189.04
1 0.15 160.98 166.82 161.83 171.03 170.81 177.38
1 0.25 152.38 158.47 153.44 162.33 162.18 167.41

aEuropean Contract
bLongstaff-Schwartz approach, state variable: A
cLongstaff-Schwartz approach, state variable: P
dLongstaff-Schwartz approach, state variables: A and P
eLongstaff-Schwartz approach, state variables: A, P and (1 + rP )
fGrosen-Jorgensen

σ = 30%, r = 4%
α γ E.C. a L.-S. b L.-S. c L.-S. d L.-S. e G-J f

s.v.: A s.v.: P s.v.: A, P s.v.: A, P , (1 + rP )
0.25 0.05 159.70 150.81 159.70 155.78 156.07 159.93
0.25 0.15 154.33 146.02 154.33 150.57 150.77 154.37
0.25 0.25 149.78 141.88 149.78 146.17 146.28 149.83
0.5 0.05 184.36 173.22 184.36 179.85 179.70 187.01
0.5 0.15 175.79 165.32 175.78 171.53 171.36 177.87
0.5 0.25 168.61 158.76 168.60 164.52 164.43 170.30
0.75 0.05 199.55 186.94 199.55 194.64 194.39 203.75
0.75 0.15 189.05 177.30 189.05 184.44 184.22 192.59
0.75 0.25 180.31 169.34 180.30 175.93 175.77 183.09
1 0.05 210.85 197.40 210.85 205.65 205.51 215.88
1 0.15 199.05 186.55 199.04 194.13 193.88 202.91
1 0.25 189.25 177.62 189.24 184.56 184.55 191.81

aEuropean Contract
bLongstaff-Schwartz approach, state variable: A
cLongstaff-Schwartz approach, state variable: P
dLongstaff-Schwartz approach, state variables: A and P
eLongstaff-Schwartz approach, state variables: A, P and (1 + rP )
fGrosen-Jorgensen
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Table 7

Single Premiums, α=10%, σ=15%, D=5, jrisc=0
Age Time to Term Stochastic American Surrender Minimum Guarantee

(Average) Reserve Contract Option (Put Option)
15-20 4.11 44,959 48,411 3,452 3,287
21-25 5.02 187,170 229,776 42,607 20,321
26-30 5.55 647,722 729,453 81,731 53,399
31-35 5.38 983,618 1,082,313 98,695 73,739
36-40 5.25 765,117 856,630 91,513 64,966
41-45 4.46 1,025,194 1,114,189 88,996 74,687
46-50 3.66 1,316,850 1,394,116 77,266 82,882
51-55 3.37 415,667 437,568 21,901 25,140
56-60 3.34 520,591 543,038 22,447 29,258
61-65 2.75 105,344 107,752 2,408 5,097

Table 8

Single Premiums, α=30%, σ=30%, D=10, jrisc=0
Age Time to Term Stochastic American Surrender Minimum Guarantee

(Average) Reserve Contract Option (Put Option)
15-20 4.11 48,734 49,342 608 7,942
21-25 5.02 220,370 234,169 13,799 59,962
26-30 5.55 720,739 743,413 22,673 141,833
31-35 5.38 1,078,181 1,103,083 24,902 188,719
36-40 5.25 850,599 873,078 22,480 168,886
41-45 4.46 1,115,899 1,135,525 19,627 185,621
46-50 3.66 1,406,978 1,421,155 14,177 194,039
51-55 3.37 442,328 446,175 3,847 58,053
56-60 3.34 550,122 553,631 3,509 65,925
61-65 2.75 109,743 109,843 100 10,552
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Table 9

Single Premiums, α=10%, σ=15%, D=5, jrisc=0.5%
Age Time to Term Stochastic American Surrender Minimum Guarantee

(Average) Reserve Contract Option (Put Option)
15-20 4.11 44,961 47,689 2,728 3,273
21-25 5.02 187,249 221,220 33,971 20,199
26-30 5.55 647,884 712,831 64,947 53,057
31-35 5.38 983,764 1,062,177 78,413 73,263
36-40 5.25 765,213 837,992 72,779 64,609
41-45 4.46 1,025,301 1,095,670 70,369 74,249
46-50 3.66 1,316,928 1,377,539 60,611 82,218
51-55 3.37 415,691 432,794 17,103 24,937
56-60 3.34 520,636 538,057 17,421 29,006
61-65 2.75 105,371 107,178 1,807 5,021

Table 10

Single Premiums, α=30%, σ=30%, D=10, jrisc=0.5%
Age Time to Term Stochastic American Surrender Minimum Guarantee

(Average) Reserve Contract Option (Put Option)
15-20 4.11 48,840 48,972 132 8,010
21-25 5.02 221,358 227,163 5,804 60,341
26-30 5.55 723,048 731,705 8,656 142,980
31-35 5.38 1,081,016 1,089,739 8,723 190,436
36-40 5.25 853,258 860,767 7,509 170,545
41-45 4.46 1,118,585 1,124,442 5,858 187,339
46-50 3.66 1,409,579 1,413,275 3,697 195,923
51-55 3.37 443,051 443,947 896 58,617
56-60 3.34 550,986 551,643 657 66,541
61-65 2.75 109,849 109,859 10 10,702
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Table 11

Constant Annual Premiums, α=10%, σ=15%, D=5, jrisc=0
Age Time to Term Stochastic American Surrender Minimum Guarantee

(Average) Reserve Contract Option (Put Option)
16-20 5.39 405,416 408,610 3,194 36,236
21-25 5.95 1,743,016 1,759,786 16,770 176,223
26-30 6.00 2,278,048 2,300,023 21,975 226,444
31-35 5.77 2,698,273 2,722,775 24,503 257,279
36-40 5.28 2,649,655 2,672,797 23,142 240,556
41-45 4.33 2,321,054 2,338,789 17,735 180,840
46-50 3.49 979,013 984,818 5,805 64,026
51-55 3.81 341,743 344,208 2,465 24,568
56-60 2.75 107,630 108,140 510 5,812

Table 12

Constant Annual Premiums, α=30%, σ=30%, D=10, jrisc=0
Age Time to Term Stochastic American Surrender Minimum Guarantee

(Average) Reserve Contract Option (Put Option)
16-20 5.39 455,296 458,936 3,640 97,079
21-25 5.95 1,993,997 2,013,188 19,190 483,945
26-30 6.00 2,599,625 2,624,752 25,127 620,370
31-35 5.77 3,058,312 3,086,228 27,916 697,841
36-40 5.28 2,975,296 3,001,463 26,168 640,031
41-45 4.33 2,540,934 2,560,484 19,551 451,370
46-50 3.49 1,050,982 1,057,294 6,313 152,320
51-55 3.81 370,342 373,026 2,684 59,679
56-60 2.75 113,583 114,130 547 13,033
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Table 13

Constant Annual Premiums, α=10%, σ=15%, D=5, jrisc=0.5%
Age Time to Term Stochastic American Surrender Minimum Guarantee

(Average) Reserve Contract Option (Put Option)
16-20 5.39 405,462 408,644 3,183 36,376
21-25 5.95 1,743,324 1,759,992 16,667 176,963
26-30 6.00 2,278,480 2,300,326 21,846 227,264
31-35 5.77 2,698,729 2,723,103 24,374 258,064
36-40 5.28 2,650,384 2,673,391 23,007 241,301
41-45 4.33 2,321,791 2,339,437 17,646 181,418
46-50 3.49 979,290 985,068 5,778 64,044
51-55 3.81 341,840 344,292 2,453 24,609
56-60 2.75 107,663 108,171 508 5,798

Table 14

Constant Annual Premiums, α=30%, σ=30%, D=10, jrisc=0.5%
Age Time to Term Stochastic American Surrender Minimum Guarantee

(Average) Reserve Contract Option (Put Option)
16-20 5.39 454,654 458,340 3,686 97,741
21-25 5.95 1,991,242 2,010,717 19,475 486,475
26-30 6.00 2,596,068 2,621,564 25,496 623,491
31-35 5.77 3,054,413 3,082,721 28,308 701,675
36-40 5.28 2,971,254 2,997,768 26,513 643,658
41-45 4.33 2,536,913 2,556,617 19,704 454,664
46-50 3.49 1,049,676 1,056,029 6,353 153,604
51-55 3.81 369,787 372,489 2,702 60,144
56-60 2.75 113,412 113,961 549 13,157

18



References

[1] Albizzati, M.O. and Geman, H. (1994), “Interest Rate Risk Management and
Valuation of the Surrender Option in Life Insurance Policies”, The Journal of
Risk and Insurance, 61, pp.617-637.

[2] Babbel, D.F. (2001), “Asset/Liability Management for Insurers in the New Era:
Focus on Value”, Journal of Risk Finance.

[3] Bacinello, A.R. (2001a), “Fair Pricing of Life Insurance Participating Policies
with a Minimum Interest Rate Guaranteed”, Astin Bulletin, 31, pp.275-297.

[4] Bacinello, A.R. (2001b), “Fair Valuation of the Surrender Option Embedded in a
Guaranteed Life Insurance participating Policy”, Quaderni del Dipartimento di
Matematica Applicata alle Scienze Economiche Statistiche ed Attuariali “Bruno
de Finetti”, Universita’ degli Studi di Trieste, 8.

[5] Ballotta, L. and Haberman, S. (2002), “Valuation of Guaranteed Annuity Con-
version Options”, Working Paper, Faculty of Actuarial Science and Statistics,
Cass Business School, City University London.

[6] Ballotta, L. and Haberman, S. (2003), “The Fair Valuation Problem of Guar-
anteed Annuity Options: the Stochastic Mortality Environment Case”, Working
Paper, Faculty of Actuarial Science and Statistics, Cass Business School, City
University London.

[7] Boyle, P.P. and Schwartz, E.S. (1977), “Equilibrium Prices of Guarantees under
Equity-Linked Contracts”, The Journal of Risk and Insurance, 44, pp.639-660.

[8] Boyle, P.P. and and Hardy, M.R. (2002), “Guaranteed Annuity Options”, Work-
ing Paper.

[9] Brennan, M.J. and Schwartz, E.S. (1976), “The Pricing of Equity-Linked Life
Insurance Policies with an Asset Value Guarantee”, The Journal of Financial
Economics, 3, pp.195-213.

[10] Consiglio, A., Cocco, F. and Zenios, S.A. (2001a), “The Value of Integrative
Risk Management for Insurance Products with Guarantees”, The Journal of Risk
Finance, 3, pp.6-16.

[11] Consiglio, A., Cocco, F. and Zenios, S.A. (2001b), “Asset and Liability Mod-
elling for participating Policies with Guarantees”, Working Paper n.00-41-c, Fi-
nancial Institutions Center, The Wharton School, University of Pennsylvania.

[12] Consiglio, A., Saunders, D. and Zenios, S.A. (2003), “Insurance League: Italy
vs. UK”, Working Paper.

[13] Cox, J.C., Ross, S.A. and Rubinstein, M. (1979), “Option Pricing: a Simplified
Approach”, Journal of Financial Economics, 7, pp. 229-263.

[14] De Felice, M. and Moriconi, F. (2001), “Finanza dell’Assicurazione sulla Vita,
Principi per l’Asset-Liability Management e per la Misurazione dell’Embedded

19



Value”, Working Paper n.40, Gruppo di Ricerca su ”Modelli per la Finanza
Matematica”.

[15] Grosen, A. and Jorgensen, P.L. (2000), “Fair Valuation of Life Insurance Lia-
bilities: The Impact of Interest Rate Guarantees, Surrender Options, and Bonus
Policies”, Insurance: Mathematics and Economics, 26, pp.37-57.

[16] Grosen, A. and Jorgensen, P.L. (2002), “Life Insurance Liabilities at Market
Value: an Analysis of Insolvency Risk, Bonus Policy, and Regulatory Intervention
Rules in a Barrier Option Framework ”, The Journal of Risk and Insurance.

[17] Longstaff, F.A. and E.S. Schwartz (2001), “Valuing American Options by Sim-
ulation: A Simple Least-Squares Approach, The Review of Financial Studies,
14, 1, pp.113-147.

[18] Norberg, R. (1999), “A Theory of Bonus in Life Insurance”, Finance and
Stochastics, 3, pp.373-390.

[19] Norberg, R. (2001), “On Bonus and Bonus Prognoses in Life Insurance”, Scan-
dinavian Actuarial Journal, pp.126-147.

[20] Jorgensen, P.L. (2001), “Life Insurance Contracts with Embedded Options,
Valuation, Risk Management and Regulation”, Working Paper, Financial Insti-
tutions Center, The Wharton School, University of Pennsylvania.

[21] Pacati,C. (2000), “Valutazione di Portafogli di Polizze Vita con Rivalutazione
agli Ennesimi”’, Working Paper n.38, Gruppo di Ricerca su ”Modelli per la
Finanza Matematica”.

[22] Pelsser, A. (2002), “Pricing and Hedging Guaranteed Annuity Options via
Static Option Replication”, Working Paper.

[23] Vanderhoof, I.T. and Altman, E.I., Eds, The Fair Value of Insurance Business,
Kluwer Academic Publishers, 2000.

20


