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In this paper we study both market risks and nonmarket risks, without complete markets assumption,
and discuss methods of measurement of these risks. We present and justify a set of four desirable
properties for measures of risk, and call the measures satisfying these properties “coherent.” We
examine the measures of risk provided and the related actions required by SPAN, by tH¢ASIEC
rules, and by quantile-based methods. We demonstrate the universality of scenario-based methods for
providing coherent measures. We offer suggestions concerning the SEC method. We also suggest a
method to repair the failure of subadditivity of quantile-based methods.
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1. INTRODUCTION

We provide in this paper definitionof risks (market risks as well as nonmarket risks) and
present and justify a unified framework for the analysis, construction, and implementation
of measuresfrisk. We do notassume completeness of markets. These measures of risk can
be used as (extra) capital requirements to regulate the risk assumed by market participants,
traders, and insurance underwriters, as well as to allocate existing capital.
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For these purposes, the paper is organized as follows:
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We define “acceptable” future random net worths in Section 2.1 and provide a set
of axioms about the set of acceptable future net worths in Section 2.2.

We define the measure of risk of an unacceptable posiiwe a reference, “pru-

dent,” investment instrument has been specifiésl the minimum extra capital
(Section 2.3), which, invested in the reference instrument, makes the future value
of the modified position become acceptable.

We state axioms on measures of risk and relate them to the axioms on acceptance
sets. We argue that these axioms should hold for any risk measure that is to be
used to effectively regulate or manage risks. We call risk measures that satisfy the
four axiomscoherent

In Section 3, we present a (simplified) description of three existing methods for
measuring market risk: the “variance-quantile” method of value-at-risk (VaR),
the margin system SPAN (Standard Portfolio Analysis of Risk) developed by the
Chicago Mercantile Exchange, and the margin rules of the Securities and Ex-
changes Commission (SEC), which are used by the National Association of Secu-
rities Dealers (NASD).

We analyze existing methods in terms of the axioms and show that the last two
methods are essentially the same (i.e., that when slightly modified they are math-
ematical duals of each other).

In Section 3.2 we make a specific recommendation for the improvement of the
NASD-SEC margin system.

We examine in particular the consequences of using value at risk for risk manage-
ment (Section 3.3).

We provide in Section 4.1 a general representation for all coherent risk measures
in terms of “generalized scenarios” by applying a consequence of the separation
theorem for convex sets already in the mathematics literature.

We give conditions for extending into a coherent risk measure a measurement
already agreed upon for a restricted class of risks (Section 4.2).

We use the representation results to suggest a specific coherent measure (Sec-
tion 5.1) calledtail conditional expectationas well as to give an example of
construction of a coherent measure out of measures on separate classes of risks,
for example credit risk and market risk (Section 5.2).

Our axioms are not restrictive enough to specify a unique risk measure. Instead,
they characterize a large class of risk measures. The choice of precisely which
measure to use (from this class) should presumably be made on the basis of ad-
ditional economic considerations. Tail conditional expectation is, under some
assumptions, the least expensive among those that are coherent and accepted by
regulators, being more conservative than the value at risk measurement.

A nontechnical presentation of part of this work is given in Artzner et al. (1997).

2. DEFINITION OF RISK AND OF COHERENT RISK MEASURES

This section accomplishes the program set in items (1), (2), and (3) above, in the presence
of different regulations and different currencies.
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2.1. Risk as the Random Variable: Future Net Worth

Although several papers (including an earlier version of this one) define risk in terms of
changesn values between two dates, we argue that because risk is related to the variability
of the future valueof a position, due to market changes or more generally to uncertain
events, it is better to consider future values only. Notice that there is no need for the initial
costs of the components of the position to be determined from universally defined market
prices (think of over-the-counter transactions). The principle of “bygones are bygones”
leads to this “future wealth” approach.

The basic objects of our study shall therefore be the random variables on the set of states
of nature at a future date, interpreted as possible future values of positions or portfolios
currently held. A first crude, but crucial, measurement of the risk of a position will be
whether its future value belongs or does not belong to the subsatceptable risksas
decided by a supervisor such as:

(@) aregulatorwho takes into account the unfavorable states when allowing a risky
position that may draw on the resources of the government—for example as a
guarantor of last resort;

(b) anexchange’s clearing firpwhich has to make good on the promises to all parties
of transactions being securely completed;

(c) aninvestmentanagemho knows that his firm has basically given to its traders
an exit option in which the strike “price” consists in being fired in the event of big
trading losses on one’s position.

In each ofthese cases, there is a trade-off between the severity of the risk measurement and
the level of activities in the supervised domain. The axioms and characterizations we shall
provide do not single out a specific risk measure, and additional economic considerations
have to play a role in the final choice of a measure.

For anunacceptable risKi.e., a position with an unacceptable future net worth), one
remedy may be to alter the position. Another remedy is to look for some commonly
accepted instruments that, when added to the current position, make its future value
acceptable to the regulaj@upervisor. The current cost of getting enough of this or
these instrument(s) is a good candidate for a measure of risk of the initially unacceptable
position.

For simplicity, we consider only one period of uncertait@y T) between two dates 0
andT. The various currencies are numberedib§ < i < |, and for each of them one
“reference” instrument is given, which carries one unit of date O currendy r; units of
dateT currencyi . Default-free zero coupon bonds with maturity at datmay be chosen
as particularly simple reference instruments in their own currency. Other possible reference
instruments are mentioned in Section 2.3, before the statement of Axiom T.

The period0, T) can be the period between hedging and rehedging, a fixed interval (e.qg.,
two weeks), the period required to liquidate a position, or the length of coverage provided
by an insurance contract.

We take the point of view of an investor subject to regulations/angupervision in
country 1. He considers a portfolio of securities in various currencies.

Date 0 exchange rates are supposed to be one dedotes the random number of units
of currency 1 which one unit of currencybuys at dater .

An investor's initial portfolio consists of position&;, 1 <i < |, (possibly within some
institutional constraints such as the absence of short sales and a “congruence” for each
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currency between assets and liabilities). The posifipprovidesA; (T) units of currency
i at dateT. We callrisk the investor'duture net worch1§isl e -A((T).

REMARK 2.1. The assumption of the position being held during the whole period can be
relaxed substantially. In particular, positions may vary due to the agent’s actions or those of
counterparties. In general, we can consider the risk of following a strategy (which specifies
the portfolio held at each date as a function of the market events and counterparties’ actions)
over an arbitrary period of time. Our current results in the simplified setting represent a
first step.

2.2. Axioms on Acceptance Sets (Sets of Acceptable Future Net Worths)

We suppose that the set of all possible states of the world at the end of the period is
known, but the probabilities of the various states occurring may be unknown or not subject
to common agreement. When we deal with market risk, the state of the world might be
described by a list of the prices of all securities and all exchange rates, and we assume that
the set of all possible such lists is known. Of course, this assumes that marketslaadate
liquid; if they are not, more complicated models are required in which we can distinguish
the risks of a position and of a future net worth because, with illiquid markets, the mapping
from the former to the latter may not be linear.

NOTATION.

(&) We shall calk2 the set of states of nature, and assume it is finite. Considerag
the set of outcomes of an experiment, we compute the final net worth of a position
for each element of2. It is a random variable denoted b. Its negative part,
max(— X, 0), is denoted byXx~ and the supremum &€~ is denoted by} X~ ||. The
random variable identically equal to 1 is denotedlbyThe indicator function of
statew is denoted byl

(b) Letg be the set of all risks, that is the set of all real-valued function o8ince
Q is assumed to be finit€; can be identified witlR", wheren = card(2). The
cone of nonnegative elementsgrshall be denoted bl , its negative by _.

(c) Wecall4j, j € J, asetof final net worths, expressed in currencyhich, in
countryi, are accepted by regula@upervisotj.

(d) We shall denoted; the intersectiorf);; Ai j and use the generic notatiohin
the listing of axioms below.

We shall now state axioms for acceptance sets. Some have an immediate interpretation;
the interpretation of the third one will be easier in terms of risk measure (see Axiom S in
Section 2.3). The rationale for Axioms 2.1 and 2.2 is that a final net worth that is always
nonnegative does not require extra capital, but a net worth that is always (strictly) negative
certainly does.

Axiom 2.1. The acceptance set contains L.

Axiom 2.2. The acceptance set does not intersect the set L where

L__ ={X| foreachw € 2, X(w) < 0}.
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It will also be interesting to consider a stronger axiom.
Axiom 2.2". The acceptance set satisfiesd N L_ = {0}.

The next axiom reflects risk aversion on the part of the regulator, exchange director, or
trading room supervisor.

Axiom 2.3. The acceptance segt is convex.

A less natural requirement on the set of acceptable final net worths is stated in the next
axiom.

AXIOM 2.4. The acceptance set is a positively homogeneous cone.

2.3. Correspondence between Acceptance Sets and Measures of Risk

Sets of acceptable future net worths are the primitive objects to be considered in order
to describe acceptance or rejection of a risk. We present hereghe@msome “reference
instrument,” there is a natural way to define a measure of risk by describing how close or
how far from acceptance a position is.

DEFINITION 2.1. A measure of risk is a mapping fragninto R.

In Section 3 we shall speak of model-dependenneasure of risk when an explicit
probability on is used to construct it (see, e.g., Sections 3.1 and 3.3), andhotlal-free
measure otherwise (see, e.g., Section 3.2). Model-free measures can still be used in the
case where only risks of positions are considered.

When positive, the number(X) assigned by the measupeo the riskX will be inter-
preted (see Definition 2.2 below) as the minimum extra cash the agent hdd to the
risky positionX, andinvest “prudently,” that is in the reference instrument, to be allowed to
proceed with his plans. Ifitis negative, the cash ameun¢X) can be withdrawn from the
position or it can be received as restitution, as in the case of organized markets for financial
futures.

REMARK 2.2. The reader may be surprised that we define a measure of riskwhdle
of G. Why, in particular, should we consider a risk, a final net worth, like the constipt
No one would or could willingly enter into a deal that with certainty entails a negative of
final net worth equal to 1! Let us provide three answers:

i. We want to extend the accounting procedures dealing with future certain bad
events, such as loss in inventories or degradation (wear and tear) of the physical
plant, into measurement procedures for future uncertain bad events.

ii. Actual measurements used in practice seem to be indeed defined only for risks
in which both states with positive and states with negative final net worths ex-
ist. Section 4.2 shows that, under well-defined conditions, they can be extended
without ambiguity to measurements falt functions ing.

iii. Multiperiod models may naturally introduce at some intermediate date the prospect
of such final net worths.
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REMARK 2.3. It has been pointed out to us that describing risk by a single number
involves a great loss of information. However, the actual decison about taking a risk or
allowing one to take it is fundamentally binary, of the “yes or no” type, and we claimed at
the beginning of Section 2.1 that this is the actual origin of risk measurement.

REMARK 2.4. The expression “cash” deserves some discussion in the case of a publicly
traded company. It refers to an increase in equity. The ame(X} may, for example, be
used to lower the amount of debt in the balance sheet of the company.

We define a correspondence between acceptance sets and measures of risk.

DEFINITION 2.2. Risk measure associated with an acceptance gBtven the total rate
of returnr on a reference instrument, the risk measure associated with the acceptance set
A is the mapping frong to R denoted by 4, and defined by

par(Xy=infm|m-r + X € A}.

REMARK 2.5. Acceptance sets allow us to address a question of importance to an inter-
national regulator and to the risk manager of a multinational firm, namely the invariance of
acceptability of a position with respect to a change of currencies. If, indeed, we have for
each currency, 1 <i < I, g - 4 = Aj, then, for each position providing an acceptable
future net worthX in currencyi, the same position provides a future net wagthe; - X
in currencyj, which is also acceptable. The situation is more complex for unacceptable
positions. If a position requires an extra initial castpgf r, (X) units to be invested in the
ith reference instrument, it is not necessarily true that this amount is equal to the number
p4;.r; (X) of initial units deemed sufficient by the regulation(s) in courjtryf invested in
the jth reference instrument, even though we supposed the initial exchange rate to be 1.

DEFINITION 2.3. Acceptance set associated with a risk measufighe acceptance set
associated with a risk measyses the set denoted hyt, and defined by

A, ={XeG|p(X) <0}

We consider now several possible properties for a risk megswutefined ong. In
Section 2.4 they will be related to the axioms stated above concerning acceptance sets. For
clarity we label the new axioms with letters.

The first requirement ensures that the risk measure is stated in the same units as the final
net worth, except for the use of the reference instrument. This particular asset is modeled
as having the initial price 1 and a strictly positive pricéor total return) in any state of
nature at datd. It is the regulator’s (supervisor’s) responsibility to acceptrfqgrossible
random values as well as values smaller than 1

Axiom T means that adding (respectively, subtracting) the sure initial amotmthe
initial position and investing it in the reference instrument simply decreases (increases) the
risk measure by.
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Axiom T. Translation invariance. For all X € G and all real numbersx, we have
pP(X+a-1r)=p(X) —a.

REMARK 2.6. Axiom T ensures that, for eaet) o (X + p(X)-r) = 0. This equality has
a natural interpretation in terms of the acceptance set associated (gigle Definition 2.3
above).

REMARK 2.7. By insisting on references to cash and to time, Axiom T clearly indicates
that our approach goes much further than the interpretation given by Wang of an earlier
version of this paper: Wang (1996, p. 3) indeed claims that “the main function of a risk
measure is to properly rank risks.”

Axiom S. Subadditivity. For all X3 and X% € G, p(X1 4+ X2) < p(X1) 4+ p(X2).

We contend that this property, which could be stated in the brisk form “a merger does
not create extra risk,” is a natural requirement:

(a) Ifanexchange’srisk measure were to fail to satisfy this property, then, for example,
an individual wishing to take the risk; + X, may open two accounts, one for the
risk X; and the other for the riskK, incurring the smaller margin requirement of
0(X1) + p(X3), a matter of concern for thexchange

(b) Ifafirmwere forced to meetarequirement of extra capital which did not satisfy this
property, the firm might be motivated to break up into two separately incorporated
affiliates, a matter of concern for thegulator.

(c) Bankruptcy risk inclinesocietyto require less capital from a group without “fire-
walls” between various business units than it does require when one “unit” is
protected from liability attached to failure of another “unit.”

(d) Suppose that two desks in a firm compute in a decentralized way the measures
p(X1) and p(Xy) of the risks they have taken. If the functignis subadditive,
the supervisorof the two desks can count on the fact thaiX;) + p(X2) is a
feasible guarantee relative to the global rik+ X». If indeed he has an amount
m of cash available for their joint business, he knows that imposing limitand
m, with m = m; + m,, allows him to decentralize his cash constraint into two
cash constraints, one per desk. Similarly, the firm can allocate its capital among
managers.

Axiom PH. Positive homogeneity.Forall A > Oand all X € G, p(AX) = Ap(X).

REMARK 2.8. If position size directly influences risk (e.qg., if positions are large enough
that the time required to liquidate them depends on their sizes) then we should consider
the consequences of lack of liquidity when computing the future net worthpos#ion
With this in mind, Axioms S and PH, about mappings frrandom variablesnto the reals,
remain reasonable.

REMARK 2.9. Axiom Simpliesthap(nX) < np(X)forn=1,2,.... In Axiom PHwe
have imposed the reverse inequality (and require equality for all positicemodel what a
government or an exchange might impose in a situation where no netting or diversification
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occurs, in particular because the government does not prevent many firms from all taking
the same position.

REMARK 2.10. Axioms T and PH imply that, for each p(« - (—r)) = «.

Axiom M. Monotonicity. For all X and Y € G with X <Y, we haveo(Y) < p(X).

REMARK 2.11. Axiom M rules out the risk measure defined o§X) = —Ep[X] +
a - op(X), wherea > 0 and wheresp denotes the standard deviation operator, computed
under the probability. Axiom S rules out the “semivariance” type of risk measure defined
by p(X) = —Ep [X] + op((X — Ep [X])7).

Axiom R. Relevance. For all X € G with X < 0and X # 0, we haveo(X) > 0.

REMARK 2.12. This axiom is clearly necessary, but not sufficient, to prevent concentra-
tion of risks to remain undetected (see Section 4.3).

We notice that fon. > 0, Axioms S, PH, M, and R remain satisfied by the measure
if satisfied by the measupe It is not the case for Axiom T.
The following choice of required properties will define coherent risk measures.

DEFINITION 2.4. Coherence. A risk measure satisfying the four axioms of translation
invariance, subadditivity, positive homogeneity, and monotonicity is called coherent.

2.4. Correspondence between the Axioms on Acceptance Sets and the Axioms on
Measures of Risks

The reader has certainly noticed that we claimed the acceptance set to be the fundamental
object and that we discussed the axioms mostly in terms of the associated risk measure.
The following propositions show that this was reasonable.

ProPOSITION2.1.  If the setB satisfies Axioms 2.1, 2.2, 2.3, and 2.4, the risk measure
ps,r is coherent. Moreoved,,, = B, the closure of3.

Proof of Proposition 2.1

(1) Axioms 2.2 and 2.3 ensure that for eaXhpg  (X) is a finite number.

(2) Theequalityinfp| X+ (@+p)-r e B} =inf{q| X+q-r € B} —«a proves
thatpg, (X +r1 -a) = p(X) — a, and Axiom T is satisfied.

(3) The subadditivity ofps follows from the fact that iX + m-r andY + n-r both
belong toB, so doesX +Y + (m+ n) - r as Axioms 2.3 and 2.4 show.

(4) Ifm> pp,(X)thenforeach > 0wehaver-X+A-m-r € B, by Definition 2.3
and Axiom 2.4, and this proves thag (A - X) < 1-m. If m < pg (X), then for
eachh > Owe have.- X+ A -m-r ¢ BB, and this proves thaig ; (A - X) > A -m.
We conclude thaps (A - X) = A - pg.r (X).

(5) Monotonicity of pi ; follows from the fact thatifX <Y andX +m-r € B then
Y +m-r € B by use of Axioms 2.3 and 2.1 and Definition 2.3.

(6) ForeachX € B, ppr(X) < 0, henceX € A,,, . Proposition 2.2 and points (1)
through (5) above ensure thd},,, is closed, which proves that,,, = B.
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ProPOSITION2.2. If a risk measure is coherent, then the acceptance ggtis closed
and satisfies Axioms 2.1, 2.2, 2.3, and 2.4. Moreqvet,p4, .

Proof of Proposition 2.2

(1) Subadditivity and positive homogeneity ensure i a convex function o,
hence continuous, and that the set= {X | p(X) < 0O} is a closed, convex, and
homogeneous cone.

(2) Positive homogeneity implies that0) = 0. Together with monotonicity this
ensures that the set, contains the positive orthaht, .

(3) LetXbeinL__ with p(X) < 0. Axiom M ensures thgb (0) < 0, a contradiction.
If p(X) =0, then we finde > 0 such thatX +« -r € L__, which provides, by
use of Axiom T, the relatior-a > 0, a contradiction. Hence(X) > 0; that is,
X ¢ A,, which establishes Axiom 2.2.

(4) ForeachX, lets be any number with 4, (X) < 8. ThenX +46 -1 € A,, hence
p(X+38-r) <0, henceo(X) < 8, which proves thap(X) < p4,.r(X); that s,
P =PA, -

(5) For eachX, let § be any number witlh > o(X), thenp(X +35-r) < 0 and
X+38-1r e, hencepq, (X+3-r)<0. This proves thap 4, (X) < § and
thatp, r (X) < p(X), hencepa, < p.

ProPOSITION2.3. If a set3 satisfies Axioms 2.2.2, 2.3, and 2.4, then the coherent
risk measurep satisfies the relevance axiom. If a coherent risk meagisatisfies the
relevance axiom, then the acceptance.4gt , satisfies Axion2.2'.

Proof of Proposition 2.3

(1) ForanX like that in the statement of Axiom R we know théte L_ andX # O,
hence, by Axiom 2', X ¢ B3, which means thatz (X) > 0.
(2) ForX e L_andX # 0, Axiom R provideso(X) > 0 andX ¢ B.

3. THREE CURRENTLY USED METHODS OF MEASURING MARKET RISK

In this section, we give a (simplified) description of three currently used methods of mea-
suring market risk:

1. SPAN (SPAN 1995) developed by the Chicago Mercantile Exchange,

2. the Securities and Exchange Commission (SEC) rules used by the National Asso-
ciation of Securities Dealers (NASD 1996; Federal Reserve 1994), similar to rules
used by the Pacific Exchange and the Chicago Board of Options Exchange

3. the quantile-based Value at Risk (or VaR) method (Basle Committee 1996; Dowd
1998; Duffie and Pan 1997; Derivatives Policy Group 1995; Risk Magazine 1996;
RiskMetrics 1995).

We examine the relationship of these three methods with the abstract approach provided
in Section 2. We also suggest slightly more general forms for some of the methods. It
will be shown that the distinction made above between model-free and model-dependent
measures of risk actually shows up.
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3.1. An Organized Exchange’s Rules: The SPAN Computations

To illustrate the SPAN margin system (SPAN 1995; see also MATIF 1993, pp. 7-8), we
consider how the initial margin is calculated for a simple portfolio consisting of units of a
futures contract and of several puts and calls with a common expiration date on this futures
contract. The SPAN margin for such a portfolio is computed as follows: First, fourteen
“scenarios” are considered. Each scenario is specified by an up or down move of volatility
combined with no move, or an up move, or a down move of the futures pricé3)243,
or 3/3 of a specified “range.” Next, two additional scenarios relate to “extreme” up or
down moves of the futures price. The measure of risk isiagimurross incurred, using
the full loss for the first fourteen scenarios and only 35 percent of the loss for the last two
“extreme” scenarios. A specified model, typically the Black model, is used to generate the
corresponding prices for the options under each scenario.

The calculation can be viewed as producing the maximum of the expected loss under each
of sixteen probability measures. For the first fourteen scenarios the probability measures
are point masses at each of the fourteen points in the spa€securities prices. The cases
of extreme moves correspond to taking the convex combinéi&@5, 0.65) of the losses at
the “extreme move” point under study and at the “no move at all” point (i.e., prices remain
the same). We shall call these probability measures “generalized scenarios.”

The account of the investor holding a portfolio is required to have sufficient current net
worth to support the maximum expected loss. If it does not, then extra cash in an amount
equal to the “measure of risk” involved is required as margin call. This is completely in
line with our interpretation of Definition 2.3.

The following definition generalizes the SPAN computation and presents it in our frame-
work.

DerINITION 3.1.  Therisk measure, defined by a nonempt{Psaftprobability measures
or “generalized scenarios” on the sp&eand the total return on a reference instrument,
is the functionop on G defined by

pp(X) = sugEp[—X/r] | P € P}.

The scenario-based measures from Definition 3.1 are coherent risk measures.

PropPoOsITION3.1. Given the total return r on a reference instrument and the nonempty
setP of probability measures, or “generalized scenarios,” on the Qetf states of the
world, the risk measurgp of Definition 3.1 is a coherent risk measure. It satisfies the
relevance axiom if and only if the union of the supports of the probabilttiesP is equal
to the setQ.

Proof of Proposition 3.1 Axioms PH and M ensure that a coherent risk measure satisfies
Axiom R if and only if the negative of each indicator functity, has a (strictly) positive
risk measure. This is equivalent to the fact that any state belongs to at least one of the
supports of the probabilities found in the gt

Section 4.1 shows thatchcoherent risk measure is obtained by way of scenarios.
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3.2. Some Model-Free Measures of Risks: The SEC Rules on Final Net Worth

The second example of a risk measure used in practice is found in the rules of the SEC
and the NASD. Their common approach is to consider portfolios as fdistsdf securities
and impose “margin” requirements trem in contrast to the SPAN approach which takes
the randomvariables—(gains and losses of the portfolios of securities)—as basic objects
to measure. In the terminology of the Basle Committee Amendment (Basle 1996) we have
here something similar to a “standardized measurement method.”

Certain spread positions such as a long call and a short call of higher exercise price on the
same underlying stock, both calls having same maturity date, are described in NASD (1996,
p. 8133) and SEC rule 15¢3-1a,(11) as requiring no margin (no “deduction”). No justifica-
tion is given for this specification. We shall use the paper by Rudd and Schroeder (1982)
as the basis for explaining, for a simple example, the computation of margin according to
these common rules.

Let A be a portfolio consisting of two long calls with strike 10, two short calls with strike
20, three short calls with strike 30, four long calls with strike 40, and one short call with
strike 50. For simplicity assume all calls to be European and exercise dates to be equal to
the end of the holding period. A simple graph shows that the final value of this position is
never below-10, which should entail a margin depositaifmost10.

Under the SEC method, the positidnis represented or “decomposed” as a portfolio of
long call spreads. No margin is required for a spread if the strike of the long side is less than
the strike of the short side. A margin Kf— H is required for the spread consisting of a long
call with strikeK and a short call with strikél, whenH < K. The margin resulting from
arepresentation or “ decomposition” is the sum of the margins attached to each call spread.
The investor is presumably able to choose the best possible representation. A simple linear
programming computation will show that 30 is the resulting minimum—much more than
the negative of the worst possible future value of the position!

REMARK 3.1. This 30 seems to be the result of an attempt to bound the largest payout
which the investor might have to make at the end of the period. In this method, the current
value of his account must be at least as large as the current value of the calls plus 30.

REMARK 3.2. A careful reading of the SEC rules reveals that one must

i. first mark the account (reference instrumepitss calls) to market,
ii. deductthe market value of the calls (long or short),
iii. then deduct the various “margins” required for the spreads in the chosen decom-
position (we shall call the total the “margin”),
iv. and then check that this is at least 0

In the framework of Definition 2.3, this bears some analogy to

i. marking to markeboththe positions in the “risky” instruments as well as in the
reference one,
ii. subtracting the market value of the risky part,
iii. making sure that the difference is positive.

We now formalize the special role played by the call spreads, which we call “standard
risks,” and the natural margin requirements on them in the SEC rules approach to risk
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measurement, following the lines of Rudd and Schroeder (1982, Sec. 4; see also Cox and
Rubinstein 1985, pp. 107-109). Given some underlying security, we dendig ke
European call with exercise pridé¢ and exercise date equal to the end of the holding
period, and by§, k the spread portfolio consisting of “one lo@y,, one shorCy,” which
we denote byCy — Ck. These spreads shall be “standard risks” for which a simple rule
of margin requirement is given. They are then used to “support” general portfolios of calls
and provide conservative capital requirements.

We describe the extra capital requirement for a portfédlioonsisting ofay callsCy,
H e H, H afinite set of strikes. For simplicity we assume that, aq = 0; that is, we
have no net long or short position. The exchange allows one to compute the margin for
such a portfolioA by solving the linear programming problem

(3.1) inf > nuk(H—K)*

MHK 4 K H2K
under the conditions that

forallH, K, H # K, we havenyx >0 and A= Z NH.K SH.K -
H, K H#K

This program provides the holder of portfolfowith the cheapest decomposition ensuring
thateachspread showing in it has a nonnegative net worth at date

Going one step further than Rudd and Schroeder (1982, pp. 1374-1376), we write ex-
plicitly the dual program

(3.2) SUDZ VK aK,
VK K

where the sup is taken over allk) satisfyingvy — v < (H — K)*.
For the interpretation of thidual problem, we rewrite the preceding program with the
negativerk of the dual variables, obtaining

(3.3) inf ) "y ax
K K

under the conditions that
my — 7k > —(H - K)*
or
oy —ng >0 ifH <K
and
my—7k >K—H if H>K,

the last inequalities being rewritten as

(3.4) 7k —my <H—-K if H> K.
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Notice that if we interprety as the cash flows associated with the Cgllat expiration
dateT, the objective function in (3.3) is the cash flow of the portfolcat expiration.

The duality theorem of linear programming ensures that the worst payout to the holder of
portfolio A, under all scenarios satisfying the constraints specified in problem (3.3), cannot
be larger than the lowest margin accepted by the exchange. The exchange is therefore sure
that the investor commitments will be fulfilled.

Itis remarkable that the primal problem (3.1) did not seem to refer to a model of distribu-
tion for future prices of the call. Yet the duality results in an implicit set of states of nature
consisting of call prices—with a surprise! Our example of portféli; the beginning of
this section has shown indeed that the exchange is, in someaasecure, as we now
explain.

Itis well known that the cash flows of the calls must satisfy the constraints (3.4) specified
for problem (3.3) (and indeed many other constraints such as convexity as a function of
strike; see Merton 1973, Thm. 8.4). For the specific portfélistudied in Section 3.2,
the set of strikes i¢1 = {10, 20, 30, 40, 50}, and an optimal primal solution is given by
Nlo20 = 2, Nyos0 = 1, Nig30 = 3, all othersny, = 0, for a minimal margin of 30. The
cash flows are given by;, = 73, = 73, = 10 andr, = n&, = 0, which provides the
value —30 for the minimal cash flow of the portfolio at expiration. However, this minimal
cash flow corresponds to cash flows for the individual options which cannot arise for any
stock price. Indeed, if the stock price at expiratiorjthe cash flow oy is (S— H)™*,
which is obviously convex in H. Thus, sineg, + 75, < 273, theser’s cannot arise as
cash flows for any terminal stock price. Briefly, there are too many scenarios considered,
because some of them are impossible scenarios.

The convexity of the call price as a function of the strike can be derived from the fact
that a long “butterfly” portfolio aByg = C10 — 2C20 + Czo must have a positive price.
Therefore, we submit this butterfly to the decomposition method and write it as a sum of
spreadsSig20 + Ss0.20, Which requires a margin of 10. If we instead take the approach
of Section 2, looking at random variables, more precisely at the random net worth at the
end of the holding period, we realize that the butterfly never has negative net worth, or,
equivalently, that the net loss it can suffer is never larger than its initial net worth. The
butterfly portfolio should therefore be margin free, which would imply a margin of only 10
for the original portfolioA = 2B,o + 2B3p — Bgo. In our opinion it is not coherent in this
setting to have only the sprea8g « (for H < K) as margin-free portfolios. The method
uses too few standard risks.

In Section 4.2 we present a framework for extensions of risk measurements of “stan-
dard risks” and give conditions under which our construction actually produces coherent
measures of risk. The results of Section 4.1 on scenario representation of coherent mea-
sures will allow interpretation of the extension in terms of scenarios attached to the original
measurement.

3.3. Some Model-Dependent Rules Based on Quantiles

The last example of measures of risk used in practice is the value at risk (VaR) measure. It
is usually defined in terms of net wins oflPand therefore ignores the difference between
money at one date and money at a different date, which, for small time periods and a
single currency, may be acceptable. It uses quantiles, which requires us to pay attention to
discontinuities andéhtervalsof quantile numbers.
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DEFINITION 3.2. Quantiles. Givena € ]0, 1], the numbegq is ana-quantile of the ran-
dom variableX under the probability distributioR if one of the three equivalent properties
below is satisfied:

i P[X<ql>a>P[X<q],
i. P[IX<q]=zcandP[X>(q]>1-g«,
ii. Fx(@) > o andFx(g—) < o with Fx(q-) = limy_qx<q F(X), whereFx is the
cumulative distribution function oX.

REMARK 3.3. The set of such-quantiles is a closed interval. Singxis finite, there is
a finite left (respectively, right) end poinf, (respectivelyq;’) that satisfies|, = inf{x |
P[X < x] > o} [equivalently supx | P[X < x] < «}] (resp.q; = inf{x | P[X < x] >
«}). With the exception of at most countably mamythe equalityq, = q; holds. The
quantileq, is the number= <" («) = inf{x | P{X < x} > «} defined in Embrechts,
Kluppelberg, and Mikosch (1997, Def. 3.3.5; see also Duffie and Pan 1997).

We formally define VaR in the following way.

DerINITION 3.3. Value at risk measurementGivena € ]0, 1[, and a reference instru-
mentr, the value-at-risk/aR, at levela of the final net worthX with distributionP is the
negative of the quantilg;” of X/r; thatis,

VaR,(X) = —inf{x | P[X < x-r] > a}.

REMARK 3.4. Notice that what we are using for definivgR, is really the amount of
additional capital that ¥aR,-type calculation entails.

REMARK 3.5. We have here what is called an “internal” model in the Basel Committee
Amendment (1996), and it is not clear whether the (estimated) physical probability or a
“well-chosen” subjective probability should be used.

We will now show that, although it satisfies properties T, PH, an¥aR, fails to satisfy
the subadditivity property.

Consider as an example, the following two digital options on a stock, with the same
exercise datd@ , the end of the holding period. The first optiok,with an initial price ofu,
pays 1000 if the value of the stock at tifiés more than a giveld, and nothing otherwise.

The second optior, with an initial price ofl, pays 1000 if the value of the stock htis
less tharl (with L < U), and nothing otherwise.

ChoosinglL andU such thatP[S; < L] = P[St > U] = 0.008, we look for the 1
percent values at risk of the future net worths of positions taken by two traders writing,
respectively, two optioné and two option®B. They are—2-u and—2-1, respectively (with
r supposed to be one). By contrast, the positive number £000u is the 1 percent value
at risk of the future net worth of the position taken by a trader writng B. This implies
that the set of acceptable net worths (in the sense of Definition 2.4 applied to the value at risk
measure) is not convex. Notice that this is even a worse feature than the nonsubadditivity
of the measurement. We give below one more example of nonsubadditivity.
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REMARK 3.6. We note that if quantiles are computed under a distribution for which all
prices are jointly normally distributed, then the quantiles do satisfy subadditivity as long
as probabilities of exceedence are smaller thénl@deedox.y < ox + oy for each pair
(X, Y) of random variables. Since for a normal random variablee have

VaR,(X) = —(Ep[X] + @ () - op(X)),

with ® the cumulative standard normal distribution and si®cé (0.5) = 0, the proof of
subadditivity follows.

REMARK 3.7. Several works on quantile-based measures (Dowd 1998; Risk Magazine
1996; RiskMetrics 1995) consider mainly tbemputationabndstatisticalproblems they
raise, without first considering the implications of this method of measuring risks.

REMARK 3.8. Since the beginning of this century, casualty actuaries have been involved
in computation and use of quantiles. Indeed, the choice of initial capital controls the
probability of ruin at datel'. Loosely speaking, “ruin” is defined in (retrospective) terms
by the negativity, at dat€, of thesurplus defined to be

Y = capital at date & premium received- claims paid (from date 0 to dafe).

Imposing an upper bound-da on the probability ofY being negative determines the initial
capital via a quantile calculation (for precise information, see the survey article by Hans
Biuhimann 1990).

Under some circumstances, related to Remark 3.6 above (see Daykin, Pentikainen, and
Pesonen 1994, pp. 157, 168), this “capital at risk” is a measure that possesses the subad-
ditivity property. For some models the surplus represents the net worth of the insurance
firm at dateT . In general, the difficulty of assigning a market value to insurance liabilities
forces us to distinguish surplus and net worth.

REMARK 3.9. We do not know of organized exchanges using value at risk as the basis
of risk measurement for margin requirements.

For a second example of nonsubadditivity, briefly allow an infinitésahd consider two
independentdentically distributed random variable§ and X, having the same density
0.90 on the interval [01] and the same densitydb on the interval 2, 0]. Assume that
each of them represents a future random net worth with positive expected value—that is
a possibly interesting risk. Yet, in terms of quantiles, the 10 percent values at ik of
and X, being equal to 0, whereas an easy calculation showing that the 10 percent value at
risk of X; 4+ X, is certainly larger than 0, we conclude that the individual controls of these
risks do not allow directly a control of their sum, if we were to use the 10 percent value at
risk.

Value at risk measurement al&ils to recognizeconcentratiorof risks. A remarkably
simple example concerning credit risk is due to Albanese (1997). Assume that the base rate
of interest is zero, and that the spreads on all corporate bonds is 2 percent, and that these
bonds default, independently from company to company, with a (physical) probability of
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1 percent. If an amount of 1,000,000 borrowed at the base rate is invested in the bonds of
a single company, the 5 percent value at risk of the resulting position is negative, namely
—20,000, and there is “no risk.”

If, in order to diversify, the whole amount is invested equally into bonds of 100 different
companies, the following occurs in terms of value at risk. Since the probability of at least
two companies defaulting is greater that &) it follows that the portfolio of bonds leads
to a negative future net worth with a probability greater thadb0diversificationof the
original portfolio hasincreasedthe measure of risk, but the “piling-up” of risky bonds
issued by the same company had remained undetected. We should not rely on such a
“measure.”

Value at risk also fails to encourage a reasonalitecationof risks among agents, as can
be seen from the following simple example. KK&ttonsist of three states;, w,, ws with
respective probabilities.94, 0.03, 0.03. Let two agents have the same future net wofth
with X(w1) > 0, X(w2) = X(w3) = —100. If one uses the 5 percent value at risk measure,
one would not find sufficient an extra capital (for each agent) oB&@ this same capital
would be found more than sufficient for each agent if, by a risk exchange, the two agree
on the modified respective future net worthisand Z, whereY (w1) = Z(w1) = X(w1),

Y(wp) = Z(w3) = —120,Y(w3) = Z(wyp) = —80. This is not reasonable because the
allocation(X + 80, X + 80) Pareto dominates the allocatioyi+ 80, Z + 80) if the agents
are risk averse.

In conclusion, the basic reasons to reject the value at risk measure of risks are the
following:

(a) value at risk does not behave nicely with respect to the addition of risks, even
independent ones, thereby creating severe aggregation problems.

(b) theuse ofvalue atrisk does not encourage and, indeed, sometimes prohibits diversi-
fication because value at risk does not take into accouetihieomic consequences
of the events, the probabilities of which it controls.

4. REPRESENTATION THEOREMS FOR COHERENT RISK MEASURES

This section provides two representations of coherent risk measures. The first corresponds
exactly to the SPAN example of Section 3.1 and the second is the proper generalization of the
NASD/SEC examples of Section 3.2. These representation results are used in Section 5.2 to
provide an example of algorithm to measure risks in trades involving two different sources
of randomness, once coherent measures of risks for trades dealing with only one of these
sources have been agreed upon.

4.1. Representation of Coherent Risk Measures by Scenarios

In this section we show that Definition 3.1 provides the most general coherent risk
measure:any coherent risk measure arises as the supremum of the expected negative of
final net worth for some collection of “generalized scenarios” or probability measures on
states of the world. We continue to suppose thas a finite set, otherwise we would also
get finitely additive measures as scenarios.

Theo-algebra, 2, is the class of all subsets €. Initially there is no particular proba-
bility measure or2.
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ProrPosITION4.1. Given the total return r on a reference investment, a risk megsure
is coherent if and only if there exists a famiyof probability measures on the set of states
of nature, such that

p(X) = supEp[—X/r] | P € P}.

REMARK 4.1. We note thap can also be seen as an insurance premium principle. In
that case, denoting b§ the physical measure, we find that the condiffore P (or in the
convex hull of this set) is of great importance. This condition is translated as follows: for
all X < 0we haveEg[—X/r] < p(X).

REMARK 4.2. The more scenarios considered, the more conservative (i.e., the larger) is
the risk measure obtained.

REMARK 4.3.  We remind the reader about Proposition 3.1. It will prove that Axiom R
is satisfied by if and only if the union of the supports of the probabilitiesfris the whole
setQ of states of nature.

Proof of Proposition 4.1

(1) Wethankareferee for pointing out that the mathematical content of Proposition 4.1,
which we had proved on our own, is already in Huber (1981). We therefore simply
identify the terms in Huber, Proposition 2.1 (Chap. 10), with our terminology of
risks and risk measure.

(2) The set£2 and M of Huber are our se® and the set of probabilities dn. Given
a risk measure we associate with it the function&* by E*(X) = p(—r - X).
Axiom M for p is equivalent to Property (2.7) of Huber f&r, Axioms PHand T
together are equivalent to Property (2.8) Eot, and Axiom S is Property (2.9).

(3) The “if” part of our Proposition 4.1 is obvious. The “only if” part results from the
“representability” ofE*, since Proposition 2.1 of Huber states that

p(X) = E*(=X/r) = SupEp [ X/r] | P € P},
whereP,, is defined as the set

{PeM| forall X € G: Ep[X] < E*(X) = p(—r - X)}
={PeM| foralY egG: Ep[-Y/r] < p(Y)}.

REMARK 4.4. Model riskcan be taken into account by including in the Bea family
of distributions for the future prices, possibly arising from other models.

REMARK 4.5. Professor Bfilmann kindly provided us with references to works by
Hattendorf (1868), Kanner (1867), and Wittstein (1867), which he had mentioned in his
Gottingen presentation (Bilmann 1995). These authors consider, in the case of insurance
risks, possible lossamly, neglecting the case of gains. For example, risk for a company
providing annuities is linked to the randosmcessiumber of survivors over the expected
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number given by the lifetable. Several of these references, for example Hattendorf (Sec. 3,
p. 5), contain an example of a risk measure used in life insurance, namely the “mittlere
Risico” constructed out of one scenario, related to the life table used by a company. Itis
defined as the mathematical expectation oftbsitive partof the loss, as “die Summe aller
moglichen Verluste, jeden multipliciert in die Wahrscheinlichkeit seines Eintretens.” This
procedure defines a risk measure satisfying Axioms S, PH, and M.

REMARK 4.6. Itis important to distinguish between a point mass scenario and a simula-
tion trial: the firstis chosen by the investor or the supervisor, the second is chosen randomly
according to aistributionthey have prescribed beforehand.

Conclusion Theresultin Proposition 4.1 completely explains the occurrence of the first
type of actual risk measurement, the one based on scenarios, as described in Section 3.1. Any
coherentrisk measure appears therefore as given by a “worst case method” in a framework of
generalized scenarios. At this point we emphasize that scenarios should be announced to all
traders within the firm (by the manager) or to all firms (by the regulator). In the first case, we
notice that decentralization of risk management within the firm is availableaftaythese
announcements. Yet, in quantile-based methods, even after the announcements of individual
limits, there remains a problem preventing decentralized risk management: two operators
ignorant of each other’s actions may well each comply with their individual quantile limits
and yet no automatic procedure provides for an interesting upper bound for the measure of
the joint risk due to their actions. As for the regulation case we allow ourselves to interpret
a sentence from Stulz (1996): “regulators like Value at Risk, because they can regulate it”
as pointing to the formidable task of building and announcing a reasonable set of scenarios.

4.2. Construction of Coherent Risk Measures by Extension of Certain Risk Measurements

We now formalize the attempts described in Section 3.2 to measure risks. Their basis is
to impose margin requirements on certain basic portfolios considered as “standard risks,” to
use combinations of those risks to “support” other risks and then bound from above required
capital, using the margins required for standard risks.

DEFINITION 4.1. Supports of a risk. Given a sefy of functions onQ2, we consider a
family, indexed by, of nonnegative numbers= (uy)vey, all of them but a finite number
being zero, and we say that the coufyle y), wherey is a real number, “supportsX, for
X € G, provided

X=> uyY+y-r.
Yey

The set of all sucliu, y) which supportX will be denoted bySy, (X).

The idea is how to use these “supports,” made of “standard risks,” to bound above possible
extensions of a functiow defined on a subset ¢f A consistency condition is required to
avoid supports leading to infinitely negative values.

ConDITION 4.1. Given a sefy of functions on®, and a function¥: Y — R, we
say thatW fulfills Condition 4.1 if for each suppoitu, ) of 0, we have the inequality

Zyey puyW(Y) —y > 0.
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PropPOSITION4.2. Given a sefy of functions or©2 and a functiond: Y — R, the
equality

X)y= inf w(Y) —
pu(X) (M,wesymgw ) -y

defines a coherent risk measuyre, if and only if & fulfills Condition 4.1. If sopy is the
largest coherent measuygesuch thato < W on ).

Proof of Proposition 4.2

(1) The necessity of Condition 4.1 is obvious.

(2) Since(0, 0) is a support of the elemedt = 0 of G and since Condition 4.1 ensures
thatany support of 0 provides a nonnegative number, we fing§h@ = 0. Notice
that if Condition 4.1 is violated then we would ge&j (0) = —oc.

(3) Axiom S required from a coherent risk measure follows here from the relation
Sy(X1+ X2) D Sy(X1) + Sy(Xz), and Axiom PH is satisfied since, given> 0,
(i, y) supportsX if and only if (A - u, A - y) supportsk. - X.

(4) Forasupportu, ) ofariskX letus call the numbey .y ., uy ¥ (Y)—y the “cost”
of the support. By noticing, for each riskand each reat, that the suppoitu, y)
for X+« -r provides the suppoti, y —«) for X, at a cost lower by the amoudat
than the cost of the support &f+ « - r, we find thatoy (X) = py (X +a 1) +a.
Axiom T is therefore satisfied byy.

(5) Since forX < Z we haveSy(Z) D Sy(X), Axiom M is satisfied bypy.

(6) Foranycoherentmeasyravith p < W on), we must have, forany suppart, y)
of X, the inequalitypo(X) < > y.y uy¥(Y) — y and therefore (X) < py (X).

REMARK 4.7. As opposed to the case of scenarios-based measures of risks, the fewer
initial standard risks are considered, the more conservative is the coherent risk measure
obtained. This is similar to what happens with the SEC rules because Section 3.2 showed
us that too many scenarios, and dually, too few standard risks, were considered.

Condition 4.1 allows one to consider the functjapin particular on the sey, the set of
prespecified risks. There, it is clearly bounded above by the original funétiohn extra
consistency condition will prove helpful in figuring out whethgr is actually equal tol

on).

CoNDITION 4.2.  Given a sefy of functions o2 and a functiond: )V — R, we say
that Condition 4.2 is satisfied by if for each element Z ) and each supportu, y) of
Z we haveV (Z) < ) vy uyW(Y) —y.

REMARK 4.8. Itis an easy exercise to prove that Condition 4.2 implies Condition 4.1.

PropPOsITION4.3. Givenased of functions orf2 and afunction¥: ) — R satisfying
Condition 4.2, the coherent risk measuxgis the largest possible extension of the function
W to a coherent risk measure.
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Proof of Proposition 4.3

(1) Condition 4.2 just ensures that the valueZat ) of the original functiond is
bounded above by the sum obtained with any suppo#,dfience also by their
infimum py (Z), which proves thapy = ¥ on ).

(2) Letp be any coherent risk measure, which is also an extensign 8fncep < W
on), Proposition 4.2 ensures that< py.

Propositions 4.2 and 4.3 above applied3a ¥) = (G, p) provide a statement similar
to Proposition 4.1 about representation of coherent risk measures.

PropPosITION4.4. A risk measurep is coherent if and only if it is of the formy for
someV fulfilling Condition 4.1.

REMARK 4.9. It can be shown that for a coherent risk measulaiilt as apy, the
following set of probabilities

Py = {P|forall X € G: Ep[—X/r] < ¥(X)}

is nonempty and verifies the property

p(X) = sUpEp[—X/r] | P € Py}.

4.3. Relation between Scenario Probabilities and Pricing Measures

The representation result in Proposition 4.1 allows us to approach the problem of risk
concentration focoherentrisk measures.

If the position consisting of the short Arrow—Debreu security corresponding to state of
naturew has a nonpositive measure of risk (i.e., bankruptcy in the stase“allowed”),
the market price of this security should also be nonpositive. To formalize this observation
we suppose an arbitrage-free market, and we denog; lilge closed convex set of pricing
probability measures of?, using the instrument asnurnéraire. Given the coherent risk
measurep, associated withr and to an acceptance sBt simply denoted by, (see
Proposition 2.2), it will be natural to assume the following condition.

ConDITION 4.3.  The closed convex sBt, of probability measures defining the coherent
risk measurep, has a nonempty intersection with the closed convexseif probability
pricing measures.

When Condition 4.3 is satisfied, there is sofgec Q, such that, for any future net
worth Y, Eg[—Y/r] < p:(Y); hence ifY has a strictly negative price und@rit cannot
be accepted. We interpret this fact in the following manner: if a firm can, by trading, add
a positionY to its portfolio and receive cash at the same tim@hout having any extra
capital requirement, then there is a bound to the quantity which the firm can add this
way without triggering a request for extra capital.
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If Condition 4.3 is not satisfied, then there exists a future net worshich that

SsupEqg[Y/r] | Qe O/} <inf{Es[Y/r] |S € P,}.

Hence, for each pricing measugewe haveEg [—Y/r] > pr (Y) and therefore the future
networthZ =Y + p, (Y) - r satisfies both conditions (Z) = 0 andEg [Z/r] < 0. As a
result we have an acceptable position with strictly negative price, a situation that may well
lead to an undetected accumulation of risk.

5. TWO APPLICATIONS OF REPRESENTATIONS
OF COHERENT RISK MEASURES

5.1. A Proposal: The “Worst Conditional Expectation” Measure of Risk

Casualty actuaries have long been computing pure premium for policies with deductible,
using the conditional average of claim size, given that the claim exceeds the deductible
(see Hogg and Klugman 1984). In the same manner, reinsurance treaties have involved
the conditional distribution of a claim for a policy (or of the total claim for a portfo-
lio of policies), given that it is above the ceding insurer’s retention level. In order to
tackle the question of “how bad is bad,” whichrist addressed by the value at risk mea-
surement, some actuaries (see Albrecht 1993; Embrechts 1995) have first identified the
deductible (or retention level) with the quantile used in the field of financial risk measure-
ment. We prove below that one of the suggested methods gets us closeerentrisk
measures.

Considering the “lower partial moment” or expectation of the “shortfall,” the presentation
in Albrecht (1993) would translate, with our paper’s notations, into measuring &risk
the numbeEp [min (0, — VaR,(X) — X)].

The presentations in Bassi, Embrechts, and Kafetzaki (1998) and Embrechts (1995) use
instead theonditionalexpectation of the shortfall given that it is positive. The quoted texts
(see also Embrechts etal. 1997, Def. 3.4.6, as well as the methods indicated éstiradte
the whole conditional distribution) present the terminology “mean excess function.” We
suggest the term “tail conditional expectation” since we do not consider the excess but the
whole of the variableX.

DEerFINITION 5.1. Tail conditional expectation (or “TailVaR”). Given a base probability
measuré® on2, atotal returrr on a reference instrument, and a lavethe tail conditional
expectation is the measure of risk defined by

TCE/(X) = —Ep[X/r | X/r < —VaR,(X)].

DEFINITION 5.2. Worst conditional expectation.Given a base probability measuten
Q, atotal returrr on areference instrument, and a lavgthe worst conditional expectation
is the coherent measure of risk defined by

WCE,(X) = —inf{Ep[X/r | A] | P[A] > «}.

REMARK 5.1. TCE, has been suggested as a possible ingredient of reinsurance treaties
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(see Amsler 1991).
ProOPOSITIONS.1. We have the inequality TGE< WCE,.

Proof of Proposition 5.1

(1) LetusdenoteX/r by Y. If Fv(q](Y)) > «, the setA = {0 | Y(w) < q;(Y)} is
one used in the definition W CE,, hence the claim is true.

(2) If Fv(gf(Y)) = «, it follows from the definition ofg}t and the monotonicity of
Fy that, for eacte > 0, Fy(¢ + g (Y)) > «. Hence, settindA: = {w | Y(w) <
e+ 0, (Y)}, we get

Ex[Y - 1a]

WCE, (X) = ~Ex [Y | Al = = =515

SinceFy is right-continuous, lim,oP[A.] = Fv(q;(Y)) and A, | Ay, so the
right-hand side has the limitEp [Y | Ag] = TCE,(X).

Albanese (1997) made numerical studies of portfolios built out of collections of risky
bonds, looking for a coherent measure that dominates the value at risk measurement and
yet gets close to it on a specific bond portfolio.

We interpret and generalize this search as the problem of a firm constrained by the
supervisors along the lines of the quantile risk measurement. Nevertheless, the firm wishes
at the same time to operate on a coherent basis, at the lowest possible cost. Proposition 5.4
will provide circumstances where the firm’s problem has a clear-cut solution.

PrROPOSITIONS.2. For each risk X one has the equality
VaR,(X) = inf {p(X) | p coherent ang > VaR,}

The proof will use the following lemma.

LEMMA 5.1. If pisthe coherentrisk measure defined by &%ef probability measures,
thenp > VaR, if and only if for each B witfP?[B] > « and eacte > Othereis aQ € P
withQ[B] > 1 — .

Proof of Lemma 5.1

(1) Necessity: tak&X = —r - 15 whereP[B] > «. ClearlyVaR,(—r - 1g) = 1 and
hencep(—r - 1g) > 1. This implies that for each > 0 there exist£) € P with
Q[B] =1—e.

(2) Sufficiency: let—k = VaR,(X), thenP[X < k-r] > « and for eacts > 0 we
haveP[X < (k+§) - r] > «.
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LetQ € P be chosen such th@[X < (k+6) -r] > 1 —§. We obtainEq [-X/r] >
(=k—=8)-(1—28)—68-|X/r]. Sinces > 0 was arbitrary we find thad(X) > —k.

Proof of Proposition 5.2

(1) Given any riskX let again—k = VaR, (X). ThenP[X < k-r] > « and, for each
§>0,P[X < (k+36)-r] > a. We will construct a coherent risk measyrsuch
thatp > VaR, andp(X) < VaR,(X) + 6.

(2) Forany seB with P[B] > «, we must havé®[BN {X > k-r}] > 0 and we can
definehg aslgnixskr}/P[BN{X > k-r}] andQg = hg - P. Lemma 5.1 shows
that the measure built with all the Qg dominatesvaR,, but for X we obtain
p(X) = supy, Eqg [-X/r] < —k = VaR,(X).

Definition 3.1 and Proposition 3.1 allow one to address a question by Ch. Petitmengin,
Socéte Gérérale, about the coherence of fhéE, measure.

PROPOSITION5.3.  Assume that the base probabilityon 2 is uniform. If X is a risk
such that no two values of the discounted risk=YX/r in different states are ever equal,
then TCE, (X) = WCE, (X).

Proof of Proposition 5.3

(1) Givena €]0, 1] let us denote- VaR, (X) by g, the set{X < q-r} by B, and the
various values of = X/r byy; < y» < -+- < Y.

(2) Letk be the integer with 6< k < n such thatx e [¥, ¥t1). We will prove that
—VaR,(X) = ¢, (Y) =04 = Yis1.

(3) Foreachu > g we have

#{i|yi§U}>a
n

’

hence the integer{#| y; < u} being strictly greater tham - n is at leask + 1.

(4) By takingu = yi+1 we actually minimize the integer(i#| y; < u} and therefore
prove the point stated in item (2).

(5) The sety(B) is the sefy,, ..., Y1} and

Y1+ Yt

TCE,(X) = —E[X/r | X <q-r] = — o

(6) Any setC containing at leask + 1 states of nature and different froB will
provide values for-Y averaging to strictly less thahCE, (X), which therefore
equalsWCE, (X).

PROPOSITIONS.4. Assume that the base probabiliByon 2 is uniform. If a coherent
risk measurep only depends on the distribution of the discounted risk and is greater than
the risk measure VaRthen it is greater than the WGHcoherent) risk measure.
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Proof of Proposition 5.4

(1) Given a riskX, we denote— VaR,(X) simply by g and X/r by Y. The set
A = {w | Y(w) < q} has cardinalityp > n -« and A is written after possible
renumbering a®\ = {w1, wy, ..., wp} With Y(wj) < Y(wi;p) forl <i < p—1.

(2) DefineY(w) fori < pasy* = (Y(w1) +---+ Y(wp))/p=E[Y|Y <q] and
asY (wj) otherwise.

(3) For a permutatio of the first p integers, we defin&“ by Y7 (wi) = Y (s i)
forl<i < p,andY%(wj) = Y(wj) for p+ 1 < j < n. We then find thay is
also the average of the! random variable¥”.

(4) The assumption that, for each ri& p(Z) only depends on the distribution of
Z/r implies that all thep (r - Y?) are equal te (X). The convexity of the function
p then implies the inequality (X) > p(r - Y).

(5) The last assumption made primplies thatp(r - Y) > VaR,(r - Y).

(6) We haveVaR,(r -Y) = —y* =E[-Y | Y < q] since, fori < p, Y (wi) < Y(wp).
Hencep(X) > E[—X/r | X <q-r].

(7) Foradense setof random variah¥esn the finite state spacgwe have, by Propo-
sition 5.3, the equalitfe[— X/r | X < g -r] = WCE,(X); hence the inequality
0 (X) > WCE, (X) holds for a dense set of elemetf G.

(8) Both risk measures andWCE, are coherent, hence continuous, functiongjon
The inequalityp > WCE, is therefore true on the whole gf

5.2. Construction of a Measure Out of Measures on Separate Classes of Risks

It is important to realize that Proposition 4.3 can be applied to &'seft risks having
no structure. It can be the union of a family;);< of sets of risks, where for eagha
function () is given onY); in such a way tha®; = W;: on)); N Y.. The function¥ is
then defined by its restrictions to each of ffie

The different setd); may be exchange-based risks on the one hand and over-the-counter
risks on the other hand, or market risks and credit risks in a framework wire: sternal
model would be looked for. Similarly, multiline aggregated combined risk optimization
tools (see Shimpi 1998) would call for a combined measure of risks. The fundtjomsy
come from preliminary rules given by exchanges/ardy regulators (see Basel Committee
Amendment 1996). Assuming that Condition 4.2 is being satisfied, which will depend on
inequalities satisfied by th&;, Proposition 4.3 allows one tmechanicallyjcompute a
coherent risk measure extending the family of theand dominating any other possible
coherent risk measure chosen by exchangegariay regulators to extend the family of
the ;. It therefore provides a conservative coherent tool for risk management.

In the special case @& = 2, x Q25 with given coherent risk measurgs i = 1, 2, on
Gi, we defing); as the set of all functions ai which are of the formf; o pr;, wheref; is
any function or2; and wherepr; is the projection of2 on itsith factor. We also defing;
on ) by the equality; (fi o prj) = pi(fj). Since); N ), consists of the constants, the
functionsw; and W, are equal on it and they define a functidnon ) = )3 U )% which
satisfies Condition 4.2.

Let P; be the set of scenarios definipgand letP be the set of probabilities a2 with
marginals inP; andP,, respectively. We claim that the risk measurg on the setj of
functions o2 (the largest coherent risk measure extending dgtandW,) is equal to the
risk measurep, generated as in Definition 3.1 by the scenarioRin
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PrOPOSITIONS.5. The two coherent risk measures and py are equal.

Proof of Proposition 5.5 The restriction opp to ) equals¥; because for each function
fi onQ; we have

pp(fiopri) = SUPEs[—fi o pri/r] [ Popryt e P, Popryt € Py
= SUPEp.p1[—fi/r] | Poprit e Pi)
= pi(fi) = Wi(fi o pri),

which proves thapp < py.

To prove the reverse inequality we use point (3) in the proof of Proposition 4.1 and show
that if a probabilityQ on €2 is such that, for each functiod on 2, Eg[—X/r] < pw(X),
thenQ has its marginal®1 andQ, in P, andP, respectively. Choose inde&d= f; o pr;.
We find thatEg[— fi o pri/r] = Eg,[— fi/r], which proves that for eacly € G; one has
Eq[—fi/r] < pw(fi o pri), and therefor€); € P;.
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