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Hierarchical Lévy Frailty Models and a

Frailty Analysis of Data on Infant

Mortality in Norwegian Siblings

Abstract

Distributions determined by non-negative Lévy processes, which include the
power variance function (PVF) distributions among others, are commonly used
as frailty distributions to model dependent survival times in family data. We
present a hierarchical frailty model constructed by randomizing scale parame-
ters, corresponding to time parameters of Lévy processes, in the Lévy frailty
distributions. In its simplest form, this yields a two-model with heterogeneity
the individual and family level. The family level frailty is shared within families,
creating dependence. In the more complex models, it is extended to allow for
several levels of dependence. This yields models with nested dependence struc-
tures (all individuals in a family are dependent, but some more than others), or
genetic models for two-generation families (parents-children, where the parents
are independent). The model allows for several different options on where to
include covariates, and each alternative gives different interpretations of the re-
gression coefficients. An application to dependent data on post-perinatal (7-364
days) infant mortality in siblings from the Medical Birth Registry of Norway is
included. We compare the results for some of the different covariate modeling
options from a case-cohort analysis of the data by using a two-level Lévy model.



1 INTRODUCTION
Traditionally, shared frailty models have been used to analyze survival data on families (see e.g.
Hougaard, 2000). Popular shared frailty models use the gamma, inverse Gaussian and positive sta-
ble distributions. Hougaard (1986) considered a three-parameter family of distributions, the power
variance function (PVF) distributions, and showed that it included the former three distributions
as special cases. Aalen (1992) extended the PVF family, to also include the compound Poisson
distributions, generated by independent gamma variables. The compound Poisson distribution has
a positive probability of zero frailty, yielding an immune proportion of the population.
Shared frailty models can be insufficient in some cases, especially when combined with a para-

metric baseline hazard. By design, the shared frailty models use a single random variable to model
both individual variation due to unobserved individual covariates, and variation due to unobserved
common covariates. It would be beneficial to have a model which included one random factor for
each type of variation, to improve the fit. In Moger et al. (2004), we introduced a compound
Poisson-PVF model, with both family and individual frailty. The model was further discussed in
Moger and Aalen (2005). In this paper, the model is extended by applying the same technique
to the time parameter, ρ, in the more general family of distributions determined by non-negative
Lévy processes. This family covers all the distributions mentioned above, among others. The model
is fairly easily extended into handling more general dependence structures, e.g. several levels of
dependence, and genetic models for parents and children.
As an illustration, a compound Poisson-gamma version of the model, as used in Moger et al.

(2004) and Moger and Aalen (2005), will be applied to general infant mortality data in siblings
from the Medical Birth Register of Norway. Several studies show an increased risk of recurrence of
infant deaths in siblings. The cause of death which has received particular attention the last few
decades is sudden infant death syndrome (SIDS). In a previous analysis of data from the Medical
Birth Registry of Norway, Øyen et al. (1996) found a relative risk of recurrence of post-perinatal
SIDS in the second birth when SIDS occurred in the first birth of 5.9. The corresponding relative
risk for recurrence of post-perinatal non-SIDS death was 6. Specifically, all causes of non-SIDS
infant deaths showed high relative risks of recurrence, except infections. In a study in Oregon,
Guntheroth et al. (1990) found relative risks of 5.4 and 6 for recurrence of SIDS and non-SIDS
death in subsequent siblings, respectively. In a population based case-control study in the UK,
Leach et al. (1999) found an odds ratio of 3.82 for a prior infant death in the SIDS group. In
addition, infants with explained deaths were significantly more likely than control subjects to have
had a previous sibling death in infancy, with an odds ratio of 5.96.
The familial aggregation of infant mortality could be due to possibly unknown genetic or en-

vironmental causes. SIDS may be associated with strong environmental risk factors, such as poor
living conditions, sleeping position or maternal smoking (Beckwith (1990), Fleming et al. (1990)
and Beal (1992)). A genetic risk factor may be sleep apnea syndrome (Pillar and Lavie (1995)),
which shows strong familial aggregation, indicating that it is an inherited syndrome. Øyen et
al. (1996) suggests that SIDS can be caused by an interaction between genetic susceptibility
and an environmental factor. Other important causes of infant death are infections, congenital
malformations and various birth-related causes. Both genetic and environmental factors interact
in the etiology of congenital malformations (Lie et al. (1994)). Birth-related infant deaths may
be explained by pregnancy and labour complications specific to certain mothers (Kåregård and
Gennser (1986)). Infections and random accidents are not expected to contribute to the familial
aggregation.
Since frailty models deal with heterogeneity due unknown factors, it is tempting to analyze

survival data on infants from a frailty point of view. In the papers mentioned above, all obtain
simple estimates for the relative risks by basically comparing the mortality incidence in the sibships
who have experienced infant deaths to the incidence in the general population. We further expand
on the previous analysis by Øyen et al. (1996) by including covariates in the frailty model. There are
several different options on where to include the covariates, each yielding different interpretations of
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the regression coefficients. In the analysis of the data, results from some of the different approaches
are compared. One may also estimate the relative risk due to unobserved factors, which we call
the frailty relative risk, calculated as the risk of dying given that a sibling has died in infancy,
compared to the risk of dying given that a sibling has survived this period. The advantage of using
the relative risk as a measure of the dependence in the data, is that it is a measure most people
working with epidemiological data is familiar with. Depending on what covariates one includes in
the model, the relative risk due to unobserved factors can either decrease or increase. One may
also calculate the conditional survival function given that a sibling has died in infancy, and the
survival function given that a sibling has survived, to give a graphical presentation of the results.
In Section 2, the infant mortality data are presented. Section 3 gives a brief introduction to

frailty models and the Lévy distribution, and the techniques for constructing hierarchical Lévy
frailty models, are presented in Section 4. In Section 5 we present different options on how to
model the covariates, and introduce the frailty relative risk as a way of measuring the dependence
due to unobserved factors. Results from the analysis of the infant mortality data follows in Section
6, and a discussion is given in Section 7.

2 THE DATA ON INFANT MORTALITY IN SIBLINGS
The Medical Birth Registry of Norway has recorded all births in Norway (population around 4.5
million) since 1967, from the 16th week of gestation onward. By 31th December 1998, 1986576
births were recorded. Information on all deaths occurring during the first year of life registered by
Statistics Norway is linked to the birth records. By use of the national identification number on
the mothers, the births may be linked into sibships. We do not consider the father. The average
size of the sibships is about two, slightly higher than the average number of children per woman
in Norway, which is around 1.8. The proportion of women without any children by the age of 40,
has increased from ca. 10% for the 1935-cohort to ca. 13% for the 1960-cohort (from Statistics
Norway’s web pages). Since we do not have access to specific causes of death for the purpose of this
study, we are only able to analyze the data with general mortality as the outcome. However, we
do not find it unreasonable to assume that many of the deaths occurring during the first year are
due to some genetic or common environmental factors which have a great impact on the infants
survival. The study by Øyen et al. (1996) indicates that the proportion of deaths due to e.g.
infections, which is not expected to show familial aggregation, is only around 11%.
Following Øyen et al. (1996), we analyze post-perinatal deaths (7-364 days). This means that

an infant have to survive the first week to be included in the data. Infant mortality is very rare
in Norway, and the prevalence of post-perinatal mortality has dropped from 0.5% in 1967 to 0.2%
in 1998. The database includes some covariates, most of which are known to have an influence on
infant mortality. These are birth weight, gestational age, infant’s birth year, mother’s birth year,
length, mother’s age, parity and gender. The proportion of missing data is fairly small, ranging
from 0.2% for birth weight and 2.4% for length, to 5.9% for gestational age and 6.0% for gender.
There are no missing values for the other covariates. For missing data in the continuous covariates,
the mean value are imputed in the analyses. However, we have excluded all infants with missing
gender and 793 infants with unknown gender from the data. In addition, 20 infants where the
mother’s identification number was missing, was excluded. Multiple births are also excluded, since
they are expected to be more closely correlated than siblings in general. The final cohort includes
1814188 infants, with 6551 deaths occurring in 6440 sibships. 99 sibships have two deaths and six
sibships have three deaths. Due to the demanding computational time involved when analyzing
the full database, we will apply the methods in Moger et al. (in revision) to analyze a case-cohort
sample.
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3 FRAILTY MODELS AND LÉVY FRAILTY DISTRIB-
UTIONS

As usual, we use the multiplicative frailty model, where the hazard for each individual is given as
the product of a frailty variable Z and a basic rate λ(t) common to all individuals. Conditionally
on Z, the individual hazard h(t) is given by:

h(t|Z) = Zλ(t) (2.1)

The simplest frailty model for survival data where individuals in groups may be correlated, is the
shared frailty model, introduced in Clayton (1978). The frailty variable Z varies over groups, and
all individuals in a group share the same frailty, creating positive dependence between survival
times. The individuals are independent given Z. Let LZ(•) denote the Laplace transform of Z and
let Λ(t) =

R
λ(u)du be the cumulative baseline hazard function. If a group consists of k individuals,

the unconditional joint survival function is

S(t1, ..., tk) = E(e−Z(Λ(t1)+...+Λ(tk))) = LZ(
Pk

i=1 Λ(ti))

The density is found by differentiation with respect to t1, ..., tk. Hence, it is advantageous to apply
frailty distributions with a simple Laplace transform, which is then easy to differentiate for any
number of events. Mainly because of this, the most common distribution for Z is the gamma
distribution. A more flexible choice is the PVF distribution, which includes the gamma, stable,
inverse Gaussian and compound Poisson distributions as special cases. Common parametric choices
for the baseline hazard λ(t) are the Weibull, exponential and Gompertz distributions. Hougaard
(2000) gives an extensive overview of shared frailty models.
Throughout this paper, Z is assumed to follow frailty distributions defined by non-negative

Lévy processes, which in this paper is a process with non-negative, independent, time-homogeneous
increments. The Laplace transform of the frailty variable following such a process Z = {Z(ρ) : ρ ≥
0}, is

LZ(s) = E exp [−sZ(ρ)] = exp [−ρΨ(s)] (2.2)

by the Lévy-Khintchine formula. Here, ρ corresponds to the time parameter t in a Lévy process
Z(t), s is the argument of the Laplace transform, and Ψ(s) is the Laplace exponent or cumulant
generating function. The family of Lévy distributions covers most of the common frailty distribu-
tions, including the PVF distribution. This formulation may allow for frailties that develop over
time, for which ρ is not a constant, but this is not considered here. For more information on frailty
models derived from Lévy processes, see Aalen and Hjort (2002) and Gjessing et al. (2003).

4 HIERARCHICAL LÉVY FRAILTY MODELS
An important limitation of the shared frailty models is the fact that all members of a family have
the same frailty. This can be inappropriate, since one would also expect some individual variation
due to non-shared genes and environmental factors, and different degrees of dependence for different
types of relatedness, e.g. siblings, families, neighborhoods. In Moger et al. (2004), we introduced
a frailty model based on the compound Poisson distribution with random scale. By applying a
PVF distribution to a scale parameter in the compound Poisson frailty model, one gets a model
with variation on both family and individual level. Some further discussion of the properties of the
model is found in Moger and Aalen (2005). Since the compound Poisson distribution is included
in the family of Lévy frailty distributions, a small extension of the compound Poisson-PVF frailty
model can be accomplished by using the more general Lévy frailty distributions for the individual
heterogeneity. This yields a hierarchical Lévy model, and it will be discussed here. We will not
give any details on the likelihood construction for the different models in this paper. However, by
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using the same techniques as in Moger and Aalen (2005), this should be straightforward also for
more complex models.
In Moger and Aalen (2005), the compound Poisson-PVF model was constructed by applying a

PVF distribution on ρ in (2.2). The compound Poisson distribution models the heterogeneity on
the the individual level, where all individuals have independent frailties. The PVF distribution on
ρ models the family heterogeneity, so that all individuals in a family share a common value of ρ,
thus creating dependence between relatives. Individuals from different families are independent.
More generally, let Z1 be the frailty variable for the individual level. This variable will often have
independent values for all individuals. Let Z2, ..., Zk be the frailty variables for higher levels, which
will typically be independent for some members of a family, but shared for others. The variable
Zk may have the same value for all individuals in a family. Let each Zi follow a Lévy distribution
with Laplace transform LZi(s) = exp (−ρiΨi(s)) and probability distribution fZi . Denote the total
frailty by Y . Consider only the variation at the bottom level, and let all the other levels be given.
Add a new level of frailty by randomizing ρ1 by Z2. The Laplace transform of Y will be

LY (s) = E (LZ1(s)|Z2) =
Z
exp (−ρ1Ψ1(s)) fZ2(ρ1)dρ1 = exp [−ρ2Ψ2(Ψ1(s))] (3.1)

This is a more general version of the model in Moger and Aalen (2005). When combined with a
parametric baseline hazard λ(t) in (2.1), one may get a large improvement in fit compared to the
simpler shared frailty models, since these models use separate distributions for individual and family
variation. For non-parametric λ(t)’s, the model will be equivalent to a shared frailty model, since
the individual heterogeneity will be subsumed in λ(t). However, there could perhaps be situations
where one would like to model the individual frailty by a specific probability distribution, even
when using a non-parametric baseline hazard. The model can be useful for family data on diseases
that are hypothesized to be caused by strong, unknown genetic or environmental effects, for which
it is impossible to collect covariate information, but for which there exist biological theories on
how the disease mechanism works. This can be hinting at using specific parametric distributions
for modelling the baseline hazard and the individual and family heterogeneity in a frailty model,
as discussed for testicular cancer in Moger et al. (2004).
The two-level Lévy model applies to data on groups where the genetic or environmental associ-

ation is expected to be equal for all individuals, for instance litters, siblings or brothers. To extend
the model to more general pedigrees where subgroups of individuals are more closely correlated
than others, add another level to the model by randomizing ρ2 by Z3. This yields the Laplace
transform

LY (s) = EE (LZ1(s)|Z2, Z3) =
Z Z

exp [−ρ1Ψ1(s)] fZ2(ρ1)dρ1fZ3(ρ2)dρ2
= exp [−ρ3Ψ3(Ψ2(Ψ1(s)))] (3.2)

and so on for further levels. Hence, the structure is generated by applying function iteration to
the Laplace exponent. The model described by L3(s) could be used on data with two levels of
dependence, consisting e.g. of families in a neighborhood. The distribution Z3 could then describe
common environmental factors shared by all individuals in the neighborhood, while Z2 corresponds
to factors which are shared by a family, but independent for different families. The distribution
Z1 models individual environmental factors which are independent for all.
An interesting special case applies when the positive stable distributions are used, that is, when

Ψi(s) = sαi(the scale parameter of the distribution, usually called δ, will play the role of ρi). The
Laplace transform of Y is then

LY (s) = exp [−ρ3sα1α2α3 ]
which again is the Laplace transform of a stable distribution. This result is presented e.g. in
Hougaard (2000), pp. 354-362, in the section on the multiplicative stable model. Moreover, he
suggests a trivariate model for the lifetimes (T1,T2,T3) of a sibling group, where individuals 2 and 3
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are monozygotic twins, and individual 1 is a singleton. Hence, sibling 2 is more strongly correlated
to sibling 3 than to sibling 1. For the hierarchical Lévy models, this can be constructed as follows.
All siblings share the same value of Z2 (and hence of ρ1). Siblings 2 and 3 will have the same value
of Z1, whereas sibling 1 will have an independent value of Z1. Let different superscripts denote
independent values of the Zi’s. The joint Laplace transform for the sibling group will then be

L(s1, s2, s3) = EE
¡
exp

£−Z11s1 − Z21s1 − Z21s1
¤ |Z1, Z2¢

= E (exp [−ρ1Ψ1(s1)− ρ1Ψ1(s2 + s3)] |Z2)
= exp [−ρ2Ψ2 (Ψ1(s1) +Ψ1(s2 + s3))]

since all siblings are independent given Z1, Z2. This gives the joint survival function

S(t1, t2, t3) = exp [−ρ2Ψ2 (Ψ1(Λ(t1)) +Ψ1(Λ(t2) + Λ(t3)))]
and generalizes the formula of Hougaard (2000), p. 356.
The model above has a nested dependence structure, where all individuals are correlated. One

may also construct a simple genetic model, for data consisting of parents and children. Here, the
parents are assumed to be independent, but the children are related both to the parents and to
each other. Let the parents have independent values of both Z1 and Z2, whereas the children
will have independent values of Z1, but their value of ρ1 assigned by Z2 is determined by those
of the parents. In a simple additive model, assume that it is the mean of the parents’ values,
(ρ11+ ρ21)/2. Let s1 and s2 be the argument of the Laplace transform for the parents, and s3, ..., sk
the arguments for the children. The joint Laplace transform of this model is given by

L(s1, ..., sk) = E
µ
exp

·
−ρ11Ψ1(s1)− ρ21Ψ1(s2)−

Pk
j=3

ρ11 + ρ21
2

Ψ1(sj)

¸
|Z2
¶

= E
µ
exp

½
−ρ11

·
Ψ1(s1) +

1

2

Pk
j=3Ψ1(sj)

¸
− ρ21

·
Ψ1(s2) +

1

2

Pk
j=3Ψ1(sj)

¸¾
|Z2
¶

= exp

½
−ρ2

·
Ψ2

µ
Ψ1(s1) +

1

2

Pk
j=3Ψ1(sj)

¶
+Ψ2

µ
Ψ1(s2) +

1

2

Pk
j=3Ψ1(sj)

¶¸¾
A drawback with this model, is that the frailty distribution of the children will have a different
variance than the parents’ distribution.
If the baseline hazard λ(t) in (2.1) includes a scale parameter, one often sets the expectation

of the frailty distribution equal to one, to assure identifiability. Simple results are valid for the
expectation and variance of the hierarchical Lévy frailty model, provided that they exist for the
model in question. Assume that the expectation of the Zi’s equals one when ρi = 1, that is, we
have Ψ0i(0) = 1 for all i. For the variable in (3.1), we then have

EY = Ψ02(Ψ1(0))Ψ
0
1(0) = 1

and

VarY = Ψ002(Ψ1(0))(Ψ
0
1(0))

2 +Ψ02(Ψ1(0))Ψ
00
1(0)

= Ψ002(0) +Ψ
00
1(0) = VarZ1 +VarZ2

By induction it follows that the random variable in (1) has expectation and variance

EY = 1, VarY = VarZ1 +VarZ2 +VarZ3

and similarly for higher levels. Hence, the variance of a hierarchical Lévy frailty variable can be
decomposed into a sum coming from different sources, without affecting the expectation. This is
very useful in a frailty context, where the expectation often should be kept constant and just the
variance be decomposed. As an example, VarZ1 can be interpreted as the frailty variance related
to individual factors, VarZ2 is the frailty variance related to common genetic and environmental
factors within a family, and VarZ3 is the frailty variance relating to common environmental factors
in the neighborhood.
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5 COVARIATES AND FRAILTY RELATIVE RISK
The frailty variable describes heterogeneity due to unknown covariates. One would usually like to
include covariates in the model, e.g. in a Cox regression term exp(βTX), to be able to explain some
of the unobserved heterogeneity. One usually distinguishes between common covariates, which have
the same value for all individuals in a family, and individual covariates, which have different values
for different individuals in a family. In a frailty analysis of family data, many covariates with an
effect on survival will have values that are correlated within family members, creating some of the
dependence in survival time within families. When including such covariates in the model, the
dependence due to unobserved factors should go down. By using a surrogate measure, such as the
mean value of a covariate within a family, one may also treat highly correlated, but still individual,
covariates as common covariates.

Table 1: Overview of some of the different covariate modelling options in a two-level Lévy model.

Model Where to include β Interpretation of exp(β)
1. Fully conditional In baseline hazard λ(t) Individual-specific relative risk
2. Conditional on family only In ρ1 Family-specific relative risk
3. Conditional on subgroup In ρ2 Larger subgroup-specific relative risk
4. Marginal In marginal distribution Population average relative risk
5. Accelerated failure times In baseline hazard λ(t) Accelerated failure times

In the hierarchical Lévy model, there are several options on where to include the covariates. We
will only consider the two-level sibling/litter model (3.1) in this section, where Z1 is independent
for all, and Z2 assigns values of ρ1 that are shared by all individuals in a family, but independent
between families. It will be similar for higher-level models, but with even more options. Table 1
shows the different options for this two-level model. As a specific example, consider the compound
Poisson-gamma model in the applications in Moger et al. (2004) and Moger and Aalen (2005).
The individual frailty Z1 is compound Poisson distributed, with Ψ1(s) = {1− [ν/(ν + s)]η} and
the family frailty Z2 is gamma distributed, Ψ2(s) = [ln (δ + s)− ln δ]. The parameters ν and η are
the scale and shape parameter of the CP-distribution of Z1, while δ is the scale parameter of the
gamma distribution of Z2. This gives the following joint survival function for k siblings:

S(t1, ...tk) =

Ã
δ

δ +
Pk

i=1 {1− [ν/(ν + Λ(ti))]η}

!ρ2

(4.1)

In this expression, one may include covariates in the baseline hazard, λ0(t) = exp(βTX)λ(t). In this
case, the regression coefficients β are conditional on both Z1 and Z2, giving proportional hazards
conditional on the full frailty Y . That is, the estimated regression effects are interpreted conditional
on having the same value of both the family and individual frailty. This yields individual specific
regression effects, which may be of interest when counselling a patient with both a family history
of a disease, and exposure to unmeasured individual risk factors. The second alternative is to
include covariates on the family parameter ρ01 = exp(βTX)ρ1. This option yields proportional
hazards conditional on Z2, meaning that the regression coefficients are interpreted as the effects
of the covariates when comparing different individuals within a family. The covariates will then
appear outside or just inside the sum in (4.1), depending on whether the covariates are common
or not. This approach can be preferred when the family-specific hazard is of interest, e.g. in
genetic counselling. This is the same interpretation of the regression coefficients as the conditional
parameterization in a shared frailty model. One should think that this option is most relevant for
common covariates, since ρ1 has the same value for all members of the family in this model. A
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third alternative is to include the covariates in ρ2. This approach could be relevant for covariates
that yield different levels of family frailty, and are shared by large subgroups of people, for instance
ethnicity. The covariate relative risk exp(β) can then be interpreted in terms of the relative change
in E(Z2) for one subgroup compared to another. A fourth alternative is to have proportional
hazards marginally. This yields population average effects of the covariates, and is often of interest
from the public health perspective. One then parameterize (4.1) by means of the marginal survival

function, S(ti) = exp
h
− exp(βTXi)Ω(ti)

i
, where Ω(ti) is the integrated hazard in the marginal

distribution, after first having found the inverse relation between the marginal survival function
and the conditional integrated hazard (from (3.1)):

S(ti) = exp [−ρ2Ψ2(Ψ1(Λ(ti)))]
Λ(ti) = Ψ−11 (Ψ−12 (− lnS(ti)/ρ2))

However, this approach causes all the parameters in the individual frailty Z1 to cancel out:

S(t1, ..., tk) = exp
h
−ρ2Ψ2(

Pk
i=1Ψ1(Ψ

−1
1 (Ψ

−1
2 (− lnS(ti)/ρ2))))

i
= exp

h
−ρ2Ψ2(

Pk
i=1Ψ

−1
2 (− lnS(ti)/ρ2)

i
A scale parameter in Ψ2(•) will also cancel out. This means that the model becomes identical
to the marginal parameterization of a shared frailty model in this case. Finally, one may also
formulate the model as an accelerated failure time model. The integrated baseline hazard is then
Λ(t/ exp(βTXi)), which may be inserted in (4.1). When the baseline hazard is Weibull, of the form
λ(t) = ακtκ−1 the model will be the same as the fully conditional model (first model in Table 1)
with β = −βaccκ, but with an accelerated failure time interpretation of the regression coefficients.
As the options all give different interpretations of the regression effects, one has to consider each
application individually, to find out which interpretation one would prefer.
The relative risk is often used as a measure of the strength of genetic association in a family.

For the conditional parameterizations (1-3 in Table 1), the relative risk may be calculated as the
risk of dying within a time t if a sibling has died compared to the risk of dying if a sibling has
survived:

RR =
P (Sib 1 dies within time t|Sib 2 dead within time t)

P (Sib 1 dies within time t|Sib 2 has survived up to time t)
As in Moger and Aalen (2005), by using the Laplace transforms of Z1 and Z2 and the fact that
siblings are independent given Z2, one gets the following expression for the relative risk:

RR =
{1− 2× exp [−ρ2Ψ2(Ψ1(Λ(t)))] + exp [−ρ2Ψ2(2×Ψ1(Λ(t)))]} × exp [−ρ2Ψ2(Ψ1(Λ(t)))]
{1− exp [−ρ2Ψ2(Ψ1(Λ(t)))]} × {exp [−ρ2Ψ2(Ψ1(Λ(t)))]− exp [−ρ2Ψ2(2×Ψ1(Λ(t)))]}

(4.2)
This generalizes the formula (16) in Moger and Aalen (2005). This expression will be the relative
risk due to unobserved factors, in this paper called the frailty relative risk. In models Cond1 and
Cond2 with covariates, the frailty relative risk will to a neglible degree depend on the values of the
covariates, as they do not cancel out. The frailty relative risk is then calculated as the risk when
all covariate values are equal for the individual and her sibling (typically 0). For model Cond3,
however, the covariates enter ρ2, and the frailty relative risk will largely depend of the covariate
values. We then use the mean value of the covariate, for comparison with models Cond1 and
Cond2. Note that different covariate values for an individual and her sibling can be included to
see how certain combinations of risk factors will affect the relative risk.
Another measure of dependence commonly used for frailty models is Kendall’s τ . Earlier

attempts on calculating Kendall’s τ for the compound Poisson-PVF model have failed, because
of the non-continuity of the compound Poisson distributions. However, the dependence in the
two-level model is constructed in much the same way as for shared frailty models. The variable
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Z1 only creates individual heterogeneity, and has little to do with the dependence, whereas the
dependence is modelled by Z2. Hence, in situations where the distribution of Z1 is non-continuous,
but distribution of Z2 is, one should think that Kendall’s τ for the two-level Lévy model can be
approximated by the corresponding formulas from standard shared frailty models.
By similar calculations as for (4.2), one may derive the conditional survival given that a sibling

has died within time t = t0, and the conditional survival given that a sibling has survived at t = t0.
For the two-level Lévy model, they are given as

SSib 1(t|Sib 2 dead within t0)

=
exp [−ρ2Ψ2(Ψ1(Λ(t)))]− exp [−ρ2Ψ2(Ψ1(Λ(t) +Ψ1(Λ(t0)))]

1− exp [−ρ2Ψ2(Ψ1(Λ(t)))]
SSib 1(t|Sib 2 alive at t0)

=
exp [−ρ2Ψ2(Ψ1(Λ(t)) +Ψ1(Λ(t0)))]

exp [−ρ2Ψ2(Ψ1(Λ(t)))]
(4.3)

These curves can then be plotted, with or without covariate effects included in the model, and
compared to the population survival function.

6 APPLICATION TO THE INFANTMORTALITY DATA
This application is meant to be an illustration of different aspects when working with hierarchical
Lévy frailty models, more than finding the best model for the infant mortality data. We will show
results from several of the different modelling options presented in the previous section. Because
of the extremely large number of data, it would be computationally impossible to analyze the full
database. By using the methods shown in Moger et al. (in revision), we analyze a case-cohort
sample of the data. All sibships with one or more cases are included in the sample. The control
sibships are stratified according to family size before sampling, and exactly 5% are randomly
sampled without replacement from each stratum. There are four strata for the control families, for
sibships of size 1, 2, 3 and >4. This yields 45750 sibships with 89745 individuals in the control
sample. Stratifying according to sibship size is important to get good precision in the estimated
frailty and baseline hazard parameters. The precision of these parameters are mainly decided by
the number of familial cases and the prevalence of the disease, and one gets a more precise estimate
of the latter by the stratification. According to the results in Moger et al. (in revision), this should
give an efficiency of almost 100% for the frailty and baseline hazard parameters, compared to a
cohort analysis using the same model. The precision of the regression effects will naturally be much
lower, perhaps around 70-75%, but this is sufficient as an illustration of the model. To account for
the fact that a case-cohort sample is analyzed, sampling weights will enter the likelihood, yielding a
standard pseudo-likelihood. We use the compound Poisson (CP)-gamma model in (4.1) to analyze
the data. Let there be kl members in family l. Let cil indicate whether the survival time til for
individual i in family l is censored (cil = 0) or not (cil = 1). Define c.l =

P
i cil as the number of

events in family l. This yields the following pseudo-likelihood in the conditional parameterization:

L(θ) =
4Q

j=0

1

pj

Q
l∈Dj

"
klQ
i=1

Ã
ηνηλ(til)

(ν + Λ(til))
η+1

!cil#
(−1)c.l L(c.l)ρ1

µ
kiP
i=1
{1− [ν/(ν + Λ(til))]η}

¶

where θ is the vector of parameters to be estimated, and L
(c.l)
ρ1 (·) is the c.l-th derivative of the

Laplace transform of ρ1, Lρ1(s) = [δ/(δ + s)]
ρ2 . The pseudo-likelihood is identical to the cohort

likelihood on p. 54 in Moger and Aalen (2005), except for the sampling weights pj for the case fam-
ilies (j = 0) and the four strata of control families, and that the sum is over the case-cohort sample
Dj instead of over the full cohort. The baseline hazard is assumed to follow a Weibull distribution,
λ(t) = κ(t − 6)κ−1, for t > 6. The scale parameter of the Weibull distribution is subsumed in
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the frailty distribution. For the fully conditional model (Cond1), the covariates enter the pseudo-
likelihood in the three places where the baseline hazard λ(t) appears. For model Cond2, the covari-
ates enter in the numerator ηνηλ(til) exp(β

TXil) and in
Pkl

i=1 exp(β
TXil) {1− [ν/(ν + Λ(til))]η},

while for model Cond3, the covariates enter in ρ2 only. For the marginal model Marg, the likelihood
will be equal to a shared gamma frailty model in the marginal parameterization, see e.g. equation
(7.35), p.234 in Hougaard (2000). As both the parameters of the individual distribution and the
scale parameter δ in the gamma distribution are cancelled out, the model Marg includes an addi-
tional scale parameter in the marginal Weibull baseline hazard Ω(t) = α(t− 6)κ. To estimate the
standard errors of the parameters, we use a sandwich-type estimator (see Moger et al., in revision,
for details) A(θ)−1 +A(θ)−1B(θ)A(θ)−1. Here, A(θ) is estimated by

bA(bθ) = 4P
j=0

1

pj

P
l∈Dj

Il(bθ),
where Il(θ) = −∂2/∂θ∂θ0 logLl(θ), the observed information matrix for family l, and B(θ) is
estimated by bB(bθ) = 4P

j=0

1− pj
p2j

P
l∈Dj

sl(bθ)sl(bθ)0
where sl(θ) = ∂/∂θ logLl(θ), the score function for family i.
To find out how to model the continuous covariates, we first categorized them (e.g. into 500

grams intervals for birth weight, 50 days intervals for gestational age etc., this was done for the
full database), and studied how the deaths were distributed in the categories in a cross-tabulation.
For instance, low birth weight is known to be a risk factor for infant death. One might believe that
a very high birth weight also could increase the risk of death, but this did not seem to be the case
from the cross-tabulation. There could of course be interactions between some of the covariates,
but this is not considered in this illustration. Hence, the covariates birth weight, gestational age,
length and the birth year of mother and infant are treated as continuous covariates. Mother’s age at
birth is categorized into 0-22 years, 23-36 years and 37 years and above. Parity is categorized into
1, 2-3 and 4 and above (this covariate will almost be stratified because of the sampling stratified on
family size). The regression coefficients in the tables show the effect relative to the first category
for these covariates. The only common covariate is mother’s birth year, but infant’s birth year and
the categorized mother’s age are almost common covariates, with correlation of about 0.9 and 0.7,
respectively. Parity and gender are clearly individual covariates, while the others have correlated
values within sibships. The correlation is around for 0.4 for birth weight, 0.3 for length, and 0.2
for gestational age.
First, consider an analysis without covariates. Figure 1 shows a Kaplan-Meier plot of the data,

with the estimated CP-gamma frailty model. For reference, a shared gamma model with Weibull
baseline is also included in the plot. As visually seen from the plot, the CP-gamma model gives a
vast improvement in fit compared to the shared gamma model with three parameters. Although
the likelihood ratio test does not apply for pseudo-likelihoods, the better fit of the CP-gamma
model is also indicated by the log pseudo-likelihood values.
Tables 2 and 3 show the results of the univariate analyses of the covariates, for the most

interesting parameters. We have excluded the different frailty scale parameters to save space.
In addition, we show regression effects as relative risks exp(β) with 95% confidence interval³
95%CI= exp

hbβ ± 1.96× SE(bβ)i´. To clarify the relations between the different options on where
to place the covariates, we show results for the models 1 (Cond1), 2 (Cond2), and 4 (Marg) from
Table 1. For the common covariate mother’s birth year, we also show results for model 3 (Cond 3).
The frailty relative risk (FRR) measures the dependence that remains in the data after controlling
for the covariates, and is calculated by inserting the estimated parameters into the CP-gamma
version of (4.2) (see Moger and Aalen, 2005, for further details), with t = 364. As mentioned in
Section 4.2, the marginal model does not give a better fit than a shared gamma model with the
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CP-gamma frailty, log L=-79972
Shared gamma frailty, log L=-80263

Figure 1: Kaplan-Meier plot of the infant mortality data, with the estimated compound Poisson-
gamma model. The shared gamma model is included for reference. Log L=log pseudo-likelihood
value.

marginal parameterization (as in Figure 1, without covariates). Hence, it is expected to perform
worse in terms of log pseudo-likelihood values than the conditional models.
The CP-gamma model without covariates yields a frailty relative risk of 3.44. Including birth

weight in the model reduces the frailty relative risk to 3.13 in model Cond2, but increases it to 3.77
in model Cond1. For model Marg, if we measure the dependence by Kendall’s τ = 1/(1+2ρ2), the
dependence also decreases from 0.56 to 0.50 (ρ2 was 0.39 for model Marg without covariates). The
model Cond2 tend to yield an increased frailty relative risk for all continuous covariates with low
correlation within sibships. For the individual covariate parity, however, Cond2 yields a lowered
frailty relative risk. This may indicate that it is problematic to put individual covariates in a
variable describing the family, or shared, frailty. Putting the individual covariates in a shared
gamma frailty model using the conditional parameterization (not shown), yields similar results
as for Cond2. Constructing common covariates by using the mean value of the covariates within
sibships, however, will in most cases give a reduced dependence, corresponding to the results for
Cond1 and Marg. The parameter ρ2 is similar for models Cond1 and Marg for all covariates. In
the two-level model, ρ2 contributes the most to the estimated dependence (both the frailty relative
risk and Kendall’s τ), thus indicating that the dependence is similar for the models Marg and
Cond2.
From model Cond1, a 500 grams increase in birth weight yields a 48% reduced risk of death

during the post-perinatal period. Models Cond2 and Marg, both yield 37% reduced risk. There
is a similar picture for the other continuous covariates, with Cond1 always giving the strongest
effects of the covariates. For the categorical covariates, however, model Cond1 does not always give
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Table 2: Log pseudo-likelihood values, parameter estimates/standard errors, and univariate co-
variate effects for different model options: Cond1=conditional on full frailty, Cond2=conditional
on Z2, Cond3=in ρ2, Marg=marginal effects, FRR=Frailty relative risk. See text for details.

log L κ (SE) ρ2 (SE) β (SE) exp(β) (95% CI) FRR
No Cov. -79972 0.81 (0.01) 0.41 (0.06) — — 3.44

Birth weight (per 500 grams)
Cond1 -78186 0.61 (0.01) 0.47 (0.07) -0.65 (0.012) 0.52 (0.51-0.53) 3.13
Cond2 -78199 0.81 (0.01) 0.36 (0.05) -0.47 (0.009) 0.63 (0.61-0.64) 3.77
Marg -78509 0.54 (0.01) 0.49 (0.02) -0.45 (0.008) 0.63 (0.62-0.64) —

Gestational age (per 30 days)
Cond1 -79067 0.73 (0.01) 0.46 (0.06) -1.18 (0.019) 0.31 (0.30-0.32) 3.18
Cond2 -79143 0.81 (0.01) 0.35 (0.05) -0.59 (0.020) 0.55 (0.54-0.57) 3.97
Marg -79453 0.54 (0.01) 0.46 (0.02) -0.56 (0.016) 0.57 (0.55-0.59) —

Infant’s birth year (per 5 years)
Cond1 -79886 0.82 (0.02) 0.41 (0.06) -0.20 (0.011) 0.82 (0.80-0.84) 3.43
Cond2 -79837 0.81 (0.01) 0.41 (0.06) -0.11 (0.007) 0.90 (0.88-0.91) 3.45
Marg -80131 0.54 (0.01) 0.41 (0.02) -0.11 (0.007) 0.90 (0.89-0.91) —

Length (per cm)
Cond1 -79040 0.66 (0.01) 0.46 (0.07) -0.25 (0.004) 0.79 (0.78-0.79) 3.13
Cond2 -79282 0.81 (0.01) 0.36 (0.05) -0.10 (0.003) 0.90 (0.90-0.91) 3.84
Marg -79589 0.54 (0.01) 0.46 (0.02) -0.10 (0.003) 0.91 (0.90-0.91) —

Mother’s birth year (per 5 years)
Cond1 -79956 0.80 (0.02) 0.41 (0.06) -0.07 (0.010) 0.94 (0.92-0.95) 3.43
Cond2 -79930 0.81 (0.01) 0.41 (0.06) -0.06 (0.007) 0.95 (0.93-0.96) 3.43
Cond3 -79930 0.81 (0.02) 0.76 (0.06) -0.06 (0.007) 0.95 (0.93-0.96) 3.43
Marg -80224 0.54 (0.01) 0.41 (0.02) -0.06 (0.007) 0.95 (0.93-0.96) —

the strongest effects. The covariates mother’s birth year, mother’s age at birth and infant’s birth
year all have a significant effect on the mortality, but do not have a great influence on the frailty
relative risk. The estimate of the regression coefficient in model Cond3 for mother’s birth year
gives the following interpretation: A five year increase in mother’s birth year reduces the expected
level of family frailty by 5%, since E(Z2)=ρ2 exp(β

TX)/δ, with δ = 96.62 for this model. With
the mean value of the covariate inserted, the FRR is comparable to the other models. However,
one may insert a birth year of 1945, to get a FRR of 3.18, or a birth year of 1970, to get a FRR
of 3.88. The increase in dependence as a function of mother’s birth cohort, is probably due to the
lower prevalence of random infant deaths in more recent birth cohorts. A few familial cases will
then have a greater impact on the dependence. The Weibull shape parameter κ has stable values
within each model for all covariates, yielding a decreasing baseline hazard for all models.
Table 4 shows the results of a multivariate analysis. Overall, the estimated regression effects

show similar trends for the three models as in the univariate analyses. Generally, one may combine
models Cond1 and Cond2, to include some covariates conditional on the full frailty, and others
conditional on the family frailty only. Although the log pseudo-likelihood values indicate that
model Cond1 fit the data best, it is probably more correct to view the different parameterizations
as equal alternatives, where selection of a specific model should depend on what interpretations
are the most interesting for the problem at hand. Since there is collinearity between the covariates
infant’s birth year, mother’s age at birth and mother’s birth year (if one knows the value of two
of these covariates, one also know the value of the third), we have only included the first two in
the multivariate model. With all covariates included, the frailty relative risk has dropped to 2.75
for model Cond1, but is fairly stable at 3.24 for Cond2. Again, the value of ρ2 is similar for model
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Table 3: Log pseudo-likelihood values, parameter estimates/standard errors, and univariate covari-
ate effects for different model options: Cond1=conditional on full frailty, Cond2=conditional on
Z2, Marg=marginal effects, FRR=Frailty relative risk. For mother’s age and parity, β’s are shown
for two categories compared to the reference group. See text for details.

log L κ (SE) ρ2 (SE) β (SE) exp(β) (95% CI) FRR
No Cov. -79972 0.81 (0.01) 0.41 (0.06) — — 3.44

Mother’s age at birth (0-22 (reference category), 23-36, >36)

Cond1 -79941 0.86 (0.03) 0.41 (0.06)
-0.73, -0.22

(0.001), (0.002)
0.49, 0.80

(0.48-0.50), (0.79-0.81)
3.42

Cond2 -79957 0.81 (0.01) 0.41 (0.06)
-0.45, -0.20
(0.04), (0.08)

0.63, 0.82
(0.59-0.68), (0.71-0.95)

3.40

Marg -80251 0.54 (0.01) 0.41 (0.02)
-0.45, -0.20
(0.03), (0.07)

0.64, 0.82
(0.60-0.68), (0.72-0.94)

—

Parity (1 (reference category), 2-3, >3)

Cond1 -79972 0.81 (0.01) 0.41 (0.06)
0.01, 0.05

(0.008), (0.012)
1.01, 1.05

(0.99-1.02), (1.03-1.08)
3.41

Cond2 -79957 0.81 (0.01) 0.44 (0.06)
0.11, 0.25

(0.03), (0.06)
1.12, 1.28

(1.07-1.18), (1.13-1.44)
3.26

Marg -80250 0.54 (0.01) 0.44 (0.03)
0.11, 0.25
(0.03), (0.06)

1.12, 1.28
(1.07-1.18), (1.13-1.45)

—

Gender (reference category male)
Cond1 -79940 0.79 (0.01) 0.41 (0.06) -0.35(0.013) 0.70 (0.69-0.72) 3.44
Cond2 -79927 0.81 (0.01) 0.41 (0.06) -0.24(0.026) 0.79 (0.75-0.83) 3.43
Marg -80220 0.54 (0.01) 0.46 (0.08) -0.24(0.008) 0.79 (0.78-0.80) —

Cond1 and Marg, indicating that the dependence for these two models is similar. The effects of
length and gestational age have become much reduced, mainly because of the confounding effect of
birth weight. Being a tall infant is not an advantage unless the weight is also higher. Gestational
age is only borderline significant at 5% level for the models Marg and Cond2. The effect of parity
has increased greatly compared to the univariate analysis, due to confounding with most of the
other covariates. For gender, infant’s birth year and birth weight, there are smaller differences
from the univariate analysis. Figures 2 and 3 show conditional survival functions (1) for model
Cond1 with t0 = 364 and different covariate values, compared to the Kaplan-Meier plot. In Figure
2, the two siblings have values close to the means in the population for most covariates, that is;
birth weight=3500 grams, gestational age=280 days, length=50 cm, they are girls born in 1981
with parity 1 and 3, and have a mother in the oldest age group. The figure clearly shows the effect
a dead sibling has on survival. In Figure 3, however, the second sibling has a birth weight of 4000
grams, and both are born in 1995. The higher birth weight of the second sibling means that the
effect on survival of having a dead sibling is much smaller in this case.

7 DISCUSSION
This paper presents an extension to existing frailty models for family data. The model is hier-
archical and is based on the flexible family of Lévy distributions, and includes a large number of
possible sub-models. In its simplest form, it is a two-level model, which includes heterogeneity
on both the individual and family level. It is fairly easily extended to more levels, which makes
it possible to analyze more complicated pedigrees and dependence structures. An extension to a
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Figure 2: The effect a dead sibling has on survival, as estimated from the fully conditional model
(Cond1). Both siblings have covariate values that are close to the mean values in the population
and are born in 1981. See the text for details.

nonparametric baseline hazard will make it necessary to use other estimation methods than the
ones used for the fully parametric models presented here. This is a challenge, since the likelihood
function for the model becomes quite complex, particularly for data on families containing several
levels of dependence, and many events in each family. However, complex likelihoods are also the
case for other multivariate frailty models, such as additive models (e.g. Petersen, 1998) and the
multivariate log-normal model (Ripatti and Palmgren, 2000). In addition, additive models rely on
distributions, for which an additive property exists, to make the total frailty tractable. In other
words, each Zi has to have the same type of distribution in an additive model. In the hierarchical
model, each Zi can have a different distribution. This is probably the greatest advantage compared
to additive models. Hence, the approach presented here yield more general models. Application of
higher-level Lévy models will be the focus of future research. We plan to analyze data on melanoma
incidence in two-generation families from the Swedish Multi-Generation Register.
It might seem strange to include results from the marginal parameterization in Tables 3 and

4, since it has a poor fit to data. However, we wanted to include this marginal model to compare
the regression coefficients between the different parameterizations, since it naturally appears when
you use the marginal parameterization in a two-level Lévy model. A standard semi-parametric
Cox regression using the independence working model approach yields approximately the same
estimates of both the β’s and their standard errors. This indicate that even though the marginal
gamma model with Weibull baseline hazard does not fit the data well, the estimated β’s are little
affected by this. As expected, the fully conditional frailty model gives the strongest effects of most
covariates, as these are conditioned on comparing two individuals with the same value of both the
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Table 4: Parameter estimates with standard errors for the three different models, with mul-
tivariate estimates of the covariate effects. Est.=Estimate, Cond1=conditional on full frailty,
Cond2=conditional on Z2, Marg=marginal effects. See the text for further details.

Model Cond1 Cond2 Marg
Parameter Est. SE Est. SE Est. SE
κ 0.63 0.007 0.81 0.014 0.54 0.007
ρ2 0.57 0.063 0.44 0.065 0.60 0.004
Covariate exp(β) 95% CI exp (β) 95% CI exp (β) 95% CI
Birth weight 0.56 (0.54-0.58) 0.53 (0.51-0.55) 0.54 (0.52-0.56)
Gestational age 0.81 (0.77-0.85) 0.95 (0.91-0.99) 0.96 (0.92-1.01)
Infant’s birth year 0.85 (0.84-0.87) 0.88 (0.87-0.89) 0.88 (0.87-0.90)
Length 0.98 (0.97-0.99) 1.07 (1.06-1.08) 1.07 (1.06-1.08)

Mother’s age
23-36
>36

0.61
0.72

(0.57-0.66)
(0.63-0.84)

0.65
0.74

(0.60-0.70)
(0.64-0.86)

0.65
0.75

(0.61-0.70)
(0.65-0.86)

Parity
2-3
>3

1.68
2.16

(1.59-1.78)
(1.88-2.49)

1.57
1.93

(1.49-1.67)
(1.69-2.22)

1.56
1.93

(1.48-1.66)
(1.68-2.22)

Gender 0.66 (0.63-0.70) 0.74 (0.70-0.78) 0.74 (0.70-0.78)
log L -77686 -77643 -77951

family and individual frailty, while the marginal model give the smallest effects of the covariates,
as these are population average effects. The model conditioned on the family frailty only, gives
effects that are intermediate, but they seem to be closer to the marginal estimates than to the fully
conditional estimates.
The estimate for the frailty relative risk, obtained from the analysis without covariates, is

somewhat lower than the estimate in Øyen et al. (1996). By adding the SIDS deaths and non-
SIDS deaths from their paper, one gets a total relative risk of 3.74. They calculated relative
risks of recurrence in second birth by outcome of first birth. Hence, only sibships of two or more
infants were included, and they only used the first two births in their study. For the cohorts used
in our analysis, the sibships consist of anything from 1 to 15 siblings. The sibships of size one
also contribute in estimating the frailty parameters, and thus the dependence, since they affect
the prevalence of the outcome. Also, the continuation rate among mothers with a first loss is
somewhat higher than among those with a first survivor (83% vs 69%, from Øyen et al., 1996),
indicating that the one-child survivors come from low-risk families. The ability to include complete
sibships of arbitrary size in the analysis, is an advantage of the frailty approach. The frailty relative
risks shown in the tables of Section 6 are interpreted for pairs of observations, corresponding to
the relative risks obtained from the simple cross-tabulation analysis done in Øyen et al. (1996).
In a similar manner one may calculate relative risks for triples of observations, for instance the
probability of dying given that one out of two siblings has died, compared to the probability of
dying given that both have survived. Hence, it is possible to get a more general picture of the
relative risks from a frailty analysis, but this is of course dependent on the validity of the model.
The fact that frailty models include the aspect of time, means that one may calculate the risk of
dying during the first year given that a sibling has died during the first week. This is perhaps
not very relevant here, but in other settings, with a longer time-span, it could be. This can also
be applied to the conditional survival function (1). Alternatively, one may also plot the relative
hazards, defined as the estimated hazard function for an individual at age t, given that a sibling
died at t0 compared to the hazard of a sibling’s being alive at t0, similar to Hougaard (2000) pp.
293-95.
The use of the CP-distribution to describe the individual frailty means that a certain proportion
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Figure 3: The effect a dead sibling has on survival, as estimated from the fully conditional model
(Cond1). Sibling 1 has 500g higher birth weight than Sibling 2, and the birth year is 1995. See
the text for details.

of the population (around 99.6% from the estimates) are immune to infant death. This appears
unreasonable, and is not meant to be taken literally. However, since infant mortality is very rare, it
is no surprise that a CP based model gives a good fit to the data. Fitting a more general PVF-PVF
model yields convergence of the individual frailty within the CP-distribution, and, visually, not a
better fit than the CP-gamma model used here.
We have not given standard errors for the frailty relative risks in Section 6. If we analyzed

cohort data, standard errors and confidence intervals could be found by bootstrap. However, these
are case-cohort data, and there does not exist bootstrap methods for multivariate case-cohort
survival data yet that we are sure will work well. Although the standard errors for some of the
parameters in the model are large, unpublished results in the Ph.D.-thesis by Moger lead us to
expect that the confidence intervals for the frailty relative risk will be fairly narrow (perhaps
estimated risk±ca.1.5).
We use a Weibull distribution for the basic hazard λ(t). There is no biological basis for this

choice. For cancer, the classical multistage model of Armitage and Doll (1954) leads to the assump-
tion that λ(t) follows a Weibull distribution. One then assumes that a cell has to go through several
mutations in order to become malignant. One could imagine a similar reasoning for several of the
causes for infant death, but this would be highly speculative. Since we only have general mortality
data, the decomposition of the frailty variance, as described in Section 4, is not so relevant here,
as it would be difficult to interpret the variance of the frailty components.
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