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Typical value-at-risk (VAR) calculations involve the probabilities of extreme dollar
losses, based on the statistical distributions of market prices. Such quantities do not
account for the fact that the same dollar loss can have two very different economic val-
uations, depending on business conditions. We propose a nonparametric VAR measure
that incorporates economic valuation according to the state-price density associated
with the underlying price processes. The state-price density yields VAR values that
are adjusted for risk aversion, time preferences, and other variations in economic val-
uation. In the context of a representative agent equilibrium model, we construct an
estimator of the risk-aversion coefficient that is implied by the joint observations on
the cross-section of option prices and time-series of underlying asset values.
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1 Introduction

risk man-

agement

RiskMetrics

For example, the multimillion-dollar losses suffered by Gibson Greetings, Metallgesellschaft, Orange
County, Proctor and Gamble, Barings Securities, etc.

One of the most pressing economic issues facing corporations today is the proper manage-

ment of �nancial risks. In response to a series of recent �nancial catastrophes, regulators,

investment bankers, and chief executive officers have now embraced the notion of

as one of the primary �duciary responsibilities of the corporate manager. Because

�nancial risks often manifest themselves in subtle and nonlinear ways in corporate balance

sheets and income statements, recent attention has focused on quantifying the �uctuations

of market valuations in a statistical sense. These value-at-risk (VAR) measures lie at the

heart of most current risk management systems and protocols. For example, JP Morgan�s

(1995) system documentation describes VAR in the following way:

Value at Risk is an estimate, with a prede�ned con�dence interval, of how much
one can lose from holding a position over a set horizon. Potential horizons may
be one day for typical trading activities or a month or longer for portfolio
management. The methods described in our documentation use historical re-
turns to forecast volatilities and correlations that are then used to estimate
the market risk. These statistics can be applied across a set of asset classes
covering products used by �nancial institutions, corporations, and institutional
investors.

By modeling the price �uctuations of securities held in one�s portfolio, an estimate and

con�dence interval of how much one can lose is readily derived from the basic principles

of statistical inference.

However, in this paper we argue that statistical notions of value-at-risk are, at best,

incomplete measures of the true risks facing investors. In particular, while statistical

measures do provide some information about the range of uncertainty that a portfolio

exhibits, they have little to do with the economic valuation of such uncertainty. For

example, a typical VAR statistic might indicate a 5% probability of a $15M loss for a

$100M portfolio over the next month, which seems to be a substantial risk exposure at �rst

glance. But if this 15% loss occurs only when other investments of similar characteristics

suffer losses of 25%, such a risk may seem rather mild after all.
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economic

Arrow-Debreu

market

This is changing as derivatives markets become more sophisticated. For example, it is now possible to
construct a limited set of Arrow-Debreu securities by forming portfolios of �digital� or �binary� options.

This simplistic example suggests that a one-dollar loss is not always worth the same,

and that circumstances surrounding the loss can affect its valuation, something

that is completely ignored by purely statistical measures of risk.

In this paper, we propose an alternative to statistical VAR (henceforth S-VAR) that is

based on economic valuations of value-at-risk, and which incorporates many other aspects

of market risk that are central to the practice of risk management. Our alternative is based

on the seminal ideas of Arrow (1964) and Debreu (1959), who �rst formalized the economics

of uncertainty by introducing elementary securities each paying $1 in one speci�c state of

nature and nothing in any other state. Now known as securities, they are

widely recognized as the fundamental building blocks of all modern �nancial asset-pricing

theories, including the CAPM, the APT, and the Black and Scholes (1973) and Merton

(1973) option-pricing models.

By construction, Arrow-Debreu prices have a probability-like interpretation�they are

non-negative and sum to unity�but since they are prices determined in equilib-

rium by supply and demand, they contain much more information than statistical models

of prices. Arrow-Debreu prices are determined by the combination of investors� preferences,

budget dynamics, information structure, and the imposition of market-clearing conditions,

i.e., general equilibrium. Moreover, we shall show below that under certain special con-

ditions, Arrow-Debreu prices reduce to the simple probabilities on which statistical VAR

measures are based, hence the standard measures of value-at-risk are special cases of the

Arrow-Debreu framework.

The fact that the market prices of these Arrow-Debreu securities need not be equal

across states implies that a one-dollar gain need not be worth the same in every state of

nature�indeed, the worth of a one-dollar gain in a given state is precisely the Arrow-

Debreu price of that security. Therefore, we propose to use the prices of Arrow-Debreu

securities to measure economic VAR (henceforth E-VAR).

Despite the fact that pure Arrow-Debreu securities are not yet traded on any orga-

nized exchange, Arrow-Debreu prices can be estimated from the prices of traded �nancial
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implied risk aversion

See, also, the �supershares� security proposed by Garman (1978) and Hakansson (1976) which has been
test-marketed recently by Leland, O�Brien, and Rubinstein Associates, Inc.

securities using recently developed nonparametric techniques such as kernel regression,

arti�cial neural networks, and implied binomial trees. Nonparametric techniques are par-

ticularly useful for value-at-risk calculations because departures from standard parametric

assumptions, e.g., normality, can have dramatic consequences for tail probabilities. Using

such techniques, we compare the performance of S-VAR and E-VAR measures and develop

robust statistical methods to gauge the magnitudes of their differences.

Moreover, to provide an economic interpretation for the differences between S-VAR and

E-VAR, we show how to combine S-VAR and E-VAR to yield a measure of the aggregate

risk aversion of the economy, i.e., the risk aversion of the representative investor in a

standard dynamic asset-pricing model. We propose to extract (unobservable) aggregate

risk-preferences, what we call , from (observable) market prices of

traded �nancial securities. In particular, we are inferring the aggregate preferences that

are compatible with the pair of option and index values.

When applied to daily S&P 500 option prices and index levels from 1993, our nonpara-

metric analysis uncovers substantial differences between S-VAR and E-VAR (see Figure

2). A comparison of S-VAR and E-VAR densities shows that aggregate risk aversion is

not constant across states or maturity dates, but changes in important nonlinear ways (see

Figure 4).

In Section 2 we present a brief review of the theoretical underpinnings of Arrow-Debreu

prices and their relation to dynamic equilibrium models of �nancial markets. In Section 3

formally introduce the notion of economic value-at-risk, describe its implementation, and

propose statistical inference procedures that can quantify its accuracy and relevance over

statistical VAR. An explicit comparison of E-VAR with S-VAR, along with the appropriate

statistical inference, is described and developed in Section 4. We construct an estimator

of implied risk aversion in Section 5 and propose tests for risk neutrality and for speci�c

preferences based on this estimator. To illustrate the empirical relevance of E-VAR, we

apply our estimators to daily S&P 500 options data in Section 6. We conclude in Section

7.
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2.1 Dynamic Equilibrium Models

data-generating process

statistical

economic

mar-

ket

See, for example, Smithson, Smith, and Wilford (1995).

See Merton (1982, 1992) for a review of these and related models.

Denote by the price at time of a security or portfolio of securities whose risk we wish

to manage and let denote its return between and . The usual

statistical VAR measures are based on the probability distribution of . For example,

one common VAR measure is the standard deviation of returns . Another is the 95

percent con�dence interval of centered at its historical mean. More sophisticated VAR

measures incorporate conditioning information and dynamics in specifying and estimating

the probability distribution of , i.e., they are based on conditional probabilities obtained

from the (DGP) of .

Although such VAR measures do capture important features of the uncertainty sur-

rounding , they fall short in one crucial respect: they are evaluations of

uncertainty, not valuations. In particular, one investor may be quite willing to

bear a one-standard deviation drop in , while another investor may be devastated by

such an event. Therefore, although the dollar loss is the same for both investors, their

personal valuations of such a risk can differ dramatically. More importantly, the

valuation of this risk�the value assigned by the interactions of many heterogeneous

investors in a market setting�can differ substantially from statistical measures.

This distinction between the DGP and market valuations lies at the heart of dynamic

equilibrium asset-pricing models in economics�beginning with Arrow (1964) and Debreu

(1959)�in which the valuation of securities with uncertain payoffs is determined by the

interaction and equilibration of market forces and market conditions. In such models, the

speci�c DGP for prices is not assumed, but rather is derived from �rst principles as the

(stochastic) sequence of prices that equates supply and demand at each point in time.

More importantly, unlike a purely statistical model of prices, e.g., geometric Brownian

motion, a DGP that is derived from equilibrium prices contains an enormous amount of
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information about market conditions and investors� preferences that is critical for risk

management. To see why, consider a standard dynamic exchange economy [see Lucas

(1978) and Rubinstein (1976)] in which securities markets are dynamically complete, there

is a single consumption good, no exogenous income, and all investors seek to maximize at

date a state-independent utility function, subject to the usual budget constraints. They

can consume at date and at some �xed future date There is one risky stock (the

market portfolio, in total supply normalized to one share) and one riskless bond (in zero

net supply) available for trading at any date between and Under suitable assumptions

for preferences and endowment shocks, it is well-known that market completeness allows

us to introduce a representative agent with utility function [see Constantinides (1982)]

and the date- equilibrium price of a security with a single date- liquidating payoff of

�a function of aggregate consumption �is given by:

(2.1)

where is the or (MRS) between

consumption at dates and . In equilibrium, the investor optimally invests all his wealth

in the risky stock at every instant prior to and then consumes the terminal value of the

stock at

Assuming that the conditional distribution of future consumption has a density repre-

sentation , we can rewrite (2.1) as:

(2.2)

where and

(2.3)
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state-price density

Arrow-Debreu prices

and is the continuously compounded net rate of return between and of a riskless

bond promising one unit of consumption at assumed constant for simplicity.

This version of the Euler equation shows that the price of any asset can be expressed

as a discounted expected payoff, discounted at the riskless rate of interest. However,

the expectation must be taken with respect to , an MRS-weighted probability density

function, not the original probability density function of future consumption. This

density is called the (SPD) and it is the continuous-state counterpart

to the prices of Arrow-Debreu state-contingent claims that pay $1 in a given state and

nothing in all other states. Under market completeness, is unique. In particular, Arrow

(1964) and Debreu (1959) showed that if there are as many state-contingent claims as

there are states, then the price of any security can be expressed as a weighted average

of the prices of these state-contingent claims, now known as . In

a continuous-state setting, satis�es the same property�any arbitrary security can be

priced as a simple expectation with respect to .

This underscores the importance of for risk management: the SPD aggregates all

economically pertinent information regarding investors� preferences, endowments, asset

price dynamics, and market clearing, whereas purely statistical descriptions of the DGP

of prices do not. It is possible in general to characterize the class of DGP of prices that

are compatible with an equilibrium model [see for example Bick (1990), Wang (1993) and

He and Leland (1993)]. Fixing the utility function, however, is not sufficient to identify

uniquely the DGP of the price process. If parametric restrictions are imposed on the

DGP of asset prices, e.g., geometric Brownian motion, the SPD may be used to infer the

preferences of the representative agent in an equilibrium model of asset prices [see, for

example, Bick (1987)]. Alternatively, if speci�c preferences are imposed, e.g., logarithmic

utility, the SPD may be used to infer the DGP of asset prices. Indeed, in equilibrium, any

two of the following imply the third: (1) the representative agent�s preferences; (2) asset

price dynamics; and (3) the SPD.
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Additional assumptions are, of course, required such as frictionless markets, unlimited riskless borrowing
and lending opportunities at the same instantaneous rate , a known diffusion coefficient, etc. See Merton
(1973, 1992) for further discussion.

The practical relevance of SPD�s for derivative pricing and hedging applications has also

become apparent in or models in which sophis-

ticated dynamic trading strategies involving a set of �fundamental�securities can perfectly

replicate the payoffs of more complex �derivative� securities. For example, suppose that we

observe a set of asset prices following Itô diffusions driven by independent Brownian

motions:

(2.4)

with , and suppose that there exists a riskless asset with instantaneous rate of

return . Then path-independent derivative securities on an asset with payoff function

are spanned by certain dynamic trading strategies, i.e., derivatives are redundant

assets hence they may be priced by arbitrage. In such applications the asset price dynamics

are speci�ed explicitly and conditions are imposed to ensure the existence of an SPD and

dynamic completeness of markets [see Harrison and Kreps (1979), Duffie and Huang (1985)

and Duffie (1996)].

For example, the system of asset prices in (2.4) supports an SPD if and only if the

system of linear equations admits at every date a solution such that

has �nite expectation, and

has �nite variance. In the presence of an SPD, markets are complete if and only if

almost everywhere. Then the SPD can be characterized explicitly with-
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out reference to preferences�in the particular case of geometric Brownian motion, with

constant volatility interest rate and dividend yield over the period ,

the SPD or risk-neutral pricing density is given by the conditional distribution of the

risk-neutral stochastic process with dynamics

which is a lognormal distribution with mean and variance .

More generally, denote by the price of an underlying asset and by

the SPD of the asset price at a future date , conditioned on the current price . Con-

sider now a European-style derivative security with a single liquidating payoff . To

rule out arbitrage opportunities among the asset, the derivative and a risk-free cash ac-

count, the price of the derivative at must be equal to:

(2.5)

For example, a European call option with maturity date and strike price has a payoff

function hence its date- price is simply:

(2.6)

Even the most complex path-independent derivative security can be priced and hedged

according to (2.5).

The relevance of the SPD for risk management is clear: the MRS-weighted probability

density function provides a more relevant measure of value-at-risk� value�

than the probability density function of the DGP. Therefore, we advocate the use of in

all VAR measures such as standard deviation, 95% con�dence intervals, tail probabilities,

etc. To distinguish the more traditional method of risk management from this approach,
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we shall refer to the statistical measure of value-at-risk as �S-VAR� since it is based on a

purely statistical model of the DGP, and call the SPD-based measure �E-VAR� since it is

based on economic considerations.

Now if the MRS in (2.1) were observable, implementing E-VAR measures and comparing

them to S-VAR measures would be a simple matter. However, in practice obtaining can

be quite a challenge, especially for markets that are more complex than the pure-exchange

economy described in Section 2.1. Fortunately, several accurate and computationally effi-

cient estimators of have been developed recently and we provide a brief review of these

estimators in Section 3.1 and derive their asymptotic distributions in Section 3.2. With

these estimators in hand, we show in Section 4 how to how to gauge the relative importance

of E-VAR empirically by examining the ratio .

Banz and Miller (1978), Breeden and Litzenberger (1978), and Ross (1976) were among

the �rst to suggest that Arrow-Debreu prices may be estimated or approximated from

the prices of traded �nancial securities. In particular, building on Ross�s (1976) insight

that options can be used to create pure Arrow-Debreu state-contingent securities, Banz

and Miller (1978) and Breeden and Litzenberger (1978) provide an elegant method for

obtaining an explicit expression for the SPD from option prices: the SPD is the second

derivative (normalized to integrate to unity) of a call option pricing formula with respect

to the strike price.

To see why, consider the portfolio obtained by buying two call options struck at and

selling one struck at and one at . Consider shares of this portfolio, often

called a �butter�y� spread because of the shape of its payoff function which pays

nothing outside the interval . Letting tend to zero, the payoff function

of the butter�y tends to a Dirac delta function with mass at , i.e., in the limit the

butter�y becomes an elementary Arrow-Debreu security paying $1 if and nothing

otherwise. The limit of its price as tends to zero should therefore be equal to .

Now denote by the market price of a call option at time with strike price ,

time-to-maturity , and underlying asset price . Then, by construction, the price of the

9
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Let denotes the value at t of a futures contract written on the asset, with the same maturity as
the option. At the maturity of the futures, the futures price equals the asset�s spot price. Thus a European
call option on the asset has the same value as a European call option on the futures contract with the
same maturity. As a result, we will often rewrite the Black-Scholes formula as

, with and

butter�y spread must be:

(3.1)

which has, as its limit as , .

For example, recall that under the hypotheses of Black and Scholes (1973) and Merton

(1973), the date- price of a call option maturing at date , with strike price ,

written on a stock with date- price and dividend yield , is given by:

(3.2)

where

(3.3)

In this case the corresponding SPD is a log-normal density with mean

and variance :

(3.4)

This expression shows that the SPD can depend on many quantities in general, and

is distinct from but related to the PDF of the terminal stock price . More generally,

while sufficiently strong assumptions on the underlying asset price dynamics can often

characterize the SPD uniquely, in most cases the SPD cannot be computed in closed

form and numerically intensive methods must be used to calculate it. It is clear from
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See Härdle (1990) and Wand and Jones (1995) for a more detailed discussion of nonparametric regres-
sion. There are other alternatives to that can be used to obtain option-pricing formulas: see Derman and
Kani (1994), Dupire (1994), Hutchinson, Lo, and Poggio (1994), Jackwerth and Rubinstein (1996), and
Rubinstein (1994). For an extension to American options and the nonparametric estimation of the early
exercise boundary, see Broadie et al. (1996).

See Merton (1990, Chapter 8.2). These conditions imply that cannot be an arbitrary function
but must yield an that satis�es all the conditions of a rational option-pricing
formula.

(3.4) that the SPD is inextricably linked to the parametric assumptions underlying the

Black-Scholes option pricing model. If those parametric assumptions do not hold, e.g., if

the dynamics of contain Poisson jumps, then (3.4) will yield incorrect prices, prices

that are inconsistent with the dynamic equilibrium model or the hypothesized stochastic

process driving . Given the general lack of success in �tting highly parametric models

to �nancial data (see, for example, Campbell, Lo, and MacKinlay [1997, Chapters 2 and

12]), combined with the availability of the data and the large effects of differences in

speci�cation, it is quite natural to focus on nonparametric methods for estimating SPD�s.

Aït-Sahalia and Lo (1997) propose to estimate the SPD nonparametrically by exploiting

Breeden and Litzenberger�s (1978) insight that . They

suggest using market prices to estimate an option-pricing formula nonparametrically,

which can then be differentiated twice with respect to to obtain . They

use kernel regression to construct . Assuming that the option-pricing formula to

be estimated is a an arbitrary nonlinear function of a vector of option characteristics or

�explanatory� variables, .

In practice, they propose to reduce the dimension of the kernel regression by using a

approach. Suppose that the call pricing function is given by the parametric

Black-Scholes formula (3.2) except that the implied volatility parameter for that option is

a nonparametric function :

(3.5)

We assume that the function de�ned by (3.5) satis�es all the required conditions to be

a �rational� option-pricing formula in the sense of Merton (1973, 1990). In this semi-

parametric model, we only need to estimate nonparametrically the regression of on a

11
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subset of the vector of explanatory variables The rest of the call pricing function

is parametric, thereby considerably reducing the sample size required to achieve

the same degree of accuracy as the full nonparametric estimator. We partition the vector

of explanatory variables where contains nonparametric regressors.

As a result, the effective number of nonparametric regressors is given by .

In our empirical application, we will consider ( ) and form the

Nadaraya-Watson kernel estimator of as:

(3.6)

where is the volatility implied by the option price and the univariate kernel func-

tions and and the bandwidth parameters and are chosen to optimize the

asymptotic properties of the second derivative of , i.e., of the SPD estimator. We then

estimate the call pricing function as:

(3.7)

The SPD estimator follows by taking the second partial derivatives of with respect

to :

(3.8)

We collect option prices in the form of panel data, consisting of observation periods

and options per period. The sample size is We make the following assumptions

on the data used to construct the nonparametric regression (3.6), i.e., where

. The nonparametric regression function is and we wish to estimate its

-th partial derivative with respect to the �rst component of the vector
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A kernel function is of order if:

if
if
if

where is an integer and for all .

The kernel functions and are bounded, three-times continuously

differentiable, and have derivatives which are bounded and in . is of order

and is of order The bandwidths are given by

where and are the unconditional standard deviations of the nonparametric re-

gressors, , with constant, and , with constant.

1. The process is strictly stationary with E and

E , and is -mixing with mixing coefficients that decay at a rate at

least as fast as , , as . The joint density of exists for all

and is continuous.

2. The density is -times continuously differentiable with respect to , with

, and and its derivatives are bounded and in . The marginal density

of the nonparametric regressors, , is bounded away from zero on every compact

set in .

3. and its derivatives are bounded. The conditional variance

(3.9)

is bounded and satis�es . The conditional fourth moment E

is bounded.

(3.10)
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Under Assumptions 1 and 2:

where

Therefore the E-VAR estimator is distributed asymptotically as

where is the option�s gamma evaluated at and

In practice, we use the kernel functions

(3.11)

which are of order and respectively. We then obtain

(3.12)

(3.13)

(3.14)

(3.15)

Here denotes the -th derivative of the univariate kernel function . The term

in the denominator of (3.13) is due to

We give in Table 1 the values of the integrals of the kernel functions that appear in the

expressions above for the functions (3.11) to be used in our empirical estimation of the

S&P 500 E-VAR.

This proposition follows from the functional delta method in Aït-Sahalia (1995): the

expression behaves asymptotically like
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learning networks

implied binomial tree

prior

each

and because derivatives of converge at a progressively slower rate (by com-

paring (3.12) for and ) the asymptotic distribution of

is that of .

Several other estimators of the SPD have been proposed in the recent literature (see

Aït-Sahalia and Lo [1997] for a more detailed discussion and an empirical comparison).

Hutchinson, Lo, and Poggio (1994) employ several nonparametric techniques to estimate

option-pricing models that they describe collectively as �arti�cial neural

networks, radial basis functions, and projection pursuit�and �nd that all these techniques

can recover option-pricing models such as the Black-Scholes model. Taking the second

derivative of their option-pricing estimators with respect to the strike price yields an esti-

mator of the SPD.

Another estimator is Rubinstein�s (1994) , in which the risk-neutral

probabilities associated with the binomial terminal stock price are estimated by

minimizing the sum of squared deviations between and a set of risk-neutral

probabilities , subject to the restrictions that correctly price an existing set of

options and the underlying stock, in the sense that the optimal risk-neutral probabilities

yield prices that lie within the bid-ask spreads of the options and the stock (see also

Jackwerth and Rubinstein (1996) for smoothness criteria).

This approach is similar in spirit to Jarrow and Rudd�s (1982) and Longstaff�s (1995)

method of �tting risk-neutral density functions using a four-parameter Edgeworth expan-

sion. However, Rubinstein (1994) points out several important limitations of Longstaff�s

method when extended to a binomial model, including the possibility of negative proba-

bilities. Derman and Kani (1994) and Shimko (1993) have proposed related estimators of

the SPD.

There are several important differences between kernel estimators and implied binomial

trees. Implied binomial trees require a prior for the risk-neutral probabilities; kernel

estimators do not. Implied binomial trees are typically estimated for cross-section

of options; kernel estimators aggregate options prices over time to get a single SPD. This

15
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4 Comparing S-VAR and E-VAR

implies that implied binomial tree is completely consistent with all option prices at each

date, but is not necessarily consistent across time. In contrast, the kernel SPD estimator is

consistent across time, but there may be some dates for which the SPD estimator �ts the

cross section of option prices poorly and other dates for which the SPD estimator performs

very well.

Whether or not consistency over time is a useful property depends on how well the

economic variables used in constructing the kernel SPD can account for time variation in

risk-neutral probabilities. In addition, the kernel SPDs take advantage of the data tem-

porally surrounding a given date. Tomorrow�s and yesterday�s SPDs contain information

about today�s SPD�this information is ignored by the implied binomial trees but not by

kernel-estimated SPDs.

Finally, and perhaps most importantly, statistical inference is virtually impossible with

learning-network estimators and implied binomial trees, because of the recursive nature of

the former approach (see White (1992)), and the nonstationarities inherent in the latter

approach (recall that implied binomial trees are estimated for each cross section of option

prices). In contrast, the statistical inference of kernel estimators is well developed and

computationally quite tractable.

Having obtained an estimator of the SPD, we can now gauge its importance for risk

management by studying the behavior of the ratio of to , where is an estimator of

the conditional density of the DGP, or S-VAR. If the ratio exhibits substantial

variation over its domain, this indicates that E-VAR measures contain important economic

information that is not captured by their S-VAR counterparts. Of course, because of

estimation error, will never be constant in any given dataset even if is. Therefore

some measure of the statistical �uctuations inherent in is required, and we now propose

estimators for and and describe how to conduct statistical inference for .
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The returns are strictly stationary, with

. Their marginal density admits continuous derivatives, and is bounded away

from zero on every compact set in . In addition, they are -mixing at a rate decaying

as at a rate at least as fast as , . The joint density of exists

for all and is continuous.

The kernel function is in and is of order . The bandwidth

to estimate the -th derivative of is given by

where is the unconditional standard deviation of the returns, , with

constant.

To estimate the actual statistical distribution of the future price value conditioned upon

the current value , we collect the time series of the index values, calculate the -period

continuously compounded returns, and construct a kernel estimator of

the density function of these returns:

(4.1)

We make the following assumptions:

(4.2)

From the density of the continuously compounded returns we can then calculate

(4.3)

and recover the price density corresponding to return density as

(4.4)
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4.2 Statistical Inference for the Ratio

Under Assumptions 3 and 4:

where . Therefore

where

ˆ ( ) =
ˆ (log( ))
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Our estimator of S-VAR will be

(4.5)

which can be computed directly from the estimator (4.1) of the density function . We

then obtain

(4.6)

(4.7)

The asymptotic distribution of the S-VAR estimator follows from the same technique as

in Section 3.2. To obtain simply multiply through (4.6) by and replace according

to (4.4).

At �rst glance, deriving the asymptotic distribution of the ratio seems to in-

volve a number of complex steps, due to the different sample sizes used to construct the

numerator (based on the entire panel data of option prices) and the denominator (based

only on the time series of index returns), as well as the cross-correlation between and .

Fortunately, this problem has a crucial characteristic that makes it quite simple: note from

comparing (3.14) to (4.7) that the rates of convergence of the two estimators are different.

In particular, the S-VAR estimator converges faster than the E-VAR estimator
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Note that there are two effects partly offsetting each other: on the one hand, is the

product of differentiating twice a nonparametric regression function, while is a direct

nonparametric density estimator, and thus converges slower; on the other hand,

is estimated using a larger sample size (based on the entire panel data of option prices,

) while is estimated using only observations (based only on the time series

of index returns), and thus converges faster. Note that our asymptotics have �xed

(the number of options trading on a given day, which is the result of institutional rules

designed by the relevant market), and (the number of days for which we collect data)

increasing to in�nity. Namely, we can see that the ratio of the convergence rates in (3.14)

and (4.7) is given by

by substituting in the speci�c bandwidth rules given in (3.10) and (4.2), and

and .

As a result the asymptotic distribution of is identical to that of �that is, we

can treat as �xed at its true value for the purpose of conducting inference on More

speci�cally, the correlation between the two estimators induced by the use of the same

data is of second order relative to the sampling variation of the slowly-converging E-VAR

estimator, and is therefore discarded asymptotically. It follows immediately that:

(4.8)

(4.9)
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Of course, if is constant, then its only possible value is one, since both and integrate to one.

See Constantinides (1982) for a discussion of the generality that the representative-agent model affords.

It is apparent from (2.3) that the ratio of to is proportional to the MRS of the

representative agent:

(5.1)

Therefore, the ratio is an estimator�up to a scale factor�of the MRS itself. If

is a nearly constant function over its domain (recall that both and are esti-

mated with several arguments), this suggests that the representative agent of

Section 2.1 is approximately risk neutral and that S-VAR and E-VAR measures will be

close. This remark will be the basis for a test of risk neutrality below. In interpreting

the quantity as a scaled estimator of the MRS, we are implicitly assuming that an

equilibrium asset-pricing model (such as the representative-agent model of Section 2.1)

holds. Of course, the particular model of economic equilibrium used most often in these

studies�the representative-agent model of Lucas (1978)�has been criticized on a number

of theoretical and empirical grounds, e.g., Kirman (1992), Kocherlakota (1996) and Ro-

goff (1996). Moreover, many of these models focus on aggregate consumption, whereas

risk-management issues involve other quantities as well, e.g., the S&P 500 index.

Nevertheless, we can conduct the thought experiment of a simple economy in which

market-wide �nancial aggregates like the S&P 500 proxy for aggregate consumption, as

for instance in Brown and Gibbons (1995). In such a context, despite the fact that we

do not know which model of economic equilibrium is the correct one, the relevance of

for risk management can be motivated in another way: it is one measure of the risk

preferences implicit in traded �nancial securities, and re�ects the market�s aggregation of

such preferences in one particular model of economic equilibrium.

Although the differences between and can be quite large for certain types of

preferences, implying important differences between S-VAR and E-VAR measures, there is
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See, for example, Hansen and Singleton (1983), Hansen and Jagannathan (1991), Mehra and Prescott
(1985), and Shiller (1981).

one set of preferences for which there is no difference: risk neutrality. If the representative

agent is risk neutral, his utility function must be linear in hence his MRS is unity and

. Therefore, S-VAR measures are all special cases of the more general MRS-VAR

measures, and the relevance of the latter over the former hinges on how risk averse the

representative agent is in practice. In other words, the ratio carries information

that is relevant for risk management, but also more generally for the literature on tests of

dynamic asset-pricing models, MRS bounds, the equity-premium puzzle, variance-bounds

tests, etc.

Recall that in equilibrium any two of the following imply the third: (1) the representative

agent�s preferences ; (2) the asset price dynamics, or equivalently the conditional density

function ; and (3) the SPD . In this section, we make this statement practical by

inferring from the market prices of options and index values the information on and

respectively that is needed to characterize the representative agent�s preferences. We have

shown that

where is a constant independent of the index level. Rather than extract from the ratio

information about the MRS (which would require knowledge of both the initial level of

marginal utility and the constant ), we can directly infer the Arrow-Pratt measure

of (absolute) risk aversion by noting that

(5.2)
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This suggests a very natural estimation strategy for the measure of risk aversion : we

estimate the �rst derivatives of and , and then calculate

(5.3)

Before we go any further, it is useful to examine what answer we would obtain if we

were to apply our estimation strategy based on (5.2) to the case where the data were gen-

erated by the Black-Scholes model. It is well-known that Constant Relative Risk Aversion

(CRRA) preferences sustain the Black-Scholes model in equilibrium [see for instance Ru-

binstein (1976), Breeden and Litzenberger (1978), Brennan (1979) and Bick (1987)], and

we now show that our characterization (5.2) of the implied risk aversion through the ratio

of E-VAR and S-VAR reproduces this result. In the Black-Scholes case, is given by

(3.4), while is given by the same equation (3.4) with replaced by the actual

drift of the price process under the actual measure, in

(5.4)

Indeed, in the Black-Scholes model, follows a geometric Brownian motion under both

the actual and risk-neutral probability measures; the only difference lies in the expected

return of the asset. It follows that

(5.5)

where denotes a constant and Depending upon the value of ,

we obtain (up to an irrelevant constant)

(5.6)

corresponds to a risk-neutral representative agent (in that case, the expected rate of
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return on the asset is ); corresponds to logarithmic utility. More generally,

the class of representative-agent utility functions which are implied by the Black-Scholes

model all belong to the class,

(5.7)

with CRRA coefficient .

This result can be linked quite naturally to the known necessary and sufficient condition

for to be an equilibrium price process in a Black-Scholes economy [see Bick (1990),

Wang (1993), and He and Leland (1993, Proposition 1)]: when is constant, the asset�s

expected return in must satisfy the partial differential

equation

with the boundary condition

In the Black-Scholes model, where is independent of the level of the stock price, this

equation reduces to our characterization (5.7) of the representative agent�s preferences

jointly implied by and Note that for each speci�cation of the utility function (up

to regularity conditions), a drift function can be found to construct an equilibrium price

process with constant volatility. In other words,the equilibrium price dynamics of the

underlying asset are not fully identi�ed from the utility function alone. Knowledge of the

SPD is required.

Of course, we wish to avoid relying on assumptions such as constancy of and/or

and instead infer the representative agent�s preferences directly from the market prices of

options and index values in a nonparametric fashion�which is precisely what (5.3) allows

us to do.

Using implied binomial trees, Jackwerth (1996) also proposes to estimate aggregate risk
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aversion levels that are consistent with option prices. Indeed, any SPD estimator can be

used to extract information about risk aversion. The relative strengths and weaknesses

of these approaches are determined by the relative strengths and weaknesses of the corre-

sponding SPD estimators on which they are based. See Section 3.3 and Aït-Sahalia and

Lo (1997) for further details.

We now derive the asymptotic distribution of our estimate of the Arrow-Pratt risk aversion

measure We are fortunate to be again in a context where one estimator, namely

converges slower than every other one ( and ) appearing in the ratio (5.3), all of

which can then be taken as �xed for the purpose of computing the asymptotic distribution

of That is, behaves asymptotically like which in turn behaves asymptotically

like .

To estimate the �rst derivative of , we select the bandwidth as in (3.10), except that

we now assume and have The kernel choices are identical to those utilized

to compute itself, that is and We can apply (3.12)-(3.13) to

to obtain the distribution of with asymptotic variance

Under the same assumptions as Proposition 1, the asymptotic distribution of is given

by that of i.e.:

(5.8)

where

(5.9)

To estimate we take the total derivative of (4.5 ) with respect to i.e.,

and note that the leading term in the

asymptotic distribution will be the slow-converging We derive the

distribution of for completeness only, since from what we have seen above it does not
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in�uence the distribution of Set the bandwidth for as in (4.2), except that we now

assume and have The kernel choice is and from

(5.10)

where we obtain, under the same assumptions as Proposition

2�simply multiply through (5.10) by and recall (4.4):

(5.11)

where

(5.12)

We therefore obtain:

(5.13)

(5.14)

These distributions will be used below to construct pointwise con�dence intervals for

the estimators.

In our context, risk-neutrality of the representative agent can be characterized equivalently

as or as A test based on comparing either the to only involves

the computation of the E-VAR and S-VAR, whereas comparing to also involves

calculating their �rst derivatives, and it can be shown that this results in a loss of power.
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The bandwidths and to estimate the E-VAR in (5.16) are given

by:

where and are constant, and and satisfy:

in addition to

We therefore propose to test risk neutrality in the form of the hypothesis

vs. (5.15)

A natural test statistic is:

(5.16)

where is a weighting function. An estimator for is the sample analog of the

right-hand-side of equation (5.16)

(5.17)

where , and is a trimming index. Any other evaluation of the

integral on the right-hand-side of (5.16) can be used. In practice, we evaluate numerically

the integral on a rectangle of values of representing the support of the density , and

use the binning method to evaluate the kernels (see e.g., Wand and Jones (1995) for a

description of the binning method). To construct the estimators involved in (5.16), we use

the following bandwidth and kernel functions:

(5.18)

(5.19)
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Furthermore, is a kernel of order . The bandwidth to estimate the S-VAR

in (5.16) is identical to given by (4.2) with .

Under Assumptions 1, 3 and 5, and under :

where

If the representative agent�s preferences implied by the joint data on option prices ( )

and index dynamics ( ) are indeed risk-neutral, then the two density functions should

be close to one another, and close to zero. If we can take into account the sampling

variation due to data noise, then we will be able to use (5.17) as the basis for a test statistic

of (5.15):

(5.20)

(5.21)

(5.22)

where

(5.23)

We report in Table 2 the values of the new kernel integrals that appear in the expres-

sions above for the actual choice . The distribution (5.20) follows again from the

functional delta method, applied now to derive the second order term in the expansion of

the test statistic (under the null, the liner term is degenerate). It is remarkable that the

estimation of S-VAR does not contribute any term to the asymptotic distribution of the

test statistic. In addition, only the higher order derivative of the nonparametric regression

function matter. This follows from the fact that

is the leading term in the expansion of which is itself
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the leading term in the expansion of

To estimate consistently the conditional variance of the regression, we calculate

the difference between the kernel estimate of the regression of the squared dependent vari-

able on and the squared of the regression of the dependent variable The

regression is estimated with bandwidth and con-

stant. Prior to computing the estimates, we standardize the regressors by removing their

respective sample means, and dividing by their sample unconditional standard deviations.

The test statistics are formed by standardizing the asymptotically normal distance

measure : we estimate consistently the asymptotic mean and variance , then

subtract the mean and divide by the standard deviation. The test statistic then has the

asymptotic distribution. Since the test is one-sided (we only reject when is too

large, hence when the test statistic is large and positive), the 10 percent critical value is

1.28, while the 5 percent value is 1.64. We �x the variables in that are excluded from

at their sample means.

More generally, we can test whether the index and option data, as summarized by our

estimated E-VAR and S-VAR, are compatible with the representative agent following a

speci�c set of preferences. For instance, the null hypothesis could specify that the repre-

sentative agent has CRRA preferences, Let be the Arrow-Pratt

measure of risk aversion speci�ed by the null hypothesis, where is a parameter vector in

a compact subset of Note that we cannot test the speci�c preferences hypothesis at the

level of since that would involve an unknown factor (the initial value of the agent�s

marginal utility). However, the hypothesis is unambiguous if taken in the form of the risk
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6 An Empirical Example

6.1 S&P 500 Index Options
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aversion measure. We can test

vs.

using as a test statistic:

where is a weighting function. The distribution of this statistic has the same form as

in Section 5.3 , except that its convergence rate is slower due to the fact that converges

even slower that Just as the estimation of did not affect the distribution of the

statistic in the previous case, the estimation of the (a priori unknown) parameter vector

will not affect the distribution of this statistic. Any consistent estimator of may be

used for the purpose of calculating

To gauge the empirical relevance of E-VAR, we compare it to S-VAR in the case of S&P

500 index options using data obtained from the CBOE for the sample period from January

4, 1993 to December 31, 1993. In particular, we estimate by taking the ratio

of nonparametric estimators of and , where is estimated according to Aït-Sahalia

and Lo (1997) (see Section 3) and is estimated by standard kernel density estimation

techniques. We also estimate the coefficient of risk aversion as described in Section 5.1,

and test the null hypothesis of risk neutrality as proposed in Section 5.3.

We use the same dataset of option prices and characteristics as Aït-Sahalia and Lo (1997)

hence our discussion of its properties shall be brief. The dataset contains 16,923 daily pairs

of call- and put-option prices for S&P 500 Index Options (symbol: SPX), traded on the
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Put-call parity is a pure arbitrage relationship, and as a result is almost never violated in practice. See
also Black and Scholes (1972), Harvey and Whaley (1992), Kamara and Miller (1995) and Rubinstein (1985).

Chicago Board Options Exchange between January 4, 1993 and December 31, 1993. We

take averages of bid- and ask-prices as our raw data. Observations with time-to-maturity

less than one day, implied volatility greater than 70%, and price less than 1/8 are dropped,

which yields a �nal sample of 14,431 observations and this is the starting point for our

empirical analysis.

To address problems of infrequent trading, nonsynchronous prices, and dividends, we

process the raw data using the following procedure. Since all option prices are recorded at

the same time on each day, we require only one temporally-matched index price per day.

To circumvent the unobservability of the dividend rate , we infer the futures price

for each maturity . By the spot-futures parity, and are linked through:

(6.1)

To derive the implied futures, we use the put-call parity relation which must hold if ar-

bitrage opportunities are to be avoided, independently of any parametric option pricing

model:

(6.2)

where denotes the put price. To infer the futures price from this expression, we

require reliable call and put prices�prices of actively traded options�at the strike

price and time-to-expiration . To obtain such reliable pairs, we must use calls and

puts that are closest to at-the-money [recall that in-the-money options are illiquid relative

to out-the-money ones, hence any matched pair that is not at-the-money would have one

potentially unreliable price]. On every day , we do this for all available maturities to

obtain for each maturity the implied futures price from put-call parity.

Given the derived futures price , we then replace the prices of all illiquid op-

tions, i.e., in-the-money options, with the price implied by put-call parity at the rele-
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vant strike prices. Speci�cally, we replace the price of each in-the- money call option

with where, by construction, the put with price

is out-of-the-money and therefore liquid. After this procedure, all the

information contained in liquid put prices has been extracted and resides in corresponding

call prices via put-call parity, therefore put prices may now be discarded without any loss

of reliable information.

To estimate S-VAR, we collect the time series of S&P 500 index returns from the

Center for Research in Security Prices (CRSP) up to December 31, 1993. We calculate the

continuously compounded returns corresponding to holding the S&P 500 index for days,

and use them as the inputs to construct the estimator (4.1) for each horizon . Each

series contains observations, i.e., four years of daily observations.

We focus our empirical analysis on the six-month ( days) horizon. We report

in Figure 1 the estimated implied volatility curve and its �rst three

derivatives with respect to moneyness, estimated from the semiparametric model. The

bandwidth values are given in Table 3. The curves in Figure 1 are the basic inputs to our

subsequent estimators of , and . The con�dence intervals are calculated based on

Proposition 1.

Figure 2 plots the estimated E-VAR and S-VAR, in addition to a 95% con�dence interval

for E-VAR, for the four traded option maturities. The main difference between E-VAR

and S-VAR is the difference in skewness between the two densities: E-VAR is strongly

negatively skewed, while S-VAR is slightly positively skewed.

These facts combine to make the estimated ratio in Figure 3 generally decreasing as

a function of the S&P 500 value, and statistically different from one (which would have

corresponded to risk neutrality of the representative agent). That is decreasing in

can be understood intuitively by noting that the expected value of under the actual

measure is empirically higher than its expected return under the risk-neutral measure, i.e.,

(6.3)
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which in terms of rates of return corresponds to . Therefore, for (6.3) to hold,

we expect for the high values of and conversely for the low values of

; that is, for low values of and for large values of This

downward-slopping pattern for is con�rmed by Figure 3.

To quantify the relative preferences of the representative agent between a $1 payoff in

different states, consider the future value of the inverse of the ratio plotted in Figure 3:

(6.4)

The denominator of the right-hand side is the price at of an Arrow-Debreu security

paying at if the S&P 500 state is between and The numerator

is the probability of that event actually being realized, that is, the expected payoff from

buying the Arrow-Debreu security. Hence their ratio is one plus the expected rate of

return from buying the security at and selling it at We report these returns in Table

5 for different states , and contrast them with those of the Black-Scholes model. Not

surprisingly, the Black-Scholes model makes the negative states substantially less valuable

than the nonparametric estimates do, re�ecting the lack of skewness in its E-VAR for

continuously-compounded returns.

We then implement empirically the test for risk neutrality of the representative agent

that was developed in Proposition 5. The null hypothesis of risk neutrality

is rejected with a -value of 0.00, which con�rms Figure 3 (recall that risk neutrality

corresponds to i.e., a horizontal line in Figure 3).

To estimate the coefficient of risk aversion, we need to select the bandwidth values to

estimate the third derivative of the call pricing function, and the �rst derivative of S-VAR.

Bandwidth values to estimate and are reported in Table 6, and we plot the implied

risk aversion in Figure 4. The con�dence interval is constructed from the asymptotic

distribution theory derived in Proposition 4.

The notable feature of Figure 4 is that is decreasing as a function of In other
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See Renault and Garcia (1996) for a different attempt to confront option data with the Euler Equation.

words, the market prices of S&P 500 options and the market returns on the S&P 500

index are such that the representative agent becomes more averse as the index goes down

in value. This phenomenon is more pronounced than under CRRA preferences [see (5.7)],

providing yet another characterization of the differences between market prices and the

Black-Scholes model. Note also that in Figure 4 is everywhere positive, thereby implying

a concave utility function.

Fitting the curve (5.7) to the nonparametric estimate of in Figure 4 provides an

estimate of the coefficient of risk aversion under the null hypothesis of CRRA preferences.

The best �t curve yields in turn an estimate of the CRRA (which in the Black-Scholes

model is equal to ) An interesting comparison is whether the implied value

of is �reasonably� compatible with the values of and given by the S&P 500 returns

and the riskfree rate In other words, is there an equity-premium-like puzzle at the levels

of option prices, or do they imply coefficients of risk aversion that are less extreme than

those typically found in the equity-premium literature? We �nd that the implied value

of the coefficient is 25.5, which is substantially higher than the typical values used in

theoretical models (where the range is typically 1-10), yet comparable to the estimates

exhibited by studies of the Euler equation in consumption asset pricing models: see Table

7 for the range of values of the constant CRRA that have been reported in the literature.

While the implied CRRA coefficient is informative, it is important to keep in mind that

Figure 4 shows that CRRA preferences are quite misspeci�ed: the CRRA best �t curve is

quite far from the nonparametrically-estimated risk aversion curve.

Risk management has become a �rst-order concern for �nancial managers and in this

paper, we argue that economic value-at-risk is a more relevant quantity for risk managers

than the more traditional statistical value-at-risk. The difference lies in the fact that E-

VAR incorporates and re�ects the combined effects of aggregate risk preferences, supply

and demand, and probabilities; S-VAR involves only one of these effects. Moreover, if
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aggregate preferences were risk neutral, E-VAR reduces to S-VAR as a special case, hence

no information is lost in using E-VAR as a starting point for the risk management process.

However, E-VAR is computationally more demanding, particularly for the nonparamet-

ric estimators that we have proposed. Although a parametric version of E-VAR is readily

available (as in our Black-Scholes case), there is so much mounting empirical evidence

against the standard parametric models for so many types of assets that we are reluctant

to propose any approach other than a nonparametric one. Therefore, a distinct disadvan-

tage of E-VAR is its computational complexity. Nevertheless, given the very nature of the

risk management function, the potential bene�ts of E-VAR would seem to outweigh the

computational costs.

In our empirical example, we have demonstrated that S-VAR and E-VAR yield con-

siderably different risk assessments for the S&P 500 index. This suggests that E-VAR is

capturing aspects of market risk that S-VAR is not (recall that S-VAR is a special case of

E-VAR). However, conclusive evidence of the superiority of E-VAR must lie in its appli-

cations to speci�c risk-management processes, and we hope to collect such evidence in the

near future.
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Kernel constants that characterize the asymptotic variances of the nonparametric estimators in
Propositions 1, 2, 3 and 4. The kernel functions and are de�ned in (3.11). denotes
the -th derivative of .

Kernel convolution constants that characterize the asymptotic variance of the test statistic in
Proposition 5. The kernel function is de�ned in (3.11), and denotes its -th derivative.
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Bandwidth selection for the second derivative of the estimator required in addition

to the previous one to compute and bandwidth selection for . The rules for and

are and where is of order
and is of order and are the unconditional standard deviations of the

nonparametric regressors, with constant, and , with
constant. denotes the bandwidth used to estimate the conditional variance of the nonparametric
regression. The rule for is where is the order of the kernel
to estimate the -th derivative of is the unconditional standard deviation of the returns,
and with constant.
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Nonparametric tests of the null hypothesis of risk neutrality of the representative agent, based
on comparing globally E-VAR to S-VAR. The bandwidths are and

with and constant, and satisfying the inequalities (5.18)-(5.19).

Further, is a kernel of order . The bandwidth to estimate the S-VAR in
(5.16) is given by the rule (4.2) with . The average value of across all maturities is
0.015833. The bandwidths to estimate the conditional variance of the nonparametric regression are

and respectively, and are optimally smoothed to produce consistent estimates (rate
. The weighting function is a trimming index, i.e., only

observations with estimated density above a certain level, and away from the boundaries of the
integration space, are retained. The two numbers in the column �Trim� refer respectively to the
trimming level (as a percentage of the mean estimated density value), and the percentage trimmed at
the boundary of the integration space when calculating the test statistics. For instance, if the latter
is percent, the trimming index retains the values between times the minimum evaluation value
and times the maximum value. �Integral� refers to the percentage of the estimated density
mass on the integration space that is kept by the trimming index, i.e., where is
the marginal density of the nonparametric regressors �Test Statistic� refers to
the standardized distance measure between the E-VAR and S-VAR estimates (remove the bias term,
divide by the standard deviation). The integral de�ning is calculated over the integration space
given by the rectangle in the moneyness days-to-expiration space. The
kernel weights are constructed using the binning method with bins in the moneyness dimension
and in the days-to-expiration dimension.
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Table 5: Expected Rates of Returns of S&P 500 States

State:

Nonparametric Rate of Return
Black-Scholes Rate of Return
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375 400 425 450 475 500

4 65 0 17 0 93 0 51 0 75 0 85
3 09 2 09 1 34 0 27 0 56 1 35

= 126

( + 1)
ˆ = 7 64% ˆ = 9 74% = 3 10%

= 2 78% 7 72

Expected rate of return (annualized and continuously compounded over a horizon of
days) from an investment in an Arrow-Debreu claim that pays if the state at falls between
$ and $ The nonparametric estimates are obtained with the bandwidths given in
Table 3. The Black-Scholes estimate is based on and

. The resulting Black-Scholes value of the CRRA coefficient is Negative values
in the Table correspond to states which are more likely to occur under the risk-neutral than the
actual probabilities; they are correspondingly �expensive� based on the expected rate of return
measure.
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Table 6: Bandwidth Values for the Risk Aversion Coefficient
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Bandwidth selection for the third derivative of the estimator required in addition to
the previous two to compute and bandwidth selection for . The rules for and

are and where is of order
and is of order and are the unconditional standard deviations of the

nonparametric regressors, , with constant, and , with

constant. The rule for to estimate the -th derivative of is
where is the order of the kernel is the unconditional standard deviation of the returns,
and , with constant.
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Table 7: Estimated Values of the Constant Coefficient of Relative Risk Aver-
sion

CRRA Range

Arrow (1971)
Friend and Blume (1975)

Hansen and Singleton (1982,1984)
Mehra and Prescott (1985)

Ferson and Constantinides (1991)
Cochrane and Hansen (1992)
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Representative values of the CRRA coefficient reported in the literature, to be compared .to then
the �tted CRRA found here. The value in Arrow (1971) is based on a summary of a number of
studies as well as theoretical considerations. Friend and Blume (1975) study individual portfolio
holdings. Other values are based on Table I in Hansen and Singleton (1984); Footnote 5 in Mehra
and Prescott (1985); Table 4 in Ferson and Constantinides (1991); and in Cochrane and Hansen
(1992), the range 40-50 is required to �t the Hansen-Jagannathan (1991) bound (their Figure 1), i.e.,
values of of at least 40 are required to generate a variance of the stochastic discount factor implied
by the equity premium region on the graph. Even at that value, the mean-standard deviation pairs
do not lie inside the Hansen-Jagannathan �cup� however.










