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Abstract

In this paper we analyze and evaluate a standard approach finan-
cial institutions use to calculate their so-called total economic capital.
If we consider a business that faces a total random loss S over a given
one-year horizon then economic capital is traditionally defined as the
difference between the 99.97% percentile of S and its expectation. The
standard approach essentially assumes that the different components
(risks) of S are multivariate normally distributed and this highly fa-
cilitates the computation of the total aggregated economic capital.
In this paper we show that this approach also holds for a more gen-
eral framework which encompasses as a special case the multivariate
normal (and elliptical) setting. We question also the assumption of
multivariate normality since for many risks one often assumes other
than normal distributions (e.g. a lognormal distribution for insurance
risk). Assuming that risks are either normal or lognormal distrib-
uted we propose, using the concept of comonotonicity, an alternative
aggregation approach.

1 Introduction

In this paper we analyze and evaluate a standard approach financial institu-
tions use to calculate their so-called total economic capital. Roughly speak-
ing, the economic capital is the amount of capital a financial institution needs
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in order to remain economically solvent. If we consider a business that faces
a random loss S over a given one-year horizon then the (required) economic
capital is most often defined as the difference between the 99.97% percentile
of S and its expectation. In order to compute this required amount, the
standard approach uses stand-alone economic capitals, which are essentially
derived from the aggregate loss distribution, per type of risk (ALM, Cred-
its,...) and per business line (Life Insurance, Retail Bank,...) as well as the
Pearson correlations that exist between the different risks. Next, a straight-
forward formula enables to compute a closed-from expression for the total
diversified economic capital and this in terms of the stand-alone economic
capitals and the correlations.
It is well-known that this simple approach is correct when risks are as-

sumed to be multivariate normally distributed. In this paper we show that
this approach also holds for a more general framework which encompasses as
a special case the multivariate normal (and elliptical) setting. We also prove
that the simple approach can still be employed when one replaces in the de-
finition of economic capital the quantile risk measure by a general distortion
riskmeasure. Finally, we also question the assumption of multivariate nor-
mality since for the calculation of some of the stand-alone economic capitals,
one often uses other than normal distributions (e.g. a beta distribution for
the credit risk). We refer to Heckman and Meyers (1983), Panjer (1981) and
Robertson (1992) amongst others for actuarial methods that can be used for
modeling the aggregate loss distribution per type of risk and per business
line. In Wang (1998) the author considers a variety of models of how to com-
bine the different aggregate loss distributions and these methods could then
be used to derive the total economic capital. Within this respect, our paper
extends the list of methods that were mentioned in Wang (1998). Indeed,
assuming that risks are either normal or lognormal distributed we propose,
using the concept of comonotonicity, an easy to implement aggregation ap-
proach.

2 Economic capital and diversification

Consider a business that faces a random loss S over a given one-year horizon.
We define the (required) economic capital as the difference between a given
percentile of S (e.g. 0.9995) and its expectation:

Economic Capital = EC [S] = F−1S (1− p)−E(S). (1)
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We will call F−1S (1 − p) the ’total balance sheet capital requirement’. We
define ’economic default’ as the event ’S exceeds F−1S (1 − p)’. Holding the
total balance sheet capital F−1S (1 − p) means that if value of the available
assets equals or exceeds this amount, then there is a probability of shortfall
of at most p.
The first step in calculating the required amount of economic capital is

to determine per risk type the required amount of economic capital for each
business unit as if it existed on its own. The next and crucial step consists
then in the aggregation of the different economic capitals from the different
business lines and risk types, into one single aggregate capital amount.
Aggregation will lead to a diversification effect. Indeed, consider two busi-

ness units with risks (losses) X1 and X2. Assume that the total balance sheet
capital is determined by the risk measure ρ (e.g. ρ [S] = F−1S (1− p)). When
each of the risks is considered on a stand-alone basis, i.e. each of the busi-
ness units is not liable for the shortfall of the other one, the total balance
sheet capital requirement for each portfolio is given by ρ [Xj]. When the two
business units are viewed on an aggregate basis, the purpose is to avoid the
eventual shortfall of the aggregate loss X1 + X2. As mentioned in Dhaene,
Goovaerts & Kaas (2003), the following inequality holds with probability 1:

(X1 +X2 − ρ [X1]− ρ [X2])+ ≤
2X

j=1

(Xj − ρ [Xj])+ . (2)

Here, the notation (x)+ stands for max(x, 0). Inequality (2) states that the
shortfall (X1 +X2 − ρ [X1]− ρ [X2])+ of the aggregated business units is al-
ways smaller than the sum of the shortfalls (Xj − ρ [Xj])+ of the stand-alone
business units, when adding the total balance sheet requirements. It ex-
presses, that from the viewpoint of avoiding a shortfall, the aggregation is to
be preferred in the sense that the shortfall decreases. The underlying reason
is that within the aggregated portfolio, the shortfall of one of the entities
can be compensated by the gain of the other one. This observation can be
summarized as: ’merging decreases the shortfall risk’. This also implies that
the total balance sheet capital ρ [X1 +X2] of the aggregated position can
be chosen lower (to some extent) than the simple sum ρ [X1] + ρ [X2] of the
stand-alone total balance sheet capitals:

ρ [X1 +X2] ≤ ρ [X1] + ρ [X2] . (3)
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Since taking expectations is a linear operation the same observation holds
for the economic capitals:

EC [X1 +X2] ≤ EC [X1] + EC [X2] . (4)

For more details, see Dhaene, Laeven, Vanduffel, Darkiewicz & Goovaerts
(2004).

3 Aggregation methods

3.1 Summing the individual capitals

Many financial institutions first determine economic capital for every risk
type i within a given business unit j. Denoting the loss of risk type i in
business unit j by Xij, we have:

Economic Capital of risk type i within business unit j (5)

= ECij = F−1Xij
(1− p)− E [Xij] .

The aggregate loss S is the sum of the individual losses:

S =
aX
i=1

bX
j=1

Xij. (6)

A first possible way to determine the aggregate economic capital EC
corresponding with the aggregate loss S could be to take the sum of the
individual economic capitals. We will denote the economic capital determined
in this way by EC(sum):

EC(sum) =
aX
i=1

bX
j=1

ECij. (7)

The aggregate economic capital EC(sum) will be equal to the (1-p)-percentile
of S −E(S) provided the individual losses Xij are all comonotonic:

All Xij are comonotonic⇒ EC(sum) = F−1S (1− p)− E(S). (8)

This result holds because for comonotonic random variables, the percentiles
of the sum are given by the sum of the respective percentiles of the marginals.
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Comonotonicity is an extreme positive dependency structure, where increas-
ing one of the Xij will lead to an increase of all the others too. Notice that
the opposite implication does not necessary hold: the fact that the (1-p)-
percentile of the sum equals the sum of the (1-p)-percentiles of the marginals
will not necessary imply comonotonicity of the Xij.
In the special case that the random vector (X11,X12, . . . , Xab) is multivari-
ate normal (which means that any linear combination of the Xij is normal
distributed), we have that a random vector is comonotonic if and only if
all correlations are equal to 1. The concept of comonotonicity is extensively
studied in Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a, b).
Assuming comonotonicity between the individual risks involved, implies for
instance that increasing credit risk losses for the Banking pool would always
go hand in hand with increasing operational losses within the Inurance Pool.
Hence such a methodology will in general overestimate the required aggregate
capital, as no diversification effect is taken into account. Otherwise stated,
determining the economic capital by (7) will in general give rise to a too high
capital. It is a safe strategy, but at the cost of holding too much capital.

3.2 The copula approach

In general, the individual losses Xij will not be comonotonic, implying that
there will exist a diversification benefit, which allows the aggregate capital,
at a (1-p)-probability level, to be lower than the sum of the individual cap-
itals, also at a (1-p)- probability level. Hence, we can take into account the
degree to which the different risk types co-move or even counter-move. If
we know to what degree the losses related to risk type i and business unit
j tend to follow the losses related to risk type i0 and business unit j0, for
all couple (i, j) and (i0, j0) , we will be able to compute the aggregate capital
requirement, as the distribution of S is completely specified in this case.
One typically uses Pearson’s correlation coefficient to describe the dependen-
cies between the different risk types. It is well-known that only in a few cases,
(the most important case being the one where risks are assumed to be multi-
variate normal), the knowledge of Pearson’s correlation coefficient is sufficient
to describe the full dependency structure. So, in case the risks involved are
multivariate normal distributed, we can conclude that this approach used
to aggregate the different risks will be justified. In general however, a more
sophisticated notion for describing dependency structures will be required,
namely a copula.
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To state it more mathematically: we will be able to determine the (1-
p)— percentile of the aggregate loss if the copula C connecting the marginal
distributions Fij (xij) of the individual losses Xij, as well as these marginal
distributions, are known. In this case, the multivariate distribution of the
random vector (X11, X12, . . . , Xab) is given by

FX11,X12,...,Xab
(x11, x12, . . . , xab) = C [F11 (x11) , F12 (x12) , ..., Fab (xab)] . (9)

An introduction to copulas and its applications in insurance and finance is
Frees & Valdez (1998). Over the last years, a whole literature has appeared
on modeling dependencies by (families of) copulas.
Although many of the developed theoretical results for copulas hold for

any dimension of the random vector involved, practical applicability is often
restricted to random vectors of a sufficiently small dimension (typically less
than 4).
Moreover, it will be extremely difficult to model the correct copula since no
empirical data concerning the dependencies that exist between the different
risks seem to be readily available. Indeed, we noticed that also Pearson’s
correlation matrix is often bassed on benchmark data.
Although the distribution of S =

Pa
i=1

Pb
j=1Xij is completely specified when

the multivariate distribution C [F11 (x11) , F12 (x12) , ..., Fab (xab)] is known,
determining the distribution of S and/or its quantiles from (9) is, from a
computational point of view, in most cases an extremely complicated task.
For all these mentioned reasons, we believe that the copula approach is

not an appropriate methodology for the aggregation problem.

3.3 Individual versus collective approach

The approaches described in the previous section could be called ’individual
approaches’, as the basic entities are the individual losses, which are in a
further stage aggregated.
Another (theoretical) approach could be called ’collective’ in the sense

that the loss of the whole business (the sum of all losses of all risk types and
all business units) is the basic random variable of which the distribution is
modeled. Using the aggregated cash flows would lead to an aggregate loss
and allow us to compute aggregated economic capital.
In fact, in this collective methodology, the dependencies (this means the cor-
relations in the multivariate normal case) are taken into account implicitly.
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These ‘embedded’ correlations could be determined backwards by consid-
ering also the stand-alone capitals, and then look for the correlations that
correspond to these marginal and aggregate quantiles.

4 The standard aggregation methodology : a
reconciliation

In this section we will retrieve the standard formula many financial insti-
tutions use to compute its diversified capital and investigate under which
assumptions this formula is valid.
In this individual approach, the stand-alone economic capitals are first

determined per risk type and business unit. The dependencies that exist
between the individual losses (for each couple (Xij,Xi0j0)) are described by
the correlations corr [Xij,Xi0j0 ]

1.
In order to make the presentation somewhat simpler without losing gener-

ality of the results, we will rename the individual losses Xij as Y1, Y2, . . . , Yn
with n = a.b. This will allow us to avoid double summations. The aggregate
loss S can then be rewritten as

S =
aX
i=1

bX
j=1

Xij =
nX

k=1

Yk. (10)

Let Σ be the variance-covariance matrix, which represents the variances
and covariances between the different individual losses Yi. Hence, Σ is an
n× n matrix, with element in the k-th row and l-the column given by

(Σ)kl = cov [Yk, Yl] = E [(Yk −E [Yk]) (Yl −E [Yl])] . (11)

We also define the n × n correlation matrix Λ, of which the elements are
given by

(Λ)kl = r [Yk, Yl] , (12)

where r [Yk, Yl] stands for Pearson’s correlation coefficient between Yk and
Yl :

r [Yk, Yl] =
cov [Yk, Yl]

σk σl
, (13)

1An exception is the ALM economic capital framework. In this case, a collective ap-
proach is used.
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with σk being the standard deviation of Yk:

σk =
p
cov [Yk, Yk]. (14)

In order to compute the aggregate capital requirement, one assumes that
the stand-alone losses Yk (per risk type and business unit) are multivariate
normal distributed:

Assumption: (Y1, Y2, . . . , Yn) is multivariate normal distributed. (15)

Notice that under this assumption, the procedure explained in Subsection 3.1
(summing the individual capitals) corresponds with choosing the correlation
matrix Λ such that (Λ)kl = 1, for all k and l.
The economic capital ECk of individual loss Yk is defined as

ECk = F−1Yk
(1− p)− µk, (16)

with
µk = E [Yk] ,

see also formula (5).
The assumption of normality implies that

F−1Yk
(1− p) = µk + σk Φ−1(1− p) (17)

= µk + Φ−1(1− p) σk.

Hence, from (16) and (17), we find

ECk = Φ−1(1− p) σk. (18)

The assumption of multivariate normality of the random vector (Y1, Y2, . . . , Yn)
can be expressed as follows:

nX
k=1

αkYk is normal distributed, for any set of real numbers α1, α2, . . . , αn.

(19)
Notice that the mean and standard deviation of

Pn
k=1 αkYk are given by

E

"
nX

k=1

αkYk

#
=

nX
k=1

αk µk (20)
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and

σ

"
nX

k=1

αkYk

#
=
p
αT · Σ · α, (21)

respectively, where the superscript ’T’ stands for the transposition operation.
Thus

α=


α1
α2
...
αn

 , (22)

whereas
αT =

¡
α1 α2 · · · αn

¢
. (23)

More in particular, the multivariate normal assumption implies that the
aggregate loss S =

Pn
k=1 Yk is normal distributed with mean and standard

deviation given by

E [S] =
nX

k=1

µk (24)

and
σS =

q
1T · Σ · 1, (25)

respectively, where 1 is the unity vector:

1T =
¡
1 1 . . . 1

¢
. (26)

The aggregate economic capital EC is now defined as

EC = F−1S (1− p)−E [S] . (27)

Taking into account the previous results, we find the following expression for
the aggregate economic capital in terms of the variance-covariance matrix Σ:

EC = Φ−1(1− p) σS (28)

= Φ−1(1− p)

q
1T · Σ · 1.

Defining the vector EC by

EC = (EC1, EC2, . . . , ECn) , (29)
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we find

1T · Σ · 1 =
nX

k=1

nX
l=1

cov [Yk, Yl] =
nX

k=1

nX
l=1

σk σl corr [Yk, Yl] (30)

=
1

[Φ−1(1− p)]2

nX
k=1

nX
l=1

ECk ECl corr [Yk, Yl]

=
1

[Φ−1(1− p)]2
ECT · Λ · EC.

Hence, the aggregate economic capital EC can be written in terms of the
correlation matrix as

EC =

q
ECT · Λ · EC. (31)

As a special case, in addition to the multivariate normality, assume that all
losses Yk are comonotonic, then formula (31) reduces to

EC =
nX

k=1

ECk. (32)

To conclude, the standard aggregation methodology computea the aggre-
gate Economic Capital of S =

Pn
k=1 Yk by (31). Notice that:

1. The random vector (Y1, Y2, . . . , Yn) is assumed to be multivariate nor-
mally distributed.

2. The individual economic capitals ECk are defined through ECk =
F−1Yk

(1− p)− µk,

3. Pearson’s correlation matrix Λ describes the correlation between the
individual risks, see (13).

In fact, formula (31) shows that in the multivariate normal case, the (1-
p)-percentile of the sum can be computed from the correlation matrix and
the (1-p)-percentiles of the marginals involved. It follows immediately that
this result holds for any percentile.
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5 An alternative aggregation methodology based
on the concept of comonotonicity

5.1 Introduction

The standard methodology assumes that the set of risks one faces is multivari-
ate normally distributed. In this section we develop another methodology,
for the case that this assumption is not satisfied. Indeed, the assumption
of a (symmetric) normal distribution in case of credit risk for instance is
hard to defend. This is because the different credit risks are subject to the
same economical environment which makes these risks principlly positive de-
pendent turning the distribution function skewed. A lognormal assumption
would already mean a major improvement here. Therefore, we will describe a
methodology that is appropriate in case the individual risks that are involved
are either normal or lognormal distributed.
A random vector (Y1, Y2, . . . , Yn) has the multivariate normal distribution

if and only if every linear combination of its variates has a univariate normal
distribution. Now assume that (Y1, Y2, . . . , Yn) has a multivariate normal
distribution, with expectations E [Yk] = µk, variances var [Yk] = σ2k and
covariance coefficients cov [Yk, Yl]. Let Y and Λ be linear combinations of the
variates Yi. Hence,

Y =
nX
i=1

αiYi (33)

and

Λ =
nX
i=1

βiYi. (34)

Then also (Y, Λ) has a bivariate normal distribution.
Further, if (Y, Λ) has a bivariate normal distribution, then, conditionally
given Λ = λ, Y has a univariate normal distribution with mean and variance
given by

E [Y | Λ = λ] = E [Y ] + r (Y,Λ)
σY
σΛ
(λ−E [Λ]) (35)

and
V ar [Y | Λ = λ] = σ2Y

¡
1− r (Y,Λ)2

¢
, (36)

where r (Y,Λ) is Pearson’s correlation coefficient for the couple (Y,Λ).
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For a normal random variable Y with expectation µ and variance σ2, the
following expressions hold for any p ∈ (0, 1):

F−1Y (p) = µ+ σ Φ−1(p), (37)

F−1
eY
(p) = eµ+σ Φ−1(p),

TV aRp [Y ] = µ+ σ
φ (Φ−1 (p))
1− p

,

TV aRp

£
eY
¤
= eµ+σ

2/2Φ (σ − Φ−1 (p))
1− p

,

where as before, Φ stands for the standard normal distribution and φ is its
derivative, see e.g. Dhaene, Vanduffel, Tang, Goovaerts, Kaas & Vyncke
(2004).
Essentially, the standard method describes a way how to determine quan-

tiles of the sum S of the components of a multivariate normal random vector
(Y1, Y2, . . . , Yn).
In this section, we will consider the case where not all components are

normal, but where some have a lognormal distribution. We will propose an
approximate (but accurate and analytical) method to determine quantiles of
such a sum.
To be more precise, consider a random variable S of the form

S =
mX
k=1

Yk +
nX

k=m+1

eYk , (38)

where (Y1, Y2, ..., Yn) is a multivariate normal distributed random vector.
Hence, we assume that the aggregate risk is composed of dependent stand-
alone risks which may be either normal or lognormal distributed.
As before, we introduce the following notations:

µk = E [Yk] , µS = E [S] , (39)

σ2k = V ar [Yk] , σ
2
S = V ar [S] .

We will assume that the multivariate normal distribution of (Y1, Y2, ..., Yn) is
known, which means that the expectations and variances defined above are
known, as well as the following correlations:

rk,l = r [Yk, Yl] . (40)
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The r.v. S defined in (38) will in general be a sum of non-independent
normal and lognormal r.v.’s. Its distribution function cannot be determined
analytically and is in general too cumbersome to work with. Dhaene, Denuit,
Goovaerts, Kaas & Vyncke (2002a) derive comonotonic upper bound and
lower bound approximations (in the convex order sense) for the distribution
of S. Especially the lower bound approximation, which is given by E[S | Λ]
for an appropriate choice of the conditioning r.v. Λ performs extremely
accurate, see for instance Vanduffel, Dhaene, Goovaerts & Kaas (2003) or
Vanduffel, Hoedemakers & Dhaene (2004).

5.2 Comonotonic approximations

A central concept in the theory on comonotonic r.v.’s is the concept of convex
order. A r.v. X is said to precede a r.v. Y in the convex order sense, notation
X ≤cx Y , if the means of both r.v.’q are equal and if their corresponding
stop-loss premia are ordered uniformly for all retentions d, i.e. E[(X−d)+] ≤
E[(Y − d)+], for all d.
Replacing the copula describing the dependency structure of the terms in

the sum (38) by the comonotonic copula yields an convex order upper bound
for S. On the other hand, applying Jensen’s inequality to S provides us with
a lower bound.
These results are formalized in the following theorem, which can be proven

using the techniques explained in Kaas, Dhaene & Goovaerts (2000).

Theorem 1 Let the random variable S be given by (38), where we make
no assumption concerning the distribution function of the random vector
(Y1, Y2, ..., Yn). Consider the conditioning random variable Λ, given by

Λ =
nX

j=1

βjYj. (41)

Also consider random variables Sl and Sc defined by

Sl =
mX
k=1

E [Yk | Λ] +
nX

k=m+1

E
£
eYk | Λ¤ (42)

and

Sc =
mX
k=1

F−1Yk
(U) +

nX
k=m+1

e
F−1Yk

(U)
, (43)
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respectively. Here U is a Uniform(0, 1) r.v. and Φ is the cumulative d.f. of
the N(0, 1) distribution. For the random variables S, Sl and Sc, the following
convex order relations hold:

Sl ≤cx S ≤cx S
c. (44)

The theorem states that (the distribution function of) Sl is a convex order
lower bound for (the distribution function of) S, whereas (the distribution
function of) Sc is a convex order upper bound for (the distribution function
of) S.
The upper bound Sc is obtained by replacing the original copula between

the marginals of the sum S by the comonotonic copula, but keeping the
marginal distributions unchanged.
It is easy to see that the d.f. of the lower bound Sl corresponds with the

distribution function of E[S | Λ]. The lower bound is obtained by changing
both the copula and the marginals of the original sum. Intuitively, one can
expect that an appropriate choice of the conditioning variable Λ will lead
to much better approximations than the the upper bound approximations.
This is because the conditioning technique introduces information about the
dependency structure in the exact sum S. The approximation Sc on the
other hand, only uses the marginals of the exact sum.
Notice that the result of the theorem above holds without making any

assumption concerning the random vector (Y1, Y2, ..., Yn). The multivariate
normal case is considered in the following theorem.

Theorem 2 Let the random variable S be given by (38), where the random
vector (Y1, Y2, ..., Yn) has a multivariate normal distribution. Then the (dis-
tribution function of the) random variables Sl and Sc defined in the previous
theorem follow from

Sl d
=

mX
k=1

¡
µk + rkσkΦ

−1(U)
¢
+

nX
k=m+1

eµk+rkσkΦ
−1(U)+ 1

2
σ2k(1−r2k) (45)

and

Sc d
=

mX
k=1

¡
µk + σkΦ

−1(U)
¢
+

nX
k=m+1

eµk+σkΦ
−1(U), (46)

with
rk = r [Yk,Λ] , (47)
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and where U is a random variable which is uniformly distributed over the
unit interval (0, 1).

Proof. (a) Conditionally, given Λ = λ, the random variable Yk is nor-
mally distributed with parameters

E [Yk | Λ = λ] = µk + rk
σk
σΛ
(λ−E [Λ])

and
V ar [Yk | Λ = λ] = σ2k

¡
1− r2k

¢
.

Defining the random variable U by

Φ−1 (U) =
Λ−E [Λ]

σΛ
,

we find that
E [Yk | Λ] = µk + rkσkΦ

−1 (U)

and

E
£
eYk | Λ¤ = eE[Yk|Λ]+

1
2
V ar[Yk|Λ]

= eµk+rkσkΦ
−1(U)+ 1

2
σ2k(1−r2k).

The expression (45) follows then from the previous theorem.
(b) We have that

F−1Yk
(p) = µk + σkΦ

−1(p)

and
F−1
eYk
(p) = eµk+σkΦ

−1(p).

Inserting these expressions in (43), we find (46).
We have that the coefficients rk are given by

rk =
1

σkσΛ

nX
j=1

βj cov [Yk, Yj] , (48)

with

σ2Λ =
nX

j=1

nX
k=1

βjβkcov [Yk, Yj] . (49)
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5.3 Determining approximations for F−1S (p) and TVaRp [S]

Notice that Sc is a comonotonic sum. As the quantiles and tailvars are
additive for comonotonic risks, we find from (37) that for p ∈ (0, 1), the
following expressions hold:

F−1Sc (p) =
mX
k=1

¡
µk + σkΦ

−1(p)
¢
+

nX
k=m+1

eµk+σkΦ
−1(p), (50)

TV aRp [S
c] =

mX
k=1

µ
µk + σk

φ (Φ−1 (p))
1− p

¶
+

nX
k=m+1

eµk+σ
2
k/2

Φ (σk − Φ−1 (p))
1− p

.

(51)

Provided all coefficients ri are positive, the terms in Sl are all non-
decreasing functions of the same r.v. U . Hence, Sl will also be a comonotonic
sum in this case. This implies that F−1

Sl
(p) and TVaRp

£
Sl
¤
can again be

computed by summing the corresponding risk measures for the (normal and
lognormal) marginals involved. Hence, assuming that all ri are positive, we
find the following expressions for the quantiles and TVaRs of Sl, for any
p ∈ (0, 1):

F−1
Sl
(p) =

mX
k=1

¡
µk + rkσkΦ

−1(p)
¢

(52)

+
nX

k=m+1

eµk+rkσkΦ
−1(p)+1

2
σ2k(1−r2k),

TV aRp

£
Sl
¤
=

mX
k=1

µ
µk + rkσk

φ (Φ−1 (p))
1− p

¶
(53)

+
nX

k=m+1

eµk+σ
2
k/2

Φ (rkσk)− Φ−1 (p))
1− p

.

Notice that
TV aRp

£
Sl
¤ ≤ TV aRp [S] ≤ TV aRp [S

c] (54)

always holds. The same ordering can not be proven between the quantiles.
However, extensive numerical comparisons reveal that the same ordering will
hold, provided p is large enough, for instance p = 99.97%.
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Let us now consider the general case where not all ri are positive. In
this case the lower bound is not a sum of comonotonic random variables,
making the determination of the distribution function of the lower bound
more complicated. The cdf of Sl then follows from

FSl(x) =

Z 1

0

Pr

"
mX
k=1

¡
µk + rkσkΦ

−1(U)
¢
+

nX
k=m+1

eµk+rkσkΦ
−1(U)+ 1

2
σ2k(1−r2k) ≤ x | U = u

#
du

=

Z 1

0

I

Ã
mX
k=1

¡
µk + rkσkΦ

−1(u)
¢
+

nX
k=m+1

eµk+rkσkΦ
−1(u)+ 1

2
σ2k(1−r2k) ≤ x

!
du (55)

5.4 Moments of S, Sc and Sl

The expected values of the random variables S, Sc and Sl are all equal :

E [S] = E
£
Sl
¤
= E [Sc] =

mX
k=1

µk +
nX

k=m+1

eµk+
1
2
σ2k . (56)

In order to determine the variances of S, Sc and Sl, we introduce the following
notations:

Sc =
mX
k=1

¡
µk + σkΦ

−1(U)
¢
+

nX
k=m+1

eµk+σkΦ
−1(U) (57)

=
mX
k=1

Y c
k +

nX
k=m+1

eY
c
k ,

and

Sl =
mX
k=1

¡
µk + rkσkΦ

−1(U)
¢
+

nX
k=m+1

eµk+rkσkΦ
−1(U)+ 1

2
σ2k(1−r2k) (58)

=
mX
k=1

Y l
k +

nX
k=m+1

eY
l
k .

Notice that any of the random vectors (Y1, Y2, ..., Yn), (Y c
1 , Y

c
2 , ..., Y

c
n ) and

(Y l
1 , Y

l
2 , ..., Y

l
n) is multivariate normal.
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The variances of S, Sc and Sl follow from

V ar [S] =
mX
k=1

mX
l=1

cov [Yk, Yl] +
mX
k=1

nX
l=m+1

cov
£
Yk, e

Yl
¤

(59)

+
nX

k=m+1

mX
l=1

cov
£
eYk , Yl

¤
+

nX
k=m+1

nX
l=m+1

cov
£
eYk , e,Yl

¤
,

V ar [Sc] =
mX
k=1

mX
l=1

cov [Y c
k , Y

c
l ] +

mX
k=1

nX
l=m+1

cov
£
Y c
k , e

Y c
l
¤

(60)

+
nX

k=m+1

mX
l=1

cov
£
eY

c
k , Y c

l

¤
+

nX
k=m+1

nX
l=m+1

cov
£
eY

c
k , e,Y

c
l

¤
and

V ar
£
Sl
¤
=

mX
k=1

mX
l=1

cov
£
Y l
k , Y

l
l

¤
+

mX
k=1

nX
l=m+1

cov
h
Y l
k , e

Y l
l

i
(61)

+
nX

k=m+1

mX
l=1

cov
h
eY

l
k , Y l

l

i
+

nX
k=m+1

nX
l=m+1

cov
h
eY

l
k , e,Y

l
l

i
In order to be able to determine the different covariances in formulae (59),

(60) and (61), we prove the following theorem.

Theorem 3 (a) Let (X,Y ) be bivariate normal distributed and let Z be stan-
dard normal distributed and independent of (X,Y ), we have that

(X,Y )
d
=

µ
X, µY + σY r(X,Y )

µ
X − µX
σX

¶
+ Z σY

p
1− r(X,Y )2

¶
.

(62)
(b)

cov
£
eX , eY

¤
= eµX+µY +

1
2(σ2X+σ2Y )

¡
ecov[X,Y ] − 1¢ . (63)

(c)
cov

£
X, eY

¤
= cov [X,Y ] eµY +

1
2
σ2Y . (64)
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Proof. (a) It is easy to verify that both random couples in (62) are
bivariate normal, and also that they have the same marginal distributions
and the same covariance, which proves the equality in (62).
(b) The relation (63) follows from a straightforward calculation.
(c) From (62), we find

cov
£
X, eY

¤
= cov

·
X − µX , e

µY +σY r[X,Y ]
³
X−µX
σX

´
+σY
√
1−r[X,Y ]2Z

¸
= E

·
(X − µX) e

µY +σY r[X,Y ]
³
X−µX
σX

´
+σY
√
1−r[X,Y ]2Z

¸
= E

·
(X − µX) e

µY +σY r[X,Y ]
³
X−µX
σX

´¸
E
h
eσY
√
1−r[X,Y ]2Z

i
= σX eµY E

£
ZeσY r[X,Y ]Z

¤
e
1
2
σ2Y (1−r[X,Y ]2)

=
σX
σY

eµY
∂

∂r (X,Y )
E
£
eσY r[X,Y ] Z

¤
e
1
2
σ2Y (1−r[X,Y ]2)

= cov (X,Y ) eµY +
1
2
σ2Y ,

which proves (64).
From the results above, we find that

cov [Y c
k , Y

c
l ] = σkσl, (65)

cov
£
Y l
k , Y

l
l

¤
= rkrlσkσl,

cov
£
Yk, e

Yl
¤
= cov [Yk, Yl] e

µl+
1
2
σ2l , (66)

cov
£
Y c
k , e

Y c
l

¤
= σkσl e

µl+
1
2
σ2l ,

cov
h
Y l
k , e

Y l
l

i
= rkrlσkσl e

µl+
1
2
r2l σ

2
l

and also

cov
£
eYk , eYl

¤
= eµk+µl+

1
2(σ2k+σ2l )

¡
ecov[Yk,Yl] − 1¢ , (67)

cov
£
eY

c
k , eY

c
l
¤
= eµk+µl+

1
2(σ2k+σ2l ) (eσkσl − 1) ,

cov
h
eY

l
k , eY

l
l

i
= eµk+µl+

1
2(r2kσ2k+r2l σ2l ) (erkrlσkσl − 1) .

Summarizing, we considered a multivariate normal random vector (Y1, Y2, ..., Yn),
with given covariances cov [Yk, Yl] for all couples involved.
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The variance of the random variable S defined in (38) follows then from (59),
(66) and (67).
The variance of Sc given by (57) follows from (60), (65), (66) and (67).
Finally, consider the random variable Sl given by (45), with conditioning
variable Λ given by (41). The coefficients rk follow then from (48).
The variance of Sl follows from (61), (65), (66) and (67).

5.5 On the choice of the conditioning variable Λ

Since Var[S] = Var
£
Sl
¤
+ E[V ar [S | Λ]], it follows that Var£Sl

¤ ≤ Var[S]
and also that an equality can only occur in case Sl d

= S. Hence the best
choice for the conditioning r.v. Λ is likely to occur when the variance of Sl

is maximized. Theoretically, one could use numerical procedures to deter-
mine the optimal Λ, but this would outweigh one of the main features of
the convex bounds, namely that the quantiles and conditional tail expecta-
tions (and also other actuarial quantities such as stop-loss premiums) can
be easily determined analytically. Having a ready-to-use approximation that
can be easily implemented is important from a practical point of view. Since
maximization of Var(Sl) is equivalent with minimization of E(V ar [S | Λ])
we expect to have a good choice for Λ in case it is ’close’ to S. Therefore, we
propose to determine the lower bound with a conditioning variable Λ, which
is a first order approximation for S.
We have that

S =
mX
k=1

Yk +
nX

k=m+1

eYk =
mX
k=1

Yk +
nX

k=m+1

eµk+(Yk−µk)

≈
mX
k=1

Yk +
nX

k=m+1

eµk [1 + (Yk − µk)]

= C +
mX
k=1

Yk +
nX

k=m+1

eµk Yk (68)

for some appropriate constant C.
Hence, we propose to chose the conditioning variable Λ as (a linear trans-

formation of) a first order approximation to S:

Λ =
nX

k=1

βkYk. (69)
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with

βk = 1, k = 1, · · · ,m,

βk = eµk , k = m+ 1, · · · , n. (70)

Consider now the special case that all covariances cov
£
Y l
k , Y

l
l

¤
are posi-

tive. Then it follows from (48) and (70) that all correlation coefficients rk
are also positive. Hence, in this case the lower bound Sl as defined in (45)
is a comonotonic sum. This implies that the quantiles and tailvar’s of Sl can
be determined from (52) and (53), respectively.
In the special case that all risks involved are normally distributed, the

condition variable Λ defined in (69) equals S. Hence, the lower bound Sl

coincides with the exact aggregate claims S. In this case, the aggregation
method explained in Section 4 can be applied to obtain exact results.

5.6 Determining approximations for EC[S]

Consider a multivariate normal random vector (Y1, Y2, . . . , Yn), with given
expectations E [Yk] = µk, variances var [Yk] = σ2k and covariance coefficients
cov [Yk, Yl].
Furthermore, assume that the first m stand-alone risks (m ≤ n) are given
by (Y1, Y2, . . . , Ym), whereas the last n − m stand-alone risks are given by¡
eYm+1 , eYm+2, . . . , eYn

¢
.

The economic capital EC for the aggregate loss S =
Pm

k=1 Yk +
Pn

k=m+1 e
Yk

is defined in (1):
EC = F−1S (1− p)− µS. (71)

We propose to approximate F−1S (1− p) by F−1
Sl
(1− p) or F−1Sc (1− p), with Sl

and Sc as defined in (57) and (58), respectively.
The coefficients rk are defined by (48):

rk =
1

σkσΛ

nX
j=1

βj cov [Yk, Yj] ,

with σ2Λ determined from (49):

σ2Λ =
nX

j=1

nX
k=1

βjβkcov [Yk, Yj] .
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and the βj given by (70):

βk = 1, k = 1, · · · ,m,

βk = eµk , k = m+ 1, · · · , n.
Quantiles and Tailvars of the comonotonic sum Sc follow immediately

from (50) and (51).
Notice that in the standard approach, both Sl and Sc will be comonotonic

sums. Indeed, for Sc this is a trivial statement whereas for Sl this will be
the case because all covariances cov [Yk, Yj] and hence also all correlations rk
are positive.
We remark also that even if some of the cov [Yk, Yj] are negative, it will

still be possible to make a choice for the βj such that S
l will be a comonotonic

sum, see e.g. Vanduffel, Dhaene & Goovaerts (2004).
We propose to approximate the aggregate economic capital EC by ECl:

EC l = F−1
Sl
(1− p)− µS (72)

with F−1
Sl
(1−p) determined by (52), provided all rk are positive, and with

µS determined by (56).
As a second approximation for the aggregate economic capital, we propose

ECc, which is defined by

ECc = F−1Sc (1− p)− µS, (73)

with F−1Sc (1− p) given by (50).

6 A generalisation of the standard approach:
determining the economic capital by a dis-
tortion risk measure in a more general mul-
tivariate setting

6.1 Introduction

In this section, we will start from the standard methodology. We will develop
now some generalizations of this methodology. These generalizations allow to
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adapt the current methodology which is based on multivariate normality and
a quantile-based capital requirement, to multivariate elliptical distributions
and a capital requirement based on any particular distortion risk measure.

6.2 Distortion risk measures

In this section we will consider the class of distortion risk measures, intro-
duced in the actuarial literature by Wang (1996). The quantile risk measure
and TVaR belong to this class.
The expectation of a random variable X, if it exists, can be written as

E [X] = −
Z 0

−∞

£
1− FX(x)

¤
dx+

Z ∞

0

FX(x)dx, (74)

where FX(x) = Pr [X > x].
Wang (1996) defines a family of risk measures by using the concept of

distortion function as introduced in Yaari’s dual theory of choice under risk.
A distortion function is defined as a non-decreasing function g : [0, 1]→ [0, 1]
such that g(0) = 0 and g(1) = 1. The distortion risk measure associated with
distortion function g is denoted by ρg [·] and is defined by

ρg [X] = −
Z 0

−∞

£
1− g

¡
FX(x)

¢¤
dx+

Z ∞

0

g
¡
FX(x)

¢
dx, (75)

for any random variableX with finite mean. Note that the distortion function
g is assumed to be independent of the distribution function of the random
variable X. The distortion function g(q) = q corresponds to E[X]. Note that
if g(q) ≥ q for all q ∈ [0, 1], then ρg [X] ≥ E[X] . In particular this result
holds in case g is a concave distortion function. Also note that g1(q) ≤ g2(q)
for all q ∈ [0, 1] implies that ρg1 [X] ≤ ρg2 [X].

Substituting g
¡
FX(x)

¢
by
R FX(x)

0
dg(q) in (75) and reverting the order

of the integrations, one finds that any distortion risk measure ρg [X] can be
written as

ρg [X] =

Z 1

0

F−1X (q)[X]dg(q). (76)

From (76), one can easily verify that the quantile F−1X (p), p ∈ (0, 1), corre-
sponds to the distortion function

g(x) = I(x>1−p), 0 ≤ x ≤ 1. (77)
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On the other hand, TVaRp [X] =
1
1−p

R 1
p
F−1X (q) dq, p ∈ (0, 1), corresponds

to the distortion function

g(x) = min

µ
x

1− p
, 1

¶
, 0 ≤ x ≤ 1. (78)

Notice that in case X has a continuous distribution (such as the normal
distribution e.g.), the Tail Value-at-Risk can also be expressed as

TV aRp [X] = E
£
X | X > F−1X (p)

¤
. (79)

An extensive overview of distortion risk measures, and its applications in
a solvency context is Dhaene, Vanduffel, Tang, Goovaerts, Kaas & Vyncke
(2004).

6.3 Generalizing the standard methodology

Let us now assume, as in the standard methodology, that the stand-alone
losses Yk (per risk type and business unit) all belong to the same family
of translation-scale invariant distributions. This means that there exists a
random variable Z such that for each Yk, we have that

Yk
d
= µk + σk Z, (80)

where d
= stands for ’equality in distribution’. Furthermore, we assume that

the aggregate loss S belongs to the same class of translation-scale invariant
distributions:

S
d
= µS + σS Z. (81)

An important special case is the case where (Y1, Y2, . . . , Yn) has a mul-
tivariate elliptical distribution, see for instance Valdez & Dhaene (2003).
Notice that the multivariate normal distribution, is one particular element
of the class of multivariate elliptical distributions.
The outcome of a distortion risk measure only depends on the distribu-

tion function of the underlying random variable. Hence, from the translation
invariance and the positive homogeneity property of distortion risk measures,
we find for the stand-alone losses Yk and the aggregate loss S that

ρg [Yk] = ρg [µk + σk Z] (82)

= µk + σk ρg [Z]
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and
ρg [S] = µS + σS ρg [Z] . (83)

We have that

σ2S = 1T · Σ · 1 (84)

=
nX

k=1

nX
l=1

cov [Yk, Yl] =
nX

k=1

nX
l=1

σk r [Yk, Yl] σl

=

µ
1

ρg [Z]

¶2 nX
k=1

nX
l=1

¡
ρg [Yk]− µk

¢
r [Yk, Yl]

¡
ρg [Yl]− µl

¢
.

Hence,

ρg [S] = µS +

vuut nX
k=1

nX
l=1

¡
ρg [Yk]− µk

¢
r [Yk, Yl]

¡
ρg [Yl]− µl

¢
. (85)

Instead of determining the economic capital EC for the aggregate loss S
by (27), we now assume that it is determined by

EC = ρg [S]− µS (86)

for some distortion function g. Similarly, we define the stand-alone economic
capitals ECk by

ECk = ρg [Yk]− µk. (87)

Defining the vector EC as in (29), we find from (85) that the formula (31)
remains to hold.
For convenience, we introduce the following vector notations:

ρg [Y ]
T =

¡
ρg [Y1] , ρg [Y2] , . . . , ρg [Yn]

¢
(88)

and
µT = (µ1, µ2, . . . , µn) . (89)

Then formula (85) can also be written as

ρg [S] = µS +

q¡
ρg [Y ]− µ

¢T · Λ · ¡ρg [Y ]− µ
¢
. (90)

To conclude, we proved that formulae (31) or equivalently, formula (90),
holds for general distortion risk measures, and for any multivariate random
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vector (Y1, Y2, . . . , Yn) such that all its stand-alone risks Yk and also the
aggregate risk S belong to the same class of translation-scale invariant dis-
tributions.
Notice that a first special case of this general result is the VaR approach

(for a particular choice of the probability level) within a multivariate normal
framework.
Another important special case, is the case where the economic capital is
determined by a Tail-Value-at-Risk approach. In this case, the formula (90)
reduces to

TVaRp [S] = µS +

q¡
TVaRp [Y ]− µ

¢T · Λ · ¡TVaRp [Y ]− µ
¢
. (91)

6.4 Summary

Assume that the stand-alone risks (Y1, Y2, . . . , Yn) as well as the aggregate
loss S = Y1 + Y2 + . . . + Yn belong to the same family of translation-scale
invariant distributions, see definitions (80) and (81), with correlation matrix
Λ as defined in (12).
The economic capital EC for the aggregate loss S is determined by (86):

EC = ρg [S]− µS,

for some distortion risk measure ρg as defined in (75). The individual stand-
alone economic capitals are determined by (87):

ECk = ρg [Yk]− µk.

The aggregate economic capital can then be determined by (31):

EC =

q
ECT · Λ · EC,

where EC is defined by (29):

EC = (EC1, EC2, . . . , ECn) .
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7 Generalizations for the alternative method-
ology : determining the economic capital
by a distortion risk measure

7.1 Description

The economic capital EC for the aggregate loss S =
Pm

k=1 Yk +
Pn

k=m+1 e
Yk

can also be determined using any other distortion risk measure ρg. In this
case, the aggregate economic capital is defined by

EC = ρg [S]− µS, (92)

for some distortion risk measure ρg, see (86).
In this case, we propose to approximate ρg[S] by ρg[S

l] or ρg[S
c].

Since Sc is a comonotonic sum, we find, using the additivity property for
comonotonic risks

ρg [S
c] =

mX
k=1

ρg [Yk] +
nX

k=m+1

ρg
£
eYk
¤
, (93)

see Dhaene, Vanduffel, Tang, Goovaerts, Kaas & Vyncke (2004).
In case also Sl is a comonotonic sum (which holds in case all cov [Yk, Yj]

are positive), we have that:

ρg
£
Sl
¤
=

mX
k=1

¡
µk + rkσkρg[Φ

−1(U)]
¢
+

nX
k=m+1

ρg[e
µk+rkσkΦ

−1(U)+1
2
σ2k(1−r2k)]

(94)
As a first approximation for the aggregate economic capital, we propose

ECl, which is defined by

EC l = ρg
£
Sl
¤− µS (95)

As a second approximation for the aggregate capital, we propose ECc,
which is defined by

ECc = ρg [S
c]− µS (96)

For the special case that ρg corresponds with the (1-p)-quantile, the approx-
imations (95) and (96) reduce to (72) and (73), respectively.
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7.2 A moments-based approximation

Finally, we notice that the upper bound and lower bound approaches can be
combined further to obtain an approximation for the distribution of S which
preserves the mean and the variance. Such an approach has been applied by
Vyncke, Goovaerts and Dhaene (2003) to the case of Asian option pricing.
In contrast to these authors who mix the cdf’s of Sl and Sc such that the
variance of S is preserved, we propose to mix the quantile functions of Sl

and Sc. Indeed, let us consider the r.v. Sm = zSl+(1− z)Sc with (Sl, Sc) =
(F−1

Sl
(U), F−1Sc (U)) and 0 < z < 1 such that V ar(Sm) = V ar(S). Since Sm

is clearly a comonotonic sum we have that F−1S [p] = zF−1
Sl
[p] + (1− z)F−1Sc .

More in general, we find that for any distortion risk measure ρg that ρg [S] can
now be approximated by ρg [Sm] = zρg

£
Sl
¤
+(1− z)ρg [S

c] . This alternative
approach has the advantage that it is straightforward now to approximate
distortion risk measures for S by using both the upper bound and lower
bound approximations.

8 Conclusion

In this paper, we analysed a standard approach financial institutions use
to calculate their total economic capital. This approach uses the different
stand-alone economic capitals (ALM, Credits, Operational, . . . ) and the
correlations between the different risk factors. This approach is based on
the assumption that the vector of individual risks is multivariate normal,
whereas the risk measure used is a given percentile.
We discussed this standard method and in addition, we proposed several

generalizations.
Within the multivariate normal framework, we proved that the current method
can be applied to any distortion risk measure, the TailVaR in particular. Fur-
thermore, we showed that in this framework, it is not necessary to restrict to
the multivariate normal case. A more general framework within a given class
of translation-scale invariant distributions is given.
We also investigated the case where both normal and lognormal random

variables are involved. In this case, we proposed an efficient algorithm that
gives rise to accurate and easy computable approximations for the aggregate
economic capital.
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