
This is the tenth in a series of
occasional notes on medical
statistics.

Department ofPublic
Health Sciences, St
George's Hospital Medical
School, London
SW17 ORE
J Martin Bland, reader in
medical statistics

Medical Statistics
Laboratory, Imperial
Cancer Research Fund,
LondonWC2A 3PX
Douglas G Altman, head

BM 1995;310:170

Statistics Notes

Multiple significance tests: the Bonferroni method

J Martin Bland, Douglas G Altman

Many published papers include large numbers of
significance tests. These may be difficult to interpret
because if we go on testing long enough we will
inevitably find something which is "significant." We
must beware of attaching too much importance to a
lone significant result among a mass of non-significant
ones. It may be the one in 20 which we expect by
chance alone.
Lee et al simulated a clinical trial of the treatment of

coronary artery disease by allocating 1073 patient
records from past cases into two "treatment" groups at
random.' They then analysed the outcome as if it were
a genuine trial of two treatments. The analysis was
quite detailed and thorough. As we would expect, it
failed to show any significant difference in survival
between those patients allocated to the two treatments.
Patients were then subdivided by two variables which
affect prognosis, the number of diseased coronary
vessels and whether the left ventricular contraction
pattern was normal or abnormal. A significant dif-
ference in survival between the two "treatment" groups
was found in those patients with three diseased vessels
(the maximum) and abnormal ventricular contraction.
As this would be the subset of patients with the worst
prognosis, the finding would be easy to account for by
saying that the superior "treatment" had its greatest
advantage in the most severely ill patients! This
approach to the comparison of subgroups is clearly
flawed.
Why does this happen? If we test a null hypothesis

which is in fact true, using 0 05 as the critical
significance level, we have a probability of 0 95
of coming to a not significant-that is, correct-
conclusion. If we test two independent true null
hypotheses, the probability that neither test will be
significant is 0-95x095=0-90. If we test 20 such
hypotheses the probability that none will be significant
is 0.9520=0.36. This gives a probability of 1-0-36=
0 64 of getting at least one significant result-we are
more likely to get one than not. The expected number
of spurious significant results is 20 x 005 =-1. In
general, if we have k independent significant tests at
the a level of null hypotheses which are all true, the
probability that we will get no significant differences is
(1 _.a)k. If we make ot small enough we can make the
probability that none of the separate tests is significant
equal to 0-95. Then if any of the k tests has a P value
less than ot we will have a significant difference between
the treatments at the 0-05 level. Since a will be very
small, it can be shown that (1 _U)k. 1 -ka. If we put
kot=0 05, so a-0.05/k, we will have probability 0 05
that one of the k tests will have a P value less than a
if the null hypotheses are true. Thus, if in a clinical trial
we compare two treatments within five subsets of
patients the treatments will be significantly different at
the 0-05 level if there is a P value less than 0 01 within
any of the subsets. This is the Bonferroni method.
Note that they are not significant at the 0*01 level, but
at only the 0 05 level.
We can do the same thing by multiplying the

observed P value from the significance tests by the
number of tests, k, any kP which exceeds one being
ignored. Then if any kP is less than 0 05 the two
treatments are significant at the 0 05 level.

Williams et al randomly allocated elderly patients
discharged from hospital to two groups.2 There were

no significant differences overall between the inter-
vention and control groups, but among women
aged 75-79 living alone the control group showed
significantly greater deterioration in physical score
than did the intervention group (P=0 04), and among
men aged over 80 the control group showed significantly
greater deterioration in disability score than did the
intervention group (P=0 03). Subjects were cross
classified by age groups, whether living alone, and sex,
so there were at least eight subgroups and three
different measurement scales. Even if we considered
the scales separately the corrected P values are
8x0 04=0-32 and 8x0 03=0-24.
A similar problem arises ifwe have multiple outcome

measurements, where the tests will not in general be
independent. Newnham et al randomised pregnant
women to receive either standard care or a series of
Doppler ultrasound blood flow measurements.3 They
found a significantly higher proportion of birth weights
in the Doppler group below the 10th and 3rd centiles
(P=0-006 and P=0 02). Birth weight was not the
primary outcome variable for the trial. These were only
two of many comparisons and one suspects that there
might be some spurious significant differences among
so many. At least 35 tests were reported in the paper.
These tests are not independent because they are all on
the same subjects, using variables which may not be
independent. The proportions of birth weights below
the 10th and 3rd centiles are clearly not independent,
for example. The probability that two correlated
variables both give non-significant differences when
the null hypothesis is true is now greater than (1-)2,
because if the first test is not significant the second has
a probability greater than 1-ot of also being not
significant. A P value less than ao for any variable, or
kP<0-05, would still mean that the treatments were
significantly different. The overall P value is actually
smaller than the nominal 0 05-by an unknown amount
which depends on the lack of independence between
the tests. The power of the test, its ability to detect true
differences in the population, is correspondingly
diminished. In statistical terms, the test is conservative.
For the example, we have a=0-05/35=0-0014, and

so by the Bonferroni criterion the treatment groups are
not significantly different. Alternatively, the P values
could be adjusted to give 35x0a006=0-21 and 35x
0-02=0-70.
Other multiple testing problems arise when we have

more than two groups of subjects and wish to compare
each pair of groups; when we have a series of obser-
vations over time, such as blood pressure every 15
minutes after administration of a drug, where there
may be a temptation to test each time point separately;
and when we have relations between many variables to
examine, as in a survey. For all these problems the
multiple tests are highly correlated and the Bonferroni
method is inappropriate, as it will be highly con-
servative and may miss real differences. We shall deal
with these types of analysis in separate notes.
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