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ABSTRACT

In this article we consider the situation in which an insurer requires a loss reserve, together with
the estimated prediction error, in respect of a number of stochastically dependent lines of business,
individually and in aggregate. We suppose that generalized linear models are used to estimate
each of the individual loss reserves, and that bootstrapping is used to estimate prediction errors.
Specialized forms of the bootstrap, referred to as synchronous bootstraps, are constructed to cap-
ture the dependencies. Numerical examples are given in which loss reserve forecasts and their
prediction errors are obtained for individual lines of business and in aggregate.

1. INTRODUCTION

Consider an insurance portfolio that consists of I segments. At the most general level, these may be
any subsets of the portfolio, which may or may not be lines of business (LoBs). However, for ease of
exposition, they may be conveniently thought of as LoBs.

A loss reserve is calculated for each LoB and for the aggregate of them. Naturally the latter is usually
taken as the sum of the reserves for the I LoBs. Each loss reserve is a forecast of the associated liability
(call it the liability forecast) and subject to prediction error. The liability forecast may therefore be
viewed as a random variable with a distribution.

The literature deals with various approaches to the estimation of the distribution for an individual
LoB (e.g., Taylor 2000). It is more scant, however, in relation to the distribution of the aggregate,
taking account of dependencies between LoBs. If a regression model is applied to each segment, the
need to accommodate dependencies between them suggests the framework of seemingly unrelated
regressions (SURs), introduced by Zellner (1962) and discussed by Srivastava and Giles (1987). How-
ever, two difficulties may arise in the application of this sort of framework to loss reserving.

First, while the SUR may be well adapted to general linear models, one will often want to phrase the
model of insurance data more generally, such as in terms of generalized linear models (GLMs). Second,
if the number of data points involved in the I LoBs is large, and the structure of the dependencies
totally unknown, the problem of modeling this structure by means of an SUR framework would become
substantial. This would be so even if it is assumed that observations from within an LoB are stochas-
tically independent.

The bootstrap is a well-known approach to the estimation of prediction error for a single LoB, for
which standard methodology exists, and it is natural to seek to extend this methodology to the case
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of multiple LoBs with dependencies between them. This article suggests forms of bootstrapping that
capture such dependency structures, at least approximately, and even when the structures are unknown.

2. SYNCHRONOUS BOOTSTRAPPING

2.1 Preliminaries

Consider I models
)/i = gi(Xi7 Bz) + Siv ’L = 17 27 .. 717 (2'1)
where

Y, is a column n;vector of observations Y, k = 1, ..., n

X, is an n; X p, matrix whose rows consist of predictors of the Y,

B, is a column p;vector of parameters

g, is a vector-valued function specifying a model structure

g; is a column n-vector of stochastically independent, centered, equidistributed error terms, each with
variance o7, referred to subsequently as process error.

For the present analysis, assume, for instance, that n; = - -+ = n; = n.
Assume that there is a dependency between the data sets Y, described by correlation matrices
C; = Corr(Y;, Y)). (2.2)

Pearson correlation will be a suitable measure of dependency only if the error terms €, while possibly
nonnormal, are not too much so. Thus, the procedures developed below may not be effective if the
distributions of the ¢, are very long tailed.

Note, however, that long-tailed distributions may still be accommodated within the structure. For
example, log normal distributions would be accommodated within the GLM structure by the choice
Y,() = logged observations and € ~ N in (2.1). It follows from the above independence assumption
that C; = 1 for each i.

The C; will be supposed unknown, in which case estimation of each B, will be carried out by reference
to just the data set Y;. Suppose that there is some unbiased estimation procedure for mapping data Y,
to estimates B,, 67 of B;, o7. Let Y, denote the vector of fitted values

f}i = gi(X, 61) (2.3)

In practical applications, such as maximum likelihood estimation, unbiasedness may be only approxi-
mate, in which case all estimates constructed below will incorporate the same degree of approximation.

Typically Y; and Y, will be correlated, and furthermore the correlations (2.2) will induce correlations
between I/’\l and 1/}7 However, it will be assumed that these are of order n™'.

Define the standardized Pearson residual vector
R = (Y, — V)/6, (2.4)
Suppose now that one wishes to estimate a vector {; = E[Z;], where
Z, = o(Uy, B) + My, (2.5)
which is of the same form as (2.1) but with Y}, g,, X,, € replaced by Z,, «,, U;, m;. Dimensions may differ

as between (2.1) and (2.5), other than for B,. Suppose that Z, is of dimension n’ = n. An estimate of
{; is given by

21‘ = o,(U;, é’z) (2.6)

Define a resampling matrix as an n’ X n(n’ = n) matrix whose rows are distinct natural coordinate
vectors, that is, having one unit component and the rest zero. If n’ = n, a resampling matrix is a



72 NORTH AMERICAN ACTUARIAL JOURNAL, VoLUME 11, NUMBER 3

permutation matrix. In general, if M is a resampling matrix with (k, s) element M,,, then the product
M, M, has the following properties:

Fork =1, M\,,M,, = 1 fors =t

0 otherwise;

For k # I, M, M,, = 1 for a single pair s, t with s # t
= 0 otherwise.

2.2 Sources of Correlation
There are two main possible sources of the correlations (2.2). It will be seen below that these different
sources of correlation dictate different forms of bootstrapping.

The first source is correlated noise, that is, the g,(X;, B,) terms in (2.1) are deterministic and

Corr(g;, &) = C 2.7

i
implying (2.2). Alternatively, the source may be correlated parameters. This is an apparent form of
correlation arising from model misspecification.

Suppose that, while (2.1) is the assumed model form, the correct form is, in fact,

Y, =g X7 By v) + &, (2.1a)

where v, is a vector of parameters unrecognized by the model, and g;" and X;” are modifications of g,
and X, that do recognize these additional parameters.
By (2.1) and (2.1a),

g =¢ tb,
where b, denotes the bias vector
b, = g (X, By v) — &(X,, B).
Then
Cov(e;, €) = Cov(g', &) + bb/. (2.8)

The left-hand side of this relation is the covariance between g; and g;, relative to a model of the form
(2.1). It consists of the first term on the right-hand side, which is the correct covariance, plus an
adjustment that is a measure of the misspecification of the true model (2.1a).

2.3 Bootstrapping a Single Data Set

We next describe the bootstrap (Efron 1979) as it is conventionally applied.
Define pseudo-data vectors Yy, v = 1, .. . , R associated with Y; as

Yz(r) = Yl + GiMi(r)Ri’ (29)

where M, is an n X n permutation matrix chosen randomly from the set of all such matrices and the
M;,, are independent.
This resamples the data without replacement. The fact that Y}, has the same distribution as Y is an

essential feature of the bootstrap. Each pscudo-data vector Y}, vields pseudo-estimates B}, 657 and
pseudo-fitted values Y},,. This also yields pseudo-estimates j,, of {;, where

Gy = oU, Bhy), i=1,...,L (2.10)

When §; is in the nature of a forecast of Z,, one may generate the pseudo-forecasts

A

Zity = Loy T iy @.11)
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where nj,, is a component of noise and is sampled just as in (2.9):
T];Zr) = a-iAi(r)Ri’ (2.12)

where A,y is an n’ X n resampling matrix chosen randomly from the set of all such matrices and the
A are independent.

The collection of am, r =1, ..., R induces an empirical distribution of 2i, which will be called the
bootstrap distribution of {;. Similarly the Z§,), » = 1, . . . , R induce a bootstrap distribution of Z,.

2.4 Synchronous Bootstrapping of Multiple Data Sets

2.4.1 Motivation

The bootstrap described in Section 2.3 may be validly performed for each value of i = 1, . . . | L
Suppose, however, that one is interested in forecasting some quantity that combines data sets, for
instance,

s =17, (2.13)
where Z = (7, ..., Z')" and 1 is the vector of the same dimension with all components unity.
Let Z§) = (Zi}, - - -, Ziy)", but note that, because the I data sets have been independently boot-

strapped, any correlation structure between the Z; is likely to have been lost. Hence the bootstrap
distribution of Z will not be representative of the true distribution. Neither will the bootstrap distri-
bution of & be representative of its true distribution.

2.4.2 Synchronizing Individual Data Points
Let Y,, denote the kth component of Y,. Suppose that the correlation structure (2.2) is of the correlated
noise form (2.7) and is given by

Ciju = pjn fori#j, k=1

= py fori#j k#I, (2.14)

where G, denotes the (k, [)—clement of the matrix C;. Recall that C; = 1.

Here py,, which may be zero, may be regarded as a “background correlation” between distinct data
sets 7 and j, while py; represents a spike in correlation that occurs for points in corresponding positions
in those data sets. The quantities {Z;} to be forecast are assumed subject to the same correlation
structure (2.14) as the data {Y;} and Corr[Yy, Z;] = pyo.

Suppose the data to be modeled are of the form (2.1), and apply the bootstrap described in Section
2.3 with the exception that (2.9) and (2.12) are replaced by the following:

Vi =Y + a-iM(‘r)Riv (2.9a)
Ny = TARR:, (2.12a)

where M,y and A, are n X n and n’ X n randomly chosen resampling matrices.

The difference between this form of bootstrap and the conventional form is that the present form
applies the same matrices M) and A,y to the bootstrapping of all I data sets. In this sense the resam-
pling of the residual vectors Ry, . . . , R, is synchroniged for each r. This form of bootstrapping was
suggested by Kirschner, Kerley, and Isaacs (2002) in an insurance loss-reserving context.

It can now be shown that the joint distribution of Y7, . . . , Y}, is approximately the same as for
Yy, ..., Y. To see this, note that, from (2.4) and (2.9a),
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Yioy = [1 — My1Y; + MY, (2.15)
Write w, to denote g,(X;, B,) so that (2.1) takes the form
Yi=wtg (2.1b)
and substitute this result into (2.15) to obtain
Vi = = [1 = M| (V; — ) + Mg (2.16)

From (2.2) and the assumption made immediately after (2.3),
Corr[Y,, Yi,]1 = M, C;M{, + Om™). (2.17)
The (k, I) element of the first member is
2 MM Cy e (2.18)

where M, denotes the (k, s) element of M.
The property of resampling matrices stated just after their definition in Section 2.1, applied to (2.18),
reduces it to p;, for k = [ and py, for k # I, in which case (2.17) is just

Corr[YZ,), Yi,] = G, + O(m™Y). (2.19)
Thus, to within Om™"), {Y§,, . . ., Yf,} has the same marginals and correlation structure as
Yy, . .., Y, and therefore has approximately the same joint distribution. The basic requirement for

application of the bootstrap, stated just after (2.9), is thus satisfied.

By the same reasoning as above, it follows that the Zj,, have the same on-diagonal/off-diagonal
structure as (2.19). It also follows that the correlation between any component of Y}, and any com-
ponent of Z%,, is py, (subject to an error of order n™"), as required. Thus the Z¢, induce a bootstrap
distribution that is representative of Z, including its dependencies.

2.4.3 Synchronizing Data Subsets

Let N, N,, . . ., N, be disjoint subsets of {1, . . . , n} whose union is equal to this set. Suppose the
correlation structure (2.2) is of the correlated parameter form described in Section 2.2 and is given

by
Ciu = pjp fori #j, k, 1€ someN,
= pyo fori #j, k,[from distinct N,,. (2.20)

Assume that there is no correlated noise, that is, the €, 7 = 1, . . . , I are stochastically independent.
As in Section 2.4.2, p;, may be viewed as a background level of correlation between distinct data sets,
while p;, represents a different level of correlation that occurs for points in corresponding subsets of
those data sets.

Now suppose that the Z;, extend the correlation structure of the Y, in the following sense. Let
N, ..., N§ be disjoint subsets of {1, ..., n'} whose union is equal to this set. Let n, and n/ be the
orders of N, and N, respectively. Suppose that n; = n, for each q.

Let Y{@ denote the subvector of Y; consisting of just the components Yy, k € N,. Similarly let Z{®
denote the subvector of Z; consisting of just the components Z;, | € N;;. Define

wo = | 1 2.21
i Zi(q) . ( . )
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Let Wi denote the kth component of W@ and let Di#% denote Corr(W§, W{?). Suppose that

D =1 fori=j,q=sk=1
=0fori=j,qg=sk#I

Ofori=3j,q+#s
= P fori #j,q = s
= pjo fori # j, q # s, (2.22)

which is consistent with (2.20).
Suppose once again that the data to be modeled are of the form (2.1), and apply the bootstrap
described in Section 2.3 with the exception that (2.9) and (2.12) are replaced by the following:

Y = VO + MEBRO, (2.9b)
npT = GARR®, (2.12b)

and
Z9e = T + e, (2.23)

where R{® is the subvector of R; corresponding to Y{® as a subvector of Y;, and M{)* and A{Y)* are
n, X n, and n/, X n, randomly chosen resampling matrices.

Note that different matrices M{{)) and A, apply to different subsets within the data sets. This differs
from the situation described by (2.9a) and (2.12a), where common resampling matrices were applied
to whole data sets. The resampling of residual vectors is now synchronized within each subset N, and
its companion N7.

Corresponding to (2.21), define

W(q)is — Yl(g)) W* = Yvi%") (2 24)

i(r Zl(g)) ) i(r) Zl(r) . .
The argument given in Section 2.4.2 may be adapted to the present situation to demonstrate that
W, ..., W2 have approximately the same joint distribution as W{9,, . . ., W), and that
Wies - - - » Wiyhave approximately the same joint distribution as Wy, . . ., Wy, forr =1, ... R.

Define Z and Z¢, as in Section 2.4.1. Then the Zj, induce a bootstrap distribution that is represen-
tative of Z, including its dependencies.

REmARK 2.1

Synchronized resampling within subsets N, is not the natural extension of the synchronized point
resampling in Section 2.4.2. In that earlier case, if R;, — R, in the resampling of data set i, then
Ry, — Ry in the resampling of data set j. The natural extension of this to the present subsection would
be for

a. The resampling R, — R; to involve the mapping of each subset N, to a single other subset N, and
b. The same mapping of subsets (though not of members of those subsets) in R;, — R;; that is, for all
k € N,, there is a single N, such that

Ry, — Ry with [ € N,
Ry, — Ry with [ € N,

This, however, creates some difficulty when n, < n, and the alternative procedure described above
will often be more convenient.
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REMARK 2.2

The resampling scheme represented by the matrices M) and A{)) will encounter difficulties if N,
is small. There are N,! choices of the permutation matrix M}E’r)), and so, for given r, there are
n; 'n, ! -+ - ny! possible resamplings in (2.9b). This needs to be at least as large as R, and preferably
a good deal larger. If not, it may be necessary to aggregate some of the smaller N into larger ones.

REMARK 2.3

The correlation structure (2.20) was assumed to involve no correlated noise. Such noise can be added
with structure (just for the noise) (2.14), changing the total correlation structure to the following:

Cii,kl = Pij2 for 1 i, k=1

= p; fori #j, k1 € someN,k #I

= pyo fori # j, k, [ from distinct N,,. (2.25)
This correlation structure will be reproduced by a different form of bootstrap in which (2.9b) and
(2.12b) are replaced by the following:

Yioyr = Y2 + 6 M@BR®, (2.9¢)

G = GAGRO. (2.12¢)

That is, the same resampling is applied (at the subset level) to each data set. The modification of (2.9b)
and (2.12b) to (2.9¢) and (2.12¢) is the same as from (2.9) and (2.12) to (2.9a) and (2.12a).

2.4.4 Synchronizing Geometrically Related Subsets

Section 2.4.3 was concerned with correlations between subsets whose positions within their respective
data sets were fixed in absolute terms. The present discussion will be concerned with correlation be-
tween data sets that depend on the relative positions of members of those sets. This may arise because
the data sets, abstractly represented as vectors hitherto, actually have some geometric structure. This
is perhaps best explained by way of an example.

Suppose that the data vector Y, comprises observations taken over some two-dimensional lattice,

1

so that any component is naturally identified by a coordinate pair thus: Y, = Y.,
k,=1,...,K;k,=1,..., K, An example would be the familiar triangle of property-casualty loss
data.
Now suppose that the correlations between Y; and Y; each take the form
Corr(Yy s Yiyo) = function (fk, — 1], |k, — LJ). (2.26)

The arguments |k, — I,|, |k, — L,| measure the relative difference between the spatial positioning of the
observations Yy, and Y. It would be possible to express (2.26) in terms of vector components Yy, Y, as
before, but to do so would seem contrived, and the geometric form appearing in (2.26) would not be

retained. Consider the following as an example of (2.26), in which the left-hand side is denoted

Cifyklk?_’llb:

CikalkZIllz = ptj2 if i ?E.]’ (klv k2) = (lla lz)

= Pij if i # j, (ky, ko) # (U, 1), |k1 - k°|> |l1 - l2| =1

= pyo if i # j, at least one of [k, — k|, [, — L,| > 1. (2.27)

Assume that there is no correlated noise. Geometrically, the situation is as depicted in Figure 1.
Now suppose that the Z; extend the lattice on which the ith data set is defined and that the above
correlation structure extends in the natural way. Define
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Figure 1
Geometric Representation of (2.27)

Data set i Data set j
Pijt
¥
O

Pij2

Y, |
[t

Z;i

Suppose that the data to be modeled are of the form (2.1), and apply the bootstrap described in Section
2.3 with the exception that (2.9) and (2.12) are replaced as follows.

Just as in (2.9), consider all permutations R; — M,,,R,. However, for each such permutation, allow
whole 3 X 3 blocks of cells to be permuted, as illustrated in Figure 2. The permutation acts on the
center cell of the block shown in the figure, but induces the mapping shown on the neighboring cells.

The permutation of whole blocks is reminiscent of the moving block bootstrap (Carlstein 1986;
Kunsch 1989), though that is used for preservation of correlation within a data set. Here there is
assumed to be no correlation within a data set, and the synchronization of whole blocks is used to
preserve correlation between data sets. If, however, within-set correlation were present, that would be
preserved too. It is also reminiscent of the historical simulation procedure used to estimate VaR for a
banking portfolio subject to correlation between risk factors (Duffie and Pan 1997).

An exception will arise when the source or target center cell of a permutation lies on the boundary
of the data set. In this case permuted neighboring cells that do not make sense are simply ignored, as
illustrated in Figure 3.

At this stage it might seem natural to construct pseudo-data by the following replacement of (2.9):

Vi, = ¥, + &R, (2.94)

where R}, is the array of residuals R}, .,, With cach of these elements calculated as the average, over
all permutations, of the residuals mapped to the (k,, k,) position in Figure 2. However, as will be
demonstrated below, this form of averaging causes the correlations between some of the R}, to be
less than specified by (2.27). Hence, the correct form of the pseudo-data vector is

Vi, = ¥, + &R, (2.9¢)

where R}, is an adjusted form of R}, yielding the correct correlation structure.
The correlation structure illustrated in Figure 1 is (partially) preserved by synchronizing (2.9d) across
i =1,...,Iin the sense of matched permutations: that is, if a permutation maps (k,, k,) — (;, 1,)

Figure 2
Effect of a Single Bootstrap Permutation

Data set i Data set j

Permutation Same
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Figure 3
Examples of Exceptional Permutations

Fan

in data set i, then the same permutation acts on all other data sets j, as illustrated in Figure 2. The
fact that the preservation of correlation is only partial is discussed further below.

In the present geometric context, pseudo-forecasts (2.11) represent a geometric extension Z; of
resampled residuals from Y,. This is illustrated in Figure 4, where the synchronization of data sets is
also illustrated. The same boundary issues arise as were illustrated in Figure 3 and are dealt with in
the same way.

In sympathy with (2.9¢), (2.12) is replaced by

M = GRE, (2.12¢)

where R7} is a correlation-corrected form of Rf,,, the array of residuals R, with each of these
elements calculated as the average, over all resamplings (within the bootstrap replication r), of the
residuals mapped to the (I;, [,) position of Z; in Figure 4.

The fact that (2.9d) only partially preserves the correlation between Y; and Y] is illustrated in
Figure 5. Suppose the two target blocks there cover coordinates (k, [) with k, = k = k; + 5,
[, — 1 =1=1, + 1. Then the particular permutation illustrated will have preserved correlation between
Yigr1y and Yy, o, (for example) but not between Y, ,»;, and Yy 5.

In fact, this above resampling scheme will degrade the excess of the covariance between any pair of
neighboring cells over the background covariance (corresponding to py,) by a factor of 1 — p, where
p is the proportion of resamplings in which those cells occur within a single 3 X 3 block.

Let C} denote Corr(R},, R},)), noting that this quantity is independent of r. Let C; denote the
correlation matrix defined by (2.27). Note that C} will be a distorted version of C; in which py, is
replaced by Ny ponioPin T (1 = Njgon) Pijor for some known factor Ny .y, between O and 1, when it
oceurs in the (ky, ks, I}, 1) position in C;.

Let C} be the estimate of C} obtained by estimating pyo, pj and pyo + Njpors (P — Pyo) DY
means of averages of bootstrapped covariances. For example, the third of these quantities would be
estimated by averaging the bootstrapped covariances corresponding to Cyy,, Over the set

S = {i,j, ky, koy Iy, Ly: i # 7§, (Ry, ko) # (1, 1), |k, — ky| = 1, ]I, — L] = 1} (as well as averaging over r).

Figure 4
Synchronized Pseudo-Forecasts

Data set i Data set j
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Figure 5
Source of Partial Correlations

As explained above, the factor N .., is just the proportion of bootstrap permutations that place
cells (ky, k,) and (I}, [,) within a single permuted 3 X 3 block. These quantities depend only on the
permutations, as distinct from the data. They may therefore be calculated ahead of the application of
the bootstrap, possibly by a prior application of the bootstrap, in which just positions (and not the
values) of permuted cells are used.

Let pjy g, denote the quantity pyy + Ny P — Pio)- Then (Pl o, — Pyo) estimates
Nisekoris (Pg1 — Pyo)» where o and Py, are the bootstrap estimates described above. A single
estimate of (p;; — pyo) is then given by

E (61}1,1@1@1112 - 61‘]’0)/2 7\1j,k1k211127

where the summations run over all subscripts in the set S, and over r. Combination of this estimate of
(pj1 — Pyo) With py, then gives a single estimate p,; of py;.

Let C be the n] X nl correlation matrix consisting of I X I blocks Cj, and define C, € and C¥
similarly. Let T, T, I, FY be the covariance matrices corresponding to C, C, ¢, ¢'. Consider the
diagonalized forms of F i

f=ppp, 1V =pPDPY, (2.28)

where D, D" are diagonal and P, P¥ orthogonal. Then

I =potran, (2.29)
where
LY = PDI/Z(DY)71/2(PY)T‘ (230)
Now [ is an estimate of TV = Var[R(r)] where R, is the n-vector obtained by stacking the vectors
RIY(,), i=1,...,]I Therefore, f is an estimate of Var[L’R(T)]

But [ is also an estimate of the covariance matrix I corresponding to C, the correlation matrix
summarizing (2.27). This means that, under the definition

R = 'R, (2.31)

the correlation matrix of R} will approximate C, and so this definition will yield the correct Ry} for
substitution in (2.9¢).

By similar reasoning, the use of R, in (2.12¢) would only partially preserve the correlation between
Z; and Z,. A process precisely parallel to the above yields a matrix L” such that the residual vector
R7} required by (2.12¢) is given by

RZ: = LR, (2.32)
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REMARK 2.4

It would be necessary to check C' and C for positive definiteness. In the event that it is not found, a
degenerate choice of (2.30) might be indicated, such as p;, = py, (synchronized individual data points

(see (2.14)) or P2 = Pyj1-

3. PRACTICAL APPLICATION

Sections 2.4.2 to 2.4.4 consider specific correlation structures and produce forms of synchronous boot-
strap that generate pseudo-data with the same correlations. In these situations the bootstrap will be
said to be adapted to the given correlation structure.

A poorly adapted bootstrap will tend to destroy correlation between data points. An example of this
is given in Section 2.4.1, where poor adaptation consists of bootstrapping correlated data sets inde-
pendently. For this reason, it is to be expected that measured correlations between bootstrap forecasts
Ziy and Z7,) will be maximized when the form of bootstrap is close to adapted to the true correlation
structure.

In many practical situations, one may have a range of possible correlation structures in mind as
candidates, but little idea of the likelihood of each. Examples are given in Section 4. It is desirable in
these situations to allow the data to select the adapted form of bootstrap. This is done by implementing
a separate form of the bootstrap adapted to each candidate correlation structure, and selecting that
which yields the greatest correlations.

One needs to decide on a criterion for the “greatest correlations” when considering estimates of a
whole matrix of correlations Cj,. It may be possible to do this without considering correlations ex-
plicitly. For example, if the objective is to estimate s defined by (2.13), then one might choose the
bootstrap that maximizes the absolute difference between the estimate of Var|[z] and the estimate of
the same quantity obtained by independent bootstrapping of distinct data sets.

4. EXTENSIONS

4.1 Other Geometrically Related Subsets

As stated at the beginning of Section 2.4.4, the synchronization of geometrically related subsets was
described there only in terms of an example. The example involved a specific geometric relationship.
Clearly other relationships are possible.

For example, one might wish to increase the size of the block illustrated in Figure 2.1 from 3 X 3
to 5 X 5 to extend the correlation from ‘“‘nearest neighbor” to ‘“nearest neighbor but one.” The
bootstrap adapted to this structure can be developed along exactly the same lines as Section 2.4 .4.

While the correlation structure may be made increasingly complex, and the bootstrap adapted ac-
cordingly, this does not come without cost. The greater the complexity, the greater the effort in co-
ordinating the bootstrap’s permutations of whole subsets, the more numerous the boundary problems
associated with those permutations, and the more extensive the required correction of correlation
biases such as described by the factors N in Section 2.4.4.

4.2 Sampling with Replacement Not Permitted

All bootstrapping in the foregoing sections has been defined in terms of permutations, or sampling
without replacement. Sampling with replacement does not preserve correlation structures.

Sampling with replacement would be effected by redefining the resampling matrix of Section 2.1, no
longer requiring that rows be distinct. Such a resampling matrix M has the following multiplication
properties:

Fork =, MM, = 1fors =t
= 0 otherwise;
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Figure 6
Bootstrapping Data Sets of Different Dimensions

K Y, 4
dimn, dimn, dimn,
P Pl
— e e — Y
dimn, dimn, dimn,-n dimn, dimn,-n, dimn,-n,

For k # I, M, ;M,, = 1 for a single pair s, t (no longer s # t necessarily)
= 0 otherwise.

The allowance here that M, M, may be 1 for k # [, s = t, means that (2.18) can take the value G
for k # [, in which case the resampling matrix M has failed to preserve correlation structure by trans-
ferring an on-diagonal correlation to off-diagonal within Cj.

This can be easily understood by consideration of an example of synchronization of individual data

points in which all rows of M are the same. In this case (2.9a) becomes

vi, =¥ + 8,R1, (4.1)
where R, is the s-th component of R; and 1 is a vector with all components unity. In other words, the
single residual R, has been resampled for all components of Y}, and so, by synchronization, R is
sampled for all components of Y,), i = 2, ..., I. Then Corr[Yy,), Yji,)] will (apart from a correction of
0(n™")) have all elements the same, and equal to Corr(Ry, R;) = Cj, as found algebraically above.
It follows that, strictly, only resampling without replacement should be used within a synchronous
bootstrap. In practice, however, the error introduced by a sampling with replacement often will be
relatively small. Provided that the dimensions n; of the vectors Y, are not too small, the relative inci-
dence of repetitions in sampling with replacement will be low, and the distortion of correlation struc-

ture caused by them correspondingly low.

is)

4.3 Subsets of Different Dimensions

The observations vectors Y; were defined in (2.1) as of dimension n,, i = 1, . . . , I. However, for
subsequent analysis, it was assumed that n, = - - - = n; = n. Consider now the implications of allowing
the n; to differ one from another.

Consider, for example, the synchronization of individual data points (Section 2.4.2) within this ex-
tended framework. The correlation structure (2.14) is still meaningful provided that the ‘“‘correlation
matrix”’ Cj is understood to be of dimension n; X n;. The required bootstrap design is as follows.
Suppose, without loss of generality, that I = 3 and n; = n, = n,. Then vector Y, needs to be decomposed
into two subvectors: one of dimension n, containing the components that have correlation p,;; with
their counterparts in Y;, and the other of dimension n, — n; containing no such components.

Likewise, Y3 needs to be decomposed into three subvectors of respective dimensions n;, n, — n,, and
ny — n,. Bootstrapping is then synchronized on subvectors of dimension n,, and separately on subvec-
tors of dimension n, — n,. Other subvectors are not synchronized. The synchronization is illustrated

schematically in Figure 6.
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5. NuMERICAL EXAMPLES

5.1 Insurance Data

The bootstrap designs discussed in Sections 2.4.2 and 2.4.3 were tested numerically on hypothetical
insurance data. The data take the form of run-off triangles for different LoBs of an insurer.

Thus each Y, denotes a triangular array of data rather than a vector, and the notation Y, introduced
at the beginning of Section 2.4.2 is conveniently extended to Y,,, denoting the (k, [) element of triangle
Yok=1,...,n;1l=1,...,n —k + 1. Here k denotes accident year and | development year in
insurance parlance (Taylor 2000). Years in which claims experience occurs are represented by diagonals
in the triangle. The latest year of observation corresponds to the n-th diagonal. Note that the use of
n, in this dimensioning is different from that in previous sections. In fact, the dimension of Y; in the
present framework is In, (n, + 1).

The vector Z; to be forecast consists of the future diagonals, that is, the (n, + 1)-th, . . . . |
(2n; — 1)—th, as far as they relate to accident years 1, . . . , n; that is, Z, consists of
Y k=1,... ,nzl=mn,—k+ 2, ..., n}. If the Y, denote claim payments, then the +n,(n, — 1)
values subject to forecast represent all future claim costs in respect of the n; accident years. The total
of these is called the loss reserve.

It may be noted that the number of potentially distinct correlations in this situation is large. For
the case n; = n, it is ZI(I — 1) X In(n — 1). This can be a large number. For example, in the case
I = 10, n = 20, it is 8,550. This will be too many to estimate from the data, and allowance must be
made for them either by introducing some structure to the correlations, such as a SUR framework, or
by incorporating them implicitly, such as in a synchronous bootstrap.

The actuarial literature contains a few examples of the inclusion of such correlations in loss reserving
procedures, but sometimes in a limited form. For example, Brehm (2002) estimates correlations be-
tween LoB-specific loss reserves on the assumption that those correlations arise from dependencies
between the rates of superimposed inflation (diagonal effects) influencing the LoBs. Braun (2004)
considers the chain ladder model with (in the terminology of earlier sections) pointwise correlations
between age-to-age factors and relies on empirical estimation of them. As noted earlier, Kirschner,
Kerley, and Isaacs (2002) consider the case of a pointwise bootstrap.

In each example below, I = 3, n, = 20, and Y;, Y,, Y; have identical marginal distributions, but have
correlations superimposed. The marginal distributions take the form

Y,, ~ Gamma, (5.1)
E[Yiyl = exp[Bro + Bu + 1) + Byologd + D], (5.2)
Var[Yy] = @E[Yy]. (5.3)

Note that the distribution of Yy, is independent of i. The gamma error distribution, converging to zero
exponentially, meets the criterion of short-tailedness stated in Section 2.1.

The expected value (5.2), as a function of [, is a Hoerl curve, that is, also gamma shaped. By (5.2)
and (5.3), the coefficient of variation (CoV) of Yy, is {¢/E[Y,,]}">.

5.2 Pointwise Bootstrapping

In the model (5.1)-(5.3), the parameter vector B, was made independent of k, that is, the same Hoerl
curve applied to each accident year as well as to each LoB. The parameter values were as set out in
Table 1.

Data triangles for the three LoBs were sampled according to this model, with correlated noise, as
defined in Section 2.2, introduced by means of the following steps applied to each pair (k, [):

e Sample x from a trivariate standard random normal.
e Transform x to u = Ax, where A is the matrix



A SYNCHRONOUS BOOTSTRAP TO ACCOUNT FOR DEPENDENCIES BETWEEN LINES OF BUSINESS 83

Table 1
Parameter Values

Parameter Value
Bro +5.022
Bm —0.4
Bz +2.4
@ 100
05 03 0.2
0.2 0.5 03
0.3 0.2 0.5

and the resulting vector u consists of identically distributed components with all pairwise correlations
equal to approximately 80%.

e Transform u to y = I';! [@u®)], where u® is the standardized version of u and T}, is the gamma
d.f. associated with Yy,

e Let y be a realization of the vector [V, Yo, Yaul'-

Each of the resulting Y3, has d.f. I, and, Corr[Yy,, Y] is independent of i, j for i # j and is equal to
about 80%.

This procedure is carried out independently for each pair (k, I), that is, the values of x are sampled
independently for distinct (R, [). As a result,

Corr[Yyy, Vil = 0 for (k, ) # (s, 0). (5.4)

This creates a correlation structure of the form (2.14), to which the synchronized bootstrap of indi-
vidual points described in Section 2.4.2 is adapted. This will be referred to as a pointwise bootstrap. 1t
is applied to the data triangles {Y,,} generated as above, with the results of 10,000 replications set
out in Table 2.

Here, and in the subsequent numerical examples, sampling with replacement is considerably easier
to implement than sampling without replacement and has been used even though theoretically less
accurate. This is justified by the final remark of Section 4.2.

The true values in the table are obtained by simulation. Values of E[Y},] are generated according to
(5.2), applying equally to the LoBsi = 1, 2, 3. For each (k, ), correlated gamma noise terms, generated
as described above, are added. This is done independently for different (k, [).

The true loss reserve for LoB i is calculated as the sum of the simulated values of Y}, over future
cells (k, I). The correlated noise of about 80% translates into a similar correlation between loss reserves
of pairs of LoBs.

Naturally, conventional independent bootstrapping produces no correlation between the loss reserves
of different LoBs. The CoV of loss reserve for a single LoB is 5.4% and is reduced by a factor of V'3 to
3.0% when the loss reserve is aggregated over all three LoBs.

Table 2
Results of Pointwise Bootstrap

Basis of Estimation

Pairwise Correlation of
LoB Loss Reserves

CoV of Aggregate Loss
Reserve across 3 LoBs

True (simulated)
Independent bootstrap
Synchronous pointwise bootstrap

0.81
—0.00
0.79

5.4%
3.0
5.0
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However, the correlation between LoBs prevents this degree of reduction, and the true CoV of the
aggregate is 5.4%. The pointwise synchronous bootstrap captures the majority of the correlation be-
tween LoB-specific loss reserves and therefore produces a substantially more accurate estimate of CoV
of the aggregate.

5.3 Rowwise Bootstrapping

5.3.1 Data

Model (5.1)-(5.3) was applied once again, with the following variation. As in Section 5.2, the param-
eters B, and B,, were made independent of k, that is, the same Hoerl curve applied to each LoB, and
also, up to a multiplier, to each accident year. These two parameters, and ¢, were assigned the same
values as in Table 1.

However, By, followed a random walk over k, with the same initial value B,, as in Table 1, and single-
step variance of 0.4. The model specification was therefore

Y,, ~ Gamma, (5.1)
E[Yy] = exp[By + B + 1) + B, logd + D], (5.2a)
Var([V,] = eB[Yyl. (5.3)

Data triangles for the three LoBs were sampled according to this model, but this time with independent
process error for the different LoBs. The model of each data set is now deliberately misspecified to
omit the accident year multiplier. That is, instead of the correct specification (5.2a), the following
model was fitted:

E[Yy] = exp[By + B1( + 1) + B3 log(l + D], (5.2b)

where the parameters in the misspecified model are distinguished by a prime, and the notation indi-
cates that the same set of parameters is estimated for each of the three data triangles. This creates a
bias vector b, as in Section 2.2, whose (k, [) component is of the form

bi = exp[By + B + 1) + By log( + D] — exp[By + Bl + 1) + B3 log(l + D] (5.5)

and that may be observed to be independent of i.

The misspecification with respect to rows of the triangles creates parameter correlation of the form
(2.20), where the subsets N, are the rows. A bootstrap with synchronized rows, as described in Section
2.4.3, is therefore applied. This will be referred to subsequently as a rowwise bootstrap.

5.3.2 Performance Measurement

As in Section 2, let Y, Z; denote the past and future data respectively in LoB i. The measurement of
bootstrap performance will be concerned with Z,.
Let

= EIZ), (5.6)

which is the true mean, given by an equation like (5.2a), and let {/ denote the corresponding mean in
the misspecified model (5.2b).
Let {; denote the estimate of {/ derived from the data set Y; and let Zj},) denote the rowwise bootstrap

forecast of Z,. The prediction error in the bootstrap forecast is
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Zi = Ziy = (Z; = L) [process error]
+ (&= &) [specification error]
+ (@ —U) [parameter error]
+ (2,' — Zj,) linternal bootstrap error]. (5.7)

It will be convenient to write this in the notation
Zi = Ziy = & T &+ Xy (5.8)

where g, x,,, denote the process and internal bootstrap errors, respectively, and § denotes the sum of
the specification and parameter errors.
Note that

e & is a deterministic quantity
* g is stochastically independent of g for j # i
* g is stochastically independent of §; for any i, j

and typically

Elg] = 0, (5.9
& # 0, (5.10)
Elxi] # 0. (5.11)

Relation (5.10) relates mainly to the existence of specification error. Relation (5.11) reflects the fact
that forecasts from a synchronous bootstrap will contain a bias that tends to correct for specification
error.

Now consider the predictive covariance

E[(Z — Zi)(Z — Zi)] = El(& + & + X)) (& + & + Xj0)]
8@7\731'[81‘] + C'OV[Xi(r)’ Xj(r)] + E[§ + Xi(r)]E[gj + Xj(r)]
o;Var[g;] + CovlXipy Xjn] T g + E[Xi(r)]}{gj + E[Xj(r)]}' (3.12)

It will now be convenient to write
& =8 T p (5.13)

recognizing & as the sum of specification and parameter errors, respectively.
Substitution of this in (5.12) gives

E[(Z — Zz(r)) (Z7 - Z](r))] = 81;7'\731'[81'] + COV[Xi(T), Xj(r)] + {p;, + E[Xi(r)]}{p;‘ + E[Xj(r)]}
+ s+ sidp; + Elxlr + siipr + Elxin 11 (3.14)

Express this relation in the notation

(PC); = (PO)y* + (PC); (5.15)

4’
where (PC); denotes predictive covariance, (PC)j denotes the last three members of (5.14), involving
specification error, and (PC)j® denotes the remainder of the right-hand side of (5.14), not involving
specification error.
Define 5 as in (2.13). Then the mean square error of prediction of = is

MSEP[s] = E[(s — 5§,)°] = 3,17(PC),1
= MSEP™[s] + MSEP*[s], (5.16)
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where

MSEPns[z] — Elle(Pc)qsl, MSEPs[z] = E”IT(PC);I

u

Also define
MSEPiml[z] = zllT(PC)nl’ (517)

which is the MSEP in the case of independence between all LoBs, and define MSEP;,[s] and
MSEP, [2] similarly. Then MSEP[z] — MSEP,,,[=] is the inter-LoB covariance contribution to MSEP [=].

The true MSEP is MSEP[z]. However, in practice, one attempts to eliminate specification error from
a model and so assumes that MSEP*[z] = 0, so that the observable MSEP is MSEP™[%]. Therefore, a

measure of the efficiency of the synchronous bootstrap in capturing the inter-LoB covariances is

MSEP"™[s] — MSEP™[s]
MSEP[z] — MSEP, ,[s] ~

Efficiency = (5.18)

5.3.3 Numerical Results

The properties of the rowwise bootstrap depend on the degree of misspecification that it needs to
correct. If there is little variation in the row parameters B,,, there will be correspondingly little param-
eter correlation, and little need for the bootstrap to estimate it efficiently.

Five different examples were considered, each consisting of a triple of data sets for the three LoBs.
The random walk of parameters B, differed between the examples. Figure 7 plots (on a logarithmic
scale) the sampled values of exp(B,, — Bio), Which is the multiplier that scales the expected values of
accident year k relative to year 1.

In Example 1 claims experience drifts to very high levels in the later accident years. Example 5
provides more or less the mirror image, with claims experience drifting to low levels. Examples 2, 3,
and 4 are more moderate.

The effects of these parameters are illustrated in Table 3, which displays the mean and prediction
error of the loss reserve for a single LoB, as estimated by a simple (unsynchronized) bootstrap with
1000 replications. The prediction error takes the form of the root mean square error of prediction

Figure 7
Accident Year Multipliers
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Table 3
Mean and Prediction Error of Loss Reserve for
a Single LoB

Mean Loss RMSEP
Example Reserve (% of Mean)
1 $211,325 60
2 47,572 22
3 39,610 32
4 42,831 33
5 27,840 160

(RMSEP), including specification error, and is estimated by simulation. The effect of the parameter
drift on prediction error is evident in Examples 1 and 5.

Table 4 displays values of the efficiency statistic (5.18) for the rowwise bootstrap applied to the
five examples, with 10,000 replications in each case. The table also displays values of
{1 — MSEP,,[s]/MSEP[z]}, representing the relative contribution of the inter-LoB correlations to
MSEP[z]. It has a maximum value of 5. The efficiency of the rowwise bootstrap is displayed in the
column headed “rowwise.” The column headed “pointwise’ displays the corresponding efficiency mea-
sure for the pointwise bootstrap.

Just the presence of noise in the data will prevent any forecast procedure from capturing full param-
eter correlation. However, the rowwise bootstrap is seen to perform well in cases of high correlation
and moderately well in cases of lower correlation. Somewhat surprisingly, the pointwise bootstrap also
performs moderately well, though it does not match the rowwise version in cases of high correlation.

It should be recognized that, despite the semi-effectiveness of the synchronous bootstrap in capturing
the contribution of parameter correlation to RMSEP, the existence of specification error nevertheless
causes a substantial part of RMSEP to remain unrecognized. Table 5 illustrates.

The first column of results in Table 5 is simply reproduced from Table 3. The synchronized bootstrap
RMSEP including specification error is based on (PQ); from (5.15), excluding specification error based
on (PC)j°. The table illustrates how the RMSEP to be estimated (i.e., including specification error) is
reduced by the introduction of the synchronous bootstrap. This occurs because this form of bootstrap
assigns part of what is otherwise interpreted as noise-to-row effects.

The final column of the table contains the estimate of RMSEP obtained in practice where specifi-
cation cannot be measured and is assumed zero. It is seen that 80% of the RMSEP is lost in one of the
cases of high parameter correlation, and of the order of half in the cases of milder correlation.

Such losses are, of course, serious. However, two points should be made:

e The examples, particularly those involving high parameter correlation, are rather exaggerated. In
practice, specification errors of the magnitude contained in these examples would hardly go
unnoticed.

Table 4
Efficiency of Rowwise and Pointwise Bootstrap Estimation of Prediction Error

Contribution of Inter-LoB Efficiency
Example Correlations to Prediction Error Rowwise Bootstrap Pointwise Bootstrap
! 66.4% 73% 2%
2 59.7 60 5
3 63.9 24 39
4 63.1 2 5%
5 65.0 103 o
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Table 5
Prediction Error Unrecognized Due to Specification Error

RMSEP (as % of Mean)
Including Specification Error Excluding Specification Error
According To According to Rowwise According to Rowwise
Example Unsynchronized Bootstrap Synchronized Bootstrap Synchronized Bootstrap
1 60% 50% 10%
2 22 15 10
3 32 24 9
4 33 24 10
5 160 62 80

e The failure to correct for specification error is not a failure of the synchronous bootstrap as such.
Indeed, Table 5 demonstrates that this form of bootstrap makes a significant contribution to cor-
recting for such errors. Specification error will bedevil any form of forecast. This accepted, the syn-
chronous bootstrap performs reasonably well in recognizing inter-LoB dependencies.
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