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ABSTRACT

In this paper the ‘Wilkie investment model’ is discussed, updated and extended. The original model
covered price inflation, share dividends, share dividend yields (and hence share prices) and long-term
interest rates, and was based on data for the United Kingdom from 1919 to 1982, taken at annual
intervals. The additional aspects now covered include: the extension of the data period to 1994 (with
omission of the period from 1919 to 1923); the inclusion of models for a wages (earnings) index,
short-term interest rates, property rentals and yields (and hence property prices) and yields on index-
linked stock; consideration of data for observations more frequently than yearly, in particular monthly
data; extension of the U.K. model to certain other countries; introduction of a model for currency
exchange rates; extension of certain aspects of the model to a larger number of other countries; and
consideration of more elaborate forms of time-series modelling, in particular cointegrated models and
ARCH models.
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1. INTRODUCTION

1.1 History of the Model

. 1.1.1 What has become known to some as ‘the Wilkie Investment Model’ had
its origin in work done while I was a member of the Maturity Guarantees

Working Party, whose Report was presented to the Institute and to the Faculty

in 1980. In that Report an index of United Kingdom share prices was

decomposed into share dividends and share dividend yields, which were analysed

with separate time-series models.

1.1.2 A more comprehensive model, including both price inflation and long-
term interest rates, was presented to the Faculty in 1984 (Wilkie, 1986a). This
model was described in further papers, one of which was presented to the then
Institute of Actuaries Students’ Society (Wilkie, 1986b, 1987).

1.1.3 An updated model, with extensions to other countries, the United States
of America and France, and including a model for currency exchange rates, was
presented to the 24th International Congress of Actuaries in Montréal (Wilkie,
1992). Earlier that year Geoghegan et al. (1992) reported to the Institute on their
investigations on the Wilkie model.
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778 More on a Stochastic Asset Model for Actuarial Use

1.1.4 Others have used similar methodologies to investigate investment series
in other countries. Carter (1991) and Hua (1994) have looked at Australian data,
with mixed success. Metz & Ort (1993) considered certain aspects of Swiss data.
In a number of papers (Pentikédinen et al., 1989; Bonsdorff et al., 1994; Pukkilla
et al., 1994) and also in Daykin, Pentikdinen & Pesonen (1994) a Finnish group
have put forward certain alternative models. Most recently Thomson (1994) has
developed a similar, but interestingly different, model for South Africa.

1.2 OQutline of the Paper

1.2.1  The original model covered price inflation, share dividends, share
dividend yields (and hence share prices) and long-term interest rates. It was
based on the data for 1919 to 1982, taken at annual intervals. This paper covers

a number of additional aspects:

— extension of the data period to 1994, with omission of the period from 1919
to 1923;

— inclusion of models for a wages (earnings) index, short-term interest rates,
property rentals and yields (and hence property prices) and index-linked
stock;

— consideration of data for observations more frequently than yearly, in
particular monthly data;

— extension of the UK. model to certain other countries;

— introduction of a model for currency exchange rates;

— extension of certain aspects of the model to a larger number of other
countries; and

—  consideration of more elaborate forms of time-series modelling, in particular
cointegrated models and ARCH models.

122 Applications of the model are not discussed. Many of these are well
known, and have been described in a number of papers, for example the Report
of the Faculty Solvency Working Party (1986), Ross (1989), Purchase ef al.
(1989), Daykin & Hey (1990, 1991), Macdonald (1991, 1993, 1994, 1995), Hardy
(1993, 1994) and others. In my earliest papers on the subject the possible
applications of the model received emphasis at the expense, perhaps, of statistical
justification.

1.2.3 The emphasis in this paper is on the statistical analysis of the data, but,
in order not to disturb the flow of discussion too greatly, most of the theoretical
material is included in appendices. My intention is to give readers a feel for how
certain statistical models behave, and therefore whether they might reflect
satisfactorily the long-term features of the investment series to which they might
be applied.

1.2.4 1 discuss first a model for price indices (consumer prices or retail
prices), then for a wages index, followed by share prices (dividends and dividend
yields), interest rates (long-term and short-term), property (rental and yield),
index-linked stocks and currency exchange rates. In the earlier sections the
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statistical discussion is rather fuller; it is not necessary to repeat much of the
discussion in the later sections. I discuss all aspects of each series in the relevant
section. Some forecasting results are shown in Section 11, and some suggestions
for further research in Section 12.

1.3 Purpose of the Paper
1.3.1 One of the scrutineers appointed by the Institute to review the paper
asked what the purpose of this long paper was. [At this point I should like to thank the

scrutineers for their efforts in studying such a long paper, and for their helpful suggestions.] I

replied that there were at least four reasons for producing it:

— because 1 found the topic interesting, and I hoped that others would too;

— because others might find the content useful for applications, especially the
new series considered and the extensions to other countries;

— so that users of the models might feel more confident that they were
reasonably justified (or not as the case may be) once the models had been
exposed to discussion and criticism; and

— so that actuaries who were interested in time-series modelling might acquire
a feel for some aspects of the subject, such as the difference between these
sorts of models and pure random walk models.

1.3.2 It will be seen that this paper is more like a progress report than the last
word on the subject. The more aspects that are investigated the more alternatives
worthy of investigation open up, and in §12.2 I list some points that I think
deserve further consideration. However, I believe that enough has been done to
make it worth exposing the results obtained so far to the profession for criticism
and discussion.

1.3.3 It is also my intention to show how the type of model I discuss, which
is intended as a long-term model, is consistent with the short-term models
favoured by many financial economists. In effect, the short-term properties of
both types of model are the same, but the long-term properties are different, and,
in my view, the long-term properties of the models I describe mean that they
should be preferred.

1.4 Statistics and Economics

1.4.1 There is sometimes a conflict between the perceived properties of the
data series, as derived from the application of conventional statistical
methodology, and the properties that would be considered desirable or necessary,
either from general economic or investment principles, or from plain common
sense. This is partly a matter of whether one considers the given data series in
isolation, or whether one brings in additional information, especially about the
long-term behaviour of other similar series. For example, the evidence in Homer
(1969) shows that interest rates, or at least real interest rates, must be modelled
as statistically stationary series, whatever the apparent short-term properties of the
data. One could use explicit Bayesian statistical methods for the analysis, but I
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consider it sufficient to use one’s external knowledge informally in making
sensible choices of model.

1.4.2 There is also a conflict between a model that may have good short-term
forecasting properties and one that adequately describes the long-term variability
of the series under consideration. For the former, minimum short-term errors are
the ideal; for the latter an appropriate variance structure is desirable.

1.4.3 An example of these conflicts is found in a recent paper presented to the
Staple Inn Actuarial Society by Huber (1995), who makes some trenchant
criticisms of my model, which are not, however, supported by his analysis.
Although he has shown that statistical models could be devised that would give
better one-step-ahead forecasts for the last twelve years than mine does, he has
not considered the long-term properties of his models, which are, in my view,
quite unrealistic. It is unfortunate when application of a restricted statistical
methodology fails to take into account the total picture for the data under
consideration.

2. CONSUMER PRICE INDICES

2.1 The Original Model

2.1.1 The original model for the UK. Retail Prices Index (RPI) (what in other
countries would usually be called a consumer price index), based on annual data
from June 1919 to June 1982, where Q(¥) is the value of a retail price index at
time ¢, is:

Q) = Q(t—-exp{(n)}

so that /(f) = In Q(Y) — In Q(t—1) is the rate (strictly force) of inflation over the
year (t—1,0):

K = OMU + Q4.(I(t—1) — OMU) + QE(1)
QE(t) = OSD.QZ(r)
OZ(t) ~ iid N(0,1)

that is QZ(f) is a series of independent, identically distributed unit normal
variates, i.e. they have zero mean and unit standard deviation.

2.1.2 The suggested parameters, based on the experience from 1919 to 1982,
were: QMU = 0.05, Q4 = 0.6, OSD = 0.05.

2.1.3 This model stated that the difference in the logarithms of the RPI each
year could be modelled as a first order autoregressive series. In the time-series
literature this would be denoted as an AR(1) model; this is a statistically
stationary series (i.e. in the long run the mean and variance are constant), of a
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type which is also described as an I(0) series. The sum of the annual forces of
inflation gives the logarithm of the RPI, which can be described as an
ARIMA(1,1,0) model, and is an example of an I(1) series. Some properties of
these models are described in Appendix A.

2.1.4 Since AR(1) models seem to apply widely to the investment series I
discuss, it is convenient to abbreviate the notation and to write, for example:

I(t) ~ ARI(QMU, QA, OSD)
or, inserting numerical values, to write:
I(t) ~ AR1(0.05, 0.6, 0.05).

2.1.5 The model can be described in words: each year the force of inflation
is equal to its mean rate (0.05), plus 60% of last year’s deviation from the mean,
plus a random innovation which has zero mean and a standard deviation of 0.05.

2.2 The Experience from 1982 to 1994

2.2.1 It is of interest to see how this model has fared since 1982. One can
investigate the experience in two ways: by looking at the residuals, the difference
between the ‘forecast’ and the actual values year by year, the observed QFs, or
their ‘standardised’ versions, the QZs; and by looking at the cumulative result,
the logarithm of the RPI, and comparing it with the values that would have been
forecast in 1982.

222 According to the model, the residuals, the QFs, are distributed
N(0, OSD?), i.e. normally with zero mean and variance QSD’; it is convenient
first to divide each QF by QSD to give (OZs; these are assumed to be distributed
N(0,1). The sum of n such OZs is distributed N(0, #), and the sum of the squares
of n such QZs is distributed as x2.

2.2.3 Originally 1 used values for June in each year, and I continue with these
values. Values of the RPI up to June 1994 are now available; this gives us 12
new values. Table 2.1 shows, for each year, the observed value I(¢), the expected
value conditional on the relevant information up to year (t~1), E[{(f)]| #,_,], the
observed residual QE() = Kf) — E[/{H)] #,_,], and the standardised residual
QZ()) =QE(®)/QSD. The notation .#, just means the ‘facts’ at time ¢, and I use
a modified version of this notation later.

2.2.4 We can compare the sum of the 12 values of OZ, which is —0.98, with
the expected value, zero, and the standard deviation /12 = 3.46. It is well within
one standard deviation away from its expected value. We can also compare the
sum of the 12 values of QZ?, which is 2.53, with a x2 distribution; the
probability of a value of %’ as great or greater is 0.998, which suggests that this
value of y? is unexpectedly low. None of the (absolute) values of QZ exceeds
1.0. Perhaps the value of OSD is too high.

2.2.5 We can now consider the forecast values of In Q(), conditional on the
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information as at 1982. It is easier to work with the change in the logarithm, i.e.
QF(®) = In Q@) — In Q(1982), which is just the cumulative sum of the values of
I given in Table 2.1. Using the formulae for the expected values and variances
of the forecast log changes, which are set out in Appendix E.2, we get the results

Table 2.1. Comparison of actual and expected values of /(¢),

1983-94

Year J(()] E[J()| Z..] QE) oz()
1982 0.0877

1983 0.0359 0.0726 ~0.0367 —-0.73
1984 0.0501 0.0415 0.0086 0.17
1985 0.0673 0.0501 0.0172 0.34
1986 0.0247 0.0604 —0.0357 -071
1987 0.0411 0.0348 0.0063 0.13
1988 0.0451 0.0447 0.0004 0.01
1989 0.0793 0.0471 0.0323 0.65
1990 0.0934 0.0676 0.0258 0.52
1991 0.0568 0.0761 ~0.0193 039
1992 0.0380 0.0541 —0.0160 ~032
1993 0.0121 0.0428 ~0.0307 ~0.61
1994 0.0259 0.0273 —0.0014 ~0.03
Total —0.0492 098
07 2.53

Table 2.2. Comparison of actual and expected values of QF(¢), 1983-94,
all conditional on # ,

Standard Standardised
Year QF(1) E[QF(1)] Deviation deviation deviation
1983 0.0359 0.0726 -0.0367 0.05 -0.73
1984 0.0860 0.1362 —0.0502 0.0943 -0.53
1985 0.1533 0.1943 —0.0410 0.1360 -0.30
1986 0.1780 0.2492 -0.0712 0.1742 —0.41
1987 02191 03021 —0.0830 0.2089 -0.40
1988 0.2642 0.3539 —0.0897 0.2405 -0.37
1989 0.3435 0.4049 —0.0614 0.2694 -0.23
1990 0.4369 0.4555 —0.0186 0.2961 —0.06
1991 0.4937 0.5059 -0.0122 03210 —0.04
1992 0.5317 0.5561 —0.0244 0.3442 —0.07
1993 0.5439 0.6063 —0.0624 0.3660 -0.17

1994 0.5698 0.6564 —0.0866 0.3867 -0.22
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shown in Table 2.2. This shows the value of QF(¢) for each year, its expected
value conditional on the relevant information up to 1982, E[QF(f)| F el the
observed deviation QF(f) — E[QF(f)| F 5., the standard deviation of QF(£)|.F os2,
and the standardised residual, the observed deviation divided by the
corresponding standard deviation.

2.2.6 The successive values of In Q(f) are not independent, and the results
represent only one experience for 12 years, not 12 independent experiences for
1, 2, ..., 12 years. The values of In Q(t) are each well within one standard
deviation of their forecast values. Again, one might think that the ‘expanding
funnel of doubt’ has been too wide over this period. Perhaps the value of OSD
was too high; perhaps the innovations do not have a constant variance (see
Section 2.8); perhaps they are not normally distributed (see Section 2.9); a
different covariance structure (i.e. a different value of QA4) would lead to a lower
variance for In Q, but this seems implausible in view of the evidence in Section
2.3.

2.2.7 Although I discuss the deviations between the observed and the forecast
values, 1 do not believe that the model should be judged on its short-term
forecasting performance alone, or even at all. There are many alternative models
that could possibly give better short-term forecasts, especially those that take into
account known exogenous variables, such as current government policy and the
current state of the economy; but these factors are not readily forecastable for the
future. The purpose of my model is to provide a realistic variance and
covariance structure for many years ahead, to quantify the expanding funnel of
doubt, and it should be judged on whether it does this satisfactorily for the
purposes that actuaries might wish to use it.

2.3 Updating and Rebasing to 1923-94

2.3.1 Inow consider refitting the parameters of the model, including the data
up to 1994. However, it is desirable to reconsider the starting date. Originally
I had started in June 1919, in part because this gave the longest available series
for a share price index. It may be noted that what is now called the BZW Index
gives share prices from December 1918 and share dividend yields from December
1919. However, as I wrote in my recent paper, ‘The Risk Premium on Ordinary
Shares’ (Wilkie, 1995):

"(December 1919), however, is not a particularly satisfactory date at which to start.
It was only a little over a year after the end of the First World War. Retail prices over
the two years 1919 and 1920 rose very sharply, and over the following three fell even
more sharply. Share dividends paid in 1920 were almost double those paid in 1919; but
share prices did not increase correspondingly. Companies were presumably now free of
any restraints imposed by the war, and were able to increase dividends considerably; but
shareholders recognised these as exceptional, and it seems as if they did not expect them
to continue. Over the next three years, 1920-23, dividends fell back, but possibly by less
than people expected, so share prices rose, and the very high dividend yields recorded
at the end of 1920 (9.5%) also fell back.
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"It is therefore reasonable to start the investigation at the end of 1923, when share
dividend yields were 6.43%, Consols yiclds were 4.5%, and over the previous year retail
prices had dropped by 1.7%, share dividends had grown by 12.4%, and share prices had
risen by 5.09%. This date gives a suitable starting position, after the disturbances of the
post-war period had been passed.”

2.3.2 I now prefer to start the annual series in June 1923, when conditions
were becoming reasonably stable, and to start the monthly investigations,
described in Section 2.5, in December 1923. [ have also used a revised series,
by using for 1920 to 1936 the values of the Cost of Living Index published by
the Central Statistical Office instead of the Board of Trade wholesale price
indices. The values of the two series do not seem to be very different, but they
produce rather different estimates of the parameters of the model.

2.3.3 To show the difference made by the different series and by different
observation periods, I show, in Table 2.3, the parameter estimates and their
standard errors (in parentheses) from fitting an AR(1) model to the original data
from 1919 to 1982, and to the revised data for 1919-82, 1919-94, 1923-82 and
1923-94.

Table 2.3. Estimates of parameters and standard errors of AR(1) models for
inflation over different periods

Original data Revised data

Period 1919-82 1919-82 1919-94 1923-82 1923-94

oMU 0.0364 0.0374 0.0382 0.0489 0.0473
(0.0169) (0.0156) (0.0132) (0.0145) (0.0120)

Q4 0.5977 0.5057 0.5025 0.5863 0.5773
(0.0976) (0.1061) (0.0975) (0.0882) (0.0798)

osD 0.0543 0.0618 0.0574 0.0457 0.0427
(0.0048) (0.0055) (0.0047) (0.0042) (0.0036)

See Appendix C.1 for an explanation of the method of estimating the parameters.
2.3.4 One can see that the estimates of QA are rather sensitive to the data and
the period used. This is because of the severe falls in prices in 1919-21; even
small changes to these extreme values affect the estimates of the parameters.
Omitting the data for these years produces more stable estimates, in which the
value of QA for periods starting in 1923 happens to be similar to the value found
in the original investigation. Adding the data for 1982 to 1994 makes little
difference to the parameter estimates whether one starts in 1919 or in 1923.
2.3.5 The estimated value of QMU is higher for periods starting in 1923 than
for periods starting in 1919, because the years of extreme falls of price have been
omitted; the added 12 years from 1982 to 1994 make little difference. 1
suggested using a value of QMU of 0.05, higher than that observed for 1919-82,
because I felt that that was unduly influenced by the experience of the early
years. Note, however, that the standard errors of the estimates of the mean are
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all relatively high. Plus or minus two standard errors for the 1923-94 period
would give a range of about 0.025 to 0.07, or 2%2% to 7%.

2.3.6 The estimates of QSD are lower when the early years are omitted, and
lower also when the later years are added, because of the low variation of these
recent years.

2.3.7 One can round off the values found for 1923-94 to give:

OMU = 0.047; 04 = 0.58; OSD = 0.0425.

2.3.8 An important feature of the way I believe this model should be used is
that those using it should form their own opinions about the choice of appropriate
mean values. Actuaries, investment managers and others often have strong views
about the likely mean rate of inflation in future, and also the likely mean rate of
real dividend increase, mean share dividend yield, etc. These estimates of mean
values to be used in future can depend on much more than simply an analysis of
the historic values of any past period, and can take into account the actuary’s
view of likely future political and economic developments. It is not the part of
my model to preempt the actuary’s judgement. However, the model does allow
a variance and correlation structure to be built around whatever mean or median
values are chosen.

2.3.9 Extensive diagnostic testing of the model was carried out. The
parameters for all periods are seen to be significantly different from zero. The
residuals, the observed values of QF, are calculated, first with the exact
parameter estimates, and then with my rounded ones for 1923-94. The
autocorrelation coefficients of the residuals show nothing unusual, nor does the
Wald-Wolfowitz test of runs of the same sign (the same as Steven’s sign test).
However, the skewness and kurtosis coefficients, based on the third and fourth
moments of the residuals, are rather large: \/b, = 1.13, demonstrating substantial
positive skewness; and b, = 5.11, implying quite heavy ‘tails’ in the distribution.
These are even larger when the data for 1919-23 are included.

2.3.10 Individual large deviations can be picked out. Values of the residual
errors greater than twice the standard deviation occur for 1940 (3.64 times the
standard deviation), 1975 (2.83 times) and 1980 (2.54 times). There seems to
be evidence that the residuals should not be taken as normally distributed, and
this is discussed further in Sections 2.8 and 2.9.

2.3.11 A composite test of the skewness and kurtosis coefficients has been
devised by Jarque & Bera (see Appendix C.3.8), and this also shows significant
non-normality. The test statistic is 28.71, which should be compared with a x 2
variate. The probability that such a result would occur at random is negligible.

2.4 Previous Centuries
2.4.1 1 have available data for a consumer price index of sorts for a very long
run of annual values, starting in 1264. For the data sources see Appendix F.1.
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The indices for years prior to 1870 were not, of course, calculated
contemporaneously, but have been constructed more recently by economic
historians. They, therefore, do not have the same reliability as the modern Retail
Prices Index, but, nevertheless, I believe that they have some validity, especially
when the annual changes are considered.

2.4.2 The series from 1264 to 1994 Q(¢), is graphed with a vertical logarithmic
scale in Figure 2.1, and the annual differences in the logarithms /(r), are graphed
in Figure 2.2. One can observe that from 1264 until about the middle of the 16th
Century the price index oscillated about a fairly constant mean level, but there
were considerable annual fluctuations, and considerable movements away from
the overall mean level. Around 1540 a rise commenced, which peaked about
1650. Thereafter there were larger upwards and downwards drifts, but still with
substantial annual changes in the rate of inflation. From 1933 the movement has
been almost entirely upwards, and generally the rates of inflation have been more
stable, as well as being almost uniformly positive.

2.4.3 I investigated part of these data in an earlier paper on ‘Indexing Long
Term Contracts’ (Wilkie, 1981). I found that no simple autoregressive or moving
average model readily represented the inflation series over these earlier centuries,
and the same is true with the additional data now available.

2.4.4 1have subdivided the period before 1914 into three sub-periods, two of
which overlap, which are: 1264-1540; 1540-1650; and 1600-1914. I have also
considered the whole period, 1264-1914. Augmented Dickey-Fuller (ADF) tests
for unit roots (see Appendix A.5.4) show that it is reasonable to take In Q as an
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Figure 2.1. Consumer price index, 1264-1994
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integrated I(1) series in each sub-period, when enough additional difference terms
are included. When the differences of the logarithms, I(r), are investigated, it is
found that in each case there is significant negative autocorrelation two years and
three years apart.

I
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Figure 2.2. Annual force of inflation, 1264-1994

245 Fitting AR(p) models to each of these periods, where p = 3 or 5 as
indicated, gives the results shown in Table 2.4. A higher order autoregressive
model is not justified, and for 1540-1650 and 1600-1914 p = 3 is sufficient. It
is interesting that most of the autoregressive coefficients are negative. However,
tests of the normality of the residuals in each case fail significantly.

2.5 Observations at Monthly Intervals

2.5.1 Values of the Retail Prices Index, or its predecessor, the Cost-of-Living
Index, are available from August 1914 at monthly intervals. Since these are
available, it is worth investigating what can be done statistically with this series.
For this purpose I have limited my observation period to the values of the RPI
from December 1923 to June 1994, inclusive. This gives 847 monthly values of
Q, from which I can derive 846 monthly values of the monthly force of inflation
(note that I am not taking the annual inflation over the preceding 12 months, but
the increase in each month).

2.5.2 Ifirst calculated the autocorrelation coefficients of these monthly values
up to lag 120. A graph of these is shown in Figure 2.3. Note that there are only
three negative values in the first seven years, at lags 42, 78 and 79. All the
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others are positive. Note also that there are ‘spikes’ at lags 12, 24, 36, etc,, i.e.
at annual values, and that this continues right through to 10 years out. Note
further that the correlation coefficients do not seem to decline very quickly,
almost as if the series had ‘long memory’ or was ‘fractionally integrated’ (see,
for example, Brockwell & Davis, 1991, Chapter 13; or Granger & Terdsvirta,
1993, Chapter 5, for explanations of these; and see Maddocks et al., 1991; or
Craighead, 1994, for examples of investigations using these ideas). The
investigations I shall describe show, however, that this assumption of long
memory would be unjustified.

Table 2.4. Results of fitting AR(p) models to four sub-periods

Period 1264-1540 1540-1650 1600-1914 1264-1914
Mean of I(f) 0.0023 0.0157 0.0002 0.0028
S.d. of I(1) 0.1262 0.1270 0.0711 0.1065
Order of AR(p) 5 3 3 5
Coefficients:
a, ~0.0394 —0.2459 0.1186 —0.0436
a, -0.3795 -0.3575 —-0.1933 -03213
a, -0.2414 -02144 —0.1249 -0.2139
a, —-0.1626 - - —0.1072
as —0.1388 - - -0.1029
Residual s.d. 0.1149 0.1164 0.0683 0.0995
Skewness /B, 0.22 0.19 ~0.16 0.19
Kurtosis B, 421 6.06 3.63 5.67
Jarque-Bera x? 18.91 43.89 6.52 195.39
%) 0.000 0.000 0.038 0.000

2.5.3 It is now useful to introduce a little notation, which I shall generalise in
terms of an integrated series x(f), observed at monthly intervals r=1, 2, ..., N.
One can take differences of this series at intervals of m months. There are m
possible starting points. For example, if m = 2 we can take differences at
intervals of two months, starting either with month 1 or month 2, e.g. we can
take the first interval as January and February, the second as March and April,
etc.; or we can ignore January and start with the first interval as February and
March, the second April and May, etc. I shall denote differences taken at
intervals of m months, starting with month 4 as y,,, (), « = 1, 2, 3, ... where:

Yu1) = x(htm) — x(h)

Yorr(2) = x(h+2m) — x(rtm), etc.
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Figure 2.3. Autocorrelation function of monthly inflation,
December 1923-June 1994

2.5.4 Since different numbers of months may be omitted at the beginning and
the end of each series, the number of observations for each value of 4 is not
necessarily the same. There are roughly N/h observations for each series, but
there may be one or more fewer than this.

2.5.5 The initial series differenced at monthly intervals is denoted y,,,. For the
inflation series I shall denote the monthly differences by /, so that the original
monthly inflation values are denoted by /,,.

256 We can now consider the series ,, and /,,, i.e. the two series
constructed by taking price changes over each pair of months. The first term of
one series is the change in (the logarithm of) the price index from December
1923 to February 1924, and of the other series the change from January 1924 to
March 1924.

2.5.7 The autocorrelation coefficients for the first 60 pairs of months are
shown in Figures 2.4 and 2.5. Again ‘spikes’ can be seen at lags 6, 12, 18, etc.,
corresponding to annual intervals. Again the autocorrelation coefficients do not
decline slowly, and are positive for several years.

2.5.8 Similar calculations have been carried out for differencing intervals of
3, 4 and 6 months, and similar results are obtained. In each case there is a
moderately high autocorrelation at lag 1, and generally a larger one at the lag
corresponding to annual intervals. As the differencing period lengthens, both the
first and the annual correlation coefficients increase. This is shown in Table 2.5.
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Figure 2.4. Autocorrelation function, inflation series 2/1,
December 1923-June 1994
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Figure 2.5. Autocorrelation function, inflation series 2/2,
December 1923-June 1994
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Table 2.5. Statistics and autocorrelation coefficients for various m/h series
for RPI, December 1923 to June 1994

V(12/m)
times
Number of 12/m times standard r 1o
mih values of mean value of deviation of
L i L
1/1 846 0.0442 0.0299 0.3537 0.4913
211 423 0.0442 0.0342 0.5091 0.5833
22 422 0.0443 0.0354 0.3280 0.5651
3/1 282 0.0442 0.0400 0.3575 0.5995
32 281 0.0443 0.0370 0.3972 0.5831
3/3 281 0.0442 0.0389 0.3961 0.6052
4/1 211 0.0442 0.0432 0.2913 0.6407
42 211 0.0443 0.0421 0.3346 0.6218
4/3 211 0.0441 0.0410 0.3744 0.6183
4/4 210 0.0442 0.0395 0.4162 0.5803
6/1 141 0.0442 0.0509 0.1189 0.6771
6/2 140 0.0442 0.0439 0.4685 0.6068
6/3 140 0.0441 0.0430 0.5485 0.5824
6/4 140 0.0442 0.0421 0.6343 0.5572
6/5 140 0.0448 0.0435 0.4807 0.6401
6/6 140 0.0450 0.0484 0.2124 0.6788
Standard
deviation
after fitting
regression
12/1 (Dec) 70 0.0442 0.0525 0.7213 0.0364
1212 70 0.0442 0.0524 0.7239 0.0362
12/3 70 0.0441 0.0524 0.7276 0.0356
12/4 70 0.0442 0.0532 0.7067 0.0376
12/5 70 0.0448 0.0537 0.6802 0.0394
12/6 70 0.0450 0.0542 0.6567 0.0410
12/7 70 0.0452 0.0550 0.6186 0.0434
12/8 69 0.0454 0.0539 0.6326 0.0419
12/9 69 0.0453 0.0545 0.6449 0.0417
12/10 69 0.0453 0.0543 0.6506 0.0413
12/11 69 0.0450 0.0525 0.7222 0.0361
12/12 69 0.0446 0.0527 0.7227 0.0357
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2.5.9 When we reach annual differencing the pattern suddenly ‘gels’; and an
autocorrelation function corresponding to an AR(1) model emerges. After lag 1
the autocorrelation coefficients die away exponentially in each case. There is no
evidence of long memory beyond one year, except as transmitted through the first
annual autocorrelation.

2.5.10 Experiments using differencing intervals which are not fractions of a
year, e.g. 10, 11, 13 and 14 months, show similar results, with a single first order
autocorrelation coefficient and subsequent values declining exponentially.
However, the evidence from the initial monthly differencing shows clearly that
there is an annual cycle, and not, for example, an 11-month or a 13-month cycle.

2.5.11 It is not surprising, nowadays, that autocorrelation in the inflation rate
over a year should be observed. The ‘headline’ inflation rate quoted each month
is always the annual rate for the preceding 12 months. Many enterprises review,
and often alter, their prices at annual intervals, and the Government introduces
an annual budget (though the position of this in the year has changed recently).
There therefore seems good justification in continuing to model inflation on an
annual basis, rather than attempting a more complex model based on more
frequent intervals.

2.5.12 Carter (1991), studying Australian data, seems to have fallen into a
trap. In order to increase.the number of observations available, he observed
quarterly inflation data (in Australia the Consumer Prices Index is published only
at quarterly intervals), and found, not surprisingly, that my annual model did not
fit very well.

2.5.13 Note that the line for 12/1 shows differencing at annual intervals using
the December values, and so on, so that the line 12/7 corresponds to the June
values I have used in Section 2.3. It can be seen that the estimate there of QMU
is not identical with the mean value of /,, and that QA4 is not identical with r,.
This is because the method of estimation of the parameters is not identical with
the method of calculation of the values in Table 2.5, the values at the start of the
series being treated slightly differently. The value of OSD should be compared
with the value in the last column, which, for the 12/h series, shows the standard
deviation after taking account of the regression using the value of r, shown as the
parameter.

2.5.14 It is interesting to note the tidy cyclicality of the first autocorrelation
coefficients for the 12/A series. The value of r, is at a maximum for series 12/3,
that for February, and at a minimum for series 12/7, that for June, and the
standard deviation of the residuals is correspondingly reversed. Thus inflation
over the year February to February appears rather more predictable than over the
year June to June. Whether this will continue now that the annual budget has
been moved to late November or early December will be interesting to discover.

2.6 Data for Selected Other Countries for Other Periods
2.6.1 I have been able to obtain data on consumer price indices for a number
of other countries for reasonably long periods. 1 have also obtained data for a
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larger number of countries for a uniform, but shorter, period, and these are
discussed in Section 2.7. The periods and the results, giving broadly rounded
values, are shown in Table 2.6.

Table 2.6. Fitted parameters for CPI model for selected other countries

UK. US.A. France Canada Sweden Finland Norway
Period 1923-94  1926-89  1951-89 1923-93 1923-93 1950-93 1930-93
oMU 0.047 0.03 0.06 0.034 0.046 0.06 0.047
oA 0.58 0.65 0.55 0.64 0.56 0.46 0.46
[OAYY) 0.0425 0.035 0.04 0.032 0.034 0.039 0.039

2.6.2 The figures for the U.S.A. and for France have been shown in my paper
for the Montréal Congress (Wilkie, 1992); those for Canada have been published
in Wilkie (1994b): those for Sweden, Finland and Norway have not previously
been published.

2.6.3 Values of the parameters are reasonably similar for each country. The
most variable is the mean rate of inflation QMU, which ranges from 0.03 to 0.06,
or roughly 3% to 6% inflation. This partly depends on the different periods
chosen, since inflation in all countries has been rather higher in recent decades
than before the Second World War, except that, because of the exceptionally high
inflation in France during and just after that war, I chose to start my
investigations for that country in 1951.

2.6.4 In order to complete a model for several countries, it is necessary to
know the simultaneous crosscorrelations of the residuals, and to investigate
whether there are any significant lagged crosscorrelations. While, in principle,
it should be easy to do this, the way I have investigated the series makes it
complicated to produce the answers readily, and I limit myself to quoting
simultaneous correlation coefficients for the UK., U.S.A. and France from my
Montréal paper. These are not calculated over identical periods. They are:

UK. v US.A.: 0.19; UK. v France: 0.47; U.S.A. v France: 0.29.

Simultaneous correlation coefficients over a consistent, but shorter, period, and
for more countries, are discussed in Section 2.7.

2.7 Data for Several Other Countries for 1969-94

2.7.1 In this Section I update the report given in my paper to the 4th AFIR
Colloquium (Wilkie, 1994a), when I took the data up to May 1993. On this
occasion I go up to June 1994.

2.72 Values of the Consumer Price Index (CPI) for 23 countries (whose
names are listed in the tables) are available, in general at monthly intervals from
January 1969 to June 1994. Details of the data sources are given in Appendix
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F.8. Since monthly values are available, it is possible to investigate them in the
same way as I have for the U.K. over a longer period, in Section 2.5, differencing
at different numbers of months, i.e. the various m/h series. In general similar
results are found for each country, but it would be laborious to quote them in
full.

2.7.3 Table 2.7 shows summary results from fitting annual models to the data
for each of the 23 countries. It shows, for each country, certain values of
estimates of OMU, the mean value of the [, series, of O4, the autoregressive
parameter, estimated by the first autocorrelation coefficient, and of OSD, the
standard deviation of the residuals after fitting an AR(1) model with this
parameter. For each of these three parameters it shows the lowest value observed
for any of the 12 annual series, one corresponding to each month, a mean value
(explained further below) and the highest value for any of the 12 series. In the
case of QA and QSD, the mean values shown are the means of the values for the
12 separate series. For QMU the overall mean is shown, which is 12 times the
mean of the total monthly series from January 1969 to June 1994. For almost
every country this overall mean is lower than the mean of the twelve separate
series, because different months are included at the beginning and end of the
different series, and inflation was generally low in these end months.

274 There is quite a range of values of QMU, from just below 4% for
Germany and Switzerland to over 14% for Greece and Portugal. The values of
QA lie mostly between 0.5 and 0.8, though Greece, Norway and Portugal show
values for individual months below 0.5, and all the values for Sweden are below
this level.

2.7.5 The range of values of OMU, QA and OSD for the yearly series, for any
one country, gives an indication of the variability that can be found in such an
investigation when the number of observations is not large. The range is
typically of the same order as one standard error of the parameter estimates.

2.7.6 Most of the countries have a range of values of QSD that includes some
part of the interval 0.02 to 0.03. The values for Austria, Germany and the
Netherlands are wholly below this range, and the values for Greece, Japan, New
Zealand, Portugal and the UK. are wholly above, with the lowest value for
Portugal being 0.0448. There is some connection between high values of 04 and
low values of OSD, and vice versa, but this is not uniform.

2.7.7 There is some tendency for countries with low mean inflation rates to
have low standard deviations of the original observations, with low values of
OSD, and vice versa. This suggests, perhaps, that a certain type of stable
economic environment may lead to inflation rates that are both low and stable,
whereas it may be difficult to control inflation to be both high and stable.
However, the experience of previous centuries in the U.K. suggests that inflation
with a low mean and a high standard deviation is also possible. In the past,
however, money was gold, and was not based on paper or, as nowadays,
computer records, and the responsibility of governments was, perhaps, restricted
to maintaining the gold value of the coinage. In these conditions a low mean
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Analysis of Consumer Price Index for 23 countries from 1/1969 to 6/1994;
parameters of AR(1) model for 12 series with 24 or 25 yearly steps

oMU

Low - overall mean - hi)gL

04

Low - mean - high

QSD
Low - mean - high

Australia
Austria
Belgium
Canada
Denmark
Finland
France
Germany
Greece
Ireland
Italy

Japan
Luxembourg
Netherlands

New
Zealand

Norway
Portugal

South
Africa

Spain
Sweden
Switzerland
UK.
U.S.A.

0.0754 - 0.0743 - 0.0778
0.0452 - 0.0448 - 0.0464
0.0518 - 0.0515 - 0.0530
0.0586 - 0.0585 - 0.0610
0.0661 - 0.0656 - 0.0679
0.0738 - 0.0731 - 0.0771
0.0672 - 0.0667 - 0.0692
0.0372 - 0.0369 - 0.0380
0.1448 - 0.1444 - 0.1503
0.0881 - 0.0873 - 0.0906
0.0981 - 0.0970 - 0.1007
0.0484 - 0.0483 - 0.0495
0.0494 - 0.0488 - 0.0509
0.0437 - 0.0438 - 0.0451
0.0925 - 0.0914 - 0.0959

0.0692 - 0.0683 - 0.0722
0.1458 - 0.1441 - 0.1513
0.1139 - 0.1137 - 0.1172

0.1027 - 0.1011 - 0.1058
0.0743 - 0.0733 - 0.0768
0.0395 - 0.0390 - 0.0412
0.0845 - 0.0838 - 0.0873
0.0550 - 0.0549 - 0.0561

0.605 - 0.641 - 0.685
0.665 - 0.731 - 0.765
0.649 - 0.725 - 0.780
0.679 - 0.704 - 0.735
0.502 - 0.658 - 0.775
0.643 - 0.711 - 0.783
0.704 - 0.804 - 0.831
0.724 - 0.751 - 0.783
0.308 - 0.431 - 0.559
0.745 - 0.780 - 0.826
0.587 - 0.716 - 0.812
0.596 - 0.659 - 0.724
0.673 - 0.738 - 0.772
0.782 - 0.817 - 0.830
0.503 - 0.567 - 0.638

0.258 - 0.539 - 0.671
0.371 - 0.479 - 0.646
0.565 - 0.616 - 0.660

0.705 - 0.782 - 0.831
0.226 - 0.369 - 0428
0.553 - 0.589 - 0.642
0.548 - 0.633 - 0.698
0.636 - 0.673 - 0.700

0.0240 - 0.0261 - 0.0290
0.0130 - 0.0142 - 0.0162
0.0184 - 0.0206 - 0.0238
0.0186 - 0.0200 - 0.0210
0.0209 - 0.0264 - 0.0331
0.0227 - 0.0270 - 0.0311
0.0185 - 0.0204 - 0.0262
0.0113 - 0.0125 - 0.0134
0.0391 - 0.0482 - 0.0537
0.0290 - 0.0342 - 0.0388
0.0262 - 0.0336 - 0.0428
0.0308 - 0.0348 - 0.0381
0.0173 - 0.0192 - 0.0226
0.0159 - 0.0165 - 0.0181
0.0356 - 0.0393 - 0.0433

0.0197 - 0.0233 - 0.0293
0.0448 - 0.0568 - 0.0632
0.0179 - 0.0190 - 0.0206

0.0232 - 0.0277 - 0.0346
0.0236 - 0.0260 - 0.0299
0.0176 - 0.0196 - 0.0213
0.0343 - 0.0388 - 0.0445
0.0204 - 0.0221 - 0.0243
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Table 2.8.
Analysis of Consumer Price Index for 23 countries from 1/1969 to 6/1994;
12 series with 24 or 25 yearly steps; correlation coefficients of residuals;
lower triangle for December series; upper triangle for June series

Aus Ost Bel Can  Den Fin Fra Ger  Gre Ire Ita

Australia 1.0 A5 52 42 .38 52 51 A5 30 47 .60
Austria (Ost) A2 | 1.0 73 42 .57 .60 .70 59 38 69 55

Belgium 42 61|10 | 51 48 65 82 59 29 5 63
Canada 54 25 60|10 | 52 S0 .64 46 35 47 51
Denmark 51 48 46 50|10 | 43 79 41 39 44 66
Finland 59 40 57 53 3510 | 55 56 -01 .68 .79
France 40 66 77 59 69 47|10 )] 61 44 70 70
Germany 16 41 30 47 25 48 381 1.0 -.02 64 54
Greece 34 -—02 -06 23 13 29 ot 28|10 | 24 30
Ireland 57 66 60 46 68 54 84 42 19|10 | &7
Ttaly 52 63 62 32 80 40 77 16 .14 78 I‘L‘
Japan 55 63 53 43 72 56 68 29 36 67 .73

Luxembourg 50 A5 79 36 22 .51 54 39 .02 52 55
Netherlands 24 .61 .63 46 33 57 66 S5 —.06 67 43
New Zealand 52 -.01 11 52 33 18 .03 .03 28 27 22

Norway 43 21 33 48 34 41 31 -.16 25 35 39
Portugal 46 13 32 17 49 22 52 —.06 13 48 48
South Africa 29 —-.01 19 34 15 .04 A9 —.02 24 26 27
Spain .50 .08 38 53 71 41 35 10 12 30 44
Sweden A5 23 .55 49 .39 37 Sl 11 18 29 49
Switzerland 35 41 34 .56 35 44 33 82 .52 35 .23
UK. 47 26 51 .54 A3 .57 44 35 22 5326

US.A. 36 42 47 .62 47 42 71 .39 42 5383
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Table 2.8 (continued).
Analysis of Consumer Price Index for 23 countries from 1/1969 to 6/1994;
12 series with 24 or 25 yearly steps; correlation coefficients of residuals;

lower triangle for December series; upper triangle for June series

797

Jap Lux Net N.Z. Nor Por S.A. Spa Swe Swi UK. USA.

Australia 54 33 11 54 32 30 35 42 25 27 .57 40
Austria (Ost) 61 63 60 12 32 39 04 33 31 39 48 52
Belgium 65 77 54 25 19 53 24 37 26 61 58 .53
Canada 47 36 16 36 51 25 37 32 49 55 35 .61
Denmark 78 29 33 10 32 46 08 56 36 34 50 .67
Finland 46 77 54 33 58 16 15 21 48 43 .69 45
France J6 56 45 37 26 57 28 47 32 54 .63 83
Germany 44 65 70 18 15 08 21 37 18 .65 .51 .54
Greece 56 08 -14 13 29 25 35 13 .17 08 .07 42
Ireland 46 69 69 35 30 32 42 37 18 471 .77 .63
Italy J3 .70 41 21 47 32 20 39 54 39 74 .66
Japan I-T 4230 11 17 40 27 47 24 41 50 .69
Luxembourg 29] 1.0 62 11 34 30 09 26 43 49 53 35
Netherlands 44 47 1.0 A9 09 07 09 34 20 55 .58 30
New Zealand A2 .04 —01) 1.0 45 08 43 22 25 12 47 .39
Norway 30 17 12 43110 |11 09 15 55-05 26 20
Portugal 44 28 20 -02 0510 A8 49 27 31 42 38
South Africa A9 05 29 46 31 —-.08]1.0 A1 —11 32 34 37
Spain 48 14 16 35 31 41 -.02]1.0 26 22 52 31
Sweden 30 35 37 17 43 23 27 50|10 23 42 29
Switzerland 54 32 42 17 -04 06 17 19  11{1.0 40 38
UK. 24 S1 47 42 13 20 .17 18 37 25| 1.0 .68
US.A. 64 31 30 19 21 32 16 27 46 46 56| 1.9
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inflation rate may have been the effective target, regardless of annual fluctuations
in prices; but I do not expect that these targets were so explicitly expressed by
the Chancellors of the Exchequer of the time.

2.7.8 The skewness and kurtosis coefficients of the values, both of the original
observations and of the residuals of each of the 276 series, were calculated, along
with the Jarque-Bera y statistic. Generally these indicated no marked departure
from normality, but certain countries, in particular Belgium, Finland, Greece and
Japan, showed particularly high values of this statistic.

2.7.9 The next step is to calculate the correlation coefficients between the
residuals of the different series, both simultaneously and with appropriate lags.
Thus, considering the annual series for month A, we calculate the residuals for
each country after fitting an AR(1) model, and calculate correlation coefficients
between these residuals for each pair of countries, both simultaneously and with
various lags. There is, thus, a set of arrays of correlation coefficients for each
month.

2.7.10 Simultaneous correlation coefficients for the annual June series and the
annual December series are shown in Table 2.8, with the December values in the
lower triangle and the June values in the upper triangle. Values of 0.60 or
greater are shown in bold type.

2.7.11 One can pick out clusters of countries with high correlations: Germany
and Switzerland are one pair, Belgium and Luxembourg another, and Belgium,
Denmark, France, Ireland, Italy, Japan and Netherlands form a third.

2.7.12 Lagged correlation coefficients are not shown. For lag 1 they are much
smaller than the simultaneous correlation coefficients; but it is clear that they are
not symmetrically distributed around zero, which they should be if there were,
in fact, no lagged crosscorrelations. If two series are independent and normally
distributed, the sample correlation coefficient calculated from a sample of size »
is normally distributed with mean zero and variance 1/n. In this case we have
25 or 26 observations at lag 0, and fewer for higher lags. One standard error is
therefore approximately 0.2. A single correlation coefficient as large as 0.4 is not
significantly different from zero at a 5% probability level.

2.7.13 The average of all 529 correlation coefficients at lag 1 for June is 0.17,
and for December is 0.16; similar values are found for the other months. The
standard deviation of the 529 values is between 0.19 and 0.22 for all months,
which is about the same as 1//n.

2.7.14 For lag 1, individual high values appear for December, with the first
country lagging one year behind the second: Belgium after Finland 0.62; Belgium
after Japan 0.64; Belgium after Switzerland 0.69; Canada after Japan 0.62;
Netherlands after U.S.A. 0.63; Norway after New Zealand 0.63; U.K. after Japan
0.69; UK. after U.S.A. 0.61. While one might find some rationale for certain of
these relationships, I think it would be difficult to explain, for example, why the
Consumer Price Index in the U.S.A. (December series) follows that of Greece
with a two-year lag and a correlation coefficient of —0.51. It seems more
reasonable to assume a general world-wide cross-correlation at lag 1 of modest
extent, rather than a series of specific effects.
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2.8 ARCH Modelling

2.8.1 I'have assumed, so far, that the values of the parameters themselves are
stationary, except for the obvious break sometime during the first half of this
century, as compared with previous centuries. There are many possible ways of
modelling time series with changing parameters, but it is not practicable to carry
out stochastic simulations unless one has a precise model of the way in which the
parameters might change.

2.8.2 One comparatively simple method, however, is to allow for a non-
stationary standard deviation, through what are known as autoregressive
conditional heteroscedastic (ARCH) models. These are described more fully in
Appendix D.1. The sort of model that is comparatively easy to investigate and
to implement is:

OSD(1)* = Q0S4 + OSB.(I(t—1) — OSC)*

where OSA, QSB and QSC are parameters to be determined. This model states
that the variance each year depends on the square of the deviation of last year’s
observation of the force of inflation /(f), from some middle value OSC, which
might or might not equal the mean value QMU. The value of QS4 must be
positive; this is necessary because, without it, there is the chance of the second
term being exactly zero, the variance reducing to zero, and inflation moving
deterministically thereafter. (JSB must not be negative. If it is zero, then the
model has a constant variance of OSA4, the same as I have used so far.

2.8.3 This model reflects the notion that, if the rate of inflation over any year
has been unusually high, then the uncertainty about the rate of inflation in the
following year is increased. It might be again high or it might be much lower.
The same applies if the rate of inflation is unusually low, and this is made
effective through the squared term. If, on the other hand, the rate of inflation
happens to have been near the value of OSC, then the standard deviation in the
succeeding year is smaller.

2.8.4 One way of testing for this sort of ARCH model is to fit a conventional
linear model, and then to consider the squares of the residuals, the QEs and the
squares of the observations, or possibly the squares of the deviations of the
observations from the means (I(f) — OMU)?, and then to look at the
autocorrelation coefficients and crosscorrelation coefficients of the squared
values. Another possible indicator is to use the expected observations, or their
deviations from the mean, in this case given by:

IH(f) = QA ~ 1) — OMU).

2.8.5 One expects the residuals to be simultaneously correlated with the
observations, because the residual forms part of each observation; the squares are
likely also to show simultaneous correlation. However, if the model has been
appropriately fitted, then one expects the residuals and the expected values to
have no correlation, so correlation in the squared values is of interest.
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2.8.6 For convenience, I shall refer to the relevant series as /-squared,
IH-squared and QF-squared, though the first two reflect squared deviations from
the mean.

2.8.7 The QF-squared series shows no significant autocorrelations; indeed the
autocorrelation coefficients are conspicuously low. The crosscorrelation
coefficient between QF-squared and I(t—1)-squared is 0.086, also quite small.
The simultaneous cross-correlation coefficient between (QFE-squared and
IH-squared is 0.032, even smaller. There is, therefore, no evidence to suggest
that an ARCH model of this type would be useful. However, the original
residuals are distinctly fat-tailed (see §92.3.6 to 2.3.8), and one feature of ARCH
models is that they can reproduce fat-tailed residuals.

2.8.8 Undeterred, therefore, I fitted the first order ARCH model described
above to the yearly data for 1923 to 1994, first allowing OSC to be chosen freely
(model (ii)) and then fixing QSC to equal QMU (model (iii)), with the results
shown in Table 2.9, which also shows, denoted as model (i), results from the
original model, but with the new parameterisation, i.e. OSA replaces QSD?.

Table 2.9. Estimates of parameters of AR(1) ARCH models for inflation,

1923-94
(i) Original model (ii) ARCH model (iify ARCH model
0SB =0 QSC free oSC = OMU

Parameter Standard Parameter Standard Parameter Standard

estimate error estimate error estimate error
oMU 0.0473 0.0120 0.0443 0.0113 0.0404 0.0108
QA4 0.5773 0.0805 0.6217 0.1303 0.6179 0.1292
[0NY] 0.001825 0.000304 0.000662 0.000228 0.000656 0.000224

=0.0427? =0.0257? =0.0256%
OSB - - 0.5490 0.2171 0.5524 02147
osc - - 0.0389 0.0068 0.0404 -
Log likelihood 0.0 +4.45 +4.36
Jarque-Bera 33 28.71 6.85 5.76
) 0.000 0.033 0.056
Long-run 0.0427 0.0627 0.0626

standard
deviation OSD

2.8.9 All the parameters for the ARCH models are more than 2.5 times their
standard deviations away from zero, and the log likelihood for model (ii)
compared with model (i) is improved by 4.45. Twice this figure should be
compared with a y} variate, since two extra parameters (QSB and OSC) have
been added. The improvement is distinctly worthwhile (p = 0.012). For model
(iii) the reduction in log likelihood compared with model (ii) is only 0.09, which
suggests that model (iii) is almost as satisfactory as model (ii) and has one fewer
free parameter.



More on a Stochastic Asset Model for Actuarial Use 801

2.8.10 The Jarque-Bera statistic is considerably reduced in both the ARCH
models, from 28.71 (p = 0.000) in model (i) to 6.85 (p = 0.033) in model (ii) and
5.76 (p = 0.056) in model (iii); the kurtosis coefficient b, is now 3.89 (model (ii))
and 3.74 (model (iii)) instead of 5.11 (model (i)); the skewness coefficient /b,
remains relatively large at 0.61 and 0.59 respectively. The number of extreme
errors is also reduced, though high values remain for 1940 (3.44 times the
standard deviation in model (ii) and 3.40 times in model (iii)), 1948 (2.03 and
2.02 times) and 1951 (2.15 and 2.18 times); but one must expect values a little
greater than 2.0 times the standard deviation from time to time.

2.8.11 For model (ii) the value of the standard deviation QSD(f) ranges from
0.176 in 1923, following the large fall in inflation in 1922, and 0.145 in 1976,
at the high end, to less than 0.026, in six different years; the smallest value
possible is /OSA = 0.0257. The average value of the standard deviations is
0.0453, and the square root of the average value of the variance, which is a better
measure, is 0.0530. Very similar values are found for model (iii).

2.8.12 An ARCH model of this type is easy to use for simulation, as noted in
Appendix B to Geoghegan et al. (1992), but it produces larger variances in the
long run. The long-run or unconditional variance of QF is given by:

OSD* = {QSA + QSB(OMU - QSC)*}/{1 — QSBI(1 — Q4%)}

and the value of this is also shown in the table, assuming that 04 = 0.58.
Graphs of simulated forecasts for ARCH model (iii) are shown in Figure 2.8 and
numerical values are given in Table 11.3 in Section 11.5, in which certain
features of the simulations are also discussed.

2.8.13 Suitably rounded parameters for ARCH model (iii) would be:

OMU= 0.04; QA4 = 0.62; 0S4 = 0.0256% QSB = 0.55; OSC = 0.04.

2.8.14 Taylor (1986) and Mills (1994) have also investigated using ARCH
models for certain economic time series.

2.9 Other Distributions for the Residuals

2.9.1 When I started developing this paper I thought that it would be useful
to investigate alternative distributions for the residuals of the models for many
of the series, other than the normal, because so many of the distributions were
fat-tailed. Many of the series of residuals for monthly series are indeed
‘leptokurtic’, but the annual series, after taking into account any necessary ARCH
effects, as for the inflation series, are not particularly non-normal, so I have not
investigated this.

2.9.2 There are two ways of approaching the distributions of the residuals: one
is to assume a non-normal distribution for short-term changes, but one with finite
variance, so that over a longer period the cumulative residuals approach normality
because of the Central Limit Theorem; the other is to assume stably distributed
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residuals (known as a-stable, Lévy-stable or stable Paretian), which have infinite
variance (if oo < 2, so that the distribution is not normal), but have the feature
that the sum of such a set of residuals is also distributed a-stable, with the same
characteristic parameter o. Not only is the variance of a-stable variates infinite,
the mean of a log stable variate is also infinite, which would have certain
interesting implications.

2.9.3 Possible distributions for the first approach include the ¢-distribution (see
Praetz, 1972), gamma (see §2.10.4), Pearson Type IV, and no doubt others, such
as can be found in the compendious work by Johnson & Kotz (1970) [N.L. Johnson
is a Fellow of the Institute]. For a good introduction to stable distributions, in French,
see Walter (1990), which has a good list of references, mostly in English, and for
fuller, but not comprehensive, texts see Samorodnitsky & Taqqu (1994) or
Janicki & Weron (1994); stable distributions are interesting, and have many nice
features, but they are not easy to manipulate.

2.10 Other Models

2.10.1 Other authors have investigated or proposed models for inflation on the
lines that I have suggested. The usual econometric approach is much more short
term, and takes account of many exogenous variables, such as the government’s
current monetary and fiscal policy. 1 am not aware of any modelling that has
been done by econometricians on similar lines to mine, though I have not
investigated the literature fully.

2.10.2 Metz & Ort (1993) use my model and other ARIMA models to
investigate the Swiss consumer price index from 1925 to 1990, and also for a
shorter period, 1940 to 1990. Using an ARIMA(1,1,0) model, in effect the same
as mine, they obtain parameters QMU = 0.0237, QA4 = 0.6760, OSD = 0.0282 for
the first period and QMU = 0.0345, QA4 = 0.6035 and QSD = 0.0238 for the
second period. These are consistent with my model, and not too different from
the figures quoted for Switzerland in Table 2.7 for a yet shorter period. Metz &
Ort tried several higher order ARIMA models, but concluded that, on balance,
the ARIMA(1,1,0) model was the most satisfactory.

2.10.3 Deaves (1993) studied Canadian inflation data using quarterly rates of
inflation, and produced results quite similar to what I would do for m/h series
with m = 3. However, he did not investigate different frequencies of sampling,
as I have done.

2.104 Daykin, Pentikdinen & Pesonen (1994) (DPP) describe work done in
Finland on modelling inflation. They propose (in Chapter 7) essentially the
same autoregressive model as [ have, except that they use the annual rate of
inflation (Q(£)/Q(t—1) — 1) instead of the difference between the logarithms, i.e.
an i-type rate rather than a &-type rate. While this makes little numerical
difference when the values are small, I prefer to use 8-type rates because of their
convenient additive properties, i.e. if each /(f) is normally distributed, then their
sum, the force of inflation for several years, is also normally distributed, and the
resulting price index is lognormally distributed.
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2.10.5 Pentikdinen et al. (1989, see also DPP, Chapter 7) suggest that a skew
distribution for the residuals is more appropriate than a normal one, and propose
a three-parameter gamma function, i.e. a gamma distribution with the origin
shifted away from zero. They do not suggest parameters for this distribution, and
there seems to me to be the same problem about applying this distribution to their
model, in that, while the sum of gamma distributions remains gamma, it is not
clear what distribution is created by the product of gamma distributed variables.

2.10.6 Clarkson (1991) suggests various non-linearities in my model, to reflect
the upward skewness of the residuals. Using a modification of my notation he
suggests:

() = OMU + QA.(I(t—1) — OMU) + QB.Trend, (I(¥)) + QE(t) + QP().QF()

where:

— QB is a fixed parameter;

— Trend,({(t)) is the current trend in I(¢), if it is positive; the trend can be
estimated either by least squares regression on recent values, or by an
exponentially weighted moving average of past values;

— QP(?) is a Bernoulli variable that takes the value 1 with probability p, but
only if the values of QP(t—k), for k = 1, 2 and 3, have been zero, and
otherwise takes the value zero; and

— QF(?) is another random variate whose distribution is to be chosen.

2.10.7 While Clarkson explains the rationale of all his terms, the model seems
to me to be unnecessarily overparameterised. I have not investigated the
statistical properties of such a model, e.g. the means, variances and covariances
of I(++k), given all the facts at time ¢, nor have [ investigated statistical methods
of parameter estimation; nor, in his published paper, has Clarkson. ‘Mixture
distributions’, such as are created by the extra Bernoulli term, are nice for
simulation, but there are problems in the estimation of the parameters (see Everitt
& Hand, 1981).

2.11 Forecasting

2.11.1 Having chosen a model to represent the stochastic development of the
Retail Prices Index, or any other variable, one wishes to use it for producing
‘forecasts’ of the future. In my earlier papers I did this wholly by simulation,
which is necessary for some of the series I considered. This method remains
useful for complicated functions of the variables, but since the model for In Q is
purely linear, it is possible to provide forecast means and variances by
manipulation of the parameters, as shown in Appendix E.2.

2.11.2 The word ‘forecast’ may be misleading. What one is calculating are
the moments of the probability distributions of future values of In Q, according
to the chosen stochastic model. A good forecast, perhaps like a weather forecast,
would take into account all sorts of other exogenous variables, and would not go
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very far ahead. The purpose of my model is for longer-term simulation, and it
is the properties, particularly of the variance, the ‘expanding funnel of doubt’ that
are of as much interest as the means. ‘Projections’ might be a better word than
forecasts.

2.11.3 In Figure 2.6, I show a set of ten simulations of Q(f) at annual intervals
from June 1994 to 2050, along with the past record since 1950, all on a
logarithmic scale. One can get an impression of the shape of the expanding
funnel of doubt from these.
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Figure 2.6. Retail prices index, 1950-94, and simulations, 1994-2050

2.11.4 In Figure 2.7, I show the forecast median of Q(¢), starting with the
conditions in June 1994, also on a logarithmic scale, along with two sets of
confidence intervals. The wider pair shows the mean plus and minus two
standard deviations, using the formulae in Appendix E.2. The inner pair shows
what the two standard deviation confidence interval would be for a random walk
model for In Q, with the same one-year standard deviation. The standard
deviation is proportional to the square root of (f — 1994). This shows how much
the autoregressive nature of the model increases the uncertainty about the future.

2.11.5 In Figure 2.8, I show a further set of ten simulations of Q(f) at annual
intervals from June 1994 to 2050, this time using ARCH model (iii) of Section
2.8. One can see how the simulations fluctuate more than with the
homoscedastic (non-ARCH) model.
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Figure 2.7. Retail prices index, 1950-94, and forecast medians and
confidence intervals for AR(1) model and for a random walk model,
1994-2050
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Figure 2.8. Retail prices, 1950-94, and simulations, 1994-2050, using
ARCH model
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3. WAGES INDEX

3.1 Wages Data

3.1.1 A wages index of sorts is available at annual intervals from 1809, and
at monthly intervals from January 1920. The data sources are given in Appendix
F.2. Idescribe it throughout as a ‘wages’ index, although in recent years it has
been an index of earnings. However, I wish to avoid confusion between the
earnings of individuals and the earnings of companies, so I refer to the former
always as wages.

3.1.2 The wages index and the prices index I have used are both plotted in
Figure 3.1, with a vertical logarithmic scale. A real wages index, calculated as
the wages index divided by the prices index, is plotted, also on a vertical
logarithmic scale, in Figure 3.2. It is interesting to see that during the 19th
Century there was a gentle upwards drift in wages and a downwards drift in
prices. This was the way in which improved productivity was transferred to
consumers. However, when inflation became the norm, as in the latter half of
this century, both the wages index and the prices index moved upwards broadly
together.

3.1.3 It is not surprising that real wages fell during the First World War.
However, it is a surprise to me to see that real wages appear to have fallen
between 1900 and 1914, the Edwardian period, which, in retrospect, appears to
have been a prosperous one. I do not know whether there is some peculiarity
about the indices I have had to use for this period. For this reason I have omitted
some of these years in certain of the calculations.

3.1.4 The real wages index shows a general upwards drift around an apparent
trend of about 1.4% a year. The question of whether wages can be modelled
better as random fluctuations about a deterministic trend, or as a random walk
with an upwards drift, is investigated in Section 3.3.

3.2 A Univariate Model for Wages

3.2.1 Tt is appropriate to identify a suitable univariate model for wages. I
have used annual values, from June 1923 to June 1994, to correspond with my
investigation of the prices index. A similar model fits, namely that the first
differences of the logarithms of the wages index can be modelled by an AR(1)
model, where W(¢) is the value of the wages index at time #:

W) = W(t—1).exp{JAD}

so that J(t) = In W(f) — In W(t—1) is the rate (strictly force) of wage inflation
over the year (¢—1,7). Then:

X1) ~ ARWWMU, W4, WSD).
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Figure 3.2. Index of real wages, 1809-1994
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3.2.2 Possible parameters, based on the experience from 1923 to 1994, would
be: WMU = 0.064, WA = 0.72, WSD = 0.033. However, it is unreasonable not
to investigate also the connection between prices and wages.

3.3 Are Wages and Prices Cointegrated?

3.3.1 The concept of cointegrated time series is discussed in Appendix B.3.
An example discussed later is the connection between share prices and share
dividends. It is found that the logarithms of share prices and of share dividends
are indeed cointegrated, so it is reasonable to model the difference in the
logarithms, the logarithm of dividend yield, as a stationary series.

3.3.2 For prices and wages the equivalent is real wages. This clearly has an
upwards trend or drift, which must be taken into account. The logarithms of
prices and of wages, In O and In W, are clearly I(1) series, and ADF unit root
tests (see Appendix A.5.4) for the whole period and for various subperiods
confirm this for wages, as has been discussed already for prices. The question
then is whether some linear combination of In Q and In W forms a stationary
series. The obvious relationship is that the logarithm of real wages, i.e. the
difference between In W and In (, is stationary and thus is an I(0) series; or,
alternatively, if there is no cointegration, then In W/Q is also an integrated I(1)
series.

3.3.3 The difference between these models is very important. If there is
cointegration, then one can model real wages as following a deterministic trend,
with random fluctuations about that trend, in such a way that, if real wages rise
too far above the trend, there is a tendency for them to fall back, and, if they fall
too far below the trend, there is a tendency for them to rise. If, on the other
hand, there is no cointegration, then wages are subject to short-term influences
from current and past values of prices, and possibly influence current and future
values of prices, but real wages do not move back to any particular trend.

3.3.4 There is some economic rationale for both of these models. If wages
move ahead because labour, in the economic sense, has obtained a larger share
of national income, then it would not be surprising if, at some later date, this
movement were reversed. One could argue that this strengthening of labour
happened during the 1970s and was reversed during the 1980s. On the other
hand, if national income is increased because of some piece of good fortune, such
as North Sea oil or technological improvements, this may provide additional
returns to both labour and capital, and might well not be reversed. Contrariwise,
if national income falls because of some external misfortune, such a fall might
also not readily be reversed.

3.3.5 1 have tested for cointegration, using the Johansen method included in
the MICROFIT computer package, for three periods: 1809-1994; 1809-1900; and
1923-94. 1 omitted the period from 1900 to 1923 when subdividing the long
period, for the reasons discussed in §3.1.3.

3.3.6 There are two tests in the Johansen method. For the long period from
1809 to 1994, both tests show that In Q and In W are most unlikely to be
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cointegrated. This is also clearly true for the recent period 1923-94. However,
for the earlier period 1809-1900, the relevant test statistics both lie between the
90% and 95% critical values, suggesting that cointegration is plausible.
However, the ‘cointegrating vector’, i.e. the relationship between In Q and In W
for this period, seems implausible:

In O + 04322 In W ~ I(0)

whereas the sort of relationship one would expect is In @ — In W ~ 1(0).

3.3.7 Another approach is to test In W/Q, the logarithm of real wages, for unit
roots. For the whole period and for each of the subperiods the unit root test
suggests, fairly clearly, that In W/Q has a unit root, so it is an I(1) series. It
therefore seems reasonable to investigate the relationship between wages and
prices without taking cointegration into account. Thus, the models I investigate
take into account short-term dependence between wages and prices, but include
no long-term relationship.

3.4 A Transfer Function Model

3.4.1 It would be possible to construct a model in which both wages and
prices depended on previous values of themselves and of the other, and this is
discussed in Section 3.5. In the first place, however, 1 use a transfer function
model, in which the model for prices that has been found in Section 2 is left
unchanged, and a model for wages is constructed in which wages depend on
prices, but not vice versa. There may be good economic arguments against such
a model, but there are considerable practical advantages, not least that those who
wish to use a price index as part of an integrated investment model do not
necessarily wish to be forced to consider also a wages model as part of the
package. A model for wages is useful for many purposes, but one would like to
be able to omit it if desired.

3.42 1 first investigate the data from 1923 to 1994, at annual intervals using
June values of both series. This gives 71 values of the change in the wages
index. It is clear that the increase in wages, which I have defined above as J(1),
depends on the change in inflation in the same year I(¢), giving us a model like:

J(t) = WW1.I(t) + other terms
where ‘other terms’ have still to be decided.
3.4.3 Investigations show that J(¢) also depends on inflation in the preceding
year I(t—1), giving us a model:

Jt) = WWL.I(t) + WW2.I(t—1) + other terms.

However, unless we put suitable conditions on WW1 and W2 we shall not get
‘unit gain’ from prices to wages, i.e. an unexpected change in prices will not
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produce a corresponding change in wages in the long run, so that real wages are
significantly influenced by the level of inflation. This, at least in the first place,
seems to me to be an undesirable feature, and it is preferable to constrain these
coefficients appropriately. For a transfer function model the requirement is that
they sum to unity, i.e. WW1 + WW2 =1 (see McLeod, 1982), thus giving the
model:

J(O) = WW1.I(t) + (1—WW1).[(t—1) + other terms.

3.4.4 Further investigations show that, after fitting a suitable value for the
transfer function coefficient WW1, the remaining part might be modelled either
as an AR(0) or as an AR(1) series, so that the ‘other terms’ are modelled as
WN(f), where:

WN({) ~ ARI(WMU, WA, WSD)

and WA might be zero.

3.4.5 This gives us, so far, a total of six models, and Table 3.1 shows
parameters for these six: (i) with WW1 only, (ii) with WW1 and W4; (iii) and (iv)
with WW1 and WW2 unconstrained, (iii) without WA and (iv) with WA4; and (v)
and (vi) with WW2 =1 — WW1, (v) without WA and (vi) with WA. Values of
the parameter estimates (with the standard errors of these estimates in
parentheses) are shown, along with the difference in the log likelihood function
between each model and model (i), and the Jarque-Bera statistic for testing the
normality of the residuals. See Appendix C.1 for an explanation of the method
of estimating the parameters.

3.4.6 Adding WA in model (ii) to the first model (i), is worthwhile, since the
parameter estimate is almost three standard errors away from zero, and the
improvement in log likelihood is well over 2; but WA does little to improve the
fit of the other models, which, however, are all clearly better than their
counterparts with W2 = 0. Allowing WW?2 to be estimated, rather than fixing
it equal to 1 — WW]I, gives an improvement in log likelihood of 3.06, although
the difference in the estimates of WW2 is only about one standard error.

3.4.7 The value of the Jarque-Bera statistic is comfortably low for models (iii)
and (iv), but rather on the high side for models (v) and (vi). Even so, for model
(iii) there are high residuals in 1946 (2.30 times the standard deviation), 1968
(2.31 times), 1973 (2.23 times) and 1977 (—3.22 times); but the skewness is
almost zero.

3.4.8 Model (v) shows a significant cross correlation of —0.24 between WE({)
and QFE(¢r—1), demonstrating that the connection with inflation has been made too
strong. Model (iii) avoids this feature, but the long-run gain of wages on prices
is less than unity at 0.87, i.e. a rise in prices of 1% results, in due course, in a
rise of only 0.87% in wages, so that in periods of high inflation wages do not
keep up, and never catch up in this respect. Wages, however, have a positive
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expected growth of 0.0214 regardless of inflation, so the long-run mean growth
of wages is higher than that of prices, at 0.0623, calculated from:

(WW1 + WW2).0MU + WMU.

Table 3.1. Parameter estimates for models for In W, 1923-94

Model i) (i) (iii) (iv) ) (vi)
WWw2 =0 WW?2 included WWw2 =1 - Wwi
WA =0 WA included WA =0 WA included WA=0 WA included
/4/4! 0.7948 0.6387 0.6021 0.5824 0.6878 0.6871
(0.0562) (0.0931) (0.0645) (0.0643) (0.0572) (0.0554)
ww2 - - 0.2671 0.2467 03122 0.3129
(0.0577) (0.0587)
WMU 0.0238 0.0318 0.0214 0.0235 0.0159 0.0161
(0.0040) (0.0063) (0.0035) (0.0043) (0.0029) (0.0032)
WA - 0.3036 - 0.1489 - 0.0908
(0.1134) (0.0944) (0.0946)
WSD 0.0266 0.0255 0.0233 0.0229 0.0244 0.0242
(0.0022) (0.0021) (0.0020) (0.0019) (0.0020) (0.0020)
Log 0.0 +2.94 +9.40 +10.63 +6.34 +6.80
liketihood
Jarque- 0.44 7.61 1.29 1.82 10.17 942
Bera x3
J20%) 0.80 0.022 0.52 0.40 0.0062 0.0090

3.4.9 On balance model (iii) looks the best, provided that one does not feel
committed to unit gain; but if one does, model (v) might be preferred. Suitably
rounded parameter values are, for model (iii):

wWw1 =0.60; Ww2 = 027, WMU = 0.021;, WSD = 0.0233
or, for model (v):
wWw1l =0.69; Ww2 =031, WMU = 0.016; WSD = 0.0244.

3.4.10 One can describe these models in words: wages each year increase by
60% (69%) of the current year’s price inflation, plus 27% (31%) of the previous
year’s price inflation, plus a further 2.1% (1.6%) increase, plus a residual with
a standard deviation of a bit less than 2'2%.

3.4.11 Both models, however, show significant crosscorrelations between
QE(t) and WE(zr—1), suggesting that we could model inflation rather better by
taking into account the previous year’s change in wages. This is entirely
plausible, but it cannot be incorporated in the transfer model I have been using
so far. Instead, we need a simultaneous model, which is described in Section 3.5.
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3.5 A Vector Autoregressive Model

3.5.1 So far I have made changes in the wages index depend on price
inflation, but not vice versa. A way in which influence both ways can be
represented is to use a vector autoregressive (VAR) model. A first order VAR
model would be:

I'()) = A4, 1'(t=1) + A, J'(t—1) + QEX(D)
J'(0) = Ay I'(t=1) + Ay, J'(t—1) + WE*@)

where I'(t) = I(t) — OMU, J'(t) = J(t) — WMU, and QE*(t) and WE*(t) are
correlated, with correlation coefficient p. Alternatively we can replace WE*()
by B.QE*(H) + WE(t), where QFE*(f) and WE(f) are independent, and
B = p.WSD/QSD, or we can replace QF*(¢) in a similar way.

3.5.2 Noting that:

QEXty =1'(t) — A, I'(t—1) — A, J'(t—1)
we can rearrange J'(¢) to get:
J'(@) =BI'(H) + [y — BAT'(¢—1) + [4,, — BA,)J'(t—1) + WE(D
which starts out the same as model (iv) in Section 3.4, with:
WW1 = B and WW2 = 4,, — B.A,,
but model (iv) uses WN(z~1) in the place of J(t—1). These are related by:
WNi—1)=Jt—1) — WW1It-1) — WW21(t-2)

so we need a VAR(2) model to reproduce any of the models with W4 terms
included.

3.5.3 Parameter estimates for a number of VAR models are shown in Table
3.2, both for the full model (i) and for a number of simpler models, including:
(ii), omitting A4,,, so that it is, in principle, the same as the full transfer model (iv)
of Table 3.1; (iii) omitting A4,, and 4,,, so that each series depends only on its
own lagged value, as well as on the current value of the other through the
simultaneous correlation, which cannot be omitted with this type of model; (iv),
omitting 4, and A,,, so that lagged dependence on wages is omitted for both
series; and (v) omitting 4,, and 4,,, so that lagged dependence on prices is
omitted for both series. ,

3.5.4 The parameters have been estimated using the NAG routine G13DCF,
which makes different assumptions about the starting values than I do, so that the
parameters are not exactly the same as would be derived from Table 3.1.
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3.5.5 For such a model the ‘ultimate response matrix’, G, which shows the
ultimate response of In O and In W to a ‘spike’ of unity in /(¢) and in J¥), is
given by:

G=(-A4)"'

where A is the matrix of coefficients, and I is the identity matrix (see Appendix
E.3). The terms of the ultimate response matrices for all the models are also
shown in Table 3.2.

Table 3.2. Parameter estimates for VAR models for In Q and In W, 1923-94
Model (i) (ii) (iii) (iv) )

Full A, =0 A,=A4,=0 A,=4,=0 A,=4,=0
A4, 0.1817 0.6569 0.4521 0.6508 -
(0.1705) (0.0927) (0.0861) (0.0926)
A, 0.5927 - - - 0.7627
(0.1822) (0.1341)
oMU 0.0359 0.0380 0.0395 0.0386 0.0205
(0.0180) 0.0147) (0.0097) (0.0145) (0.0303)
A4, 0.2315 0.5148 - 0.6686 -
0.1417) (0.1089) (0.0759)
Ay, 0.5618 0.1997 0.5532 - 0.7770
(0.1548) (0.1051) (0.0778) (0.1397)
wMU 0.0509 0.0538 0.0526 0.0544 0.0344
(0.0179) (0.0136) (0.0098) (0.0131) (0.0317)
QosD 0.0408 0.0439 0.0452 0.0438 0.0418
(0.0034) (0.0037) (0.0038) (0.0037) (0.0035)
WSD 0.0335 0.0345 0.0371 0.0362 0.0358
(0.0028) (0.0029) (0.0031) (0.0030) (0.0030)
p 0.7139 0.7365 0.6955 0.7508 0.7318
Log likelihood +0.0 —4.78 —16.11 —6.36 —~4.23
Q Jarque-Bera %3 46.51 20.68 24.02 20.85 48.76
J26%) 0.0000 0.0000 0.0000 0.0000 0.0000
W Jarque-Bera 2 21.71 13.80 2645 7.89 19.09
J20%) 0.0000 0.0010 0.0000 0.019 0.0000
Ultimate response matrix:
G, 1.9793 29144 1.9438 2.6920 1.0
G, 1.0455 1.8749 0.0 1.7240 0.0
G,, 2.6776 0.0 0.0 0.0 3.4203
G,, 3.6965 1.2495 2.5219 1.0 44843

3.5.6 The most complicated model (i) is justified for its log likelihood value,
all the others showing significantly worse values. However, the values of 4,, and
A,,, which measure the dependence of the two series on inflation in the previous
year, are less than twice their standard errors, and the model setting these to zero,
(v), is the best of the simpler models.
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Table 3.3.
Parameter estimates for transfer models for In W, 1809-1900 and 1809-1994
1809-1900 1809-1994
Model 0} (iii) (iv) 0} (iii) iv)
WW2 and WW2 and
ww2 =20 Ww2 WA Www2 =20 ww2 WA
WA =0 included included WA =0 included included
wwi 0.1639 0.1486 0.1474 0.5704 0.4465 0.3940
(0.0361) (0.0365) (0.0367) (0.0433) (0.0444) (0.0428)
ww2 - 0.0664 0.0646 - 0.2754 0.2260
(0.0363) (0.0368) 0.0443)  (0.0425)
WMU 0.0079 0.0083 0.0083 0.0205 0.0179 0.0192
(0.0024) (0.0024) (0.0025) (0.0032) 0.0029)  (0.0045)
WA - - 0.0358 - - 0.4023
(0.1077) (0.0733)
WSD 0.0231 0.0227 0.0227 0.0425 0.0386 0.0358
0.0017) (0.0017) (0.0017) (0.0032) (0.0029) (0.0027)
Log +0.0 +1.64 +1.70 +0.0 +17.79 +14.02
likelihood
Jarque- 11.26 722 8.77 285.14 231.49 483.56
Bera 2
P 0.0036 0.027 0.012 0.0000 0.0000 0.0000

3.5.7 The ultimate response matrix for model (i) shows values of G,, and G,,
of about 2.0 and 2.7, indicating that a ‘spike’ of 1% in prices ultimately results
in an additional 2% rise in prices and a 2.7% rise in wages. The values of G,
and G,, are about 1.0 and 3.7, indicating that a spike of 1% in wages ultimately
results in about a 1% rise in prices and a 3.7% rise in wages. The ultimate
response matrices for the other models must be interpreted similarly, but it is not
easy to see the rationale of the numbers.

3.5.8 The condition for equal responses to a spike in prices is that the two
coefficients in the formula for J sum to unity, i.e. 4,, + A,, = 1, and the condition
for equal response to a spike in wages is that the two coefficients in the formula
for I sum to unity, i.e. 4, + 4,, = 1. This looks intuitively the wrong way round.

3.5.9 1do not know whether econometricians have studied these sorts of series
in this way, but I have not found any in the time-series literature on investment
models, which is perhaps not surprising.

3.6 Earlier Periods

3.6.1 Fitting the same sorts of transfer function model to the earlier period
1809-1900 shows less connection between prices and wages. Results for certain
of the models investigated above are shown in Table 3.3, both for this period and
for the whole period 1809-1994. For 1809-1900 there is a weak, but significant,
relation between changes in wages and simultaneous changes in prices, but little
connection with last year’s changes, either of prices or of wages, as indicated by
the not significant values of WW2 and WA.
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Table 3.4.
Statistics and autocorrelation coefficients for various m/h series for wages
index, December 1923 to June 1994

\V(12/m) times

Number of 12/m times standard
values of mean deviation of
mih Lo value of /,,,, L n Py2im
1/1 846 0.0603 0.0324 0.0432 0.5629
Standard
deviation
after fitting
regression
12/1 (Dec) 70 0.0606 0.0510 0.7841 0.0315
12/2 70 0.0604 0.0519 0.6965 0.0372
12/3 70 0.0605 0.0513 0.7109 0.0360
12/4 70 0.0608 0.0494 0.7919 0.0299
12/5 70 0.0603 0.0501 0.7715 0.0316
12/6 70 0.0605 0.0500 0.7681 0.0317
12/7 70 0.0603 0.0498 0.7618 0.0318
12/8 69 0.0608 0.0503 0.7784 0.0311
12/9 69 0.0606 0.0512 0.7720 0.0320
12/10 69 0.0606 0.0517 0.7239 0.0352
12/11 69 0.0607 0.0504 0.7642 0.0318
12/12 69 0.0609 0.0503 0.7776 0.0310

3.6.2 Fitting the models to the whole period 1809-1994, as also shown in
Table 3.3, shows very significant values for all the parameters, and a great
improvement in the log likelihood for the more elaborate models. The residual
standard deviation is larger than for the later period, and the Jarque-Bera statistic
indicates that there are some very high residuals, notably in 1918 and 1922, the
latter year’s residual being bigger than —5 standard deviations for any model.

3.6.3 It is welcome to find any model that will even plausibly fit a long period
including both the 19th and 20th centuries; but the models described in Sections
3.4 and 3.5 show lower residual standard deviations, so must be preferred for
current use.

3.7 Observations at Monthly Intervals

Values of the wages index are available at monthly intervals from January
1920, but I have analysed them only over the period from December 1923 to
June 1994, as for the prices index. Table 3.4 shows figures comparable with
those in Table 2.2, but only for the monthly 1/1 series and the annual 12/A series,
showing the annualised mean, the annualised standard deviation, the first
autocorrelation coefficient, and the autocorrelation coefficient for an annual
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frequency. The results for m =2, 3, 4, and 6 are similar. One can conclude that,
as for prices, wages should be analysed, as I have done, with an annual
frequency. I have not fitted the sort of bivariate models described in Sections 3.4
and 3.5 to the 11 other annual series, for each month other than June. I have no
reason to suspect that very different answers would be obtained.

3.8 Data for Other Countries

3.8.1 I have not investigated a wages index fully, on the lines described
above, for any other country. I have fitted one of these models to data for
Finland, but only over the period from 1964 to 1992, using transfer function
model (vi) from Table 3.1. Parameters for Finland are shown in Table 3.5.

Table 3.5. Parameters for models for U.K. and Finland

UK. Finland
1923-94 1964-92
Wwl=1- Ww2 0.69 1.0
wMU 0.0159 0.0225
WA 0.09 0.35
WSD 0.024 0.026

3.8.2 The model can be fitted to the data for Finland with W1 = 1.0, and
WW2 = 0, implying simultaneous, but not lagged, connections. The values of
WMU and WSD are not far away from those for the U.K.

3.8.3 Substantial quantities of data for wages indices of various kinds are
available for a large number of OECD countries, but I have had no occasion to
analyse these. There is some research waiting to be done here.

3.9 Forecasting

3.9.1 1 have forecast the wages model on the same lines as the inflation model
in Section 2.11, using model (iii) from Table 3.1. In Figure 3.3, I show a set of
ten simulations of W(¢) at annual intervals from June 1994 to 2050, along with
the past record since 1950, all on a logarithmic scale. As for retail prices, one
can get an impression of the shape of the expanding funnel of doubt from these.

3.9.2 In Figure 3.4, I show the forecast median of W(¢), starting with the
conditions in June 1994, also on a logarithmic scale, along with two sets of
confidence intervals. The wider pair shows the mean plus and minus two
standard deviations, using the formulae in Appendix E.3. As for the inflation
model, the inner pair shows what the two standard deviation confidence interval
would be for a random walk model for In W, with the same one-year standard
deviation. The standard deviation is proportional to the square root of
(t — 1994). This again shows how much the autoregressive nature of the model
increases the uncertainty about the future.
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Figure 3.3. Wages index, 1950-94, and simulations, 1994-2050
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Figure 3.4. Wages index, 1950-94, and forecast medians and confidence
intervals for transfer function model and for a random walk model,
1994-2050
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4. SHARE DIVIDEND YIELDS

4.1 The Original Model for Share Dividend Yields

4.1.1 The original model for share dividend yields, based on annual data from
June 1919 to June 1982, where Y(?) is the dividend yield on ordinary shares at
time ¢, is:

Y(o) = exp{YW.I(®) + In YMU + YN(f)}
r
° In Y(¥) = YW.I(¥) + In YMU + YN()
with:
YN(@t) = YA.YN(t—1) + YE()

YE(#) = YSD.YZ(t)
YZ(#) ~ iid N(0,1).
The last three lines can be reexpressed, noting that YN is AR(1), as:
YN(r) ~ AR1(0, Y4, YSD).
4.1.2 The suggested parameter values were:
YW = 1.35; YA = 0.6; YMU = 4.0%; YSD = 0.175.

4.1.3 The model can be described in words: at any date the logarithm of the
dividend yield is equal to its mean value (In 4.0%), plus 60% of its deviation a
year ago from the mean (excluding the following adjustment), plus an additional
influence from inflation equal to 1.35 times the force of inflation in the previous
year, plus a random innovation which has zero mean and a standard deviation of
0.175.

4.2 The Experience from 1982 to 1994

4.2.1 Itis of interest to see how this model has fared since 1982, and this is
investigated in the same two ways as the inflation series is in Section 2.2.
According to the model, the residuals, the YEs, are distributed N(0, ¥SD?), and
the standardised residuals, the YZs, are distributed N(0,1). The sum of n such
YZs is distributed N(0, #), and the sum of the squares of » such YZs is distributed
as x2.

422 Table 4.1 shows, for each year, the observed value of the dividend yield
on the FTSEA All-Share Index I(¢), shown as a percentage, the logarithm of the
yield (treated now as a fraction), the expected value of the logarithm conditional
on the relevant information for Y up to year (¢—1), and also the observed value
of O(t) Efln Y(1)| #,_,+0], the observed residual:

YE() = In ¥(¢) — E[ln ¥()| #,_,+0]
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Table 4.1. Comparison of actual and expected values of In ¥(z),

1983-94

Year Y(0)% In Y(9) Efin ¥(9)] YE() YZ(1)
1982 6.09 —2.7985

1983 4.56 —3.0878 —2.9892 -0.0986 -0.56
1984 4.87 —3.0221 -3.1017 0.0796 045
1985 4.80 —3.0366 —3.0505 0.0140 0.08
1986 3.86 —3.2545 -3.1307 —-0.1238 -0.71
1987 3.04 —3.4933 —3.2047 —0.2886 -1.65
1988 4.18 —-3.1749 —3.3560 0.1811 1.03
1989 431 —3.1442 -3.1219 —0.0223 -0.13
1990 4.72 -3.0534 -3.1122 0.0589 0.34
1991 5.06 —2.9838 —-3.1186 0.1348 0.77
1992 4.86 —3.0241 -3.0725 0.0483 0.28
1993 3.88 -3.2493 -3.1165 -0.1329 -0.76
1994 4.04 —3.2089 —-3.2120 0.0031 0.02
Total -0.1465 —0.84
Tyz? 6.20

and the standardised residual YZ(f) = YE(t)/YSD, where YSD = 0.175. The
notation #,_,+Q now means all relevant facts at time (¢—1) plus the value of
o).

423 We can compare the sum of the 12 values of YZ, which is —0.84, with
the expected value, zero, and the standard deviation /12 = 3.46. It is well within
one standard deviation away from its expected value. We can also compare the
sum of the 12 values of YZ%, which is 6.20, with a 3 distribution; the
probability of a value of %* as great or greater is 0.906, which is highish, but not
unreasonable. Two of the (absolute) values of YZ exceed 1.0.

424 We can now consider the forecast values of In ¥(¥), conditional on the
information as at 1982. Using the formulae for the expected values and variances
of the forecast logarithms, which are set out in Appendix E.4, we get the results
shown in Table 4.2. This shows the value of In ¥(t) for each year, its expected
value conditional on the relevant information up to 1982 E[In Y(#)| # 4], the
observed deviation In Y(r) — E[ln Y(f})| #5s,), the standard deviation of
In ¥(¢)| #1052, and the standardised residual, the observed deviation divided by the
corresponding standard deviation.

4.2.5 Remembering that the 12 observations are not independent, we can note
that the observed value of In ¥{(¢) is within one standard deviation of the expected
value for all but one of the 12 years. Again it looks as if a lower value of the
standard deviation YSD, might be indicated. Observe that the standard deviation
of In Y(1983)| F o3z 15 0.1876, which is greater than the value of YSD (0.175); this
is because, given the position in 1982, the value of Q(1983) is also uncertain, and
there is a contrlbutlon from QSD to be allowed for.



820 More on a Stochastic Asset Model for Actuarial Use

Table 4.2. Comparison of actual and expected values of In ¥(¥), 1983-94,
all conditional on F g,

Standard Standardised
Year In ¥(#) Efin Y(H] Deviation deviation deviation
1982 —2.7985
1983 —3.0878 —-2.9397 —0.1482 0.1876 -0.79
1984 -3.0221 —3.0243 0.0022 0.2187 0.01
1985 —3.0366 -3.0752 0.0386 0.2289 0.17
1986 —3.2545 —3.1056 —-0.1489 02325 -0.64
1987 —3.4933 —3.1239 —0.3694 02337 ~1.58
1988 -3.1749 —3.1349 —0.0400 0.2342 -0.17
1989 —3.1442 —3.1415 —0.0027 0.2344 -0.01
1990 -3.0534 —3.1454 0.0920 0.2344 0.39
1991 ~2.9838 —3.1478 0.1640 0.2345 0.70
1992 —3.0241 —3.1492 0.1251 0.2345 0.53
1993 —3.2493 —3.1501 ~0.0992 0.2345 —0.42
1994 —3.2089 —3.1506 —0.0583 0.2345 -0.25
%
15
10
5
0 :
1900 1925 1950 1975 2000

Figure 4.1. Dividend yield, monthly, 1919-94
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4.3 Updating and Rebasing to 1923-94

4.3.1 1 now consider refitting the parameters of the model, starting in June
1923 and including the data up to June 1994. This gives 72 values of the
dividend yield. Values of the dividend yield for monthly values from 1919 to
1994 are shown in Figure 4.1. Possible models include: (i) the original model
including YW, and (ii) with YW set to zero; it is clear that YMU, Y4 and YSD are
essential features of the model. It had been suggested to me that ¥ was not a
necessary feature of the model, and it seems worth investigating this. Table 4.3
shows the estimated parameters for these two models, with standard errors of the
estimates in parentheses. Also shown is the difference in the log likelihood as
compared with that of model (i). See Appendix C.1 for an explanation of the
method of estimating the parameters. o

4.3.2 Omitting YW worsens the log likelihood function by 6.79; since an
improvement in this function of about 2.0 is sufficient to justify an additional
parameter, it can be seen that the improvement is significant (see Appendix C.2.5
for the rationale of this). In addition the parameter estimate for YW is over three
standard errors away from zero, so is clearly significant. The correlation
coefficient of the residuals from model (ii) with the residuals from the fitted
inflation series is 0.42, indicating an inadequate fit. Further, the distribution of
the residuals in model (ii) is quite fat-tailed; b, = 5.19, and the Jarque-Bera
statistic is 21.97, giving p(x2) = 0.00002.

433 A scatter diagram of In Y(f) against /(¥) is shown in Figure 4.2.
Although only a few values lie outside the general mass in the middle, they are

Y
15
10
5 L Ty
L.’
1
2 T T T
-0.1 0 0.1 0.2 0.3

1y
Figure 4.2. Scatter diagram of In Y(¢) versus I(¢), 1923-94
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sufficient to justify the proposition that high inflation, when it occurs, leads to
a fall in share prices and hence to high dividend yields.

4.3.4 Comparing the parameters of model (i) with those in the original model,
we see that YW is bigger and YMU correspondingly smaller. YA and YSD are
also smaller than before. However, all the new parameter estimates are within,
or not much above, one standard deviation away from the original estimates, so
there is no strong evidence of a change in the parameters of the model.
Nevertheless, it may be preferable to use the new parameters rather than the old
ones. Suitably rounded values might be:

YW = 18; YA = 0.55; YMU = 3.75%; YSD = 0.155.

4.3.5 The median value of In Y is given by: YMU.exp(YW.QMU), and using
OMU = 0.047 we get Med[In Y] = 4.08%. The effect of the YW term is to
increase the median yield by about 9%.

4.3.6 Diagnostic tests for model (i) show that the residuals appear to be
independent; the autocorrelation function has no high values and the runs test is
satisfactory. The crosscorrelations with the residuals of the inflation model are
also satisfactory. The residuals appear to be normally distributed. The skewness
and kurtosis coefficients are not far from their expected values (3/b, = 0.22 and
b, = 3.09). The Jarque-Bera statistic is 0.63, giving p(x,?) = 0.730. There are
high observed residuals in 1933 (~2.16 times the standard deviation) and 1974
(3.16 times). This seems a satisfactory model.

Table 4.3. Parameter estimates for model for In ¥, 1923-94

Model (i) original model including YW (i) YW=20
Parameter Estimate Standard error Estimate Standard error
Yw 1.7940 0.5862 - -
YA 0.5492 0.1013 0.6764 0.0868
YMU % 377 % 0.18 % 4.09 % 025 %
YSD 0.1552 0.0129 0.1705 0.0142
Log likelihood 0.00 -6.79
Jarque-Bera x} 0.63 2197
PO 0.73 0.00002

4.4 Observations at Monthly Intervals
4.4.1 Values of the dividend yield are available from January 1923 at monthly
intervals (with a little interpolation over parts of 1929 and 1930 when only
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quarterly values are available). It is worth investigating them. The values are
shown in Figure 4.1, and the autocorrelation function is shown in Figure 4.3. It
is immediately clear that an AR(p) model is appropriate, but it is not yet clear
what the value of p should be. However, the first four partial autocorrelation
coefficients (not shown) are significantly different from zero, so it might be
suspected that an AR(4) model might be suitable. Initially I omit the relationship
with the inflation rate /.

1

0 10 20 30 40 50 60 70 8 S 100 110 120
Lag

Figure 4.3. Autocorrelation function of dividend yields, monthly,
1923 - 1994

442 The results of fitting AR(p) models for p = 1 to 4 are shown in Table
4.4. The model assumed is expressed in terms of YN(f) = In Y(¥) — m:

YN(t) = 2., ,a. YN(t—i) + YE(t)

i=1,p
where ¢ is measured in months, and YE(¥) ~ N(0,s?). In each case the value of
the mean m, is 1.4061 = In 4.08%. The values of a, i = 1, ..., p and of s are
given in the table. Along with the values of g, are shown the standard errors of
the parameter estimates in parentheses. Also shown is L(p) — L(p = 1), i.e. the
difference between the log likelihood for the optimal set of parameters for the
particular value of p and the log likelihood for p = 1. Then the roots of the
polynomial:
2= @ =0

i=1,p"i
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Table 4.4. Results of fitting AR(p) models to monthly values of In ¥(¢),
December 1923 to June 1994

p 1 2 3 4

a, 09777 1.0906 1.0985 1.1043
(0.0072) (0.0342) (0.0344) (0.0343)

a, - —-0.1155 —0.1911 —-0.2069
(0.0342) (0.0507) (0.0510)

a, - - 0.0694 0.1606
(0.0344) (0.0510)

a - - - ~0.0831
(0.0344)

s 0.0509 0.0505 0.0504 0.0502

Log likelihood 0.0 +5.7 +7.7 +10.7

2, 09777 09718 0.9756 0.9708

2 - 0.1188 0.2667 0.4487
exp(1.3382i) exp(1.2397))

& - - 02667 0.4487
exp(—1.3382i) exp(—1.2397))

g - - - 0.4251

denoted g, i = 1, ..., p, which determine the properties of the forecast values of
Y(#), are shown. Where these roots are complex they are expressed in the form
r exp(i6).

443 It can be seen that, as the value of p is increased, the log likelihood
improves by more than 2 for each parameter added, and also the value of each
added parameter is more than twice its standard error, and sometimes much more
than twice. Nevertheless, the higher order models make almost no difference to
the residual sum of squares. There is a difference between statistical significance
and numerical importance.

444 The values of g; control the development of the forecast means and
variances of ¥(f). Each forecast mean, conditional on #,, i.e. the facts as at
t =0, is of the form:

In ¥(©) = In ¥(0) + =, , 4,

where the values of the A; depend on the values of the g;s and on the values
included in .#,. Table 4.5 shows projected means and standard deviations of
YN(@) = In Y(©) — In Y(0), for all four AR(p) models, based on:

YN(O) = 1; YN(—1) = YN(=2) = YN(=3) = 0
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that is, it shows the response to a ‘spike’ of unity at = 0. Such a response
function is a helpful aid to understanding how any particular time-series model
reacts.

Table 4.5.

Response of AR(p) models for monthly yields to a ‘spike’ of 1 at =0
p 1 2 3 4
t Mean S.D. Mean S.D. Mean S.D. Mean S.D.
1 09777 0.0509 1.0906 0.0506 1.0985 0.0505 1.1043 0.0504
2 0.9559 0.0712 1.0739 0.0749 1.0156 0.0750 1.0126 0.0750
3 0.9346 0.0863 1.0453 0.0925 0.9752 0.0909 1.0504 0.0907
4 09137 0.0985 1.0160 0.1066 0.9534 0.1034 1.0447 0.1050
5 0.8933 0.1089 0.9874 0.1183 0.9315 0.1141 1.0073 0.1175
6 0.8734 0.1181 0.9595 0.1285 0.9087 0.1234 0.9808 0.1280
7 0.8539 0.1262 0.9325 0.1373 0.8864 0.1316 0.9552 0.1372
8 0.8349 0.1334 0.9062 0.1452 0.8647 0.1391 0.9270 0.1454
9 0.8162 0.1400 0.8806 0.1523 0.8436 0.1458 0.8999 0.1527
10 0.7980 0.1461 0.8558 0.1587 0.8230 0.1519 0.8739 0.1593
11 0.7802 0.1516 0.8316 0.1645 0.8029 0.1574 0.8484 0.1652
12 0.7628 0.1567 0.8082 0.1698 0.7832 0.1626 0.8236 0.1707
24 0.5819 0.1971 0.5733 0.2092 0.5820 0.2024 0.5773 02106

36 04439 02172 0.4066 0.2264 0.4324 0.2213 0.4046 0.2277
48  0.3386 0.2281 0.2884 0.2347 03213 0.2311 0.2836 0.2356

60 02583 0.2342 0.2046 0.2387 0.2388 0.2363 0.1988 0.2394

44.5 From Table 4.5, one can see the steady exponential decay of the
response in the AR(1) model, which, for the other models, is more erratic
initially, settling down to a very similar pattern after a few months, The higher
order terms affect the effective starting position, expressed in A,. The standard
deviation for each model increases as f increases, with slightly larger values for
the higher order models than for the AR(1) one. In each case the value of the
mean for ¢ = 12 is not so far away from g}>

4.4.6 Although the autocorrelation coefficient for the AR(1) monthly series is
very significantly different from zero, it is only 0.0223 (=1 — 0.9777) away
from unity, which is only 3.1 times the estimated standard error of 0.0072. The
same is true for the largest values of g, for the higher order series. The estimated
standard error is proportional to the reciprocal of the square root of the number
of observations, and one can calculate that, if there had been only 354 monthly
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observations instead of 847, the f-ratio would have been just 2.0. An investigator
who had only 30 years of monthly data (which might seem quite a long series)
would thus have been tempted to assume that the series had a unit root, and was
non-stationary. In fact, the distribution of the sample autocorrelation coefficient
is not close to normal, which is why the ADF test needs to be used.

4.4.7 Since, in the short run, the dividend on a share index changes only very
little, most of the change in share prices comes from the change in the yield, so
this analysis of the yield transfers almost directly to the price index, and many
investigators have concluded that share prices are close to a pure random walk,
without relating them to dividends. What seems true for monthly observations
may seem all the more true for daily observations, for which the first
autocorrelation coefficient, assuming a corresponding AR(1) model for these too,
would be about 0.9992 (= 0.9777"%°), even closer to unity. Thus, my annual
autoregressive model is quite consistent with an apparent random walk for short-
term share price movements.

4.4.8 As the differencing interval is reduced, one approaches a continuous
model. Just as a Wiener process or Brownian motion is the continuous
equivalent of a random walk, so the Ornstein-Uhlenbeck process is the
continuous equivalent of an AR(1) model (see Appendix A.7). This may have
some useful theoretical applications.

4.5 Different Differencing Intervals

4.5.1 Another approach to the analysis of monthly data is to look at it with
different differencing intervals. 1 use the notation Y,, to denote the series
starting with the hth observation and picking every mth observation thereafter.
Thus Y,, is the full monthly series starting in December 1923, and Y,,,, is the
annual series starting in November 1924 and finishing in November 1993.
Summary statistics are shown in Table 4.6, including the first autocorrelation
coefficient for the series #,, the annualised equivalent r,'”, the standard deviation
of the residuals after fitting an AR(1) model to the series with the value of r, as
the autoregressive parameter s, and the annualised standard deviation s,
calculated from the formula (see Appendix A.6.2):

st =521 — r2m1 — rd).

4.5.2 One can see that the annualised autocorrelation coefficient and standard
deviation are reasonably similar all the way down the table. I have not shown
the mean values. The overall mean is In 4.08%, as noted above. The means for
the various series shown range from In 4.00% (for series 12/5, yearly, April) to
In 4.13% (series 12/8, yearly, July), quite a small range. The values of r, for the
yearly series range from 0.6498 (series 12/10, September) to 0.7534 (series 12/3,
February). The annualised values of the more frequent series are generally
higher, ranging from 0.7026 (series 6/6) to 0.7629 (series 1/1, monthly). This
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gives an indication of the range of parameter estimates that might be obtained by
using different months for the annual series.

4.5.3 The residual standard deviation for the annual series ranges from 0.1479
(series 12/3, February) to 0.1998 (series 12/12, November). There is a tendency
for the lower standard deviations to be associated with high autocorrelation

Table 4.6.
Statistics and autocorrelation coefficients for various m/h series for In Y

mih Number of r r'H Standard Equivalent
values of deviation of annual standard
Lo residuals deviation
1/1 847 0.9777 0.7627 0.0509 0.1566
2/1 424 0.9486 0.7284 0.0766 0.1658
2/2 423 0.9532 0.7499 0.0735 0.1607
n 283 0.9261 0.7355 0.0924 0.1660
32 282 0.9269 0.7381 0.0902 0.1622
3/3 282 0.9287 0.7440 0.0898 0.1619
4/1 212 0.9024 0.7349 0.1051 0.1654
4/2 212 0.9072 0.7465 0.1015 0.1605
4/3 212 0.8947 0.7163 0.1074 0.1678
4/4 211 0.9006 0.7304 0.1064 0.1672
6/1 142 0.8408 0.7069 0.1357 0.1773
6/2 141 0.8631 0.7450 0.1209 0.1597
6/3 141 0.8595 0.7387 0.1204 0.1588
6/4 141 0.8497 0.7219 0.1266 0.1661
6/5 141 0.8430 0.7106 0.1293 0.1692
6/6 141 0.8382 0.7025 0.1356 0.1769
12/1 (Dec) 71 0.6690 0.6690 0.1975 0.1975
12/2 71 0.7354 0.7354 0.1620 0.1620
1213 71 0.7534 0.7534 0.1479 0.1479
12/4 71 0.7393 0.7393 0.1513 0.1513
12/5 71 0.7210 0.7210 0.1519 0.1519
12/6 71 0.7058 0.7058 0.1621 0.1621
12/7 71 0.6819 0.6819 0.1724 0.1724
12/8 70 0.7079 0.7079 0.1719 0.1719
12/9 70 0.6595 0.6595 0.1865 0.1865
12/10 70 0.6498 0.6498 0.1947 0.1947
12/11 70 0.6674 0.6674 0.1941 0.1941

12/12 70 0.6651 0.6651 0.1998 0.1998
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coefficients, which is not surprising. The high values of Y at the end of 1974
contribute to the high standard deviations for the November and December series.
The annualised standard deviations for the more frequent series have a narrower
range, from 0.1567 (series 1/1, monthly) to 0.1773 (series 6/1).

4.5.4 The kurtosis coefficients for almost all the series are high, indicating that
both the original values and the residuals after the AR(1) regression are fatter-
tailed than normal.

4.5.5 The same analysis has been carried out on the values of In Y(¢) after
deducting YW.I(f) from each, where the value of YW is taken as 1.8, and I(¢) is
the force of inflation over the preceding 12 months. The results are shown in
Table 4.7 for the monthly 1/1, the two 2/h series and the yearly 12/h series.

4.5.6 The values of r, and hence of r,'*™ are all reduced as compared with
those shown in Table 4.6. The values of the standard deviation of the basic
residuals for the more frequent series are increased, but the equivalent annual
standard deviations, and the standard deviations for the yearly series are reduced.
The best value of YW for each series would presumably be different, and I have
not investigated what value might be best overall; it is sufficient to demonstrate
the effect with one value.

4.5.7 The kurtosis coefficients of the residuals of the series are reduced
considerably, and the Jarque-Bera probabilities for most of the series are well
within a 5% confidence limit. Exceptions are the yearly series for October,
November, December and January, which are all affected by particularly by the
events around the end of 1974.

4.5.8 Monthly observations of the dividend yield on the FTA All-Share Index
and its constituent sector indices have been investigated by Toutounchi (1984),
with similar results.

4.6 Cointegration

4.6.1 1 have so far taken it for granted that the dividend yield series is
stationary, and therefore that the relationship between share prices and share
dividends is stationary. This, however, strictly requires investigation. In
particular, it is an informative example of cointegration (see Appendix B.3)
between two series, those for the logarithms of share price and share dividend,
In P and In D.

4.6.2 First, I should justify the use of logarithms for considering share prices
and share dividends. Both of these are based on indices (as are the retail prices
index and the wages index). Any economic index of this type is defined only up
to a multiplicative constant; one has to choose an arbitrary radix, and this is often
recorded in the form, e.g. ‘January 1980=100’. Absolute changes have no
importance, as compared with proportionate changes. Taking logarithms is the
obvious way to reflect, in the differences, proportionate changes. One could
work, instead, in terms of percentage changes, but these are less convenient,
since, for example, they are not additive across periods, whereas log changes are.
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Table 4.7.
Statistics and autocorrelation coefficients for m/h series for (In ¥ — 1.8])

mih Number of r P Standard Equivalent
values of deviation of annual standard
. residuals deviation
1/1 847 0.9657 0.6580 0.0526 0.1526
2/1 424 0.9233 0.6196 0.0779 0.1592
2/2 423 0.9284 0.6403 0.0758 0.1566
12/1 (Dec) 71 0.5393 0.5393 0.1897 0.1897
12/2 71 0.6188 0.6188 0.1602 0.1602
12/3 71 0.6577 0.6577 0.1441 0.1441
12/4 71 0.6276 0.6276 0.1436 0.1436
12/5 71 0.6202 0.6202 0.1441 0.1441
12/6 71 0.6156 0.6156 0.1517 0.1517
12/7 71 0.5832 0.5832 0.1564 0.1564
12/8 70 0.6164 0.6164 0.1584 0.1584
12/9 70 0.5087 0.5087 0.1836 0.1836
12/10 70 0.4769 0.4769 0.1926 0.1926
12/11 70 0.5085 0.5085 0.1889 0.1889
12/12 70 0.5269 0.5269 0.1922 0.1922

Further, the range of log changes is unrestricted in both directions, whereas
percentage changes have, in principle, a lower limit of —100%, which,
fortunately, indices usually do not reach. The prices of individual shares,
however, do sometimes reach zero, and this can be awkward if logarithms are
used.

4.6.3 The dividend yield Y(¢) is defined as D(r)/P(¢), and its logarithm In Y(z),
is therefore equal to In D(r) — In P(¢). Investigating In Y instead of Y ensures
that the value of Y remains positive. There is no particular reason to use the
dividend yield rather than its reciprocal, the P/D ratio, analogous to the P/E ratio.
Taking logarithms means that the logarithm of the P/D ratio is just the negative
of the logarithm of the yield. Further, using In Y allows In P to be derived
linearly from other variables, which makes calculation of its forecast means and
variances practicable (see Appendix E.4.9).

4.6.4 Before testing whether In D and In P are cointegrated, it is necessary to
check whether they are integrated I(1) series. Figure 4.4 shows P and 22 times
D, at monthly intervals, on the same graph, on a vertical logarithmic scale. Both
graphs have the appearance of non-stationary series. Further, the way they move
close to one another over the whole period suggests that they are cointegrated.
ADF unit root tests (see Appendix A.5.4), applied to the monthly series for both
In D and In P, show clearly that, over the period shown, it is entirely reasonable
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to assume that they each have a unit root, and so are I(1) series. The ADF tests
applied to the annual series are also strongly significant.

Index
1,000
500 .
Dividend index 7 ’
100 Share price index
50 4
10 .
1900 1925 1950 1975 2000

Figure 4.4. Share price index and 22 x dividend index, 1919-94

4.6.5 Strictly, it is not possible to test whether a series has a unit root, but
only whether it probably has not. Any series that looks like an I(1) series could
be generated by an stationary model, with a root close to, but less than, unity.
The longer the sample, the closer the root to unity would need to be to remain
plausible. However, there are also economic reasons for imagining that there is
no tendency for retail prices, or any other series that reflects money values,
including wages, share dividends and share prices, to have any fixed natural
level, to which it has any tendency to return.

4.6.6 1have then used the Johansen cointegration tests provided in MICROFIT
to test for cointegration of In D and In P, using both the monthly series and the
June annual series. The results for the monthly series are clear: the test statistics
are very much higher than the 5% significance level. For the annual series the
position is more marginal, but still just significant. The ‘best’ cointegration
vector, for the monthly series, assuming 6 monthly lags in the model, is:

In D — 1.1466 In P ~ 1(0)
but the ‘natural’ vector to use:

InD — 1.0 In P ~ 1(0)
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is significantly different from this (x} = 5.85, p = 0.016). For the annual series
the best cointegration vector is:

In D — 1.0307 In P ~ I(0)

and the ‘natural’ vector is not significantly different from this (x; = 0.41,
p = 0.524).

4.6.7 Itis therefore quite appropriate to analyse In Y as a stationary 1(0) series,
as has been done. ADF unit root tests on In Y confirm this.

4.7 Data for Selected Other Countries for Other Periods

4.7.1 1 have data for share dividend yields for certain other countries for
longer periods, the same as those discussed for inflation in Section 2.6. Data for
a larger number of countries for a shorter period are discussed in Section 4.8.
The longer periods and the results, giving broadly rounded values, are shown in
Table 4.8.

Table 4.8. Fitted parameters for dividend yield model for selected other

countries
UK. US.A. France Canada Sweden Finland

Period 1923-94 1926-89 1951-89 1923-93 192393 1950-93
YW 1.8 0.5 1.64 1.17 0.71 1.3
YA 0.55 0.7 0.88 0.7 0.835 0.8
YMU% 3.75% 43% 2.4% 3.75% 3.45% 4.0%
YSD 0.16 021 0.165 0.19 0.18 0.23
Med[ Y%} 4.08% 436% 2.65% 3.90% 3.56% 432%

4.72 The dividend yield for France is net of tax, and the low value of YMU
reflects this. It should be grossed up appropriately to be comparable with the
other countries. Values of the parameters are not too different for each country.
The most variable is the influence of inflation YW, but it is noticeable that this
is positive for all the countries considered. The median value of Y is calculated
as YMU.exp(YW.OMU).

473 As explained in 92.64, I have not calculated the simultaneous
crosscorrelations of the residuals for the series all these countries, so I quote only
the simultaneous correlation coefficients for the U.K., U.S.A. and France from
my Montréal paper. These are not calculated over identical periods. They are:

UK. v US.A.: 0.29; UK. v France: 0.34; U.S.A. v France: 0.40.

Simultaneous correlation coefficients over a consistent, but shorter, period, and
for more countries, are discussed in Section 4.8.
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4.8 Data for Other Countries for 1970-94.

4.8.1 1 have been able to obtain data on share dividend yields and share
dividends for a number of other countries. They start in January 1970, and I
have taken the investigation up to June 1994. For data sources see Appendix F.9;
in recent years I have used the Financial Times-Actuaries World Indices.

4.82 1 have analysed the monthly series and 12 yearly series, one for each
month, and the results are summarised in Table 4.9. I have also investigated
series with different differencing intervals, like the different m/h series for the
UK.

4.8.3 Since an AR(1) model of the yield can apply to the monthly series as
well as to the yearly series, I show certain figures for the monthly series as well
as for the yearly ones. I have not taken account of the influence of inflation, the
YW I(f) terms.

4.8.4 In the column headed YMU % three values are shown the lowest and
highest values of YMU for any of the 12 yearly series and the overall mean value
for the monthly series. These are not the mean values of YMU, but the
exponentials of the means of the logarithms of Y.

4.8.5 In the next column two YA values derived from the monthly series
appear, the first being the first autocorrelation coefficient for the monthly series
itself, and the second being the 12th power of this value, i.e. the equivalent
annual autocorrelation coefficient. This can be compared with the three values
in the next column, which are derived from the yearly series, and show the
lowest and highest values of Y4, the first autocorrelation coefficient for the yearly
series, and its mean value for the 12 series.

4.8.6 Values of the standard deviation, labelled ¥YSD, are shown similarly. For
the monthly series the standard deviation of the monthly residuals is shown and
also the equivalent yearly standard deviation calculated from:

YSD? ey, = YSD o (1 = YA“)/(l — Y4Y).
For the yearly series the lowest and highest values of the standard deviation for
any month and the mean of the 12 months are shown.

4.8.7 One can see quite a range in the values of YMU, from below 2% for
Austria and Japan to above 5% for Belgium, France, the Netherlands and Spain.

4.8.8 The monthly values for Y4 all appear close to unity, but range from
0.901 (Switzerland) to 0.989 (Spain). When converted into annual values these
show a range from 0.285 to 0.879. Generally the annualised value is comparable
with the values calculated from the yearly series, but there are a few exceptions.
Note that low values of Y4 mean rather rapid reversion to the mean, and high
values rather slow reversion. France, Japan and Spain show high values, i.c. the
value of Y spends long periods away from the mean, whereas Austria, Hong
Kong, Italy and Switzerland show low values, i.e. return to the mean more
readily.

4.8.9 The monthly standard deviations show a considerable range, from below
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0.05 for the U.S.A. to above 0.11 for Hong Kong. The ranking is not preserved
when these are converted to the yearly equivalents, because these depend also on
the values of the monthly Y4, but Canada, the U.S.A., the Netherlands, Belgium
and Switzerland remain with low values, while Hong Kong and Singapore have
high values. In general the annualised monthly values correspond with those
from the yearly series, but in some cases the equivalent yearly ¥SD is outside the
range of the values for the separate yearly series.

4.8.10 For the monthly series the Jarque-Bera statistics are all significantly
high. For the annual series they are almost all not significantly high. The UK.
is the only country to show more than one significantly high value for an annual
series, which it does for five separate months.

4.8.11 Simultaneous and lagged crosscorrelation coefficients have been
calculated, both for the monthly series and for the 12 different annual series. The
simultaneous correlation coefficients for the monthly series are shown in Table
4.10, and those for the June (upper triangle) and December (lower triangle) yearly
series are shown in Table 4.11. Values of 0.40 or greater in the monthly table
and of 0.60 or greater in the yearly table are shown in bold. The values of the
correlation coefficients for the yearly series are considerably higher than those for
the monthly series. If the series were generated from pure monthly AR(1)
models with simultaneous, but not lagged, correlations, and the series had the
same value of YA, then the correlation coefficients for the yearly series would be
the same as for the monthly series.

4.8.12 The monthly correlation coefficients for lag 1 are small, but the average
of the 324 coefficients is 0.0758, significantly different from zero; one can
compare this with the theoretical standard deviation of 1//n = 0.0556 and the
actual standard deviation of the 324 coefficients of 0.0627. Although a few
lagged correlation coefficients exceed 0.2 (therefore more than 3.4 standard errors
away from zero), there seems no particular consistency or logic in their pattern.
For the yearly series the lagged correlation coefficients are generally small,
consistent with there being no connection between movements in the yields
between different countries at intervals of a year or more.

4.9 ARCH Models

4.9.1 With the YW.I(¢) term included, the residuals of the yield model for the
UK. for 1923 to 1994 are not conspicuously fat-tailed, and there are no extreme
values. This is partly because I have used the June series, thus avoiding the
extremes towards the end of 1974. It is, nevertheless, of interest to investigate
possible ARCH effects, as I have done for inflation in Section 2.8.

492 I use series that 1 denote Y-squared, which is calculated as
(In Y(t) — In YMU)*, YH-squared, which is the square of the expected value of
each (In Y(r) — YMU), and YE-squared, the squares of the residuals. YE-squared
shows no significant autocorrelation, no lagged correlation with Y-squared and
no simultaneous correlation with YH-squared.
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Analysis of share dividend yield for 18 countries from 1/1970 to 6/1994;
monthly series with 294 values; correlation coefficients of residuals

Aus Ost Bel Can Den Fra Ger  HK. Ita
Australia I 1.0
Austria (Ost) .06 1.0
Belgium 27 .19 1.0
Canada 50 .05 381 1.0
Denmark o0 a8 2 3| 10 |
France 31 17 853 46 25| 10
Germany 21 22 35 30 18 361 1.0
Hong Kong 41 .16 .30 35 25 25 221 1.0
Italy .16 14 23 20 13 21 21 20 | 1.0 |
Japan 15 .06 23 25 15 26 21 25 19
Netherlands .39 18 49 54 29 41 40 43 22
Norway .34 06 41 .39 17 35 .24 25 22
Singapore 35 =02 28 37 .08 20 21 47 10
Spain 24 I8 34 33 12 24 28 29 2
Sweden 35 .08 36 34 13 28 22 20 12
Switzerland 21 .09 47 .38 .25 41 .37 32 15
UK. 42 A2 47 58 18 A5 22 41 16
US.A. A3 .06 35 .65 .24 .39 31 .36 .19

Table 4.10 (continued).
Analysis of share dividend index for 18 countries from 1/1970 to 6/1994;
monthly series with 294 values; correlation coefficients of residuals.

Jap Net Nor Sing Spa Swe Swi UK., USA.
Japan I 1.0
Netherlands 341 10
Norway 16 481 1.0
Singapore 25 .36 28 1.0
Spain 29 40 27 251 1.0
Sweden 26 35 35 28 341 10
Switzerland 27 46 29 27 30 341 1.0
UK. 29 57 39 A48 .35 41 41 1.0
US.A. 27 49 .39 35 .29 26 36 S0 1.0 |
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Table 4.11.
Analysis of share dividend yield for 18 countries from 1/1970 to 6/1994;
12 yearly series with 24 or 25 values; correlation coefficients of residuals;
lower triangle for December series; upper triangle for June series

Aus Ost Bel Can Den Fra Ger HK. Ita

Australia I 1.0 -.03 41 78 .10 27 34 60 21
Austria (Ost) 16| 1.0 19 07 41 25 48 .07 24
Belgium .58 40| 1.0 48 37 75 36 13 18
Canada .84 27 621 1.0 22 41 54 31 19
Denmark 41 46 .60 531 10 45 58 —-.09 12
France .54 41 73 72 .70 1.0 56 —-17 -.04
Germany 49 65 65 62 78 84 1.0 .07 -.01
Hong Kong 69 35 .59 A48 27 .19 261 1.0 29
Italy 21 45 22 .14 13 12 .14 411 1.0 I
Japan .59 24 .59 .56 .39 .59 .58 37 22
Netherlands 72 46 74 77 T2 73 .79 50 -.01
Norway 27 23 .58 43 34 40 25 29 24
Singapore .80 .06 .60 .76 46 46 42 54 11
Spain A5 41 .69 33 29 36 41 49 34
Sweden .52 34 .60 .59 75 67 74 17 21
Switzerland 77 59 .80 .81 .55 73 .74 .65 31
UK. 74 21 .70 78 A48 .54 51 62 —-.06
US.A. 1 A2 .54 .79 40 .55 .50 46  —.02

4.9.3 Perhaps large values of inflation or of the inflation residuals affect the
standard deviation for Y. It is, therefore, worth comparing YE-squared with
I-squared, /H-squared and QF-squared, all defined in Section 2.8. There are no
large crosscorrelations, either simultaneously or lagged, except where lagged in
the ‘wrong direction’. For example, the correlation coefficient between
YE-squared and /(r+1)-squared is 0.43, which is clearly significant, being almost
four times its standard error (0.118). The correlation coefficient between
YE-squared and QFE(r+1)-squared is smaller, at 0.23, just less than twice its
standard error. This implies that the standard deviation for the inflation model
is increased when the share dividend yield is either unusually high or unusually
low. The ‘cascade’ structure of my model does not allow this to be reflected,
without considerable alteration, and I record these observations in the hope that
others might investigate this further.
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Table 4.11 (continued).
Analysis of share dividend index for 18 countries from 1/1970 to 6/1994;
12 yearly series with 24 or 25 values: correlation coefficients of residuals;
lower triangle for December series; upper triangle for June series

Jap Net Nor Sing Spa Swe Swi UK. US.A.

Australia .57 67 28 73 A4 27 .60 69 .59
Austria (Ost) 17 .16 01 =25 28 .16 28  —.01 17
Belgium .57 .57 .57 43 47 49 76 75 69
Canada 69 82 44 73 .54 .56 .68 73 79
Denmark 32 45 .18 .19 23 .69 32 34 33
France 43 .61 .53 25 21 58 67 .54 51
Germany 47 68 .08 31 26 .68 .56 .50 .50
Hong Kong 24 Al —.02 44 34 —.06 27 37 35
Italy A5 11 28 29 62 23 A1 .16 1t
Japan | 1.0 57 31 63 74 55 63 69 48
Netherlands 371 10 48 58 32 .67 i | 76 77
Norway .05 431 1.0 42 26 25 38 35 46
Singapore .61 .74 36| 1.0 42 43 .58 .68 .55
Spain .56 53 35 46 1.0 47 41 44 46
Sweden 48 .64 19 55 42 1.0 55 .55 54
Switzerland 53 .80 43 62 .52 611 1.0 .80 .74
UK. .50 75 23 67 43 .57 761 1.0 .82

US.A. 47 69 32 63 31 42 .66 671 1.0 I

4.9.4 1 have, therefore, not attempted to fit an ARCH model to share dividend
yields.

4.10 Forecasting

4.10.1 In Figure 4.5, I show a set of ten simulations of ¥(¢) at annual intervals
from June 1994 to 2050, along with the past record since 1950, on a linear scale.
One can see how erratic these are from year to year, but they do not fan out into
an expanding funnel of doubt; the shape is more like a tunnel.

4.102 In Figure 4.6, I show the forecast mean of ¥(¢), starting with the
conditions in June 1994, also on a linear scale, along with confidence intervals
for the mean plus and minus two standard deviations, using the formulae in
Appendix E4. One can see that the confidence interval soon becomes constant.
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Figure 4.5. Dividend yield, 1950-94, and simulations, 1994-2050
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Figure 4.6. Dividend yield, 1950-94, and forecast medians
and confidence intervals, 1994-2050



More on a Stochastic Asset Model for Actuarial Use 839
5. SHARE DIVIDENDS AND SHARE PRICES

5.1 The Original Model for Share Dividends
5.1.1 The original model for share dividends, where D(¢) is the value of a
dividend index on ordinary shares at time ¢, is:
D(t) = D(t—1).exp{DW.DM(t) + DXI(t) + DMU
+ DY.YE(t—1) + DB.DE(t—1) + DE(t)}
DM(t) = DD.I(f) + (1—DD).DM(¢t—1)
DE(t) = DSD.DZ(1)
DZ(r) ~ iid N(0,1).
It is convenient also to denote the annual change in the logarithm as:
K(® =In D) — In D@—1)
and to identify the effect of inflation as:
DI(t) = DW.DM(t) + DX.I(t)
so that:
K(t) = DI(t) + DMU + DY.YE(t—1) + DB.DE(t—1) + DE(2).

5.1.2 I constrained DX to equal 1 — DW, so that a change in In Q ultimately
produced the same change in In D; the transfer function had ‘unit gain’.
Suggested parameters were:

DW =0.8; DD = 0.2; DMU = 0.0; DY = -0.2; DB = 0.375; DSD = 0.075.

5.1.3 Hence, we have a model for P(¢), the value of a price index of ordinary
shares at time £

P(6) = DY Y(E)
or
In P(®) = In D() — In ¥(2).

5.1.4 The model can be described in words: in each year the change in the
logarithm of the dividend index is equal to a function of current and past values
of inflation, plus a mean real dividend growth (which is taken as zero), plus an
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influence from last year’s dividend yield innovation, plus an influence from last
year’s dividend innovation, plus a random innovation which has zero mean and
a standard deviation of 0.075.

5.1.5 It seems economically necessary that share dividends should respond to
inflation, and plausible that it should be with unit gain, though there is also a
case for arguing that dividends ‘in real terms’ do better in times of stable prices
than in periods of high and uncertain inflation. However, it is difficult to test
this proposition with the series available; a much longer series would really be
necessary.

5.1.6 The rationale of the term DY.YE(t—1), involving the unexpected change
in the yield in the previous year, is that investment analysts can forecast changes
in dividends in the forthcoming year quite well, so share prices react in advance
to changes in dividends. This is partly because final dividends are declared by
companies well after the end of the year to which they relate, so the trading
conditions of the year are already known. Using the terminology of the time-
series literature, we could say that changes in the dividend yield ‘Granger-
caused’ changes in dividends (see Hamilton, 1994, Chapter 11).

5.1.7 The term DB.DE(t—1), involving last year’s dividend innovation, was
the only term included in the original MGWP model (1980), and can be justified
if boards of directors of companies pay out only part of any additional earnings
in dividend in one year, with a further part in the following year. This term
makes the basic model for ‘real dividends’ into an MA(1) model.

5.2 The Experience from 1982 to 1994

5.2.1 It is again of interest to see how this model has fared since 1982, and
this is investigated in the same two ways as the previous series. According to
the model, the residuals, the DEs, are distributed N(0, DSD?), and the
standardised residuals, the DZs, are distributed N(0,1). The sum of » such DZs
iszdistributed N(0, #), and the sum of the squares of n such DZs is distributed as

5.2.2 Table 5.1 shows, for each year, the observed value of the change in the
logarithm of the dividend index K(f), the expected value of K(¢) conditional on
the relevant information for D up to year (—1), and also the observed value of
O(#) (the observed value of Y(¥) is not relevant) E[K(f)| Z#,_,+()], the observed
residual DE(H) = K(t) — E[K(9)| #,_,+Q], and the standardised residual
DZ(t) = DE(H)/DSD, where DSD = 0.075.

52.3 We can compare the sum of the 12 values of DZ, which is 2.41, with
the expected value, zero, and the standard deviation /12 = 3.46. It is still within
one standard deviation away from its expected value. We can also compare the
sum of the 12 values of DZ? which is 6.99, with a y2 distribution; the
probability of a value of y* as great or greater is 0.858, which is highish, but not
unreasonable. Three of the (absolute) values of DZ exceed 1.0.

5.2.4 We can now consider the forecast values of In D(¢), conditional on the
information as at 1982; again it is convenient to work with the change since
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Table 5.1. Comparison of actual and expected values of K(¢),

1983-94

Year K@) E[K(9} DE(1) DZ(9)
1982 0.0801

1983 0.0625 0.0577 0.0048 0.06
1984 0.1267 0.1038 0.0229 0.31
1985 0.1852 0.0747 0.1105 1.47
1986 0.0966 0.1024 ~0.0058 -0.08
1987 0.1074 0.0845 0.0229 031
1988 0.1383 0.1254 0.0128 0.17
1989 0.1652 0.0372 0.1279 1.71
1990 0.1521 0.1283 0.0238 032
1991 0.0609 0.0633 -0.0024 -0.03
1992 0.0063 0.0297 —-0.0234 -0.31
1993 —0.0620 0.0259 —-0.0879 -1.17
1994 0.0618 0.0365 0.0254 0.34
Total 0.2316 3.09
IDZ? 6.99

Table 5.2. Comparison of actual and expected values of DF(f), 1983-94,
all conditional on F,

Standard Standardised
Year DF(1) E[DF{(¥)] Deviation deviation deviation
1983 0.0625 0.0709 —0.0084 0.0771 —0.11
1984 0.1892 0.1628 0.0265 0.1380 0.19
1985 03744 0.2470 0.1275 0.1830 0.70
1986 04711 0.3248 0.1462 02223 0.66
1987 0.5784 0.3973 0.1811 02588 0.70
1988 0.7167 0.4655 0.2512 0.2932 0.86
1989 0.8819 0.5302 0.3517 0.3262 1.08
1990 1.0340 0.5920 0.4420 0.3578 1.24
1991 1.0949 0.6514 0.4435 0.3881 1.14
1992 1.1012 0.7090 03922 0.4174 0.94
1993 1.0392 0.7651 0.2741 0.4455 0.62
1994 1.1011 0.8200 02811 0.4720 0.59

1982, DF(f) = In D(/) — In D(1982). Using the formulae for the expected values
and variances of the forecast logarithms, which are set out in Appendix E.4.7, we
get the results shown in Table 5.2. This shows the value of DF(?), its expected
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value conditional on the relevant information up to 1982 E[DF(f)| # ;] the
observed deviation DF(f) — E[DF(f)| 45, the standard deviation of DF(£)|.F19s,,
and the standardised residual the observed deviation divided by the corresponding
standard deviation.

5.2.5 Dividends since 1982 have risen by more than the then mean forecast,
but well within a reasonable funnel of doubt, having moved outside one standard
deviation away from the mean for three years, 1989-91, and that by only a small
amount.

5.3 Updating and Rebasing to 1923-94

5.3.1 I have refitted the parameters of the model, starting in June 1923 and
including the data up to June 1994. This gives 71 values of the change in the
dividend index. A graph of the index is shown in Figure 4.3, and of the dividend
index ‘in real terms’ in Figure 5.1. Possible models include the original one, with
terms in DY and DB, as well as a model including DMU. Parameter estimates
for several models are shown in Table 5.3. In models (i) to (iv) DX =1 — DW,
in model (v) DW = DX = 0, i.e. there is no influence of inflation on dividend
growth. See Appendix C.1 for an explanation of the method of estimating the
parameters.

5.3.2 It can be seen that both DB and DY are useful parameters. In model (i)
their estimates are more than four times the standard errors. If either is omitted
the log likelihood is worsened considerably, and, in addition, the residuals
become conspicuously non-normal.  Further, if DB is omitted, the first
autocorrelation coefficient of the residuals becomes large, and if DY is omitted,
the crosscorrelation of the residuals with YE at lag 1 (i.e. DE(f) with YE(t—1))
becomes large. The presence of both DY and DB in the model is fully justifiable.

5.3.3 The value of the smoothing parameter DD is not much more than one
standard error away from zero, and it therefore could be thought that it should be
zero. Model (v) investigates what happens if we omit the influence of inflation
by setting both DW and DX to zero. The log likelihood is worsened
substantially, and, in addition, the crosscorrelation between the residuals DE and
the residuals from inflation QF is large. In any case, a model without some
direct transfer from retail prices to dividends, probably with unit gain, would be
economically quite unrealistic. However, the large standard errors show that the
speed with which inflation feeds through to dividends is rather uncertain, and
many other parameter values would do about as well.

5.3.4 Finally (not shown) I have tried the model with DW = 0.8, DX = 0.2,
and DD = 0.2, i.e. these parameters as in the original model. The log likelihood
is worsened by only 0.62 and the estimates of the other (free) parameters are
almost exactly as in model (i).

5.3.5 Diagnostic tests of the residuals for model (i) show no remaining
autocorrelation. The residuals have too many runs of the same sign, with 47
instead of the expected 37, a t-ratio of —2.37; this indicates too frequent an
alternation of sign. The first autocorrelation coefficient is negative, but small
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Table 5.3. Parameter estimates for model for In D, 1923-94

Model @ (i) (iii) (iv) )

QOriginal DY=90 DB=90 DB=DY=0 DW=DX=0

DW 0.5793 0.6192 0.7670 0.7311 -
0.2157) (0.2408) (0.2447) (0.2678)

DD 0.1344 0.1217 0.1613 0.1345 -
(0.0800) (0.0853) (0.0602) (0.0656)

DMU 0.0157 0.0154 0.0145 0.0143 0.0572
0.0124) (0.0133) (0.0089) 0.0101) (0.0155)

DY —0.1761 - —0.2536 - -0.1510
(0.0439) (0.0574) 0.0571)

DB 0.5733 0.5156 - - 0.5309
(0.1295) (0.0995) (0.1222)

DSD 0.0671 0.0748 0.0753 0.0849 0.0867
(0.0056) (0.0063) (0.0063) (0.0071) (0.0073)

Log likelihood 0.0 -7.76 —-8.29 —16.90 ~18.43

Jarque-Bera 8.16 15.87 28.35 56.52 10.02

x

p(x’) 0.017 0.0004 0.0 0.0 0.0067

Index

1
0.5 .

0.1 - — T

1900 1920 1940 1960 1980 2000

Figure 5.1. Share dividend index ‘in real terms’, () relative to price
index, and (b) relative to lagged price index, 1919-94

(—0.02), and far from significant. There is no significant crosscorrelation at low
lags with the residuals of the inflation, wages and dividend yield series, though
there is moderate positive correlation with the residuals of the yield series at lags



844 More on a Stochastic Asset Model for Actuarial Use

2 and 3, i.e. between DE(f) and YE(t + 2) (+0.25) and YE(t + 3) (+0.26); I can
see no economic rationale for this, and the coefficients are only a little more than
two standard errors away from zero, so 1 have not pursued them.

5.3.6 The residuals are not conspicuously non-normal, but the skewness
coefficient /b, = —0.62, and the kurtosis coefficient b, = 4.08, are both rather
outside two standard errors away from zero and 3.0 respectively, the Jarque-Bera
statistic is 8.16, with p(x%) = 0.0169, so there is some evidence of fat-tailedness.
The large residuals are all in the earlier years: 2.2 times the standard deviation
in 1925, 2.1 times in 1928, —3.3 times in 1931, —2.6 times in 1932 and —2.3
times in 1941. The drop in gross dividend yield in 1993, caused by the change
in the rate of Advance Corporation Tax, produced a residual of only —1.25
standard deviations.

5.3.7 The estimated value of DMU, the mean rate of growth of real dividends,
is not much more than one standard error away from zero. It can, therefore, be
argued that it could be set to zero, as in the original model. The current evidence
does not strongly support moving away from that value. However, the real rate
of growth of dividends is an important element in the total return on shares, and
it is the sort of parameter about which individual actuaries may well have their
own views, so it would be unreasonable to pre-empt their judgement by omitting
it from the model.

5.3.8 Convenient rounded values, using model (i) are:

DW=0.58; DD=0.13; DMU=0.016; DY=~0.175; DB=0.57;, DSD =0.07.

53.9 The course of real dividends deserves some further consideration.
Figure 5.1 shows real dividends:
(a) as the dividend index divided by the retail price index (D/P); and also
(b) as the dividend index divided by the ‘lagged’ price index, allowing for the
terms:

DI(f) = DW.DM(f) + (1 — DW).I(1)

using the parameters, DW = 0.58 and DD = 0.13.

5.3.10 One can see how the course of real dividends calculated on basis (b)
is smoother than that calculated on basis (a), at least in more recent years. Real
dividends appear to have zigzagged up and down over the years. The 1980s
showed a conspicuous rise, as did the 1940s and 1950s, whereas the 1930s and
1970s showed falls. These, however, are the sorts of pattern that can be expected
with what is essentially a random walk, modified only by the MA(1) term, which
has influence only over a short time.

5.3.11 One can also see how difficult it is to estimate the mean rate of real
dividend growth. By starting in 1923 instead of 1919 we omit the sharp rise at
the beginning of the graph; but the peak in 1990 was not very much higher than
the previous peaks in 1965 and 1929. On basis (b), which shows the higher rise,
the growth over the 61 years from 1929 to 1990 was 1.09% p.a. If the
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calculations had been made in 1984, the rate of growth form 1965 would have
been negative, and from 1929 only 0.4% p.a. This uncertainty is reflected in the
standard errors of the estimates of DMU. Using model (i), a 95% confidence
interval for DMU could be from about —0.9% to about + 4.0%.

5.4 Cointegration of Share Prices, Dividends, Retail Prices and Wages

5.4.1 Ihave made the dividend index depend on the retail price index through
the transfer function described in §5.1.1. This allows real dividends to be an
integrated I(1) series. However, it is possible that dividends and retail prices are
cointegrated; since dividends and share prices are cointegrated, both may be
cointegrated with retail prices; alternatively, one or both might be cointegrated
with wages.

5.4.2 Using just the annual series from 1923 to 1994, I find that dividends and
retail prices could be cointegrated, with a ‘best’ cointegration vector:

In D - 12936 In Q ~ 1(0)

but the natural cointegration vector would be:

InD—-10mhQ ~I0)

which is significantly different from the best vector (32 = 10.84, p = 0.001);
further, the best vector implies that dividends have almost a 30% gain over
prices, so that they do much better when inflation is high than when it is low. Is
this plausible?

5.4.3 Using the monthly series from December 1923 to June 1994, I also find
evidence for cointegration. This time the best vector is:

In D — 14630 In O ~ 1(0)

so dividends show a 46% gain over prices. The natural vector is again
significantly different (x; = 15.64, p = 0.000).

5.4.4 1also tested the real dividend series, calculated both on basis (a) and on
basis (b), for unit roots. There is strong evidence for a unit root for both series,
both at monthly and at yearly intervals. This suggests that, on balance, it is not
necessary to model D as cointegrated with Q.

5.4.5 1 also tested the connection between dividends and wages. Using the
annual series from 1923 to 1994, I find strong evidence of cointegration between
dividends and wages, with a best cointegration vector:

In D — 1.0370 In W ~ 1(0)
not significantly different from:

InD—-10mlmW ~I1(0)
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so that wages and dividends remain close. However, both are connected with
retail prices.

5.4.6 If I include prices, using the annual data again, the tests show one
significant cointegrating vector:

In 0 — 1.4457 In W + 0.6293 In D ~ I(0)

but I find it difficult to see a suitable interpretation of this.
5.4.7 Including also share prices gives one, but only one, possible
cointegration vector:

InQ — 13339 In W — 03861 In D + 0.9658 In P ~ I(0)

but again I find it difficult to interpret this. Perhaps others can follow up this
line of investigation.

5.5 Observations at Monthly Intervals

Values of the dividend index are available from January 1923 at monthly
intervals. Although these are available, there was little more to be learned from
them. Monthly changes in dividends are not closely sensitive to changes in
inflation.

5.6 Data for Selected Other Countries for Other Periods
5.6.1 Ishow in Table 5.4 the estimated parameters for the dividend mode] for
the countries whose dividend yields were considered in Section 4.7.

Table 5.4. Fitted parameters for dividend model for selected other countries

UK. US.A. France Canada Sweden Finland
Period 1923-94 1926-89 1951-89 1923-93 1923-93 1950-93
bw 0.58 1.0 1.0 0.19 1.0 04
DD 0.13 0.38 0.2 0.26 0.6 0.8
DMU 0.016 0.0155 0.0 0.001 0.0075 -0.01
DY -0.175 -0.35 0.0 —0.11 -0.2 -0.65
DB 0.57 0.5 0.7 0.58 0.5 0.5
DSD 0.07 0.09 0.085 0.07 0.096 0.16

5.6.2 Values of the parameters are reasonably similar for each country. Over
the periods investigated the simultaneous and lagged correlation coefficients
between the residuals for UK. and US.A., UK. and France, and U.S.A. and
France were not significantly different from zero. I have not calculated the
crosscorrelation coefficients for the other countries.
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Table 5.6.
Analysis of real dividend index for 16 countries from 1/1970 to 6/1994;
12 series with 23 or 24 yearly steps; correlation coefficients of residuals;
lower triangle for December series; upper triangle for June series

Aus Ost Bel Can Den Fra Ger Ita
Australia 1.0 04 68 69 24 34 42 23
Austria (Ost) .04 1.0 .16 .03 31 28 39 19
Belgium 62 10 1.0 62 22 .09 49 12
Canada 67 .04 26 1.0 33 46 26 ~.19
Denmark .05 27 18 30 1.0 27 15 -.08
France 33 17 14 .51 52 1.0 34 02
Germany 27 47 22 .01 29 29 1.0 26
Ttaly .02 .16 -.01 -.10 .08 23 .10 1.0 I
Japan 21 .19 —-.18 21 .02 46 21 .50
Netherlands 45 55 27 25 .03 .10 .52 36
Norway 54 -.05 40 20 13 34 44 .08
Spain -.14 23 -.10 -.26 -.13 07 21 .09
Sweden 35 40 .30 21 40 .09 38 17
Switzerland 20 .10 -.03 .06 .02 .09 .50 -.01
UK. 30 46 27 31 26 15 48 26
USA. 22 -.03 -.04 27 —-.04 29 15 .08

5.7 Data for Other Countries for 1970-94

5.7.1 Ihave analysed share dividend indices for the same countries and period
(January 1970 to June 1994) as the share dividend yields in Section 4.7. [ have
restricted myself to analysing indices of real dividends, i.e. the index constructed
by dividing the dividend index by the Consumer Price Index for the relevant
country. I have analysed these both on a monthly basis and on a yearly basis.

5.7.2 The autocorrelation coefficients for the monthly series are generally
small, with the exception of the second autocorrelation coefficient, which, for a
number of countries, is relatively large and negative (—0.4 or so). However, it
is possible that this is an artefact of the way in which the dividend indices had
to be constructed (see Appendix F.9), and I have not investigated this further.

5.7.3 For the monthly series, the Jarque-Bera 2 statistic is, in each case, very
high, and this may also be the result of the way the indices have had to be
constructed. It seems inappropriate to fit any sort of autoregressive model to the
monthly series, and I have therefore calculated residuals assuming a pure random
walk for real dividends. The simultaneous cross correlations are small, but with
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Table 5.6 (continued).
Analysis of real dividend index for 16 countries from 1/1970 to 6/1994;
12 series with 23 or 24 yearly steps; correlation coefficients of residuals;
lower triangle for December series; upper triangle for June series

Jap Net Nor Sp Swe Swi UK. U.S.A.

Australia .01 .55 .56 .01 44 28 35 28
Austria (Ost) .26 16 -.35 .08 .35 21 44 A7
Belgium .02 42 39 .07 32 34 31 33
Canada .02 31 44 24 19 30 31 29
Denmark —.04 -.00 .09 28 49 15 26 .03
France 30 35 A5 34 12 —.00 33 .07
Germany 28 .65 27 .06 47 13 .36 .10
Italy .32 .62 .01 -31 39 .02 45 .02
Japan I 1.0 .58 —.04 31 21 23 47 .14
Netherlands A3 1.0 21 .05 37 30 .63 21
Norway -.07 17 1.0 -.13 19 30 -.03 .09
Spain —.04 .06 -.03 1.0 .04 .02 -.03 .02
Sweden .38 42 10 .02 1.0 -.02 40 -.03
Switzerland 13 32 24 11 21 1.0 45 53
UK. 37 67 —-.15 -.12 46 41 1.0 37

US.A. 52 27 -.08 —.19 -.04 29 .25 1.0 I

a small positive bias, and the lagged correlation coefficients are not significantly
different from zero.

5.7.4 Results for the yearly series are not vitiated by the rounding problems
that upset the monthly differences, and the results can be taken as reasonably
reliable. However, the UK. is the only country which shows consistently a high
first autocorrelation coefficient (which justified fitting an MA(1) model to the
data), though France, Japan, Netherlands and Sweden show autocorrelation
coefficients in excess of 0.4 for a number of the annual series. By contrast,
several countries show consistent or frequent negative correlations, as large as
—0.44 for one month for Denmark. This contrasts with the results for longer
periods shown in Section 5.6.

5.7.5 The annual series, which contain only 23 or 24 annual difference, are
too short to allow us to see how dividends respond to inflation in the lagged way
that I have developed for longer series, and again I have restricted the analysis
to the assumption of a random walk for real dividends.

5.7.6 Table 5.5 shows certain statistics for the real dividend index for 16
countries. The values in the column DMU show the lowest and highest mean
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real dividend growth for any of the 12 annual series, and the overall growth for
the whole period, on an annual basis. It can be noted that only five of the
countries show any positive values of DMU, and only three (Netherlands, Sweden
and the U.K.) do not show some negative values. At the bottom end are Italy
(—0.0535 overall mean), Spain (—0.0490) and Denmark (—0.0483). At the top
end come Sweden (+0.0169) and the U.K. (+0.0106). Even Austria and Japan,
which show remarkably low average dividend yields, have shown substantially
negative real dividend growth, —0.0336 and —0.0247 respectively, i.e. roughly
—3.4% and —2.5% p.a.

5.7.7 The column headed DSD monthly shows the monthly standard deviation
and the equivalent annualised standard deviation, which is /12 = 3.464 times
this. Then come three values of the standard deviation DSD from the yearly
series, the lowest and highest for any month and the mean value. It is interesting
that the U.K. has amongst the lowest standard deviation of real dividends, along
with the U.S.A., while most countries have substantially higher standard
deviations; that for Italy is not less than 0.2 and exceeds 0.3 for one month.

5.7.8 Correlation coefficients between the residuals (which in this case are just
the annual changes) have been calculated, and are shown in Table 5.6, for the
June series (upper triangle) and December series (lower triangle). Note that these
correlation coefficients are affected by the correlation coefficients between annual
changes in the price index used to calculate real dividends. In general, the values
are lower than for some of the other variables considered, but still far from zero.
Small groups of connected countries can be observed: Australia, Belgium and
Canada form one such group, though I cannot imagine any reason to connect
these; the Netherlands and the U.K. form another, and these can reasonably be
connected through the existence of large multinational companies, Royal Dutch
Shell and Unilever, whose dividends enter the indices for both countries:
however, this can account for only a moderate effect.

5.8 ARCH Models

5.8.1 1 investigated the dividend model for ARCH effects, as described
previously for inflation in Section 2.8 and dividend yields in Section 4.9. 1
define three extra terms, K-squared, equal to (K(f) — DMU)?, KH-squared, the
square of the expected value of (K(Y) — DMU), and DE-squared, the square of
the residuals.

5.8.2 DE-squared shows a first correlation coefficient of 0.23, almost twice
the standard error of 0.118. However, the crosscorrelation with K-squared,
lagged, is small, and the simultaneous crosscorrelation with KH-squared is also
small.

5.8.3 When DE-squared is compared with simultaneous and previous values
for the inflation and dividend yield series, there is only one crosscorrelation of
interest, that between DE-squared and QFE(-1)-squared, which is 0.25. The
corresponding correlation coefficient between DE(f) and QE(t—1) is —0.14. The
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implication is that a large change in inflation, in either direction, creates a larger
standard deviation for the dividend residual.

5.84 However, since the Jarque-Bera statistic for dividends was not
excessively high, and all the large residuals occurred before 1942, I have not
investigated further an ARCH model for dividends.

5.9 Company Earnings and P/E Ratios

5.9.1 Just as the prices of many individual shares are nowadays assessed in
terms of price/earnings (P/E) ratios, so it would be reasonable to investigate the
share price index as equal to the corresponding earnings index times an aggregate
P/E ratio. 1 did not do this previously because P/E ratios on an index were
available only from 1962, and then only on the FTA 500-Share Index. A P/E
ratio on the All-Share Index started only in early 1993, and it includes financial
companies for which P/E ratios have a different relevance than they do for
industrial companies. However, changes in such a P/E ratio may be relevant.

5.9.2 Associated with the P/E ratio is the payout ratio, the ratio of dividends
to earnings. If dividends are increased without a corresponding increase in
earnings, so that the payout ratio is increased. This may not be sustainable, and
share prices may not fully reflect the increase in dividends; and vice versa.
Payout ratios may therefore be a useful short-term predictor of share price
movements. The payout ratio itself must be represented by a stationary time
series model, since it can hardly move without limit either up or down.

5.9.3 There are now more than 30 years of data on the FTA 500-Share Index
(now the Non-Financials Index), and some analysis could be done. Rather
awkwardly, there are two definitions of earnings available, assuming tax is paid
on the basis of the actual dividend payout and on a nil payout basis. The
published P/E is based on one of these, and the earnings yield on the other.

594 Lack of time has prevented me from being able to investigate this
further at this time. However, the P/E ratio is plotted in Figure 5.2, and the
payout (D/E) ratio in Figure 5.3. There are apparent discontinuities in 1965 and
1969 because of changes in the taxation system, but there are large jumps at
other times too. However, both series appear to be stationary.

5.10 Alternative Models for Share Prices

5.10.1 The popular model for share price movements among financial
economists is the random walk model, which is consistent with markets being
‘efficient’, share prices being unpredictable from their past history, and thus share
prices being ‘martingales’ in a probability sense. There are good economic
arguments for this assumption, and it is clear that my model, which presumes
that, at times when dividend yields are exceptionally low, share prices are ‘too
high’, and vice versa, is inconsistent with an efficient market. If enough
investors were to believe in the short-term predictions of my model, then share
prices would not fluctuate so far away from an average dividend yield.
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5.10.2 Itis clear from Section 4.5 that the short-term behaviour of share prices
according to my model is very like that of a random walk. It is in the long term
that they differ. It is not surprising that those who have investigated share prices
at daily intervals over a year or two, or at weekly or monthly intervals over even
as long as ten years, do not find that share dividend yields are stationary. The
same problem arises for exchange rates, as discussed in §10.3.4. The observation
period must be long enough, if a realistic long-term model is to be observed.

5.10.3 I am inclined to believe that it would be beneficial for the economy of
any country for share prices to be more stable and to trade on more constant
dividend yields or P/E ratios, but it is not my purpose in this paper to argue this
case. It is sufficient to observe that the facts seem to be against the pure random
walk model, since share dividend yields, in many countries, seem clearly to be
modelled best by a stationary time series model.

5.10.4 The extensive work done by Ibbotson & Sinquefield (1989) in the
U.S.A. appears to assume a random walk model for total returns on all the series
they investigate. Although there is reference to some autocorrelation in their
inflation series, no details are given.

5.10.5 However, some notice has been taken of dividend yields in the classical
financial economics journals. Fama & French (1988) show that changes in share
prices over a given period in the U.S.A. are partially predictable from the level
of dividend yield at the start of the period. In Wilkie (1993) I showed the same
for the UK.; the maximum correlation coefficient between share price change
over a period and dividend yield at the start of the period is 0.69 for a period of
76 months. Fama & French stopped at 48 months, and so failed to see that the
effect they had noticed was actually much stronger when the period was
lengthened.

5.10.6 In a recent talk, so far unpublished, Professor Michael Brennan
described investigations into the movements of share dividend yields, and long-
and short-term interest rates in the U.S.A. The results seemed quite consistent
with my model for dividend yields.

5.10.7 A Finnish group has done work on share prices on the same lines as
I have (see Pentikdinen er al,, 1989). Their model is described by Daykin,
Pentikdinen & Pesonen (1994, Chapter 8). It seems, at first sight, rather different
from mine, because it is put in the form of several factors multiplied together,
rather than in logarithmic additive form, but it can be reexpressed in my style as:

In P(¢) = In Q@) + PMU.t + PD()

where PD(f) is a stationary, 1(0) series with zero mean, modelled as an AR(2)
series:

PD(t) = PALPD(t~1) + PA2.PD(t—2) + PE()
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with PE() ~ IID N(0, PSD?). This is a simple cointegrated model connecting
In P and In Q.

5.10.8 The Finnish model develops share prices first, and makes dividends
depend on both retail prices and share prices, putting:

In D(¢) = In Q(t) + DMU.t + DD(2)
where:

DD(f) = DB.PD(t—1) + (1-DB).DD(f) + DE(f)

with DE(f) ~ 1ID N(0, DSD?). This, too, is a cointegrated model connecting In
D and In Q, and, in some respects, like mine. Although I do not think it
produces a satisfactory model for the yield, or rather its logarithm (In D — In P),
it is worth investigating this style of model further. Whether In @, In D and
possibly also In W, i.e. retail prices, dividends and wages, are cointegrated or not
is an open question.

5.11 Forecasting

5.11.1 In Figure 5.4, I show a set of ten simulations of D(¢) at annual intervals
from June 1994 to 2050, along with the past record since 1950, all on a
logarithmic scale. One can get, as for previous indices, an impression of the
shape of the expanding funnel of doubt from these.

5.11.2 In Figure 5.5, I show the forecast median of D(¢), starting with the
conditions in June 1994, also on a logarithmic scale, along with two sets of
confidence intervals. The wider pair shows the mean plus and minus two
standard deviations, using the formulae in Appendix E.4. The inner pair shows
what the two standard deviation confidence interval would be for a random walk
mode! for In D, with the same one-year standard deviation. The standard
deviation is proportional to the square root of (¢t — 1994). This shows how much
the autoregressive nature of the model increases the uncertainty about the future.

5.11.3 In Figure 5.6, I show a set of ten simulations of P(f) at annual intervals
from June 1994 to 2050, along with the past record since 1950, all on a
logarithmic scale. One can get, as for previous indices, an impression of the
shape of the expanding funnel of doubt from these.

5.11.4 In Figure 5.7, I show the forecast median of P(), starting with the
conditions in June 1994, also on a logarithmic scale, along with two sets of
confidence intervals. The inner pair shows the mean plus and minus two
standard deviations, using the formulae in Appendix E.4. This time the outer pair
shows what the two standard deviation confidence interval would be for a
random walk model for In P, with the same one-year standard deviation. The
standard deviation is proportional to the square root of (¢ — 1994). This shows
how the autoregressive nature of the model for dividend yields, in this case,
decreases the uncertainty about the future.
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6. LONG-TERM INTEREST RATES

6.1 Original Model for Long-Term Interest Rates

6.1.1 The original model for the yield on ‘consols’, i.e. a perpetual fixed-
interest stock, based on annual data from June 1919 to June 1982, where C(¢) is
the yield on consols at time ¢, is:

C() = CW.CM(D) + CMU.exp{CN(D)}
CM(t) = CDI(t) + (1-CD).CM(t-1)
CN(t) = CAL.CN(t—1) + CA2.CN(t—2) + CA3.CN(t—3) + CY.YE(t) + CE(®)
CE(f) = CSD.CZ(¥)
CZ(5) ~ iid N(0,1).
6.1.2 It is convenient to denote the ‘real’ part of the consols yield as:

CR(f) = C(¥) — CW.CM(®)
so that:

In CR() = In CMU + CN(?).

The suggested parameters, based on the experience from 1919 to 1982, were:
CW = 1.0; CD = 0.045; CMU = 3.5%; CAl = 1.20; CA2 = —0.48; CA3 = 0.20;
CY = 0.06; CSD = 0.14. This model, with CW = 1, fully takes into account the
‘Fisher effect’ (see Fisher, 1907, 1930), in which the nominal yield on bonds
reflects both expected inflation over the life of the bond and a ‘real’ rate of
interest.

6.1.3 The model for the logarithra of CR(f) is essentially an AR(3) model, but
originally I suggested that a possible simplification was to use an AR(1) model
instead, omitting the terms in CA2 and CA3, and with the remaining parameter
CALl = 0.91. At the time I also suggested that the CY term might also be omitted
by putting CY = 0.0, but I have found that this term is best retained.

6.1.4 The model can be described in words: at any date the consols yield can
be decomposed into two parts, an allowance for expected future inflation, and a
real yield; the allowance for future inflation is based on an exponentiaily
weighted moving average of past inflation; the logarithm of the real yield is equal
to its mean value (In 3.5%), plus 91% of its deviation a year ago from the mean,
plus (if the full AR(3) model is used) influences from the values two years ago
and three years ago, plus an additional influence from the current dividend yield
innovation, plus a random innovation which has zero mean and a standard
deviation of 0.14.
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6.2 The Experience from 1982 to 1994

6.2.1 It is again of interest to see how this model has fared since 1982, and
this is investigated in the same two ways as before. According to the model, the
residuals, the CEs, are distributed N(0, CSD?), and the standardised residuals, the
CZs, are distributed N(0,1). The sum of » such CZs is distributed N(0, »), and
the sum of the squares of n such CZs is distributed as 2.

6.2.2 Table 6.1 shows, for each year, the observed value of the long-term
fixed-interest yield (now represented by the yield on the FTA BGS Irredemables
Index) C(r), shown as a percentage (note that in the formulae I treat C as a
fraction), the logarithm of the real yield, the expected value of the logarithm
conditional on the relevant information for C up to year (r—1), and also the
observed values of Q(7) and Y(¢) E[In CN(9)| F,_,+Q+Y], the observed residual
CE(r) = CN(» — E[CN()| F,_,+Q+Y], and the standardised residual
CZ(¥) = CE(t)/CSD, where CSD = 0.14. The notation .#,_,+Q+Y now means all
relevant facts at time (¢—1) plus the values of Q(f) and ¥(¢).

Table 6.1. Comparison of actual and expected values of CN(¢), 1983-94

Year C(0)% CN() E[CN()] CE(1) CZ()
1982 12.46

1983 9.74 —0.0854 0.4254 —0.5108 —3.65
1984 10.44 0.1289 ~02393 0.3682 2.63
1985 10.07 0.0280 02974 ~0.2694 ~192
1986 891 ~0.2897 —0.0528 02370 -1.69
1987 8.89 —0.2604 —0.3527 0.0923 0.66
1988 9.49 -0.0369 —0.1569 0.1201 0.86
1989 937 —0.0985 0.0215 ~0.1200 -0.86
1990 10.63 0.2036 —0.1491 0.3526 2.52
1991 1033 0.1385 0.2923 —0.1538 ~1.10
1992 9.15 —0.1700 0.0517 —-02217 ~1.58
1993 8.24 —0.4393 ~0.2378 —0.1965 ~1.40
1994 8.54 ~0.2524 —04116 0.1592 1.14
Total —0.6167 —440
C2 42.02

6.2.3 We can compare the sum of the 12 values of CZ, which is —4.40, with
the expected value, zero, and the standard deviation /12 = 3.46. It is between
one and two standard deviations away from its expected value. We can also
compare the sum of the 12 values of CZ?, which is 42.02, with ay2 distribution;
the probability of a value of x* as great or greater is 0.00003, which is
exceptionally low. Only three of the (absolute) values of CZ are less than 1.0
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and three exceed 2.0. It now looks as if the value of CSD is too low, or as if the
model should be modified in some other way.

6.2.4 By comparing the numbers in Table 6.1 with those in Table 2.1, we can
see that long-term interest rates dropped in 1983, the (logarithm of the) presumed
real rate dropping by more than three standard deviations, when inflation also
reduced (/(1983) = 0.0359, whereas 1(1982) = 0.0877). When inflation rose
again the following year, In CR(f) rose by more than two standard deviations.
When inflation rose again in 1990, In CR(¢) again rose by more than two standard
deviations. It is possible that expectations of future inflation now respond more
quickly to current inflation than they did previously, as modelled by the fairly
low value of CD of 0.045.

6.2.5 We can also consider forecasts made on the reduced basis referred to in
96.1.2. These are not shown in full. The sum of the 12 values of CZ is —4.70,
which should be compared with its standard deviation /12 = 3.46. It is again
between one and two standard deviations away from zero. The sum of CZ? is
28.37, rather smaller than previously, but still improbably high (p = 0.005).

6.2.6 We can also consider the forecast values of C(f), conditional on the
information as at 1982. Using the formulae for the expected values and variances
of the forecast rates, which are set out in Appendix E.5, we get the results shown
in Table 6.2. Note that C(¢) is distributed neither normally nor lognormally. The
results are shown as if it were distributed normally. They show C(¢) for each
year, its expected value conditional on the relevant information up to 1982
E[C(1)| F105,), the observed deviation C(r) — E[C(f)| F4s.]), the standard deviation
of C(¢)| F 052, and the standardised residual, the observed deviation divided by the
corresponding standard deviation.

Table 6.2. Comparison of actual and expected values of C(¢), 1983-94,
all conditional on Fy,

Standard Standardised

Year CH) % E{C(1) %] Deviation deviation deviation
1982 12.46

1983 9.74 12,1323 —2.3923 0.7999 -299
1984 10.44 11.8980 ~1.4580 12314 —1.18
1985 10.07 11.7461 —-1.6761 1.4605 —-1.15
1986 8.91 11.5969 —2.6869 1.6074 -1.67
1987 8.89 11.4322 ~2.5422 1.7217 —1.48
1988 9.49 11.2676 -1.7776 1.8166 —-0.98
1989 9.37 11.1134 ~1.7434 1.8950 -0.92
1990 10.63 10.9701 —0.3401 1.9592 -0.17
1991 10.33 10.8359 ~0.5059 2.0120 -0.25
1992 9.15 10.7098 -1.5599 2.0558 -0.76
1993 8.24 10.5920 ~2.3520 2.0925 -1.12

1994 8.54 10.4819 ~1.9419 2.1236 -091
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6.2.7 One can see that the value of C(¢) jumps well outside a two standard
deviation range in 1983, but thereafter remains within such a range, partly
because of the reversal in 1984. The same calculations have been carried out
using the reduced basis described in 96.1.2, and the results are similar.

6.3 Updating and Rebasing to 1923-94

6.3.1 I have refitted the parameters of the model, starting in June 1923 and
including the data up to June 1994. This gives 72 values of the consols yield.
In the first place I fix CW = 1.0 and CD = 0.045, and include various of the
other parameters. [ start with a minimal model (i), setting CA2, CA3 and CY all
to zero. In model (ii) CA2 is included, and in model (iii) both CA2 and CA3.
Model (iv) is like model (i), but includes CY. See Appendix C.1 for an
explanation of the method of estimating the parameters.

6.3.2 One can see that the effect of including additional autoregressive
parameters, CA2, or both it and CA3, is small. In model (ii) the estimate of CA2
is less than twice its standard error, and the improvement in the log likelihood
is small. In model (iii) the estimate of CA3 is just over twice its standard error,
and the improvement in the log likelihood, as compared with model (i), is 2.76.
Twice this value should be compared with ¥ p = 0.063, so the pair of
parameters are of marginal significance. It is more consistent with a model
observed at more frequent intervals to omit these parameters, and I have found
(see Section 6.6) that the extra autoregressive parameters have no significance in
other countries. I therefore prefer to omit them.

6.3.3 In model (iv) the log likelihood is improved by 2.59, enough to justify
one extra parameter, and the estimate of CY is more than twice its standard error.
It is also plausible that the residuals of the consols yield and share dividend yield
should be correlated. There therefore seems good justification for including this
term.

6.3.4 When I fitted the model originally, I noticed that there was a very large
residual value in 1974, and I included a dummy variable which took the value
1 in 1974 and zero elsewhere, what Box & Jenkins call an ‘intervention variable’.
Its effect was to screen out this very large residual, since its inclusion could
affect the estimation of the other parameters unduly. In model (v) I test the
effect of including CB1, the coefficient of this dummy variable, and in model (vi)
I include a second dummy variable for 1983, which also shows a very large
residual. It is clear that both these parameters are significant individually, each
being more than twice its standard error; further, the improvement in log
likelihood is large. However, the estimates of the other parameters in the model
are not unduly distorted. The large residuals have more effect on the
autoregressive parameters. The standard deviation CSD is reduced, but it is not
fair to assume that this lower standard deviation can apply in future. In spite of
the large residuals in 1974 (2.37 times the standard deviation) and 1983 (—3.05
times), model (iv) does not show an excessively high Jarque-Bera statistic, and
it seems to me to be the most suitable.
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Table 6.3. Parameter estimates for model for C, 1923-94

Model 0] (ii) (iii) (iv) ) (vi)
omitting including including including including including
CA2, CA3 CA2 CA2 and CcY CB1 for CB1 for
and CY CA3 1974 1974
CB2 for
1983
CW = 1.0 and CD = 0.045 throughout
CMU % 3.09 % 3.07 % 321 % 3.05% 2.86 % 3.09 %
(0.92 %) (0.80 %) (0.99 %) (0.65 %) (0.52 %) (0.65 %)
CA1 0.9234 1.0550 1.0930 0.8974 0.8854 0.9068
(0.0445) (0.1139) (0.1145) (0.0442) (0.0423) (0.0396)
CA2 - —-0.1417 -0.3928 - - -
(0.1137) (0.1656)
CA3 - - 0.2285 - - -
(0.1110)
CcY - - - 0.3371 0.2004 0.1668
(0.1436) (0.1435) (0.1333)
CB1 - - - - 0.5230 0.5149
(0.1948) (0.1789)
CB2 - - - - - -0.5810
(0.1645)
CSD 0.1921 0.1901 0.1848 0.1853 0.1764 0.1631
(0.0160) (0.0158) (0.0154) (0.0154) (0.0147) (0.0136)
Log +0.0 +0.73 +2.76 +2.59 +6.12 +11.75
likelihood
Jarque-Bera 6.81 5.00 3.63 4.88 9.30 3.92
%
PO 0.033 0.082 0.16 0.087 0.010 0.14

6.3.5 Diagnostic tests of the residuals of model (iv) show large residuals in
1939 (—2.28 times the standard deviation), 1940 (—2.41 times), 1974 (2.37
times), and 1983 (—3.05 times), the last two already noted. The autocorrelation
function of the residuals is satisfactory, but there are marginally significant
crosscorrelation coefficients with QE(¢—1), YE(t—1) and YE(z + 1). I have not
investigated models which could eliminate these.

6.3.6 It would be reasonable to investigate alternative values of CD or CW;
another option would be to allow the effect of inflation to be omitted before some
date and to include it, perhaps gradually, after that date. This could represent
better the way investors may actually have thought: before a certain time,
inflation was not considered to be permanent and the nominal rate was taken as
the real one; an appreciation of the difference only affected the market slowly.
I have experimented with various time-varying models of this kind, but none
seems to be conspicuously better for future simulation than the model suggested
with the parameters as in model (iv).

6.3.7 Suitably rounded parameters for this model might be:
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CW = 1.0; CD = 0.045; CMU = 3.05%; CA1 = 0.9; CY = 0.34; CSD = 0.185.

The standard deviation is larger than in the original model, and is, in effect,
further increased by the much larger value of CY; but this correctly reflects the
more varied experience of the last 12 years. The total variance of CN(Y),
allowing for the term CY.YE(f), can be denoted CSD*, which can be calculated
from:

CSD** = CY2YSD* + CSD*
the value of which, using the rounded parameters, with ¥SD = 0.155, is 0.1924%,

6.4 Previous Centuries

6.4.1 1have available data for consols yields at annual intervals from 1756.
The values are plotted in Figure 6.1, along with graphs of Bank Rate, and of the
yield on index-linked stocks. Strictly what I have for consols are annual averages
of the yields, and such values are not perfect for analysis.  Spurious
autocorrelation coefficients can be induced into certain types of model with such
data, as was shown by Working (1960). However, the autocorrelation
coefficients in this case are of a size not to be significantly upset by this feature.
A scatter diagram of In C(¢) versus In C(z—1) is shown in Figure 6.2.
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Figure 6.1. Yield on consols, 1756-1994, Bank Rate, 1797-1994,
and yield on index-linked stocks, 1981-94
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6.4.2 1chose in Wilkie (1986a) to model these yields from 1756 to 1956, with
201 values. It was not necessary to take into account the effect of inflation, and
nominal yields were modelled directly. An AR(1) model for In C(¢) is all that
is necessary, with parameters and standard errors as shown in Table 6.4.

Table 6.4. Parameter estimates for model for In C,

1756-1956
Parameter estimate Standard error
CMU 352 0.19 %
Cc4 0.9402 0.0260
CSD 0.0689 0.0034

6.4.3 The value of C4 is quite similar to that of CA1 in model (iv), and the
value of CMU is not far distant. The value of CSD is much smaller; this may be
partly caused by the annual averaging, which would reduce fluctuations as
compared with using values at a specific date on each year.

6.4.4 The Jarque-Bera statistic is on the high side, at 11.19 (p = 0.0037).
There are 12 standardised residuals outside the range (—2, +2) including two
with absolute value greater than 3 (1763, —3.24 and 1797, +3.26). On the whole
the model seems quite reasonable.
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Figure 6.2. Scatter diagram of C(f) versus C(r—1), yearly, 1756-1956
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6.5 Observations at Monthly Intervals

6.5.1 Values of the consols yield are available for the period since December
1923 at monthly intervals. Since these are available, it is worth investigating
them. Ihave constructed m/h series, as for share dividend yields. The results are
shown in Table 6.5, for m = 1, 2 and 12.

Table 6.5. Statistics and autocorrelation coefficients for various m/h series
for In C, December 1923 to June 1994

Standard Equivalent
Number of deviation of annual

mih values of r py 12 residuals standard
Lom deviation

1/1 847 0.9975 0.9699 0.0322 0.1102
2/1 424 0.9954 0.9726 0.0431 0.1043
22 423 0.9945 0.9674 0.0473 0.1143
12/1 (Dec) 71 0.9695 0.9695 0.1203 0.1203
1272 71 0.9725 0.9725 0.1118 0.1118
1213 71 0.9762 0.9762 0.1004 0.1004
12/4 71 0.9743 0.9743 0.1023 0.1023
12/5 7 0.9726 0.9726 0.1062 0.1062
12/6 71 0.9758 0.9758 0.0945 0.0945
12/7 71 0.9741 0.9741 0.1003 0.1003
12/8 70 0.9758 0.9758 0.0994 0.0994
12/9 70 0.9737 0.9737 0.1077 0.1077
12/10 70 0.9655 0.9655 0.1236 0.1236
12/11 70 0.9657 0.9657 0.1253 0.1253
12/12 70 09724 0.9724 0.1126 0.1126

6.5.2 The overall mean for the monthly values is In 5.80%, for the different
yearly series the mean ranges from In 5.75% (12/2, January) to In 5.87% (12/7,
June). An AR(1) model for all the series fits reasonably well, as can be seen
from the fact that the annualised values r,'”" are similar for all values of m,
ranging from 0.9655 (12/10) to 0.9770 (6/2). The kurtosis coefficients b, of the
residuals, and hence the Jarque-Bera statistics, are generally very high.

6.5.3 It is also of interest to analyse the estimated real yield, calculated by
deducting an exponentially weighted moving average of past inflation from the
value of C(r) to get CR(f), before taking logarithms. For this purpose I have
used a smoothing formula for each month ¢

CM(month #) = CD.(In O(f) — In Q(t—12)) + (1 — CD).CM(t-1)

where CD = 0.00383 = 0.045"'? and the smoothing is applied to the annual force
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of inflation for the preceding twelve months. This gives smoothed values similar
to those in the annual model with CD = 0.045. The resulting m/h series for
In CR(f) have then been analysed, and the results are shown in Table 6.6 also for
m=1,2and 12.

Table 6.6. Statistics and autocorrelation coefficients for various m/h series
for In CR, December 1923 to June 1994

Standard Equivalent
Number of deviation of annual

mih values of r P residuals standard
Lom deviation
1/1 847 0.9868 0.8523 0.0843 0.2721
2/1 424 0.9696 0.8307 0.1284 0.2919
2/2 423 0.9698 0.8319 0.1261 0.2869
12/1 (Dec) 71 0.7364 0.7364 0.3381 0.3381
1272 71 0.7695 0.7695 0.3031 0.3031
12/3 71 0.8796 0.8796 0.2148 0.2148
12/4 71 0.8922 0.8922 0.2151 0.2151
12/5 71 0.8959 0.8959 02204 0.2204
12/6 71 0.9223 0.9223 0.1936 0.1936
12/7 71 0.9156 09156 02018 02018
12/8 70 0.9064 0.9064 0.2016 0.2016
12/9 70 0.8663 0.8663 0.2382 02382
12/10 70 0.8349 0.8349 0.2644 0.2644
12/11 70 0.8468 0.8468 0.2656 0.2656
12/12 70 0.8510 0.8510 0.2542 0.2542

6.5.4 The mean of the monthly data is In 2.98%, and the means of the yearly
series range from In 2.91% (12/2, January) to In 3.05% (12/8, July). For the
monthly series an AR model with p in the range 3 to 5 might be suitable. I have
not tried to fit one. There are no spikes in the autocorrelation function at annual
frequencies, i.e. 12, 24, etc., so there is no annual seasonality. For all the less
frequent series, from m = 2 onwards, an AR(1) model could well be suitable,
though, for certain of the series for m = 6 or of the yearly series for m = 12, it
looks as if an AR(2) model might be worth investigating. There is quite a wide
range in the values of r,'*", from 0.7364 (12/1, December) to 0.9223 (12/6,
May). The Jarque-Bera statistic is high for all the series except 12/4, 12/5, 12/6,
12/7 and 12/8, which include the June series. The results are broadly consistent
with the fuller AR(1) model developed in Section 6.3, but there is clearly
uncertainty about some of the parameter values.
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6.6 Data for Selected Other Countries for Other Periods

6.6.1 Results from fitting the same model to the data for the consols yield, or
other indicator of long-term interest rates, for the same countries as discussed
previously, are shown in Table 6.7. The median value of C is given by
CMU + 100 CW.OMU.

Table 6.7. Fitted parameters for long-term bond model for selected

countries
UK. US.A. France Canada Sweden Finland
Period 1923-94 1926-89 1951-89 1923-93 1923-93 1950-93
cw 1.0 1.0 1.0 1.0 1.0 1.0
CcD 0.045 0.058 0.2 0.04 0.018 0.05
CcA 0.90 0.96 0.90 0.95 0.98 0.24
CMU% 3.05% 2.65% 2.5% 3.7% 3.35% 4.0%
CcY 0.34 0.07 1.0 0.1 0.25 0.1
CSD 0.185 0.21 0.3 0.185 0.15 0.33
Med[C%] 7.75% 5.65% 8.5% 7.1% 7.95% 10.0%

6.6.2 The estimated values of the parameters are reasonably similar for each
country, except Finland, though the value of CSD for France is noticeably high.
The CA parameter for Finland is low, at 0.24, and the value of CSD is also high.
An alternative way of modelling the Finnish series is to omit the connection with
inflation entirely, and put: CMU = 9.5%, CA = 0.15, CY = 0, and CSD = 0.15.
It is as if those that influenced interest rates in Finland paid no attention to the
‘Fisher effect’, and nominal interest rates fluctuated almost independently from
year to year around a mean of 9.5%. However, the series for Finland starts much
later than those for the other countries.

6.6.3 As explained in §2.64 [ have not calculated the simultaneous
crosscorrelations of the residuals for the series all these countries, so I quote only
the simultaneous correlation coefficients for the UK., U.S.A. and France from
my Montréal paper. These are not calculated over identical periods. They are:

UK. v US.A.: 0.29; UK. v France: 0.32; U.S.A. v France: 0.40.

These are quite similar to the crosscorrelations for share dividend yields (see
14.7.3).

6.6.4 1 do not have available records of interest rates for a large number of
other countries. A problem in some countries is that the terms of the longest
bonds in the market are quite short compared with those in the U.K. Short-term
interest rates of some kind should, however, be obtainable.
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6.7 ARCH Models

6.7.1 Ihave investigated possible ARCH effects for the U.K. model, as for the
series for inflation, share dividend yields and share dividends. I define three new
terms: CN-squared, the squares of the values of CN(¢); CH-squared, the square
of the expected values of CN(¢), and CE-squared.

6.7.2 CE-squared shows no significant autocorrelation. It also shows no
significant crosscorrelation with lagged values of CN-squared, or with
simultaneous or lagged values of CH-squared; nor are there any particularly large
crosscorrelations with any of the other squared series, the largest being between
CE-squared and YH(+1)-squared, 0.31 and between CE-squared and
YE-squared, 0.24. 1 have not developed an ARCH model for consols yields.
There is no immediate evidence for it, and the residuals of the model shown in
Table 6.3 are not particularly non-normal.

6.8 Forecasting

6.8.1 In Figure 6.3, I show a set of ten simulations of C(f) at annual intervals
from June 1994 to 2050, along with the past record since 1950, on a linear scale.
One can see that these are less erratic from year to year than the dividend yields
shown in Figure 4.5, but like them they do not fan out into an expanding funnel
of doubt.

6.8.2 In Figure 6.4, 1 show the forccast median of C(¢), starting with the
conditions in June 1994, also on a linear scale, along with confidence intervals
for the mean plus and minus two standard deviations, using the formulae in
Appendix E.5, and assuming that the consols yield is normally distributed. One
can see that the confidence interval soon becomes constant; the funnel of doubt
does not go on expanding,.
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Figure 6.3. Consols yield, 1950-94, and simulations, 1994-2050
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Figure 6.4. Consols yield, 1950-94, and forecast medians
and confidence intervals, 1994-2050

7. SHORT-TERM INTEREST RATES

7.1 A Possible Model

7.1.1 T have gathered a series of short-term interest rates drawn successively
from Bank Rate, Minimum Lending Rate and bank base rates, in effect daily
from 1 January 1797. It is practicable to obtain daily records because these rates
have remained fixed for periods of varying length, and the dates of change have
been recorded. Such a measure of short-term interest rates does not give a good
picture of daily fluctuations in current interest rates, as would a series of LIBOR,
local authority seven-day money, Treasury Bill rates or CD rates, but none of
these indicators are readily available for long periods into the past. I have
created a monthly series by picking the value of the Bank Rate series at the end
of each month, and a yearly series likewise. The values are plotted in Figure 6.1,
along with the yields on consols.

7.1.2 The first consideration is what sort of model to choose. Short-term
interest rates are clearly connected with long-term ones, as shown in Figure 6.1.
One approach would be to model the spread:

c@) — BQ)

where B(?) is the value of Bank Rate at time ¢; another would be to model the
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difference between the logarithms:

In C(® — In B(¢) = —In (B()/C())

i.e. the logarithm of the ratio of the rates; yet others would be to use the
estimated real rate CR(?) in either of these formulae. I have chosen the middle
one of these, on the grounds that a constant proportionate spread is more
plausible than a constant simple spread over a time when long-term rates have
varied from 2%% to 17%. A spread of 3% is not implausible when the overall
level of rates is high, but unlikely when the overall level is low. The spread is
plotted in Figure 7.1 and the log ratio in Figure 7.2.

7.1.3 Inspection of the data shows that the obvious starting model is an AR(1)
model for the log ratio. We define the short-term rate of interest at time ¢ as
B(%), and put:

B(#) = C(9).exp{—BD(1)}

where:
BD(t) = BMU + BA.(BD(t—1) — BMU) + BE(t)

BE(t) = BSD.BZ(1)
BZ(#) ~ iid N(0,1)
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Figure 7.1. Spread C(¢) — B(¥), yearly, 1797-1994
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or
BD(r) ~ ARI(BMU, BA, BSD).

We can equally put:

In B(t) = In C(f) — BMU — BN(¥)
with:
BN(f) ~ AR1(0, BA, BSD).

Note that BD has a minus sign in front of it, because short-term yields are, on
average, lower than long-term ones.
7.1.4 A possible elaboration is to put:

BN(t) = BA.BN(t—1) + BC.CE(f) + BE()

where BC.CE(r) allows an extra influence from the residuals of the consols yield.
It turns out that this can be taken as zero in the UK., but it is useful for other
countries.

7.1.5 Parameter estimates for these two models are shown in Table 7.1 for
1923-94, along with estimates for model (i) for 1797-1994.

Ratio
1.5
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Figure 7.2. Log ratio In (B(#)/C(t)), yearly, 1797-1994
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Table 7.1. Parameter estimates for model for In (B/C),
1923-94 and 1797-1994

1923-94 1797-1994
Model ) (ii) (i)
BC =0 including BC BC =0
BMU 0.2273 02176 0.0419
(0.0797) (0.0809) (0.0370)
BA 0.7420 0.7434 0.5391
(0.0823) (0.0827) (0.0606)
BC - —0.0257 -
(0.1155)
BSD 0.1808 0.1808 0.2397
(0.0151) (0.0151) (0.0121)
Log likelihood +0.0 +0.02 -
Jarque-Bera 2 1.57 1.59 59.56
) 0.45 0.45 0.0000

7.1.6 For 1923-94 the improvement given by including BC is trivial. The
residuals for model (i) are satisfactory, showing no significant autocorrelations,
and no crosscorrelations with any of the previously derived sets of residuals. The
Jarque-Bera statistic is not high, although individual large values of the residuals
were observed in 1930 (—2.74 times the standard deviation), 1952 (2.35 times),
1979 (2.23 times), 1985 (2.00 times) and 1988 (2.53 times).

7.1.7 Suitably rounded values of the parameters are:

BMU = 0.23; BA = 0.74; BSD = 0.18.

These are not identical with those quoted in Appendix D of my paper on ‘The
Risk Premium on Ordinary Shares’ (Wilkie, 1995), which were based on an
earlier investigation ending in 1992.

7.2 Previous Centuries

7.2.1 1 also fitted the simple AR(1) model (i) to the whole period for which
data were available, from 1797-1994. The results are also shown in Table 7.1.

7.2.2 The model fits plausibly, though with different parameter values, BMU
and BA being much reduced, and BSD increased. @ There is significant
autocorrelation of the residuals at lag 3, and also some lagged crosscorrelations
with the residuals of the price and the wage series fitted over the same period.
More investigation could be done here.

7.3 Monthly Data

7.3.1 From the monthly data for December 1923 to June 1994, I also
constructed various monthly series in the same way as previously, and I record
the same statistics for various m/h series, for m = 1, 2 and 12, first for the values
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of In B(f), results for which are shown in Table 7.2, and then for the log ratio
In(B(¢)/C(¢)), results for which are shown in Table 7.3.

7.3.2 For all the series in both tables an AR(1) is a reasonable fit. The values
of the yearly parameters are similar for all the series in each table, and similar
in Table 7.3 to those found in Section 7.1. The Jarque-Bera statistic is very high
for all the series for the log ratio, and for all except the yearly series of In B(¢).

Table 7.2. Statistics and autocorrelation coefficients for various m/h series
for In B, December 1923 to June 1994

Standard Equivalent
Number of deviation of annual

mih values of r P residuals standard
Lo deviation
1/1 847 0.9938 0.9285 0.0747 0.2502
2/1 424 0.9855 09161 0.1144 0.2704
2/2 423 0.9877 0.9282 0.1057 0.2511
12/1 (Dec) 71 0.9109 0.9109 0.2844 0.2844
1272 71 0.9086 0.9086 0.2876 0.2876
12/3 71 0.9188 0.9188 0.2706 0.2706
12/4 71 0.9312 0.9312 0.2414 02414
12/5 71 0.9393 0.9393 0.2244 0.2244
12/6 71 0.9382 0.9382 0.2292 0.2292
12/7 71 0.9470 0.9470 0.2155 0.2155
12/8 70 0.9331 0.9331 0.2445 0.2445
12/9 70 0.9156 0.9156 0.2698 0.2698
12/10 70 0.8971 0.8971 0.3005 0.3005
12/11 70 0.8974 0.8974 0.3047 0.3047
12/12 70 0.9087 0.9087 0.2902 0.2902

7.4 Data for Selected Other Countries for Other Periods

Results from fitting the same model to the data for a short-term yield, for the
U.K., Canada and Sweden, are shown in Table 7.4. For Canada the value of BC
was strongly significant, so it is included in the model. The median value of B
is given by Med[C].exp(—BMU), and this too is shown in the table.

7.5 Other Models

7.5.1 Ong (1994) extends my model by fitting a number of transfer function
models to a series of Treasury Bill yields, using annual data from 1955 to 1993.
He models the spread, (C—B), rather than the log ratio, and he finds that an
AR(1) model with zero mean, autoregressive parameter 0.43, and standard
deviation 0.02, i.e. 2% in the interest rate, fits the data satisfactorily.
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Table 7.3. Statistics and autocorrelation coefficients for various m/h series
for In (B/C), December 1923 to June 1994

Standard Equivalent
Number of deviation of annual
mih values of r P, residuals standard
Lo deviation
1/1 847 0.9634 0.6394 0.0715 0.2051
21 424 0.9203 0.6075 0.1046 0.2123
2/2 423 0.9330 0.6597 0.0959 0.2002
12/1 (Dec) 71 0.6230 0.6230 0.2084 0.2084
12/2 71 0.6227 0.6227 0.2170 0.2170
12/3 71 0.6599 0.6599 0.2113 0.2113
12/4 71 0.7056 0.7056 0.1897 0.1897
12/5 71 0.7130 0.7130 0.1836 0.1836
12/6 71 0.6930 0.6930 0.1904 0.1904
12/7 71 0.7398 0.7398 0.1791 0.1791
12/8 70 0.6695 0.6695 0.1983 0.1983
12/9 70 0.6010 0.6010 0.2072 0.2072
12/10 70 0.6108 0.6108 0.2159 0.2159
12/11 70 0.5983 0.5983 0.2258 0.2258
12/12 70 0.6187 0.6187 02127 02127
Table 7.4. Fitted parameters for short-term bond model for
selected countries
UK. Canada Sweden
Period 1923-94 1923-93 1923-93
BMU 0.23 0.26 0.10
BA 0.74 0.38 0.48
BC 0.0 0.73 0.0
BSD 0.18 0.21 0.13
Med[B%] 6.73% 547% 7.19%

7.5.2 A complete model for interest rates requires a yield curve to join the

short-term and long-term rates.

There are different functions that can be

modelled for a yield curve, implied forward rates, zero-coupon rates, redemption
yields or par yields. A parametric form of yield curve could be chosen and the
stochastic behaviour of the parameters investigated. Unfortunately, it is difficult
to recreate yield curves for the past; the data for stock prices would be available,
but the work involved in extracting them and fitting a suitable functional form
would be considerable. In addition, one might want to construct a ‘yield curve’
for expected inflation, which is not necessarily the same for all terms.
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7.5.3 Tilley (1990) and Tilley & Mueller (1991) have investigated nominal
redemption yields in the U.S.A., at four-week intervals, from December 1981 to
August 1989, and find that a four-parameter cubic formula is sufficient to
describe a yield curve. They investigate the stochastic properties of their
parameters. However, they have not taken account of inflationary expectations,
and the period they cover is relatively short.

7.54 Many alternative yield curve models have been proposed in the
academic literature. There is a useful review in Sharp (1988) and further
references in Ingersoll (1987), Pedersen, Shiu & Thorlacius (1989) and Duffie
(1992). Unfortunately, to my mind, they are usually based on an assumption
about how yield curves ought to behave rather than being based on how they
actually do behave. Some do take inflationary expectations into account, but
none satisfactorily combines nominal yields, real yields on index-linked stock
(which are available in quantity only in the U.K.) and inflationary expectations,
all in a single model.

7.6 Forecasting

In Figure 7.5, I show a set of ten simulations of B(¢) at annual intervals from
June 1994 to 2050, along with the past record since 1950, all on a linear scale.
One can see how erratic these are from year to year, but they do not fan out into
an expanding funnel of doubt. I do not show results of the theoretical
calculations of the means and confidence intervals.

%
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1950 1975 2000 2025 2050
Figure 7.3. Base rate, 1950-94, and simulations, 1994-2050
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8. PROPERTY

8.1 Problems of a Property Index

8.1.1 It is likely to be useful for institutional investors to have a model for
property investment (real estate). However, there are well-known problems about
constructing any index to represent the price and income performance of a
property portfolio. No two properties are identical, and none are traded in
fractional parts, as companies are through their shares. Actual transactions in
property are infrequent, unlike the shares of quoted companies, and one has to
rely substantially on valuers’ estimates of capital values. There is no easily
definable universe of properties, whereas for shares one can define a universe as
all shares traded on a particular exchange, or as a readily definable subset of such
shares.

8.1.2 There are two different rental values associated with each property: one
is the ‘rack rental’, the estimated rental that might be obtained if the property
were being newly let on modern lease conditions, and the other is the actual
income that is receivable, which depends on the terms of the current lease. The
usual conditions on which leases have been granted have changed over the years.
Prior to the Second World War leases were often for 99 years on fixed terms,
making property investment akin to fixed-interest investment, with a rather far
distant reversion. Many such leases are still in force, with another 40 or so years
to run. After the Second World War the customary conditions changed, first to
21-year fixed-term leases, then to leases with rents revisable upwards only,
typically every five years or so. Currently there is a resistance to upwards only
rent reviews, and it is possible that a new style of lease may come into general
use.

8.1.3 The estimated rental value and the current income bear some analogies
to the earnings and dividends of companies, though the analogy cannot be pushed
too far. They lead to two different calculations of yield, which in principle
coincide for a new lease, but may diverge thereafter.

8.1.4 A further problem for the sort of investigation I have tried to carry out
is that almost no property indices go back very far. I have used the Jones Lang
Wootton Indices, mainly because they go back to 1967, and give both the price
index and a yield index based on actual income, even though the indices for the
early years were calculated in arrears and not contemporaneously. They are
available yearly for June 1967 to June 1977 and quarterly thereafter. 1 have used
the yearly June values, and therefore have a series from 1967 to 1994, with 28
values. The property price index and 20 times the property income index are
plotted in Figure 8.1. They track closely together from about 1971 to 1984, but
diverge before and after this period. The property yield is plotted in Figure 8.2.

8.2 A Model for Property Yields
82.1 It is reasonable to compare a model for property with a model for
shares. Income is analogous to dividends, and prices and yields perform the
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Figure 8.1. Values of property price index and 20 x property income
index, yearly, 1967-77, and quarterly, 1977-94
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Figure 8.2. Values of property yield, yearly, 1967-77, and quarterly,
1977-94
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same function in each case. I therefore start by postulating a model for property
income which is similar to that for dividends, and a model for property yields
which is similar to that for share dividend yields.

8.2.2 I define the property income, assumed received at time ¢, as E(f), and the
property yield at time ¢ as Z(rf). The model for the property yield, Z(¢), is:

Z(t) = exp{ZW.I() + ZN(1)}
or
In Z(f) = ZW.I(1) + ZN(2)
with:
ZN() ~ AR1(In ZMU, Z4, ZSD).

It turns out that the ZW term is not necessary, leaving the simple AR(1) model
for In Z:

In Z(t) ~ AR1(In ZMU, ZA, ZSD).
8.2.3 Parameter values that I had suggested informally and which were quoted
in Daykin & Hey (1990) were:
ZA = 0.6; ZMU = 5.0%; ZSD = 0.075

but this was based on hunch and not on any data.
8.2.4 Parameter estimates for this model are shown in Table 8.1.

Table 8.1. Parameter estimates for model for In Z, 1967-94

Parameter estimate Standard error
ZMU % 741 % 1.03 %
ZA 09115 0.1007
ZSD 0.1177 0.0157

The mean looks high; but this correctly reflects the observed experience.
Suitable rounded values are:

ZMU = 7.4%; ZA = 0.91; ZSD = 0.12.

8.2.5 Diagnostic tests of the residuals show no remaining autocorrelation, and
no significant crosscorrelations. It would not be surprising to find that property
yields moved in the same direction as share yields, i.e. their residuals were
correlated, and also in the same direction as fixed-interest yields. The correlation
coefficient between ZE and YE is 0.29, not significant, but at least interesting.
The simultaneous correlation coefficients between ZE and CE and between ZE
and BE are small and negative, but there are larger lagged crosscorrelation
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coefficients, between ZE(f) and CE(¢+ + 1), —0.31, between ZE and BE(r + 1),
—0.26, and between ZE(f) and BE(r—1), +0.28. I can see no economic rationale
for these, and they are not statistically significant at a 5% level, so I have not
investigated them further.

8.2.6 There is only one residual greater than two standard deviations away
from zero, that for 1973 (—2.22). The skewness is near zero (v/b, = 0.18), and
the kurtosis coefficient b,, is less than 3, at 2.40. The Jarque-Bera statistic is
042 (p = 0.81).

8.2.7 The series for property yields is a short one, with only 28 yearly values,
but there is no reason, so far, to assume anything other than an AR(1) model,
with normal residuals.

8.3 A Model for Property Income
8.3.1 A possible model for property income, E(f), similar to that for share
dividends is:

E(f) = E(t—1).exp{EW.EM(f) + EX.I(t) + EMU + EE(t)}

where:
EM(t) = ED.I(f) + (1—ED).EM(t—1)

EE(f) = ESD.EZ(f)
EZ(f) ~ iid N(0,1).

As for share dividends, it is convenient to denote the annual change in the
logarithm as:

EK(H) =In E(t) — In E(t—1)
and to identify the effect of inflation as:

EIt) = EW.EM(t) + EXI()
so that:
EK() = EI(t) + EMU + EE(?).

8.3.2 Possibly other terms to represent crosscorrelations need to be added. I
find a simultaneous correlation between EE and ZE, the residuals for property
yield, so I add a term to make the final model:

E(t) = E(t—1).exp{EW.EM(t)+ EX.I() + EMU + EE(f)}

I constrained EX to equal 1 — EW, so that a change in In Q ultimately produced
the same change in In E; the transfer function had ‘unit gain’.
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8.3.3 The parameters I suggested to Daykin & Hey informally were:

EW =1.0; ED =0.1; EMU = —0.01; ESD = 0.05

but, like the yield model, these were not based on any analysis of data.

8.3.4 Parameter estimates for this model are shown in Table 8.2. I find that,
if EW is unconstrained, the optimum value is greater than unity, making EX
negative, so [ constrain EW to equal 1.0; this means a loss in log likelihood of
only 0.30. Of the two models shown, (i) excludes EBZ and (ii) includes EBZ.

Table 8.2. Parameter estimates for model for In E, 1968-94

Model (i (i)
EBZ =0 EBZ included
EW 1.0 1.0
ED 0.1121 0.1289
(0.0663) (0.0689)
EMU 0.0006 0.0032
(0.0152) (0.0132)
EBZ - 0.2363
(0.0974)
ESD 0.0661 0.0599
(0.0090) (0.0082)
Log likelihood +0.0 +2.67
Jarque-Bera y} 35.70 16.56
) 0.0000 0.0003

8.3.5 Diagnostic tests of the residuals for both models show no remaining
autocorrelation. There were large values of the residuals in 1972 (3.51 times the
standard deviation for model (i) and 3.36 times for model (ii)) and, for model (i),
in 1990 (2.38 times).

8.3.6 Possible rounded values of the parameters are:

EW =1.0; ED = 0.13; EMU = 0.003; EBZ = 0.24; ESD = 0.06.

8.3.7 Following from the models for property yield and property income, we
have a model for a property price index, denoted by A(¥):

Al = EQYZ(1)
or
In A(t) = In E(¢) — In Z(2).

8.4 Forecasting

8.4.1 In Figure 8.3, I show a set of ten simulations of Z(¢) at annual intervals
from June 1994 to 2050, along with the past record since 1967, all on a
logarithmic scale. These are again a typical stationary series.
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Figure 8.3. Property yield, 1967-94, and simulations, 1994-2050
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Figure 8.4. Property income index, 1967-94, and simulations, 1994-2050
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Figure 8.5. Property price index, 1967-94, and simulations, 1994-2050

8.4.2 In Figure 8.4, I show a set of ten simulations of £(¢) at annual intervals
from June 1994 to 2050, along with the past record since 1967, all on a
logarithmic scale. These fan out in the way one can now expect for an integrated
series. I have not calculated the theoretical means and confidence intervals.

8.4.3 In Figure 8.5, I show a set of ten simulations of A(¢) at annual intervals
from June 1994 to 2050, along with the past record since 1967, all on a
logarithmic scale.

9. INDEX-LINKED STOCKS

9.1 Index-Linked Government Stocks

9.1.1 Index-linked government stocks have been issued and on the market
since 1981. When I first developed a stochastic asset model they were too recent
for any history to be useable, but more than 13 years of data are now available,
and one can begin to get some idea of their stochastic behaviour.

9.1.2 However, there is a comparison available. Before inflation became
recognised as endemic, fixed-interest government stocks were treated as ‘gilt-
edged’, and it was, I believe, assumed by investors that they would provide a
yield that was in effect ‘real’, as well as nominal. It is therefore reasonable to
look back at previous centuries to see what a suitable model might be. I have
done this for the consols model, using the data from 1756 to 1956, and the results
are shown in Section 6.4.
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9.1.3 Thave used the values of the FTA index-linked real yields, assuming 5%
inflation, and from 1986 using stocks with terms ‘5 and over’, and I have taken
the monthly values from May 1981 to October 1994, so as to give the maximum
number of months at the time of writing. For the immediate investigations I have
used the June values, from 1981 to 1994 inclusive, giving 14 values of the yield.
The monthly values of the yields are plotted in Figure 6.1 and again in Figure 9.1
with a more convenient scale.

%
6

0
1980 1985 1990 1995 2000

Figure 9.1. Real yield on index-linked stocks, monthly, 1981-94

9.2 A Possible Model for Index-Linked Yields
9.2.1 A first possible model for the real yield on index-linked stocks at time
t, denoted R(Y), is an AR(1) model:

In R(t) = In RMU + RA.(In R(t—1) — In RMU) + RE(t)
RE(t) = RSD.RZ(t)
RZ(t) ~ iid N(0,1)
or

In R(f) ~ ARI(In RMU, RA, RSD).

9.2.2 Investigations with this model show, however, that the residuals are
correlated both with the residuals from the consols yield model and with the
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residuals from the property yield model, so a fuller model is:
In R(®) =1In RMU + RA.(In R(:+—1) — In RMU) + RBC.CE(f)

+ RBZ.ZE(t) + RE(Y).

Parameter estimates for models on these lines, (i) excluding both RBC and RBZ,
(ii) including RBC, and (iii) including RBZ, are shown in Table 9.1. It would be
plausible for there to be correlation also with share dividend yields, but the
observed correlation coefficient is small.

Table 9.1. Parameter estimates for model for In R, 1981-94

Model 6] (i) (iif)
RBC =RBZ =0 including RBC including
RBC and RBZ
RMU % 3.86 % 4.03 % 396 %
0.17) (0.17) (0.14)
RA 0.4936 0.5686 0.5326
(0.1609) (0.1076) (0.0953)
RBC - 0.2234 0.2419
(0.0598) (0.0548)
RBZ - - 0.2110
(0.1160)
RSD 0.0731 0.0518 0.0468
(0.0143) (0.0102) (0.0092)
Log likelihood +0.0 +4.81 +6.23
Jarque-Bera %2 0.94 028 2.39
) 0.62 0.86 030

9.2.3 The improvement in log likelihood makes the extra term in RBC clearly
worth while, and the parameter estimate is well over two standard deviations
away from zero. The extra improvement for RBZ is more marginal; the log
likelihood improves only by 1.42, and the parameter estimate is only 1.8 times
its standard error. There is therefore justification for rejecting this extra term.
The Jarque-Bera statistics are all low, and there are no large residuals; but with
only 13 values of the residual series this is not too surprising.

9.2.4 Possible rounded parameter values are:

RMU = 4.0%, RA = 0.55, RBC = 0.22, RSD = 0.05.
9.2.5 The total standard deviation RSD* is given by:
RSD** = RBC*.CSD* + RSD* = 0.0645*

using CSD = 0.185.
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9.3 Monthly Data

9.3.1 Monthly data for the real yield on index-linked stocks are available from
May 1981 to October 1994, giving 162 months in all. Table 9.2 shows statistics
for the m/h series for m = 1, 2 and 12, constructed by picking observations at
intervals of every m months starting in month A.

9.3.2 The overall mean value of the monthly values of In R is In 3.60%. The
range of means of the yearly series is from In 3.50% (12/10, February) to
In 3.73% (12/3, July). An AR(1) model fits each series quite well, Although the
kurtosis coefficient b, of the residuals is highish, the Jarque-Bera statistic is
generally satisfactory.

9.3.3 The yearly autocorrelation coefficient, estimating the value of R4 in the
model formula, is very variable, and often lower than in Table 9.1. The June
series is 12/2, which shows a relatively high value of 0.4723. The yearly values
of the standard deviation, which estimate the value of RSD, are generally higher
than that shown in Table 9.1, model (i) (0.0731), but the value for the June series
is similar, at 0.0759. The differences show the effect of different methods of
estimating these parameters.

Table 9.2. Statistics and autocorrelation coefficients for various m/h series
for In R, May 1981 to October 1994

Standard Equivalent
Number of deviation of annual

mih values of r o residuals standard
L, deviation

1/1 162 0.9165 0.3512 0.0476 0.1114
2/1 81 0.8367 0.3431 0.0634 0.1088
2/2 81 0.8290 0.3247 0.0682 0.1154
12/1 (May) 14 0.5268 0.5268 0.0756 0.0756
12/2 14 0.4723 0.4723 0.0759 0.0759
12/3 14 0.2986 0.2986 0.1008 0.1008
12/4 14 03173 0.3173 0.1168 0.1168
12/5 14 0.3717 0.3717 0.0997 0.0997
12/6 14 0.4689 0.4689 0.1195 0.1195
1277 13 0.5992 0.5992 0.0888 0.0888
12/8 13 0.4785 0.4785 0.1212 0.1212
12/9 13 0.4450 0.4450 0.1293 0.1293
12/10 13 0.3520 0.3520 0.1289 0.1289
12/11 13 0.4792 0.4792 0.1195 0.1195

12/12 13 0.5679 0.5679 0.1066 0.1066
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9.3.4 Another statistic that can be investigated is the difference between the
long-term fixed-interest yield and the real yield on index-linked stocks, what one
can describe as the ‘implied inflation’ as assessed by ‘the market’. 1 have
calculated this allowing correctly for the fact that the yields on the FTA BGS
Indices are convertible half-yearly, whereas the usual rate of inflation rate is
convertible yearly. 1have then converted the annual rate to a continuous 8-type
rate, to make it comparable with the force of inflation /(¢) and the smoothed
inflation in the consols model CI(r). I denote the difference as RI(t), defined as:

RI(H) = In {(1 + C(H/2)*/(1 + R(H/2)*}.
9.3.5 Values of RI(¢), CI(¢) and I(t) are shown in Figure 9.2. One can see that

the rather slow smoothing in CI does not reflect the apparently faster response
of the market to actual inflation, as shown by RL

0.15

0.10

0.05

0.00 :
1980 1985 1990 1995 2000

Figure 9.2. Values of I(¢), RI(¢) and CI(f), monthly, 1981-94

9.3.6 Statistics for the m/h series for Rl for m = 1, 2 and 12, are shown in
Table 9.3. The overall monthly mean value is 0.0637, and the means of the
yearly series range from 0.0623 (12/11, March) to 0.0644 (12/3, July). An AR(1)
model fits well, though the Jarque-Bera statistic is high for the monthly series
and for many of the series for m = 2, 3 or 4.

9.3.7 It would be interesting to relate the R/ series more precisely to past
inflation, to obtain a better understanding of how the market adjusts its views of
prospective inflation, and perhaps to improve my model for the C/ term in my
consols yield model; but this has not yet been done.
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Table 9.3. Statistics and autocorrelation coefficients for various m/h series

for implied inflation, May 1981 to October 1994

Standard Equivalent
Number of deviation of annual
mih values of r rm residuals standard
Lo deviation
1/1 162 0.9539 0.5678 0.0035 0.0097
2/1 81 0.9090 0.5640 0.0049 0.0097
2/2 81 0.9039 0.5452 0.0048 0.0094
12/1 (May) 14 0.5942 0.5942 0.0075 0.0075
12/2 14 0.5888 0.5888 0.0072 0.0072
1273 14 0.5992 0.5992 0.0055 0.0055
12/4 14 0.5021 0.5021 0.0062 0.0062
12/5 14 0.3387 0.3387 0.0065 0.0065
12/6 14 0.3045 0.3045 0.0071 0.0071
12/7 13 0.4038 0.4038 0.0068 0.0068
12/8 13 0.3675 0.3675 0.0069 0.0069
12/9 13 0.4828 0.4828 0.0078 0.0078
12/10 13 0.4611 04611 0.0073 0.0073
12/11 13 0.3440 0.3440 0.0078 0.0078
12/12 13 0.3439 0.3439 0.0082 0.0082
%
6
5
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1
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Figure 9.3. Real yield on index-linked stocks, 1981-94, and simulations,

1994-2050
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9.4 Forecasting

In Figure 9.3, I show a set of ten simulations of R(¢#) at annual intervals from
June 1994 to 2050, along with the past record since 1981, all on a linear scale.
These again behave like a typical 1(0) series.

10. CURRENCY EXCHANGE RATES

10.1 Purchasing Power Parity

10.1.1 In order to link the investment models for a number of different
countries, it is necessary to model exchange rates. The model described here is
not the only possible way of doing this, but it fits the style of the model for
individual countries. I have discussed some aspects of the model before in
Wilkie (1992, 1994a).

10.1.2 Denote the exchange rate at time ¢ between countries i and j, expressed
as the number of units of currency j for one unit of currency i, as X;(¢). Then
X)) = 1/X(5). The rate conventionally quoted may be either of these rates.

10.1.3 The purchasing power parity (PPP) approach to exchange rates suggests
that the exchange rate between two currencies depends strictly on the relative
purchasing powers in the two countries. This could be expressed by putting
X(t) = XK.Q()/Q(1), where O, and (), are the consumer price indices of the two
countries. It is readily seen that exchange rates do not conform to this pattern,
at least not with a constant value of XK. One way of dealing with this is to
allow XK to vary with time, denoting it XK(¢), and to model XK(¢). It can be seen
from the data that XK(¢) appears to have a roughly constant mean level, but with
large deviations away from this level.

10.1.4 It is convenient to change to logarithms and to put:

In X (f) = In O(5) — In Q) + In XK,(¥)
with:
In XK,(1) = XMU, + XN,(¢)

where XMUj; is a constant that reflects both the scales of the two currencies and
the radices of the two indices used to measure consumer prices, and XN, has zero
mean. XN; can then be modelled as an AR(1) time series:

XNy() ~ ARI(0, X4, XSD,).

I]’

10.1.5 This model seems to fit the data reasonably well for many countries.
Figures 10.1, 10.2 and 10.3 show graphs for the exchange rates between the U.K.
£ and the German mark, Japanese yen and U.S. $, respectively, showing the
actual exchange rate wandering up and down, and the PPP rate cutting through
the middle of the wanderings. Provided that one’s estimate of the mean is
correct, which is reflected in the vertical position of the PPP rate on the graph,
one can estimate whether the exchange rate is high or low relative to the PPP
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rate. However, it may easily be a long time before this apparent anomaly corrects
itself, so I would not confidently recommend this method of analysis for short-
term trading on the exchange. Nevertheless, it ought to be good in the long term.

Index
10

1 ‘
1970 1975 1980 1985 1990 1995

Figure 10.1. Values of actual exchange rate and PPP exchange rate,
UK. £ versus German mark, monthly, 1971-94

10.2 Cointegration
10.2.1 The PPP model is equivalent to the suggestion that Q,, Q; and X are
all I(1) series and are cointegrated, with the model:

In Xy(5) — In Q(8) + In Q) ~ 1(0).

10.2.2 1 have not tested every available exchange rate for cointegration, but
I have done it for the UK. £ versus the German mark, Japanese yen and U.S, $.
In each case 1 have used monthly data from September 1972 to June 1994, giving
262 monthly observations. The data are the same as those used in the
investigations described in Sections 10.4 to 10.6.

10.2.3 1 first test the three consumer price indices to see whether they can
reasonably be taken as integrated I(1) series, using the ADF tests for a unit root.
Rather oddly the Japanese CPI appears as if it did not have a unit root, but I can
see no reason for this, nor is it obvious from a graph of it. 1 next test the
exchange rates to see whether these can also be taken as integrated series, using
the same test, and find that all three can be.
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Figure 10.2. Values of actual exchange rate and PPP exchange rate,
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UK. £ versus Japanese yen, monthly, 1971-94
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Figure 10.3. Values of actual exchange rate and PPP exchange rate,

UK. £ versus US $, monthly, 1971-94
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10.2.4 1 then construct the deviations:

XD,(1) = In XK,(6) = In X,(6) — In Q) + In Q,(¢)

and test these for a unit root. In each case the tests also show that a unit root can
be assumed. This does not support my case.

10.2.5 I then test the logarithms of the exchange rate and the logarithms of the
two relevant consumer price indices for cointegration. For each country there is
very strong evidence of cointegration, with two cointegrating vectors for
Germany and Japan, and with one or possibly two cointegrating vectors for the
U.S.A. Unfortunately, the coefficients of the cointegrating vectors are nothing
like what I was expecting. There is a test whether a specified cointegrating
vector is plausible, and I tested all three countries for the vector (1, —1, 1). This
is implausible for Germany and Japan, but it might fit the U.S.A. The evidence
does not seem very supportive of the PPP approach. Similar results have been
found by other authors, whose results I now discuss.

10.3 Other Investigations

10.3.1 The PPP hypothesis for exchange rates is an old one, and a number of
authors recently have used cointegration methods to test for it. All those I refer
to have used monthly data similar to mine, though some have used wholesale
price indices as a better indicator of the price of traded goods than consumer
prices indices; all have used monthly data, and all have started in 1972 or 1973.
However, all have compared exchange rates versus the U.S. §, and all have used
a shorter time period, finishing their investigations in 1983, 1986 or 1989.

10.3.2 Baillie & Selover (1987), Enders (1988), and Corbae & Ouliaris (1988)
all conclude that there is no evidence for cointegration between the exchange
rates and price levels studied, whereas Hamilton (1994, Chapters 19 and 20), who
uses evidence about the U.S. § v Italian lira exchange rate as a textbook example,
finds the evidence more mixed, but, on balance, considers that the relevant
variables are not cointegrated and that the logarithm of a PPP adjusted exchange
rate is non-stationary.

10.3.3 A problem with the methods used by all these authors is that they take
the random walk hypothesis as the null, and seek convincing evidence, at say a
5% level, that this hypothesis should be rejected. I take the PPP hypothesis, with
moderately slow reversion to the mean, as the null, and I need to see convincing
evidence that this is not a satisfactory model. The conventional tests do not seem
to satisfy my requirement.

10.3.4 Part of the problem is the relatively short term of the available data.
Exchange rates have been floating reasonably freely for only a little over 20
years, and this, as I have noted already in 94.4.6, may not be long enough to
distinguish between two possible models which are close together in the short
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term, though they have very different long-term characteristics. Even 262 months
is too few observations to be able to distinguish the autoregressive coefficient,
which is around 0.97 for monthly data (and some of the authors referred to obtain
similar results to this) from unity. A longer period is necessary. I am not sure,
however, whether the fact that a large number of exchange rates show similar
features, with monthly autoregressive coefficients all about 0.97 or yearly
coefficients all about 0.7, can be taken as more convincing evidence than tests
of a single exchange rate.

10.3.5 Taking all this into account, I would prefer to use the PPP model for
future simulation of exchange rates; its short-term properties are similar to those
of a random walk model, so those who prefer the random walk for the short term
will not find the results very different.

10.4 Data for Several Countries

10.4.1 1 have available data for exchange rates at monthly intervals from
August 1972, when currencies started floating more freely after the breakdown of
the post-war Bretton Woods exchange rate system, and [ have taken my analysis
up to June 1994. For the data sources see Appendix F.10. [ also have
values of the consumer price indices for these countries, which were analysed in
Section 2.7. I have analysed the exchange rates, assuming that the PPP AR(1)
model described above is likely to fit. Table 10.1 summarises the results. I have
considered both the one series at monthly intervals and also the twelve different
series taking observations at yearly intervals.

10.4.2 The values of XMU shown are the lowest and highest for any of the
twelve yearly series and the overall mean for the monthly series. The values of
XMU are not important in themselves, but the range is of some interest. For the
monthly series the value of X4 is the first autocorrelation coefficient, and the
‘yearly’ figure quoted just after it is XA”,,MW an estimate of the equivalent
annual value. There follow values of X4 from the yearly series, showing the
lowest and highest value and the mean of the 12 values.

10.4.3 For XSD similar values are shown: first, the standard deviation of the
residuals after fitting a monthly AR(1) model; then the equivalent yearly standard
deviation using the formula:

XSD? = XSDzm(,,,,,,,y.(l — XA - XA4%)

yearly

and then the lowest and highest of the values of XSD from the yearly series, and
the mean of those values.

10.4.4 The monthly X4 parameter ranges from 0.947 (New Zealand) to 0.985
(Belgium). Since the value of the exchange rate varies much more within one
month than do the values of the consumer price indices, these monthly
parameters are similar to what is found if the exchange rate is investigated versus
a constant mean rather than a PPP adjusted mean. It is not surprising that others
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Table 10.2.

893

Analysis of exchange rates v. UK. £ for 19 countries, 9/1972 to 6/1994;
monthly series with 261 values; correlation coefficients of residuals

Aus Ost Bel Can  Den Fin Fra Ger Ire Ita
Australia | 1.0
Austria (Ost) 36| 1.0
Belgium 32 881 1.0
Canada 72 39 36 1.0
Denmark 37 .90 87 41 1.0
Finland 23 46 A3 .33 471 1.0
France 37 87 82 40 86 431 1.0
Germany 34 97 88 37 92 46 881 1.0
Ireland 28 75 .69 36 73 51 77 51 1.0
Italy .29 .61 .58 40 61 55 65 .61 .61 1.0 I
Japan 42 52 51 44 .54 31 .54 51 44 42
Netherlands .34 94 .87 36 91 A5 .87 95 74 .62
New Zealand .69 32 28 57 34 19 34 31 31 .26
Norway 41 79 74 A7 77 St 78 .78 .62 .54
South Africa 48 43 39 S1 44 28 42 41 40 40
Spain .35 .63 .59 44 .62 36 .62 .60 52 57
Sweden 38 68 64 46 0 56 65 67 54 54
Switzerland 28 .84 72 28 78 34 76 83 .67 54
US.A. .68 .39 .36 92 40 .33 42 37 39 42

Table 10.2 (continued).
Analysis of exchange rates v. UK. £ for 19 countries, 9/1972 to 6/1994;
monthly series with 261 values; correlation coefficients of residuals
Jap Net NZ. Nor S.A. Spa Swe Swi  USA.

Japan 1.0
Netherlands 51 1.0
New Zealand 41 31 1.0
Norway 52 .76 38 1.0
South Africa 40 40 45 47 1.0
Spain 42 61 26 59 40| 1.0
Sweden 44 .65 31 69 40 57 1.0 I
Switzerland 53 81 28 .64 37 49 .56I 1.0
USA. 48 36 55 48 53 47 46 29
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Table 10.3.
Analysis of exchange rates v. UK. £ for 19 countries, 9/1972 to 6/1994;
12 series with 21 or 22 yearly steps; correlation coefficients of residuals;
lower triangle for December series; upper triangle for June series

Aus Ost Bel Can Den Fin Fra Ger Ire Ita

Australia | 1.0 27 .19 .80 28 .60 12 24 .09 11
Austria (Ost) 241 1.0 92 24 94 38 .82 98 a7 .69
Belgium 31 941 1.0 29 92 35 85 90 .65 75
Canada 85 38 491 1.0 32 .60 16 25 14 25
Denmark 31 97 96 431 1.0 41 88 94 74 77
Finland 32 .58 .69 .55 671 1.0 26 31 36 44
France 34 .88 87 46 .88 56| 1.0 85 .60 .67
Germany .39 96 92 49 96 55 911 1.0 78 .69
freland 17 77 74 46 73 .52 78 J5 1 1.0 72
Italy 26 69 72 49 .68 .64 76 .69 831 1.0

Japan 26 52 47 33 49 .16 39 46 49 32
Netherlands 38 95 94 50 96 .62 92 98 72 .69
New Zealand 62 63 54 52 .64 29 57 72 49 41
Norway .61 76 .82 73 84 77 72 83 .60 .59
South Africa .54 43 42 46 45 .09 .36 .54 18 26
Spain 23 77 J1 31 .78 55 78 73 65 73
Sweden .39 .62 75 .56 73 81 62 64 46 64
Switzerland .10 9 79 23 85 45 77 83 70 .57
USA. 78 35 47 93 38 41 A48 46 47 41

investigating exchange rates come to the conclusion that they can be well
represented by random walks, with X4 set equal to unity, but, as I have explained
above, 1 do not think that this is a sensible long-term model.

10.4.5 The equivalent yearly value of X4 ranges from 0.519 to 0.831, and is
typically in the range 0.6 to 0.8. Much the same is true for the yearly values,
with the highs exceeding 0.6 for all countries except Switzerland (0.495),
although the lows are almost all below 0.6. Since there are only 20 or 21
observations in the yearly series, the standard errors of the estimates of the value
of the autocorrelation coefficient are quite high, of the order of 0.2, so the range
shown does not contradict the hypothesis of an overall value of X4 of about 0.65
to 0.7. Assuming that cross rates are consistent, i.e. X, (1) X,().X,(f) = 1, a table
such as that shown in Table 10.1 can be calculated for any base exchange rate,
and it is necessary to hypothesise a model that is uniformly consistent. One
suitable model is that the values of X4 are the same for all exchange rates. T first
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Table 10.3 (continued).
Analysis of exchange rates v. UK. £ for 19 countries, 9/1972 to 6/1994;
12 series with 21 or 22 yearly steps; correlation coefficients of residuals;
lower triangle for December series; upper triangle for June series

Jap Net N.Z. Nor S.A. Spa Swe Swi  US.A.

Australia 29 29 .79 57 .62 .09 34 26 73
Austria (Ost) .68 .97 .50 69 40 54 36 84 24
Belgium 58 .89 38 .60 40 43 41 77 24
Canada 28 29 .59 59 37 07 43 20 .89
Denmark 66 93 51 70 37 51 45 87 28
Finland 10 39 .55 .66 .18 .56 T3 27 40
France .50 82 30 .61 .29 32 43 .83 17
Germany .63 98 45 .68 41 49 .29 87 26
Ireland 47 .78 31 .55 09 44 20 .62 20
Italy 39 67 30 .58 32 40 46 54 15
Japan I 1.0 .56 .56 40 20 22 22 .69 36
Netherlands 44 1.0 45 g3 40 .50 35 82 29
New Zealand .56 .65 1.0 .56 47 23 25 A48 54
Norway 4 84 66| 10| 43 35 65 50 56
South Africa .30 51 67 44 rl- .00 13 31 30
Spain 29 1 34 .60 241 1.0 49 41 -.05
Sweden 25 .69 28 82 29 J0 1.0 28 28
Switzerland .54 .83 .55 59 32 64 43 1.0 17
USA. 40 47 46 62 41 23 45 22| 1.0

suggested this in my Montréal paper (Wilkie, 1992), but the method suggested
there for separating the exchange rates works only when there are three countries,
and not when there are more.

10.4.6 The equivalent yearly values of XSD range from 0.0609 (Ireland) to
0.1204 (South Africa), and are reasonably consistent with the observed values of
XSD from the yearly series. The range of these values is much less than when
the exchange rates are measured against some other base currency, as in Wilkie
(1994a), where I showed figures, for a slightly shorter period, versus the U.S. §
and the German mark. The Canadian $ moves very closely to the U.S. §, and the
relative standard deviation is therefore smaller (around 0.04 annually). The same
is true for the currencies of Austria and the Netherlands versus the German mark,
and likewise their standard deviations are small (less than 0.02 annually).

10.4.7 The picture is not complete without the crosscorrelations between the
respective values of XE;. These are shown in Table 10.2 for the monthly series
and in Table 10.3 for the June and December yearly series.
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10.5 Alternative Approaches

10.5.1 In order that the model for cross-rates be consistent, it is convenient for
the values of X4 to be the same for all countries. I have tried setting the yearly
XA = 0.7, and the monthly X4 = 0.97, which are almost equivalent. The standard
deviations of the residuals of the monthly series are almost unchanged, none
increasing by more than 0.0002. The standard deviations of the yearly series are
changed by more than this, but the change is usually in the third decimal place.
The correlation coefficients for the monthly series are almost unchanged. Those
for the yearly series change by more, but seldom by more than 0.05.

10.5.2 In carrying out the analysis described above, I measured the deviation
between the actual and expected exchange rates, assuming that the mean value
XMU was known. I estimated the value as the average over the whole period.
However, if | had been carrying out the investigation at some earlier date I would
not have known this average, and if I do the same calculations at some later date
I shall be able to calculate a new, possibly different, average. This problem of
parameter estimation, depending on the period of observation, applies to all the
series I have investigated, but it seems to have more force in this particular case,
because of the relatively short observation period, and the relatively large
standard error of the estimate of the mean. For an AR(1) model, the standard

Index
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_____________

Smoothed

1970 1975 1980 1985 1990 1995

Figure 10.4. Values of actual exchange rate and PPP exchange rate,
based (i) on overall mean, (ii) on smoothed mean, UK. £ versus U.S. §,
monthly, 1971-94
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Table 10.4. Analysis of exchange rates versus U.K. £ for 19 countries,
basis 2, from 9/1972 to 6/1994; parameters of AR(1) model for monthly
series with 262 values and for 12 yearly series with 21 or 22 values,
using XA,y = 0.97 and X4,,,,, = 0.7, and smoothing XMU

XMU(9) XSD monthly series XSD yearly series
in June 1994 monthly - yearly low - mean - high
Australia 0.6059 0.0395 - 0.1171 0.0862 - 0.1150 - 0.1395
Austria 3.1140 0.0279 - 0.0825 0.0767 - 0.0947 - 0.1175
Belgium 4.1675 0.0291 - 0.0862 0.0898 - 0.1013 - 0.1158
Canada 0.6675 0.0339 - 0.1004 0.1018 - 0.1197 - 0.1379
Denmark 2.4438 0.0282 - 0.0835 0.0720 - 0.0942 - 0.1220
Finland 2.0368 0.0283 - 0.0837 0.0792 - 0.0914 - 0.1072
France 23122 0.0267 - 0.0790 0.0679 - 0.0787 - 0.0939
Germany 1.1579 0.0284 - 0.0842 0.0771 - 0.0965 - 0.1207
Ireland 0.1474 0.0217 - 0.0644 0.0489 - 0.0653 - 0.0876
Italy 7.6687 0.0297 - 0.0880 0.0602 - 0.0764 - 0.0921
Japan 5.6098 0.0337 - 0.0998 0.1139 - 0.1349 - 0.1706
Netherlands 1.3012 0.0275 - 0.0814 0.0786 - 0.0960 - 0.1183
New Zealand 0.8581 0.0370 - 0.1095 0.0754 - 0.0987 - 0.1320
Norway 2.3306 0.0257 - 0.0762 0.0615 - 0.0758 - 0.0991
South Africa 0.4318 0.0396 - 0.1173 0.0891 - 0.1201 - 0.1482
Spain 52017 0.0269 - 0.0796 0.0648 - 0.0854 - 0.1110
Sweden 22746 0.0276 - 0.0818 0.0554 - 0.0765 - 0.1185
Switzerland 1.0083 0.0306 - 0.0907 0.0920 - 0.1057 - 0.1238
US.A. 0.4726 0.0338 - 0.1000 0.0939 - 0.1129 - 0.1256

error of the mean is increased by the factor 1/(1 — a), where a is the
autoregressive parameter. Thus, when the monthly autoregressive parameter is
around 0.97, the standard error of the estimate of the mean is around 30 times
what it would be were the successive observations to be independent.

10.5.3 One way of dealing with this is to use an adaptive estimate of the
mean, so that XMU becomes XMU(f), and it is re-estimated as each new
observation is available. One way of doing this, analogous to a Kalman filter
approach, is to estimate the mean as an exponentially weighted moving average
of the observations. 1 have arbitrarily chosen a smoothing parameter of 0.01 per
month, allowing, therefore, quite slow adaption, and I have started the series by
assuming that the exchange rate in September 1972 was spot-on its expected
value. There may be ways of justifying alternative smoothing parameters, but I
have not investigated these. Figure 10.4 shows the PPP exchange rate based on
the smoothed mean superimposed on the values already shown in Figure 10.3.
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Table 10.5.
Analysis of exchange rates v. UK. £ for 19 countries, basis 2, 9/1972 to
6/1994; 12 series with 21 or 22 yearly steps; correlation coefficients of
residuals; lower triangle for December series; upper triangle for June series

Aus Ost Bel Can Den Fin Fra Ger Ire Ita

Australia I 1.0 32 18 80 30 .60 11 25 14 12
Austria (Ost) 35] 1.0 91 22 94 40 .82 .98 76 1
Belgium 23 93| 1.0 14 .92 31 .85 .89 54 70
Canada .84 50 381 1.0 23 48 07 .18 13 .19
Denmark 35 98 94 48 | 1.0 40 .88 94 .64 74
Finland 37 64 64 .55 691 1.0 21 28 36 35
France 30 91 86 43 .88 56| 1.0 .85 .54 68
Germany 37 99 90 48 .96 .56 911 1.0 74 .70
Ireland 32 82 .68 57 .78 .50 .82 80| 1.0 .69
Italy 27 71 65 .52 69 .56 75 70 80| 1.0 l
Japan 51 57 .54 46 .60 25 49 .58 40 29
Netherlands 35 99 93 47 97 64 91 .98 78 68
New Zealand .61 65 47 51 63 26 .53 69 52 39
Norway .59 .84 75 69 87 .79 .69 .82 65 .54
South Africa 51 49 39 45 46 13 33 53 29 30
Spain 40 a7 ) | 46 79 64 .83 77 68 74
Sweden 29 .68 73 47 75 .78 60 63 47 .61
Switzerland 29 .89 78 37 .87 .54 81 88 73 .55
US.A. .79 A9 39 94 47 44 47 A48 .59 44

10.5.4 Using the smoothed mean produces different estimates of the monthly
and yearly values of X4 and XSD. In general, the values of both are reduced.
One can describe this metaphorically: if the mean moves some distance towards
each observation, then there is less to do for the next observation to get back
toward the mean. However, the changes in these parameters are not universally
in the same direction, i.e. some values of X4 and XSD are larger.

10.5.5 One can use both these modifications together, fixing the value of X4
to be the same for all countries, and allowing the value of XMU to change
adaptively. Table 10.4 shows the results of such an analysis. The value in the
column headed XMU(?) is the value of the adapted mean for the last observation,
June 1994. Comparison of the values in this column with those of the overall
mean in Table 10.1 shows the distance apart the two methods of calculating the
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Table 10.5 (continued).
Analysis of exchange rates v. UK. £ for 19 countries, basis 2, 9/1972 to
6/1994; 12 series with 21 or 22 yearly steps; correlation coefficients of
residuals; lower triangle for December series; upper triangle for June series

Jap Net N.Z. Nor S.A. Spa Swe Swi  US.A.

Australia .56 28 80 58 61 A1 30 36 Js
Austria (Ost) 66 .98 50 74 43 51 44 .82 23
Belgium .59 .90 33 .59 38 46 48 .74 11
Canada .56 .18 .60 .54 39 -.04 .30 27 91
Denmark .66 .93 47 71 38 54 53 .89 .19
Finland 19 39 41 69 17 .54 .59 34 35
France .54 82 27 .61 28 32 48 .84 .10
Germany 64 98 44 68 42 49 37 .86 21
Ireland 43 73 33 53 15 38 17 .64 17
Italy 42 65 27 .56 35 41 49 .58 .08
Japan 1.0 62 it .54 42 .08 35 .66 .61
Netherlands 591 1.0 42 72 39 52 41 .85 20
New Zealand J1 .62 1.0 54 Sl 10 17 46 .59
Norway .61 84 .61 1.0 41 39 .65 .61 Sl
South Affrica 47 49 .70 42 1.0 .02 12 37 34
Spain 31 77 38 T1 28 1.0 .57 33 -1
Sweden 37 .68 18 78 23 J7| 1.0 .36 17
Switzerland .55 .89 61 74 42 .66 491 1.0 26
US.A. 53 48 49 .61 41 38 38 381 1.0

mean are as at that date; for some countries they are very close, for others further
away. The columns for XSD for the monthly series and the yearly series are
calculated as before.

10.5.6 The correlation coefficients for the monthly and the yearly series (June
and December) are shown in Tables 10.6 and 10.5, similar to Tables 10.2 and
10.3.

10.5.7 The numbers in all these tables are further away from those in Tables
10.1, 10.2, and 10.3 than when only one modification is made, but overall there
is little major difference. The monthly correlation coefficients are almost the
same as in Table 10.2; the yearly ones show bigger changes.

10.5.8 Figure 10.4 shows, for UK. £ versus U.S. §, the same as Figure 10.3
with the PPP rate based on the smoothed mean added.
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Table 10.6.
Analysis of exchange rates v. UK. £ for 19 countries, basis 2, 9/1972 to
6/1994; monthly series with 261 values; correlation coefficients of residuals

Aus Ost Bel Can Den Fin Fra Ger Ire Ita
Australia L 1.0

Austria (Ost) 36 1.0

Belgium 31 88 1.0

Canada 72 .39 351 1.0

Denmark 38 90 87 41 1.0

Finland 23 46 42 32 48 1 1.0

France 37 87 82 40 86 431 1.0

Germany 34 .97 .88 36 92 46 881 1.0

Ireland 29 74 .67 36 72 .51 a7 5] 1.0

Italy 29 .60 .56 40 .60 .54 .65 .60 61| 1.0
Japan 44 52 .51 45 .55 32 .55 .51 43 42
Netherlands 33 94 .87 35 91 45 .87 95 73 .61
New Zealand .69 32 27 .57 33 18 34 31 31 26
Norway Al .79 73 46 a7 Sl 78 .78 .62 53
South Africa A48 43 39 51 44 29 42 41 40 40
Spain 36 .63 .59 45 .62 36 .62 .60 .52 .56
Sweden 38 .68 .64 45 .70 .56 .65 .67 54 .54
Switzerland 29 83 71 29 .78 .35 .76 .83 .67 .53
US.A. .68 .39 35 92 40 33 42 37 40 43

Table 10.6 (continued).
Analysis of exchange rates v. UK. £ for 19 countries, basis 2, 9/1972 to
6/1994; monthly series with 261 values; correlation coefficients of residuals
Jap Net NZ Nor SA. Spa Swe Swi  US.A.

Japan 1.0

Netherlands 52 1.0

New Zealand 42 31 1.0

Norway .53 75 .37 1.0

South Africa 41 39 45 47 1.0

Spain 42 .61 26 .60 41 10

Sweden A4S .65 31 .69 40 58 1.0 '

Switzerland 53 81 27 65 37 49 .57| 1.0
USA. 49 35 56 48 53 47 46 30
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11. SIMULATED RESULTS

11.1 Simulated Results

11.1.1 Simulation or ‘Monte Carlo’ methods are now familiar to actuaries, and
are easily implemented, though there is still much that can be learned from
books, such as Rubinstein (1981) or Johnson (1987), about how to use more
efficient methods, and in particular how to simulate particular distributions. 1
have used only conventional methods for what follows, but I realise that there are
ways in which these methods could be improved, for example by structuring the
random unit normal variates so that each sample of 1,000, or whatever number
is chosen, has zero mean and unit standard deviation, as described by Tilley
(1993).

11.1.2 In order to get a feel for the numerical results provided by the model,
I showed, in Wilkie (1986a, 1986b, 1987), the means, variances and correlation
coefficients from 1,000 simulations of the processes. I do the same again,
including also the items newly modelled. A little notation is necessary. For any
variable X, I define:

FX(?) = X(£)/X(0)
GX(f) = 100{FX(0)" — 1}
HX(t) = FX(W)/IFO(1)

JX() = 100{HX()" — 1}.

11.1.3 Thus FX(¢) is the return over ¢ years from an ‘investment’ of 1 at time
0, and GX(¢) is the equivalent compound annual rate of return, expressed as a
percentage; HX(?) and JX(f) are defined similarly, but based on ‘real’ returns
relative to the retail prices index Q. I then calculate the mean and standard
deviation of each relevant GX(¢) and JX(r) for selected values of ¢, and the
correlation coefficients between GX,(f) and GX,(¢), where X, and X, are different
variables.

11.1.4 In ‘The Risk Premium on Ordinary Shares’ (Wilkie, 1995) I explain the
difference between, in the current notation, E[GX()], 100{{E[FX(H]} " — 1} and
100{{E[In FX(¢)/t]} = 100{{E[In FX()]/t}, which, for the lognormal or near
lognormal distributions in question, are different, though generally not very far
apart. I use the statistics only of GX(¢) in what follows.

11.1.5 We are interested in total nominal returns on different classes of asset,
which are calculated as:
for shares: PR(®) = PRt—1).{P(®) + D(®).(1 — tax)}/P(t—1)
for consols: CR(t) = CRe—1).{1/C(H) + (1 —tax)}.C(t—1)
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for cash: BR(t) = BR(t—-1).{1+(1-tax).B(t—-1)}
for index-linked:  RR(#) = RR(t—1).{1/R(t) + (1 —tax)}.R(t—1).{O(O/O(t—1)}
for property: AR(t) = AR(t—1).{A()) + E(O).(1 — tax)}/A(t—1).

Cash is treated effectively as a one-year bond.

11.1.6 Although tax on income at rate fax is allowed for in the formulae, the
calculated results are all gross, so tax is zero. Note that CR here is different from
the CR in Section 6; I do not think any confusion arises.

11.1.7 T also include Q and W as variables whose ‘returns’ we are interested
in.

11.2 Initial Conditions

11.2.1 In order to start a simulation, one needs a set of initial conditions to
represent #,. There are many possibilities for these. One can use the actual
conditions at some chosen date, as I have done for the graphs in Sections 2.11,
etc., all of which use the starting conditions as at the end of June 1994.
Alternatively, one can use what I call ‘neutral’ initial conditions, in which the
starting values are set at what their long-run means would be if all the standard
deviations were zero; in effect 1 assume that the logged values take their long-run
means. Yet another possibility is to use the unconditional means of the values
themselves, allowing for the extra exp(%2G%) terms in the means of a lognormal
distribution.

11.2.2 For the results quoted below, which are all for the U.K. model, I have
used the neutral initial conditions, which are defined as:
K0) = QMU = 0.047
JO) = (WW1 + WW2).0MU + JMU = 0.06189
Y(0)% = exp(YW.QMU).YMU% = 4.0811%
C(0)% = 100QMU + CMU% = 7.75%

B(0)% = exp(—BMU).C(0)% = 6.1576%
R(0)% = RMU% = 4.0%
Z(0)% = ZMU% = 7.4%

DM(0) = CM(0) = EM(0) = QMU = 0.047

YE(0) = DE(0) = 0.
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11.2.3 Values of Q(0), W(0), D(0) or P(0), E(0) or A(0), and also PR(0),
CR(0), BR(0), RR(0) and AR(0) can be taken arbitrarily, for example as unity, or
100, or as the values of the indices as at some chosen date.

11.3 Results for Nominal Returns

11.3.1 The results of the calculations described above, for nominal returns,
GX, fort=1,2,5, 10, 20 and 50, are shown in Table 11.1. M(GX) is the mean
of GX for the 1,000 simulations, SD(GX) is the standard deviation of GX and
C(GX,, GX,) is the correlation coefficient between GX, and GX,.

11.3.2 One can see how the means generally reflect the corresponding means
in the model, how the standard deviations reduce with ¢, and how the correlations
vary with ¢ in ways that are, perhaps, at first sight, surprising, but that, on
reflection, are reasonable. For example, the return on shares is negatively
correlated with inflation over one year, a result that has been observed frequently
by financial economists, but is positively correlated with inflation over longer
periods, a result that is intuitively acceptable to actuaries. The returns on consols
(long-term bonds) are negatively correlated with inflation for a longer period, but
in due course the correlation coefficient becomes positive; this is the consequence
of reinvestment at positive real rates of interest. Other results can be interpreted
similarly.

11.4 Results for Real Returns

11.4.1 The results of the same sorts of calculations, for real returns, for
t=1,2,5, 10, 20 and 50, are shown in Table 11.2. M(JX) is the mean of JX for
the 1,000 simulations, and SD(JX) and C(JX,, JX,) are defined similarly. Also
shown for each return is C(JX, GQ), the correlation coefficient between JX and
the mean rate of inflation over the same period.

11.4.2 The mean results necessarily show broadly the difference between the
mean rate of return in nominal terms and the mean rate of inflation. The
standard deviations and correlation coefficients deserve careful scrutiny. For
short periods, many of the standard deviations increase as compared with the
corresponding nominal rate; for longer terms many of them reduce.

11.5 Results for ARCH Models

11.5.1 The same sorts of returns could be calculated using the ARCH model
for inflation described in Section 2.8. The model suggested there has a different
value of QMU from the basic model, so I show the results for two ARCH
models, the first model (1) as in §2.8.13, and the second model (2) with the same
values of QMU, QA4 and OSC (= OMU) as in the basic model, but with the
ARCH parameters 0S4 and OSB of ARCH model (1). Rather than present a full
table, it is sufficient to show only the results for inflation, as in Table 11.3.

11.5.2 In simulating these ARCH models, I discovered that, on occasion, they
produced very large values for OSD, which derived from large previous values
of I{t), and resulted in excessively large subsequent values, rather like a



Table 11.1 Results for nominal returns from 1,000 simulations,
using neutral initial conditions

Term 1 2 5 10 20 50
Mean rate of inflation, GO
M(GQO) 5.00 497 4.85 474 4.77 4.80
SD(GQ) 445 4.14 371 2.99 228 1.47
Mean rate of growth of nominal wages, GWV
M(GW) 6.56 6.47 6.40 6.35 6.35 6.38
SD(GW) 3.75 3.50 333 271 2.07 1.36
C(GW,GO) 0.74 0.87 0.94 0.96 0.96 0.97
Mean rate of nominal total return on shares, GPR
M(GPR) 13.20 11.90 11.04 10.91 10.75 10.79
SD(GPR) 1947 12.71 741 4.80 348 231
C(GPR,GQ) -0.26 -0.06 0.17 0.34 0.52 0.62
C(GPR,GW) -0.20 -0.03 0.19 035 0.51 0.61
Mean rate of nominal total return on consols, GCR
M(GCR) 8.03 7.86 7.74 7.89 792 7.94
SD(GCR) 792 5.47 292 1.70 1.05 1.09
C(GCR,GO) -0.32 -0.39 -0.55 -0.55 -0.16 0.46
C(GCR,GW) -0.29 -0.36 -0.51 -0.53 -0.14 0.45
C(GCR,GPR) 0.30 027 0.05 -0.06 0.07 033
Mean rate of nominal total return on cash, GBR
M(GBR) 6.16 622 6.34 6.42 6.48 6.53
SD(GBR) 0.0 0.62 1.07 1.28 1.32 1.16
C(GBR,GO) 0.0 0.08 0.17 033 0.45 0.56
C(GBR,GW) 0.0 0.07 0.17 0.31 0.43 0.54
C(GBR,GPR) 0.0 -0.01 -0.00 0.09 025 035
C(GBR,GCR) 0.0 -0.19 -0.28 -0.25 0.24 0.77
Mean rate of nominal total return on index-linked, GRR
M(GRR) 945 9.46 9.01 8.89 8.97 8.99
SD(GRR) 8.19 5.78 4.15 322 239 1.53
C(GRR,GQ) 0.56 0.75 0.93 0.97 0.99 0.99
C(GRR,GW) 0.40 0.65 0.88 093 0.95 0.96
C(GRR,GPR) -0.14 -0.00 0.15 033 0.52 0.61
C(GRR,GCR) 0.30 0.06 -0.34 -043 -0.09 0.49
C(GRR,GBR) 0.0 0.02 0.14 032 0.45 0.58
Mean rate of nominal total return on property, GAR
M(GAR) 13.97 13.66 13.22 13.16 13.07 13.16
SD(GAR) 14.76 8.92 4.59 321 2.80 231
C(GAR.GQ) 0.06 0.09 0.25 0.49 0.61 0.59
C(GAR,GW) 0.04 0.07 024 048 0.58 0.57
C(GAR,GPR) -0.00 0.04 0.07 0.21 0.35 038
C(GAR,GCR) 0.02 -0.03 -0.13 -0.27 -0.01 035
C(GAR,GBR) 0.0 0.01 0.08 0.16 0.27 0.39

C(GAR,GRR) 0.11 0.09 0.23 047 0.60 0.59



Table 11.2 Results for real returns from 1,000 simulations,
using neutral initial conditions

Term 1 2 5 10 20 50
Mean rate of growth of real wages, JW
MUW) 1.56 1.48 1.50 1.54 1.52 1.52
SDUW) 291 1.99 1.22 0.86 0.60 0.37
CUW,GQ) —0.57 —0.56 -0.49 -0.49 -0.50 —-046
Mean rate of real total return on shares, JPR
M(JPR) 8.21 6.80 599 593 5.72 5.72
SD(JPR) 20.25 13.06 7.41 4.57 2.89 1.73
C(JPR,GQ) —-046 -0.37 -034 -032 -0.19 -0.07
C(JPRJW) 0.26 023 0.23 022 0.13 0.06
Mean rate of real total return on consols, JCR
M(JCR) 3.18 2.99 2.94 311 3.06 3.01
SD(JCR) 9.89 7.79 5.68 4.08 2.60 1.34
C(JCR,GQ) —0.68 -0.78 -0.91 -0.94 -0.92 -0.72
C(JCR.JW) 0.34 042 0.46 0.46 0.48 0.35
C(JCR,JPR) 0.47 0.44 038 036 025 0.09
Mean rate of real total return on cash, JBR
M(JBR) 1.29 1.35 1.54 1.67 1.67 1.66
SD(JBR) 429 3.99 357 2.76 1.99 1.22
C(JBR,GQ) -1.00 -0.99 -0.96 —~0.91 -0.82 —0.66
C(JBRJW) 0.57 0.55 0.48 045 0.42 0.29
C(JBR.JPR) 0.46 0.37 032 0.29 0.17 0.05
C(JBR.JCR) 0.69 0.76 0.84 0.84 0.84 0.84
Mean rate of real total return on index-linked, JRR
M(JRR) 4.24 428 3.96 396 4.01 4.00
SD(JRR) 6.47 3.64 1.46 0.76 038 0.17
C(JRR,GQ) -0.01 0.00 0.00 0.01 -0.03 -0.04
C(JRRJW) -0.01 —-0.00 —-0.00 —-0.02 0.03 0.02
C(JRRJPR) 0.01 0.06 —0.02 0.00 0.05 -0.07
C(JRR,JCR) 045 0.36 023 0.15 0.17 0.25
C(JRR.JBR) 0.01 -0.01 -0.02 -0.00 0.08 0.19
Mean rate of real total return on property, JAR
M(JAR) 8.70 8.42 8.07 8.08 7.94 7.99
SD(JAR) 14.55 9.14 5.03 3.12 224 1.79
C(JAR,GO) —0.25 —-0.38 —0.54 -0.51 -0.32 —0.11
C(JARJW) 0.13 0.20 026 0.30 0.14 0.03
C(JAR,JPR) 0.12 0.18 0.21 0.21 0.10 0.02
C(JAR,JCR) 0.20 0.30 0.49 0.48 0.34 0.15
C(JARJBR) 0.25 037 0.52 0.46 0.26 0.14
C(JARJRR) 0.08 0.03 —0.00 -0.02 0.02 0.02
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hyperinflation. This occurred twice in the 1,000 simulations. Reasonable looking
values for all the GX functions were produced, but the mean values of some of
the FX functions were beyond a reasonable range; for example, the value of
100{{E[FO(50)]}"** — 1} for model (1) was 28.37% and for model (2) was
15.88%.

11.5.3 The ARCH models show a rather lower standard deviation than the
basic model for short periods, but higher for long periods. The higher standard
deviations flow through into the results for other variables, which are not shown.

Table 11.3 Results for nominal returns from 1,000 simulations,
using ARCH models (1) and (2), with neutral initial conditions

Term 1 2 5 10 20 50
Mean rate of inflation, GO, ARCH model (1)
M(GQ) 4.17 4.17 4.14 4.03 4.10 4.09
SD(GQ) 2.66 2.72 3.09 295 3.98 3.39
Mean rate of inflation, GO, ARCH model (2)
M(GQ) 490 490 4.87 476 481 4.81
SD(GQ) 2.68 2.70 2.95 2.70 3.14 2.67

12. CONCLUSION

12.1 I have shown a great many formulae, tables and figures, and 1 am sure
that anyone who has tried to read this paper from beginning to end will have
become satiated. I hope, however, that those who are interested will return to the
paper to consider yet another aspect of the models I have described, discover
something that neither they nor I have noticed before, and will be stimulated to
carry the investigations further. I am convinced that this type of modelling is
more realistic for the long term than the random walk, efficient market, style of
model so well established among financial economists. I realise that it conflicts
with their style of model, but only in the longer run. It is quite consistent over
short periods.

12.2 Areas where more research could be done include:

(a) investigating other distributions for the residuals of all the series,
including a-stable distributions and others that I mention in 42.9.3;

(b) investigating cointegrated models for retail prices, wages and dividends,
as indicated in Section 5.4, and including possibly also property rentals;

(c) investigating cointegrated or other models for share prices, dividends and
earnings, as indicated in Section 5.9;

(d) investigating the link between expected inflation, nominal yields and
index-linked bond yields, and their stochastic behaviour, in ways other
than 1 have done;

(e investigating other variables to represent short-term interest rates, which
could better reflect short-term fluctuations than those I have used;
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investigating yield curve models and their stochastic behaviour;
investigating wage indices in a wider range of other countries;
investigating long-term and short-term interest rates in a wider range of
other countries;

producing specimen simulations for several countries together, using the
exchange rate models described in Section 10, and allowing for
simultaneous correlation;

investigating the distribution of the sum of a normally distributed random
variable and a lognormally distributed one, as in the consols yield model
(see Appendix E.5);

completing the formulae for the forecast means and variances as shown
in Appendix E, but for the variables I have not covered;

investigating other similar properties of the models analytically, and
perhaps confirming them by simulation, or comparing them with the
observed facts;

investigating the econometrics literature for other studies of the long-run
relationships between wages and prices;

including some measure of Gross National Product as a variable; this
might well be cointegrated with both real wages and real dividends, and
it would provide a useful tool for long-term economic planning; and
exploring why, if the models described in this paper are reasonable, share
prices and other variables fluctuate more than would be reasonable if
markets were efficient.

Some of these investigations would take us beyond pure investment models, into
wider economic modelling, or into the psychology of markets, or into the
inefficiencies of markets.

12.3 Further, besides the obvious actuarial applications of these models, there
are many possible applications of them to all sorts of other financial, commercial,
industrial and public sector topics, such as the assessment of capital projects, the
testing of solvency of financial and other institutions, the analysis of long-term
financial derivatives, and any sort of financial planning. I await the future with
interest.
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APPENDIX A

UNIVARIATE TIME SERIES MODELS

A.l Textbooks on Time Series Analysis

A.1.1 Since Box & Jenkins in their seminal work (1976) introduced the
concept of autoregressive integrated moving average (ARIMA) time series
models, many books based on their approach have appeared, ranging from
introductory texts such as those by Chatfield (1980) or Cryer (1986) to more
comprehensive works such as those by Harvey (1989), Brockwell & Davis (1991)
or Hamilton (1994). Non-linear time series modelling has been discussed by
Priestley (1988), Tong (1990) and Granger & Terdsvirta (1993). Autoregressive
conditional heteroscedastic (ARCH) models have been considered in many
papers, and they have been applied to econometric time series by Taylor (1986)
and Mills (1993). Cointegration has been considered in the readings edited by
Engle & Granger (1991) and in the introductory series of readings edited by Rao
(1994).

A.1.2 These works all address discrete time series modelling; there are a great
many others that discuss continuous time series, usually with a title that includes
the words ‘stochastic processes’; the examples that | refer to are Cox & Miller
(1965) and Karatzas & Shreve (1991), but there are many others. However, the
analysis of empirical series must necessarily be carried out on observations taken
at discrete intervals, although there are many other uses of continuous processes
in financial economics, notably the pricing of options.

A.1.3 Tt can be seen that there is plenty of material to read, and I cannot claim
to have read thoroughly all the works noted; but it may be helpful to students of
time series modelling to have these books drawn to their attention.

A2 Stationary Autoregressive Models

A2.1 A time series model is a way of describing statistically the behaviour
of a series referred to in general as X, which consists of observations denoted x,
or x(t) with r as an unlimited (or theoretically infinite) series of time points at
unit intervals. When considering a specific sample of n observations, it is
convenient to identify the times at which they are recorded as t = 1, 2, ..., n.
When considering forecasting from some given date, it is convenient to call that
date ‘now’ and to put ¢ = 0 at that date, so that everything relevant for r < 0 is
known, for as far back as is needed in the circumstances, and everything for ¢ > 1
is unknown and is to be forecast.

A.2.2 Time series can be divided into those that are ‘stationary’ and those that
are not. For a stationary series the long-term forecast mean and variance are
constant. A series might be stationary about a trend, in which case the mean may
increase (or decrease) with the trend, with the variance remaining constant. For
a non-stationary series the mean and variance are not constant; they might
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oscillate, though this is not the case with the sort of series we are considering.
More commonly the mean and variance both increase indefinitely as one forecasts
further ahead.

A.2.3 The simplest sort of time-series models are linear ones; their properties
are well understood. Non-linear models are also of interest, and they have
received some attention, as noted in §A.1.1. A problem about non-linear models
is that there are so many to choose from, and it is impossible to be sure that
some more elaborate non-linear model might not suit one’s data rather better than
a simpler non-linear one or even a linear one. Most of the models I have used
are linear, but there are some specific non-linearities, for example in my model
for nominal interest rates.

A.2.4 The general type of linear, stationary, autoregressive model for a series
Xis:

= T, ey = W) e

so that the value of x, depends on the previous p values of X, plus a random error
term e, which introduces an ‘innovation’ at each step. It is assumed that each
e, has zero mean and variance o7 and that ¢, and e, are independent for ¢ # u.
It is often convenient to assume that each ¢, is normally distributed. 1f normality
of the innovations can be assumed, then the properties of various estimators of
the parameters of the model are well known, and estimation is easier to carry out.
For example, if we take the first few values of the series as given, then we can
use ordinary least squares estimation of the parameters, simply by treating the
model as a multiple regression of x, on x,_, to x,_,,.

A25 It may be helpful to transform the data so that the innovations or
residuals appear to be approximately normally distributed, for example by taking
logarithms of the original series. This turns out to be desirable for all the series
investigated that are expressed as indices, such as the consumer price index,
wages index, share price index, etc.

A2.6 A first order autoregressive model, denoted an AR(1) model, is the
simplest, and it can be expressed as:

X, = U F a(xt—\ - W te.

The deviation of x, from the mean L is proportionate to the deviation of x,_, from
i, plus an innovation e, which has zero mean and variance ¢”. The series is
stationary if and only if —1 <a <1.

A2.7 Certain properties of an AR(1) model are easy to establish. The
correlation coefficient between x, and x,_, is &. If 0 < a < 1, the autocorrelation
coefficients decline exponentially. A useful way to identify such a series is to
calculate the empirical autocorrelation coefficients of the sample data and to see
whether they do, in fact, die away approximately exponentially.
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A2.8 The forecast values of x, given that ‘now’ is at # = 0, depend only on
the value of x, and not on any previous values. An AR(1) series, thus, has a
‘Markov’ property; all we need to know about the current ‘state’ is expressed in
the value of X at the current time.

A29 If we write z, = x, — u, so that z, = x, — u, we find that the forecast
mean and variance of x, are given by:

Elx] =Elz] + p=dz +p
and

Vix]=V[z] = c*(1 - &)1 — &).

Thus the expected value of x, moves exponentially (decreasing or increasing
according to the sign of z)) from x, to its long-run constant value of p, and the
variance tends asymptotically towards its long-run constant value of */(1 — ).

A3 Stationary Moving Average Models
A3.1 The general form of linear stationary moving average model is:

x=u t z“':l,q bj et e
so that each value of X is a weighted average of previous values of the
innovations. Such a model is generally stationary, provided the coefficients, the
b5, are finite. It may also be possible to express a moving average model as a
(possibly infinite) autoregressive model, but this puts certain restrictions on the
coefficients. However, it is much more convenient to consider the simpler
models with a few parameters rather than an infinite number.
A.3.2 The simplest moving average model is an MA(1) model:

X =ptbe.  +e

Each innovation has two effects, one immediately and a second in the following
period. The forecast mean and variance of x, conditional on knowing everything
for ¢ < 0, are:

E[x,] = 1 + be, and V[x,] = &°
and
E[x] = u and V[x] = o*(1 + b*) for t > 1.
Thus an MA(1) model very quickly reaches its long-run position.

A.3.3 Moving average models do not seem to be necessary for the investment
models described, expect in one instance, the model for dividends.
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A.4 Integrated Models

A.4.1 If the separate terms of a stationary model are successively summed, we
get what is called an ‘integrated’ model. An ARIMA(p,d,g) model is one in
which the dth differences of x, are stationary, with a mixed ARMA(p,q) model.
It has not been necessary in the investment model to use more than one level of
summation, nor to use mixed ARIMA or ARMA models. It is, however, of
interest to consider the properties of an integrated AR(]) model and of an
integrated MA(1) model.

A.4.2 The simplest integrated model is a ‘random walk’, ARIMA(0,1,0),
where successive increments are independent, possibly with a non-zero mean, in
which case one speaks of a ‘random walk with drift’. Given a starting value x,,
the mean and variance of the forecast values are:

Efx] = x, + 1
and
Vix] = tc*.

Thus, the mean increases or decreases (according to the sign of ) linearly and
the variance also increases linearly, so the standard deviation increases in
proportion to the square root of time /1.

A.4.3 1If the differences of x, are generated by an AR(1) model, so that X is
ARIMA(1,1,0):

X =~ X, =z,=pntalz., —pte
then the mean and variance of the forecast values of x, are:

Elx)] = xo + 1 + a(l—ad)(1 —a).z,
and

Vix] = 6*{t — 2a(1 — &Y(1 = a) + (1 — &1 — A} - &).

Thus, the forecast mean, besides adjusting for the short-term position, increases
(if u > 0) linearly, and the variance expands more rapidly than for a random walk
with the same value of o. This is shown in Figure 2.7 for the inflation model.

A4.4 If x, is generated as the sum of an MA(1) process, so that it is
ARIMA(0,1,1):

X =X =z=pt be,_, + e
then the expected mean and variance are:
E[x] = x, + tu + be,

and
V[x] = o*{l + (1=1)(1 + b)*}.
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Thus after an immediate short-term ‘blip’, the series behaves very like a random
walk with a higher variance ¢*(1 + ).

A.5 Unit Roots
A.5.1 It is convenient to introduce the ‘backward step’ operator B, defined by:
Bx, = x,_,. Using this operator we can write the general AR(p) model, putting

z,=Xx, — |, as:
z, — X2

iy G2 = (1 = 2, a B) 2, = ¢

or
AB)z, = ¢,

where A(B) is a polynomial in B. The roots of this polynomial, say 7, r,, ..., 7,
are of relevance in describing the properties of the model. For the model to be
stationary, all the roots must have modulus greater than unity, or lie ‘outside the
unit circle’. Note that some of the roots might be complex.

A.5.2 If X is modelled as an integrated AR model, so that first differences of
X are AR(p), then X can be described as an AR(p + 1) model, with a ‘unit root’,
that is the corresponding polynomial for X has one root equal to unity,
corresponding to the factor (I — B)x, =x, — x,_,.

A.5.3 Given a sample from a particular series, it is of relevance to decide
whether it is reasonable to model it as an integrated series or as an AR model
with a root near to unity. For example, there is rather little difference in the
short term between the random waik:

xl = xl—l + el
and the AR(1) model;
X, =ax,_, te

if a is close to unity. The long-term properties of these two models are,
however, quite different. The closer a is to unity, the larger the number of
observations necessary for the models to be distinguished.

A.5.4 A method of testing for the presence of unit roots has been developed
by Dickey & Fuller (1979, 1981); this is described also in Engle & Granger
(1991), Pesaran & Pesaran (1991) and Rao (1994). Using the simple model
above one can write: ’

X = X = (a—l)x,_, t e

and in a more elaborate model (the Augmented Dickey-Fuller or ADF model) one
can write:
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X, — Xy =(a—1x_, + %

-1,p 9 (xl—j - xt—j—]) + e

carry out a linear regression of Vx, = x, — x,_, on the various factors on the right
hand side, and then test whether the coefficient of x,_,, namely (a—1), is
significantly different from zero. A complication is that the distribution of this
coefficient is not the usual #-distribution, and special significance values have to
be used. These are implemented in the programming package MICROFIT 3.0
(Pesaran & Pesaran, 1991).

A.5.5 Stationary series are also described as I(0) series, and series that have
been integrated once as I(1) series, and I use this notation in the paper.

A.6 Different Frequencies of Sampling an AR(1) Series

A.6.1 Consider a series x(¢), t =0, 1, 2, ... . Consider a second series formed
by sampling every mth case of the first series. Call it x,(u), where u = mt, i.e.:
x,(0) = x(0)

x,(1) = x(m)

x,(2) = x(2m), and so on.
Assume that x(f) is an AR(1) series, so that:
x(f) = p +alx(—1) — p) +e()

VIe(®)] = o2

with:

A.6.2 A little algebra then shows that x,(x) is also an AR(1) series, namely:

Xp(u) = p + Alx,(u=1) — ) + e,()

A=a"

where:

and

Vie, (0] = ¢*(1 — &M/l - a&)

so that the sampled series has the same mean, a different autoregressive
parameter (smaller if 0 < a < 1), and a larger variance than the original series.

A.6.3 Assume now that x(¢) is generated by an AR(p) model. The forecast
means depend on the solution of a recurrence equation, and depend on the roots
of the polynomial in B described in JA.5.1:

P —2%,,q B/ = 0.



918 More on a Stochastic Asset Model for Actuarial Use

If the AR(p) model is stationary, then the absolute values of all these roots are
greater than unity, and the absolute values of the reciprocals of the roots are less
than unity.

A.6.4 The behaviour of the forecast means of x(f) depends on these
reciprocals, and, in the long run, on the reciprocal with the largest absolute value.
Assume that this is real, positive and unique. Then, in the long run, the series
behaves like an AR(1) model with the ‘a’ parameter equal to this largest
reciprocal. The variance is a (possibly complicated) function of the coefficients
multiplied by the original variance. See Section 4.4 for an example of this.

A.7 The Ornstein-Uhlenbeck Process

A.7.1 Just as Brownian motion or a Wiener process is the continuous
equivalent of a random walk, so the Ornstein-Uhlenbeck process is the
continuous equivalent of an AR(1) model. One can imagine a continuous series
which, when sampled at however short an interval one chooses, behaves like an
AR(1) series.

A.7.2 Such series are discussed, for example, by Cox & Miller (1965, pp 225-
228) and Karatzas & Shreve (1991, p 358). If x(f) has zero mean, then its
derivative can be described as:

dx = —Px.dt + p.dz
where dz is the derivative of a Wiener process. Given x(0) = x, we find:
E[x(H)] = e Px,
VIx()] = p*(1 — e /2.

A.7.3 We can compare these with the mean and variance of an AR(1) model,
also with zero mean:

and

Elx] = d'x,
and

Vix] =o'l - @)1 - )

and we see that they correspond if we put:

eP=g
or
p=—-Ina
and
pA(1 — e ®)2B = o
or

p? = o*(=2ln a)/(1 — ).



More on a Stochastic Asset Model for Actuarial Use 919
APPENDIX B

MULTIVARIATE TIME SERIES MODELS

B.1 Vector Autoregressive (VAR) Models

B.1.1 One way of extending a univariate model into a multivariate one is to
treat x as a vector (x,, X,, ..., X,)’. The mean of the series becomes a vector, the
autoregressive or moving average coefficients become matrices, and instead of
a single variance there is a matrix of variances and covariances.

B.1.2 The simplest form of two-factor VAR(1) model can be written as:

X, =ptAXx_, —p)te
where x,, u and e, are two-element vectors and 4 is a 2 by 2 matrix. This can
be written out in full as:
(1) = tanx@=1) — w) +a,x-1) — u,)+ e
and
(0 =y + ay (i (1=1) = ) T ap((—1) — py) + ey)(f)

where e,(f) and e,(f) have variances o,® and o,® respectively, and covariance
G,; = po,6,. One can represent the innovations in terms of two independent
random variables in many ways; a convenient method is to choose e,(¢) as the
primary variable and to set:

e(t) = b.e,(t) + (1)
where ¢,(¢) and e,(¢) are independent, with:
b = 6,,/6,> = po,/c,
and
o’ =0, — bo’=(1 - p)o,”
See also Section B.4 for the generalisation of this method to more then two
random residuals.

B.1.3 We can express x,(f) explicitly in terms of x,(¢) rather than ¢,(f) by
writing:

e () =x,(0) — 1 — an(x,(t—1) — 1) — apx(t—1) — p,)
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whence:
(D = w, + b ()—py) + (@ —b.a; )x,(t—1)—n,)
+ (ap—b.ay)x(t—1)—p,) + e(d).

If a,,, the coefficient relating x,(¢) to x,(¢), is zero, we have a univariate model for
x,(f), and a model for x,(¢) that depends on current and previous values of x,(f)
and on previous values of itself, as well as on one independent innovation. This
is an example of a ‘transfer function’ model (see Section B.2).

B.1.4 It would be possible to investigate several of the investment series using
VAR methods, as 1 have done for prices and wages in Section 3.5. However, I
have found it more convenient to use ‘transfer functions’ for simulation. There
is a good reason for this: while there may be some advantages in describing, for
example, changes in the price index and the wages index with a VAR model, it
means that it is necessary always to forecast both together. It seems a little
inconvenient, if one just wishes to forecast prices, to also have to consider a
model for wages. However, in the sort of applications with which actuaries are
likely to be dealing, we are unlikely to wish to forecast wages without also
considering prices. VAR models have, therefore, generally not been used.

B.2 Transfer Function Models

B.2.1 Transfer functions models allow models to be built successively for
different time series, in what | have described previously as a ‘cascade’ fashion.
The model for x,(z) in YB.1.3 is an example of such a model. In more general
terms, two stationary series X and ¥, can be related by:

y. = C(BYD(B)x, + yn,
where C(B) and D(B) are polynomials in B, and yn, follows a univariate
ARMA(p,q) model.
B.2.2 The C(B) polynomial allows each y, to depend on a finite number of
values of x,. For example, putting C(B) = ¢, + ¢,B, and putting D(B) = 1 gives:

Yo T CoX, + S X +y”1

whereas the D(B) polynomial allows each y, to depend on an indefinitely long run
of past values of X. For example, putting D(B) = 1 — dB and C(B) = 1 gives:

v=xtdx_ +d'x_,+ .. +yn,
More complex transfer function models for several series can easily be devised.

Transfer functions are easily recognised in my models for wages, dividend yields,
share dividends, consols yields, etc.
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B.2.3 For a transfer function model the ‘gain’ is calculated as C(1)/D(1) (see
McLeod, 1982). This is the amount by which y changes for a unit change in x.
If this is unity, then the model is said to have ‘unit gain’.

B.3 Cointegrated Models
B.3.1 Two integrated or I(1) series X and Y, are said to be ‘cointegrated’ if
some linear combination of them, say:

Z=X-—gY

can be represented as a stationary, 1(0), time series. This can be extended to
more than two variables, and there may be more than one ‘cointegrating vector’.

B.3.2 Assume, for example, that Z is a stationary AR(1) series, with mean
zero, so that:

Z(f) = az(t—1) + e (1)
and that Y is a random walk with drift, so that:
WO = y1—1) + p + e, ).
Then X is given by:
x(0) = z() + g)0) = az(t=1) + () + gH(t—1) + n +¢(1)}
and putting:

(=1 =x(t—1) — gy(t—1)

we get:
() =x(t=1) + gu = (1=a){x(t=1) — gy(t=1)} +e() + ge ).

Thus X behaves rather like a random walk with drift g.u, but, in addition, it has
a tendency to move back towards gY through the ‘error-correcting’ term
(1—a){x(¢t—1) — gy(t—1)}. Cointegrated series are, therefore, sometimes
described as ‘error-correcting’ series.

B.3.3 Cointegrated series were first so called by Granger (1983). The
collections of readings edited by Engle & Granger (1991) and by Rao (1994) are

helpful. Methods for testing for cointegration have been developed by Johansen
(see particularly Johansen & Juselius, 1990) {Seren Johansen is the son of a distinguished

Danish actuary, Paul Johansen, who is an Honorary Overseas Member of the Institute]. The
Johansen methods are conveniently implemented in the computer programme
MICROFIT 3.0 (Pesaran & Pesaran, 1991).
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B.3.4 If two series are cointegrated, then their movements are constrained.
They tend not to get ‘too far away’ from each other. Share dividends and share
prices are a simple example of cointegrated series, where the cointegration vector
is the simple one: (1, —1)ie. In D — In P =1In Y ~ I(0), so that the dividend
yield is a stationary I(0), series.

B.4 Cholesky Decomposition
B.4.1 Consider n time series X, .., X,, all with zero mean, and all
independent for successive time periods, but simultaneously correlated, so that

they have covariance matrix E, with terms o; such that:

V[x(O] = o
and
Cov[x;()x,()] = o,

It may be convenient to express the Xs as functions of » independent random
variables E,, ..., E,, each of which has zero mean and unit variance, for example
for random simulation, or for the transformation described in §B.1.2. There are
many ways in which the matrix ¥ can be expressed in the form 44’, but a
convenient method is to choose A to be a lower triangular matrix L with A’ the
upper diagonal matrix L’. This is known as the ‘Cholesky decomposition’ of the
matrix I (see any text book on linear algebra, e.g. Strang, 1980). For the
Cholesky decomposition to have real (rather than complex) terms, it is necessary
that I be positive definite, as any valid covariance matrix necessarily is.

B.4.2 Denote the terms of L by c;, where ¢; = 0 if j <i. We start by putting
¢ = Jo,;. Then we can calculate terms successively by:

Ci2 = Opfey
e =0y — ¢,)
¢y = Opley
€3 = (Op — Cpp3)ley
¢ = V(05 = ¢5° — &)

and so on. This is described in my Montréal paper (Wilkie, 1992), but there is
an error therein in the formula for c,;.
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APPENDIX C

PARAMETER ESTIMATION, MODEL FITTING AND DIAGNOSTIC
TESTING

C.1 Parameter Estimation

C.1.1 There are two main methods for estimating the optimal parameters for
a time-series model: maximum likelihood estimation and least squares estimation.
Maximum likelihood estimation requires an assumption to be made about the
distribution of the residuals. If they are assumed to be normally distributed, then
the two methods produce similar answers. For an ordinary regression of ¥ on X
assuming that both are normally distributed, they produce identical answers, but
for a time series model the answers are only the same by accident.

C.1.2 Consider the series x;, i = 1, ..., n. The mean of the whole series is:

m=Z_ . ,x/n

=17V
and the variance is:
2 _ 2
§° =T, ,(x;, — m)/n.

If the values are independent, an estimate of the population variance is the same
with the divisor (n—1). The first autocorrelation coefficient is conventionally
defined as:

r= Ei=],n—l(xi — m)(x;,, — m)/zi=l,n(xi - m)2

where there are (n—1) terms in the numerator and » terms in the denominator.

C.1.3 Now consider the ordinary regression of x; on x,_,, i =2, ..., n. The
mean and variance of the first (n—1) values of X are, in general, not the same as
the mean and variance of the last (r—1) values. Define these as:

m; = Zpy,_x/(n—1)
and
m2 = 2"‘i=’2,n'x:i/(n— 1)

with corresponding definitions for s,> and s,>. Then the correlation coefficient
between the two subsets of X is given by:

=iy — m )X, — my)/(s,.8,.(n—1))

which, in general, is not the same as r,.
C.1.4 Now consider the least squares fit of an AR(1) model to the series X,
with:
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x, =t oy, —p) e

We may choose to minimise the sum of squares of the last (n—1) values of the
residuals:

S= Eizz,n(xi - pu—olx, — P))Z-

Our estimate of p is not, in general, equal to any of m, m, or m, and our estimate
of a is not, in general, the same as either 7, or . Whether we estimate o as S/n,
S/(n—1) or S/(n—2) (and any is defensible), none of these estimates is, in general,
the same as s, s, or s,.

C.1.5 The method just described omits any estimate of x;, which would be
calculated as p + a(x, — p), since we have assumed that we do not know the
value of x,, We can deal with this in a variety of ways: we can omit it, starting
with x, as just described; we can use the value of x, if it is known (as it is for
many of my series); we can assume that its value is its unconditional mean p; we
can use the ‘backcasting’” method of Box & Jenkins (1976), which makes use of
the fact that, if any AR(p) series is reversed, it retains many of the same
properties; or we can introduce x, as another parameter to be estimated, and
calculate the values of p, o and x, that give a least squares fit. This last method
applied to an AR(1) model gives a value of x, that makes the first residual equal
to zero, so the estimates of p and o are the same as in the first method, but the
estimate of ¢ may be different.

C.1.6 Similar considerations apply to the starting values for an MA(qg) or
ARMA(p,q) model. The estimate of x, depends on the just previous residual, say
e,, and possibly on earlier residuals. These are, in general, not known. Some
assumption must be made about their value. Possibilities include: setting their
values to their expected values, zero; including the unobserved residuals as
additional parameters to be estimated; or the backcasting method.

C.1.7 If maximum likelihood estimation is used, which, in general, is
preferable to least squares estimation, then there are similar choices to be made
about the starting values, and, in addition, one must make suitable assumptions
about their variance. One can assume that, for example, x, is distributed
according to the unconditional mean and variance of the series, and proceed from
there; or one can make use of one’s knowledge of prior values, as I have
generally done; or make other assumptions.

C.1.8 1 do not wish to discuss the relative merits of any of these methods. It
is sufficient to point out that different statisticians and different computer
packages may use different methods, and, therefore, may obtain different
parameter estimates. The more terms the series has, the less difference these end
effects have, since, in general, the estimators are asymptotically equivalent, i.e.
they give the same answers if the series is sufficiently long.

C.1.9 In general, [ have estimated the parameters using least squares estimates
calculated by a non-linear optimisation method (generally the Nelder-Meade
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simplex method). Where possible I have allowed for the previous known starting
values. This has been done for the previous values in my estimation of the
models for inflation, wages, dividend yields and consols yields. For the dividend
model and consols yield model, 1 have used a very long run-in period for the
calculation of DM and CM, since values of the inflation rate are available for
what is, in this context, an effectively infinite past period. For the dividend
model I have assumed that the values of YE and DE in year ‘0’ (e.g. 1923, or
whatever year is appropriate) are zero. For the calculations in Sections 2.7, 4.8
and 10.4, where 1 fit AR(1) models to a great many series for different countries
and at different frequencies, 1 use a simple method and estimate the mean p
(OMU or In YMU, etc., as appropriate), by the mean of the observations m and
the autoregressive parameter o (QA or YA, etc.), by the first autocorrelation
coefficient r,.

C.2 Model Testing

C.2.1 In principle, one would like to know which model to fit before
estimating the parameters for it. In practice, one has to fit one or more plausible
models, and then decide which one is the most satisfactory amongst those that
have been tried. Several criteria are available for deciding between alternative
models.

C.2.2 As for an ordinary linear regression, one can calculate the standard
errors of the parameter estimates. This can conveniently be done for the general
non-linear maximum likelihood method by calculating the ‘information matrix’
at the optimum point. This is calculated from the inverse of the Hessian matrix
of second derivatives of the log likelihood function at the point where it is
maximised (see any standard statistical text book for the principles).

C.2.3 Each parameter estimate can then be compared with, say, twice the
calculated standard error; this gives a roughly 2% probability level at one side
or a roughly 5% level for a two-sided test. I do not believe that one should stick
rigidly to a precise level of significance for this, or any other, test. The
probability level is a guide, and any figure such as 5%, 1% or twice the standard
error is a ‘rule of thumb’ rather than a rigid prescription. The standard error of
the parameter estimate is only one piece of evidence to be taken into account.
Another is whether the parameter has any sensible ‘economic’ significance; is it
plausible that the implied influence of one variable on another should exist?

C.24 1 do not use one measure that is common in ordinary regression
analysis, that of the R of the regression, or the reduction in the original variance
produced by the regression as compared with the original variance. In order for
this to be a useful measure, one needs to define the ‘null’ model, against which
the reduction in variance is to be compared. In time-series analysis this is not so
clear as with ordinary regression, where independence of the variables is usually
at least plausible. However, when considering, for example, dividend yields, it
is unreasonable to assume that yields from day to day are wholly unconnected,
so the null of no correlation is quite unrealistic. An alternative might be to
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consider the random walk model as the null, but this assumes that what is being
modelled as a stationary series is not stationary, which is also unrealistic. In
these circumstances I avoid using R® at all.

C.2.5 A test appropriate for two models, one of which is a generalisation of
another, is the ‘likelihood ratio’ test (again see any standard statistical text book).
If a least squares method of estimation has been used, the log likelihood can be
estimated by n In 6. Twice the difference between the log likelihoods of two
models that differ, in that k£ parameters of the more general model are set to zero
in the simpler model, is distributed as y,%>. In practice, this works out that, if the
models differ by only one parameter, the log likelihood needs to improve by
more than 2 (i.e. x* by more than 4) for the additional parameter to be significant
at a 5% level. Again, this is not an absolute rule, but another piece of evidence.
This is an appropriate test for time series.

C.2.6 Thirdly, one can consider diagnostic tests on the residuals, which are
described more fully in Section C.3. If the residuals from any model fail these
diagnostic tests conspicuously, one may wish to consider a more elaborate model
whose residuals would pass the tests; but this depends on which tests have been
failed. Significant autocorrelation in the residuals suggests that a higher order
AR(p) or MA(g) model should be tried. Significant crosscorrelation between the
residuals for one variable and the residuals for another suggests that additional
transfer function terms should be included. Significant autocorrelations or
crosscorrelations between the squares of the residuals or the variables themselves
suggest that an ARCH model should be considered (see Section D.1). Significant
evidence of non-normality may suggest either an ARCH model or some non-
normal model for the residuals.

C.3 Diagnostic Testing of the Residuals
C.3.1 Having chosen or estimated the parameters of a model, one can

calculate the residuals using that set of parameters. Diagnostic testing of the

parameters means applying a number of tests to show:

— whether the residuals appear to be independent of each other and of the
residuals for other variables; and

—  whether the residuals appear to be distributed according to the hypothesis
of the model, which in general means normally.

The same questions are asked about whether a mortality graduation fits the
observed data, and many of the tests used are the same. Actuaries should,
therefore, be familiar with the principles.

C.3.2 The first test to use is to calculate the autocorrelation coefficients of the
residuals. If the residuals are independent of one another, then the
autocorrelation coefficients will not be significantly different from zero; the
standard error (assuming normality) of any correlation coefficient in these
circumstances is 1/«/n, where n is the number of observations (residuals) in the
series. In addition, the partial autocorrelation coefficients are tested (see any time
series text book).
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C.3.3 Since the models for the different variables are interconnected, it is
appropriate also to test for significant crosscorrelations between the residuals for
different variables, both simultaneously and at various lags. The crosscorrelation
coefficients between series X and 7Y, at lags ..., —1, 0, 1, ... are defined in the
obvious way. Assuming normality and independence, the standard error of each
coefficient is also 1/\/n.

C.3.4 A third test for independence is to calculate the observed spectrum (or
periodogram) of the series, which is the Fourier transform of the observations,
usually smoothed in some way. This is particularly appropriate if specific
periodic effects are suspected. I have not found regular periodic effects in any
of my annual series, though they are clearly there for certain of the monthly
series (e.g. the inflation series).

C.3.5 A test familiar from mortality graduations is the Wald-Wolfowitz runs
test, which is the same as Steven’s change of signs test. Although I apply this
test to all the series of residuals, it is less sensitive than the autocorrelation
function for identifying lack of independence.

C.3.6 The first test I use for the normality of residuals is to construct a
frequency table using a convenient number of equal intervals of the distribution
function, and to count how many observations fall into each interval. If the
residuals are normally distributed, then the expected numbers in each ‘cell’ are
equal. A y® test for ‘actual minus expected’ can then be carried out.

C.3.7 Unless the number of observations is quite large, 1 find that this
grouping test is less sensitive than a test of the skewness and kurtosis
coefficients. For a normal distribution the theoretical skewness and kurtosis
coefficients are zero and 3, respectively. The observed coefficients are defined
by:

Vb, = my/m,*?
and
by, = my/m,*

where m; is the jth moment about the observed mean m.

C.3.8 If a sample of »n cases is drawn from a normal distribution, then the
observed skewness coefficient /&, is distributed N(0,6/n) and the observed
kurtosis coefficient b, is distributed N(3, 24/n) (see, for example, Kendall &
Stuart, 1977, p 258). Jarque & Bera (1981) therefore suggest a composite test,
since:

J=n{b,/6 + (b, — 3)424}

is distributed as x5 .

C.3.9 If the number of observations is large enough (say over 100), then the
Kolmogorov-Smirnov test of the maximum deviation of the observed cumulative
distribution from the normal distribution function can be used. 1 have not used
this test, because, in general, the sample sizes for the annual series have been too
small.
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APPENDIX D

ALTERNATIVE MODELS

D.1 Autoregressive Conditional Heteroscedastic (ARCH) Models

D.1.1  Autoregressive conditional heteroscedastic (ARCH) models were
introduced by Engle (1982), and there have been literally hundreds of papers
about or using them since then. Bollerslev, Chou & Kroner (1992) give a good
review of various models; Hamilton (1994, Chapter 21) provides a useful text
book introduction; Taylor (1986) and Mills (1994) apply them to the investigation
of stock market series. Tong (1990) and Granger & Teridsvirta (1993) discuss
ARCH models along with many other forms of non-linear time series models.

D.1.2 There seems to be varying terminology for ARCH models; I shall not
use anything more specific than ‘ARCH’. The essential feature is that the
variance of the innovations of a time-series model, for say x(¢), is not treated as
a constant ¢ = ¥, but as a stochastic variable ¥(¢). Usually the innovation e(f),
is calculated from:

e(t) = JV(Ow()

where the ws are 1ID with zero mean and unit variance, and are often assumed
to be normally distributed.

D.1.3 The models differ in how V(¢) depends on the information at time
(¢—1). One option is to put:

V) =a, + 2, ap(x(t—i)— 1

with a, > 0, and all the other a; > 0, to ensure that the variance is positive. The
variance of e(?) is assumed to depend on the squared values of the deviations of
the p previous observations of x from some value y. One could take this value
as the mean of x, u. These are the forms I have used in Section 2.8, with p = 1.
If y = u, one can write this model as:
o) = a, + Xy, a.e(t—iy
so that ¥(#) depends on the squares of the p previous values of the innovations.
D.1.4 Another form is to put:

WD) = ay + By, ape(t—if + I, b V(t~i)

i=1,q
analogous to an ARMA(p,q) process.
D.1.5 A different approach is to put:

ety = a, + I,

g @ee(t—1) + w()
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where the square of the actual innovation at time ¢ depends on the squares of the
q previous innovations, plus a further random innovation w(f), which has a
suitable distribution so that e(r)* does not become negative.

D.1.6 When there are several variables, connected either by transfer function
models or by vector autoregressive models, there are even more options, because
the variance of the innovations for one series could be made to depend on the
values of any of the other series, or of their innovations, as well as of their own.

D.1.7 For the ARCH AR(1) model that I have used in Section 2.8, namely:

V(1) = QSD(1)* = QSA + QSB.(I(t~1) — OSC)?
with I(¢), also AR(1):
I(f) = OMU + QA.((t—1) — OMU) + OSD().QZ(¢)
one can derive the unconditional expected value of V(f), which is:
(0S4 + OSB(QMU— QSCY}/(1 — OSB/(1 — 04%)
provided that OSB < (1 — QA4%, which it is with the parameters suggested,
OSB = 0.55 and QA4 = 0.6. If this were not the case, the variance would increase

without limit as ¢ increased; this would be an undesirable feature of such a
model. However, see Section 11.5 for the problems encountered even with the

suggested parameters.
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APPENDIX E

FORECASTING THE MODELS

E.1 Principles

E.1.1 It is possible to calculate the forecast means, variances and covariances
of parts of my model analytically. This can be done exactly for those parts of
the model that are linear, and can be done approximately for some other parts.
In my earlier papers I had dealt with forecasting by simulation, a method that can
be applied in almost any circumstances. [ still use simulation for the forecast
results given in Section 11. In this Appendix I describe the method of
forecasting analytically, and give some results. Some of the results have been
developed by Kitts (1988), Bonsdorff (1991), Hiirlimann (1993) and Huber
(1995).

E.1.2 We denote ‘now’ by ¢ = 0, and we assume that we know #,, i.e. all the
relevant facts for ¢ < 0. We wish to calculate the mean and variance of the future
values of some series, say X, i.e. to calculate E[X(#)] and V{X(¥)], for any ¢ > 0.
The general principle is to express X(¢) in terms of elements included in #; and
future values of the relevant innovations, including the XEs, and possibly also
other innovations such as YEs and ZEs.

E.1.3 A specific example will help. The model for inflation is a simple AR(1)
model:

() = QMU + QA.(It—1) — OMU) + QE(¥)
I(1) = QMU + QA.({(0) — OMU) + QE(1).
I(0) is known; we denote /(0) — QMU as ON(0), and put:

K1) — OMU = QA.ON(0) + QE(1).

SO

We can continue:
I2) = OMU + QA.(I(1) — QMU) + QE(2)
= OMU + QA.{QA.QN(0) + QE(1)} + QE(2)
= OMU + QA*.QN(0) + QA.QE(1) + QE(2).
Continuing similarly, we get:
I(f) = OMU + QA'ON(0) + QA".QE(1) + QA" .QE(Q2) + ...
+ QA.QE(t—1) + QE().
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E.1.4 This is an example of a general formula, where we express, say, X(¢) as:
X(0) = f(Fo) + Ty N, XE(t = i+1)

where f(.#,) is some function that contains only known terms included in #.
Now E[XE())] = 0 for i > 0, so we can put:

E[X()] = f(F).

Also E[XE(i))*] = XSD? for i > 0, and E[XE()).XE(j)] = 0 for i # j. Now we can
put:

VX)) = E[(X() — EX®)D’]
= B[S, W, XE(—i + 1))7]
= (o v ) XSD?
= ¥, XSD.

The term ‘y-weights’ is that of Box & Jenkins (1976).
E.1.5 In the case of I(r) we have:

E[{(0)] = f(Fo) = QMU + QA4".ON(0)
Y, = 0A™!
V()] = (Ei=l,1Wi2)'QSD2

= (Zi=l,l Az(i—l))'QSDz

and:

SO:

=1+ Q4>+ ... + 047D + QA4 V).0SD?
= {(1 — QA1 — QA%)}.0SD?, provided that Q4 = 1.

E.1.6 It is convenient to introduce a notation borrowed from actuarial
compound interest terminology for the sum of a geometric series. We put:

ax) =l1+x+ . +x2+x7
=(1 = XM — x) ifx=1

=t ifx = 1.
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So we can write:
V()] = a(QA*).0SD™

E.1.7 The expected values and the wy-weights can also be calculated
recursively. A simulation of future values with OSD set to zero provides the
expected values, and suitable formulae allow the y-weights to be calculated. In
the case of / we get:

E[I(1)] — QMU = QA.QN(0)
E[/(N] — QMU = QA{E[l(t — 1)] — OQMU}

and also:
y, =1

Y, = 04y, .

E.1.8 In this case these recurrence relations are easily solved to give explicit
results. In other cases the recursive method is easier to implement. However,
it may not be easy to see the asymptotic properties unless explicit formulae are
found. Doing it both ways also provides a check on the results.

E.2 Retail Prices

E.2.1 We have shown that:

E[/(5)] = QMU + QA'.QN(0)
and
V(D] = a(QA*0.0SD*.
E2.2 By similar methods we get:
Efln @(9)] = In Q(0) + t.OMU + QA.4(QA,1).ON(0)

and

Viin Q)] = OSD.{t — 204.6(QA,1) + QA2G(QAANY( — QAR

E2.3 Since it is assumed that In Q(f) is distributed normally, Q(?) is
distributed lognormally.  For the general lognormal distribution, where
In X ~ N(u,6%):

E[X] = exp(ru + %rc?)
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so:
E[X] = exp(p + Yo%)

VIX] = {E[X]}"(exp(c?) — 1).

and

Using these formula we can calculate the mean and variance of (7).
E.24 We can also find asymptotic results as # - . For I we get:

E[{(t - x)] > QMU
and
VIt - ®)] - OSDY(1 — Q4%

provided, in both cases, that |Q4| < 1. For In Q we get:
Efln Q(t > )] > o
provided that QMU = 0, and:

V[In Q(t - )] - .

E2.5 This demonstrates one difference between a stationary I(0) series and
an integrated I(1) series: the asymptotic mean and variance of the former are
often finite, and of the latter are often infinite (but, for example, the asymptotic
mean would not be finite in this case if QMU were zero).

E.2.6 We can also compare the variance of In Q with the variance it would
have if it were generated by a random walk model, by putting Q4 = 0. Call the
variable Q°, so that:

In 0°(® — In Q'(t—1) = I'(f) = OMU + QE().
Then:
E[ln Q'(1)] = In Q'(0) + t.OMU

and
Viln Q'(0)] = +.OSD*

E.2.7 Thus, the expected value of In O follows a straight course from
In Q'(0) with slope QMU, independently of the value of QN (0), whereas the
expected value of In O moves asymptotically towards a parallel track, affected
by the value of ON(0). The variance of In Q" depends linearly on ¢, and hence
its standard deviation depends linearly on +/t, whereas the variance of
In Q is larger (if Q4 > 0). The ratio of the two variances is given by:
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VRO(1) = VIIn Q0)}/V[in Q'(9]
= {1 — 204.6(Q4,0)t + QA2.4(QA%H /(1 — QA

which tends asymptotically to 1/(1 — Q4)2. Thus, although the variances are the
same for ¢ = 1, in the long run the variance of In Q is larger, equivalent to a
random walk with standard deviation OSD/(1 — QA). This is shown in Figure
2.7.

E.3 Wages
E.3.1 Ihave described two models for wages in Section 3, a transfer function
model and a VAR model. For the transfer function model we get:

E[JO)] = (WW1 + WIW2).0MU + WQ.Q4'"' ON(0) + WMU + WA'.WN(0)

and
VIJ0)] = (WQ.a(QA%t—1) + WW1)).0SD* + (WA 1).WSD*?
where:
WO = WW1.04 + WW2
and

WN(0) = J0) — WW1.K0) — WW2.I(—1)— WMU.
E32 Ast— oo

E[Jt — ©)] > (WW1 + WW2).0MU + WMU
and

V[Jt — ©)] = (WO (1 — Q4% + WW1?).0SD* + WSD*(1 — WAY).
E.3.3 The next step is to find, after considerable manipulation:
Elln W(5)] = In W(0) + t(WW1 + WW2).OMU + WQ.i(QA,).ON(0)
+ tWMU + WA.G(WA,t).WN(0)
and

V[in W(#)] = (tLWW12 + 2WWLIO( — 1 — QA.G(QA—1)(1 — 0A)
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+ WQL(t —1 = 2.04.d(QAt—1) — QA%4(QA - 1))/[(1 — QA)}.0SD*
+ (t — 2WA.a(WAL) + WAL.G(WARD)(1 — WAY . WSD*.

E.34 Ast— o, both E[In W(t - )] and V[W(t > «)] — . However, it
is relevant to compare the asymptotic behaviour of V[In W(f)] with a random
walk with the same one-year variance. This can be done by considering the
ratio:

VRW(t) = V[In WY V[in w()]).

This is shown in Figure 3.4.

E.3.5 The VAR(1) model for prices and wages together is, in principle, the
same as the model for prices alone, and the results are of the same form as
shown in Section E.2 for /(f) and In O(f), with vectors [I(t), J(¢)]' replacing I(f)
alone, [In O(2), In W()]' replacing In Q(f), [OMU, WMU]' replacing QMU, the
matrix 4 of §YB.1.2 and 3.5.1 replacing QA, and a suitable covariance matrix I
replacing OSD.

E.3.6 The y-weights, which are now matrices, show the impulse response
function, that is, the responses of In Q(¢) and In W(¢) to ‘spikes’ of unity in /(0)
and J(0) (see Hamilton, 1994, Chapter 11), and the ultimate response function is
the value of yY(f) as + — o, i.e. the long-run response of In Q(¢) and In W(¢) to
spikes in /(0) and J(0). For the VAR(1) model it is given by:

G=(-4)"
where 1 is the identity matrix.
E.4 Share Dividend Yields, Dividends and Prices
E.4.1 The model for dividend yields is basically an AR(1) model, but there
is an additional influence from inflation, so there are also terms in QF, and hence
QOSD? as well as in YE, and hence YSD?. Note that E[QE(}).YE(j)] = 0 for all i
and j. We get:

E[ln ¥(1)] = YW.{OMU + Q4'ON(0)} + In YMU + YA'.YN(0)

where:
YN(0) = In Y(0) — YW.I(0) — YMU
and

V[In Y(t)] = YW2.G(QA%E).0SD* + a(YA> £).YSD?.
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E42 Ast— oo

E[ln ¥Y(t > ©)] > YW.OMU + In YMU
and
V[In Y(t > ©)] - YW.0SD*(1 — Q4% + YSD*/(1 — YA?).
E.4.3 The model for dividends contains an influence from inflation, and
thereafter is basically an MA(1) model, with a short-term additional influence

from dividend yields, so there are terms in QF and QSD?, YE and YSD?, as well
as in DE and DSD*. After a great deal of manipulation, we get:

E[DM()] = DD.&(DDC,1).QMU + DDC'.DM(0) + DD.DDC'™".QA.d (OD,f).ON(0)

where:

DDC =1 - DD
and

Q0D = QA/DDC
and

V[DM(?)] = DD {d(DDC"%f) — 20D.i(DDC.QA,f)
+ QD2.d(QA%)}.0SD* (1 — QD)
provided that QD # 1, which is the case with the suggested parameters, but could
easily not have been the case.
E44 Ast—
E[DM( — «)] » QMU
and

V[DM(t — ©)] - DD*{1/(1 — DDC?* — 20D/(1 — DDC.QA)

+ QD1 — QAY)}.0SD¥(1 — QD).

E.4.5 We then get:
E[K(1)] = (DW.DD + DX).OMU + DW.DDC.DM(0)

+ (DW.DD + DX).04.0N(0) + DMU + DY.YE(0) + DB.DE(0)
and

VIK(1)] = (DW.DD + DX)*.QSD* + DSD*
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and for 7 > 1:

E[K(D)] = {DW.DD.a(DDC,t) + DX}.QMU + DW.DDC'.DM(0)

+ {DW.DD.DDC ""'.a(QD,t) + DX.QA""'}.QA.ON(0) + DMU
and

VIK()] = {£;2d(DDC* ) — 2.f,.f,.d(DDC.QAt) + £,2.a(QA*1)}.QSD*
+ DY*.YSD* + (1 + DB*.DSD*
where:
fi=DW.DD/(1 — QD)
and
S, =DW.DD.QD/(1 — QD) — DX.
E4.6 Ast—>

E[K(t —» )] -» (DW + DX).OMU + DMU
and

VIK(t = ©)] > {(1 — DDC? — 2f,f,/(1 — DDC.QA)
+ £2(1 — Q4%)}.0SD* + DY’.YSD* + (1 + DB?).DSD’.
E.4.7 We next find:
E[ln D()] = In D(0) + {DW.(t — DDC.d(DDC,!)) + .DX}.QMU
+ DW.DDC.d (DDC,f).DM(0)
+ {DW.DD.(¢(DDC,t) — a(QA1).0DY(1 — QD) + DX.d(QA,5)}.0A.ON(0)
+ t.DMU + DY.YE(0) + DB.DE(0)
and
VIIn D] = {f;2(t — 2a&(DDC,1) + G(DDC 1))
— 2 ot — &(DDC,p) — &(QA) + GDDC.QANY(1 — QA)
+ 200 — 2d(04,0) + a(QAAN1 — QAY*}.0SD
+ (¢t — 1).DY2.YSD* + {(t — 1).(1 + DB + 1}.DSD?
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both these formulae being valid for ¢ = 1 as well as ¢ > 1.

E4.8 Ast — o, both E[In D(t — )} and V[D(t - «)] — «. Again, we can
compare the asymptotic behaviour of V[In D(f)] with a random walk with the
same one-year variance, by considering the ratio:

VRD(H) = V[In D@V(t.V[In D(1))).

This is shown in Figure 5.5.
E.4.9 Finally, noting that In P(¥) = In D(f) — In ¥(¢), we get:

E[ln P(#)] = E[In D(f)] — E[In Y(9)]
= 1In D(0) + {DW.(t — DDC.d(DDC,t)) + tDX}.QMU
+ DW.DDC.d (DDC.t).DM(0)
+ {DW.DD.(d(DDC,1) — 4(QA,).0D)(1 — QD)
+ DX.G(QA,0)}.QA.ON(0) + t.DMU + DY.YE(0) + DB.DE(0)
— {YW.OMU + QA".ON(0) + In YMU + YA".YN(0)}
and
V[in P()] = V[In D] + V[In ¥(5)] — 2YW.{(f; — £).4(Q4,0/(1 — QA)
— DW.DDC.d(DDC.QA6)(1 — QD) + £,.04.6(QA%H/(1 — QA)}.OSD?
— 2DY.YA.d(YA,1—1).YSD?
where the extra terms represent the covariance between In D(f) and In ¥(¢).
E4.10 As ¢t — o, both E[In P(t —» «)] and V[P(t > )] > . Again it is
of relevance to compare the asymptotic behaviour of V{In P(¢)] with a random
walk with the same one-year variance, by considering the ratio:
VRP() = V[In POY(.V{In P(D)]).
This is shown in Figure 5.7.
E.5 Long-Term Interest Rates
E.5.1 The model for long-term interest rates is more difficult, since it is not

wholly linear. The consols yield splits into two parts:

C@) = CW.CM(t) + CR().
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CM is linear in QF, hence normally distributed, whereas In CR is linear in CE
and YE, so CR is lognormally distributed. Since no innovation appears in the
formulae for both parts, they are independent. The sum of a normal and a
lognormal is distributed neither normally nor lognormally, but presumably
somewhere in between. However, the two parts can be investigated separately.

E.5.2 The formula for CM is the same as that for DM, with different
parameters. The same results, therefore, apply, namely:

E[CM(#)] = CD.d(CDC,H).0MU + CDC'.CM(0)

+ CD.CDC'~".QA.d(QC,1).ON(0)

where:

CDC=1-CD
and

OC = g4/cDC
and

VICM(f)] = CD2.{a(CDC%t) — 20C.G(CDC.0A,1)

+ QCLa(Q4%0)).0SD/(1 — QCY
provided that QC = 1.
E.5.3 The formula for CR is essentially that for an AR(3) model, with a
modified residual that is correlated with YE(¢). This is one case where recurrence
relations make things much easier. We first put:

CN(t) = In CR(f) — In CMU
and
CE*(t) = CY.YE(t) + CE(?).
Then:
CN(t) = CAL.CN(t—1) + CA2.CN(t—2) + CA3.CN(t—3) + CE*(¥).
We start with:

CN(1) = CA1.CN(0) + CA2.CN(—1) + CA3.CN(=2) + CE*(1)
SO:

E[CN(1)] = CAL.CN(0) + CA2.CN(—1) + CA3.CN(=2)

and
y, = 1.
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Then:

CN(Q2) = CAL.CN(1) + CA2.CN(0) + CA3.CN(—1) + CE*(2)

so:

E[CN(2)] = CALE[CN(1)] + CA2.CN(0) + CA3.CN(—1)
and

y, = CAL.

Next:

CN(3) = CA1.CN(2) + CA2.CN(1) + CA3.CN(0) + CE*(3)
SO:

E[CN(3)] = CA1.E[CN(2)] + CA2.E[CN(1)] + CA3.CN(0)
and

Y, = CA1? + CA2.
Thereafter:
E[CN()] = CALE[CN(—1)] + CA2.E[CN(t—2)] + CA3.E[CN(t—3)]
and
y, = CAly,_, + CA2y,_, + CA3y,_;.
Then:
E[ln CR()] = E[CN(®)] + In CMU

and

V[in CR()] = (. ,w)ACYYSD?* + CSD?).

E.5.4 Noting the independence of CM(f) and CR(¢) we can then put:

E[C(0)] = CW.E[CM()] + E[CR(H]
and
VI[C(®)] = CWAV[CM(5)] + V[CR(®)]

calculating E[CR(#)] and V[CR(#)] by the formulae for a lognormal distribution
shown in fE.2.3.

E.5.5 Provided that V[In CR(Y)] is fairly small, say less than 0.01, then the
distribution of CR(¢f) is quite close to normal, and one could assume, therefore,
that C(¢) is almost normally distributed. As V[In CR(¢)] increases, it may be a
better approximation to assume that C(¢) is lognormally distributed.
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E.6 Short-Term Interest Rates, Property, Index-Linked Yields and Exchange
Rates .

E.6.1 The models for these are all relatively simple, being either AR(1)
models, or similar to other models already shown. The reader is invited to
develop the formulae him or herself. The only complication is in combining the
lognormal distribution for the ratio B/C with the non-standard distribution for C.
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APPENDIX F

DATA SOURCES

F.1 UK. Retail Price Indices
F.1.1 The source of the U.K. monthly data is Department of Employment
(1986) (DE) and regular DE publications since then. The monthly series starts
in August 1914, and is taken from:
— 1914-1947: cost of living index numbers, 1914-1947;
— 1947-1994: general index of retail prices, various base dates, 1947-55, 1956-
61, 1962-73, 1974-86, 1987-94.

F.1.2 The annual data for earlier centuries have been constructed by taking
several indices and splicing them together; since 1914 June values of the monthly
series have been used (assuming that June 1914 had the same value as August
1914). Most of the older indices have been taken from Mitchell & Deane (1962)
(MD), but the first is from Phelps Brown & Hopkins (1956) (PBH). The series
are:

— 1264-1661: seven centuries of the prices of consumables (PBH);

— 1661-1696: Schumpeter-Gilboy price indices 1661-1823, A, consumers’
goods (MD);

— 1696-1790: Schumpeter-Gilboy price indices 1661-1823, B, consumers’
goods (MD);

— 1790-1850: indices of British commodity prices 1790-1850, based on the
Gayer, Rostow & Schwarz monthly indices (MD);

— 1850-1871: the Rousseaux price indices, 1800-1913, overall index (MD);

— 1871-1914: Board of Trade wholesale price indices, 1871-1938, total index
(MD); and

— 1914-1994: the monthly data noted above, June values.

F.2 UK Wages Indices
F.2.1 The source of the UK. monthly data is Department of Employment

(1971) and regular DE publications since then. From 1920 to 1934 the series is

available only for June and December, and intermediate monthly values have

been interpolated. The series used are:

— 1920-1967: indices of basic weekly wage rates, 1920-1968; and

— 1967-1994: index of average earnings: all employees; Great Britain, various
base dates, 1968-75, 1976-79, 1980-82, 1983-87, 1988-89, 1990-
94.

F.2.2 The annual data for earlier centuries have been constructed, like those
for prices, by taking several indices and splicing them together; since 1920, June
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values of the monthly series have been used. The older series have been taken

from Mitchell (1975) (M) and Mitchell & Jones (1971) (MJ). The series are:

— 1809-1850: money wages in industry, U.K. 1800-1959 (M);

— 1850-1880: G.H. Wood, wages and earnings, 1850-1902, United Kingdom,
average money wages (not allowing for unemployment) (M1J);
and

— 1880-1920: A.L. Bowley, wages, United Kingdom, 1880-1936 (M));

— 1920-1994: the monthly data noted above, June values.

F.3 UK. Ordinary Shares
F.3.1 The price and yield indices have been based on:

— 1919-1923: yearly, the BZW Index;

— 1924-1928: monthly, the share index given by Douglas (1930);

— 1929-1962: the Actuaries Investment Indices, published by the Institute of
Actuaries and the Faculty of Actuaries and privately circulated;
and

— 1962-1994: the FTA (now FTSEA) All-Share Index.

F.3.2 In each case a dividend index is calculated from the product of the price
index and the dividend yield, with adjustments to ensure continuity of the
dividend index (see Wilkie, 1995).

F.3.3 The FTA 500-Share Index, now the FTA Non-Financials Index, from
the Financial Times-Actuaries series has also been used.

F.4 UK. Long-Term Fixed-Interest (Consols)

F.4.1 This is represented by the yield on 2%4% Consols, annually from 1756
to 1900, and monthly thereafter, until December 1977; thereafter the yield on the
Financial Times-Actuaries (FTA) British Government Securities (BGS)
Irredeemables Index has been used. The sources are:

— 1797-1900: 2%% Consols, yearly, Mitchell & Deane (1962);

— 1900-1929: 2'%% Consols, monthly, BZW Gilts book (42nd edition);

— 1930-1962: 2% Consols, monthly, Actuaries Investment Index;

— 1963-1977. 2%% Consols, monthly, Financial Times-Actuaries Investment
Indices; and

— 1978-1994: FTA BGS Irredemables Index, monthly, Financial Times.

F.5 UK. Short-Term Fixed-Interest (Cash)

F.5.1 The values and dates of change of Bank rate and its successors are
recorded, and monthly and yearly series derived from these. The sources are:
— 1797-1939: Bank rate, Mitchell & Deane (1962);

— 1939-1972: Bank rate, Central Statistical Office (1972);
— 1972-1981: minimum lending rate, Banker's Almanac (1988); and
— 1981-1994: Bank base rates, Central Statistical Office (1972-94).
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F.6 UK. Property Indices

F.6.1 The Jones Lang Wootton indices of net income and income yield have
been used. These are available yearly from June 1967 to June 1977, and
quarterly thereafter, but only the June values have been used.

F.7 UK. Index-Linked Yields

F.7.1 The yields on the FTA Index-Linked All Stocks Index from May 1981
to December 1985, and thereafter the yields on the ‘over 5 years’ Index, in both
cases assuming 5% inflation, have been used.

F.8 Other Countries Consumer Price Indices

F.8.1 Consumer price indices from January 1969 to June 1994, published by
OECD (monthly), are used, except for the U.K. where the Retail Prices Index has
been used. For Australia, Ireland and New Zealand only quarterly values
(attributed to February, May, August and November in each case) are published,
and monthly values have been calculated by interpolation.

F.9 Other Countries Share Indices

F.9.1 The Morgan Stanley Capital International share indices are available
from January 1970 to March 1987. These are not the most convenient indices
to use; they provide a price index and a total return index, which assumes that
dividends net of tax, as if for a Luxembourg pension fund, were reinvested. One
can calculate the implied dividend, and hence yield, from the differences between
the monthly changes of the two series, but these are not always consistent
(negative values occur), nor do they produce smooth dividend indices, because
of a shortage of decimal places in the original indices, so that the monthly values
of the dividend index are erratic.

F.9.2 From March 1987 the Financial Times-Actuaries World Indices, which
give the values one would like, have been used.

F.10 Exchange Rates

F.10.1 From August 1972 to June 1993 exchange rates supplied by Quantec
Investment Technology Limited, whose help is acknowledged, have been used,
and thereafter the implied relative exchange rates derived from the local currency
and sterling indices from the Financial Times-Actuaries World Indices.
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APPENDIX G
NOTATION

G.1 The notation I use for describing my model avoids the usual mathematical
style of Greek letters, subscripts and superscripts, but denotes each variable or
parameter by a ‘name’ consisting of one or more letters. There is some
consistency about the naming, which is described in this appendix.
G.2 Basic variables, Q, W, P, etc. have single letters.
G.3 The rates of growth (logarithmic) are also given single letters. Thus [
represents the force of inflation, the difference between the logarithms of @ in
successive years. J and K represent the force of growth of wages and dividends
respectively.
G.4  Parameters associated with the basic variable commence with the single
letter of that variable, so that, e.g., QMU, QA, OSD, etc. relate to the Retail
Prices Index, Q.
G.5 Suffixes to a variable x have the following meaning:

xMU represents a mean value (not necessarily the unconditional mean of

the variable);

xSD represents a standard deviation;

xE(t) represents a residual in year £ and

xZ(t) represents a unit normal variable.

All variables include at least these parameters and variables. For all x:
xE(t) = xSD.xZ(1).

G.6 Further parameters include:
XA, an autoregressive parameter, €.g. QA, YA;
CA1, CA2, CA3, three autoregressive parameters for consols;
xW, a transfer function parameter, e.g. YW, WW;
WW1, WW2, two transfer function parameters whereby retail prices
influence wages;
xB, a moving average parameter, e.g. DB;
xD, another transfer function parameter, expressing a moving average
effect;
xM(f), an exponentially weighted moving average of previous values, e.g.
DM(f), CM(t); and
xN(f), part of a variable that has zero mean, though not necessarily
independent.

G.7 The notation is not used entirely consistently. Thus BD(f) represents the
difference between InB(¢) and InC(f). ZN(f) does not have zero mean; and there
are other irregularities. However, I have attempted to be uniform at times.
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ABSTRACT OF THE DISCUSSION

Dr A. Kitts, F.LLA, (opening the discussion): Originally this model came to be developed through the
author’s involvement in the Maturity Guarantees Working Party in the late 1970s, and was first
presented to the Faculty of Actuaries in November 1984 (T.F.A. 39, 341). Since then the author has
been a prolific producer of many further papers on the subject, greatly outnumbering those produced
by the few of us who have been bold enough to follow him into this area of research and development
and to criticise his work.

The purpose of this paper is to provide a technical update and further enhancements to the Wilkie
investment model. The original model explored the relationships between consumer prices, share
dividend yields and share prices, and long-term fixed-interest Government Bond yields. In this paper
the author re-visits these relationships, for example by comparing projections generated from the
original model with actual results for the period from 1983 to 1994. Further, the author goes on to
explore the relationships between the additional variables of wages, short-term interest rates, property
yields and values and currency exchange rates. This last area, of currency exchange rates, allows the
model to be applied internationally, based on consumer price differentials; that is to say purchasing
power parities.

The author provides many suggestions for further research and applications of the model, such as:
assessment of capital projects; testing of solvency of financial institutions; and the analysis of long-
term financial derivatives.

[ now turn to some key issues and questions. In the literature, one finds a great deal of non-
constructive and non-specific criticisms exchanged, between various authors, on stochastic financial
models. I think that the underlying cause is a communication failure. This prompts the question as to
whether the purpose and terms of reference are defined precisely enough to allow a logical and
rational discussion of the models we are estimating.

On the methodology adopted, anyone who has been involved in formal academic research and
development is likely to need to come to terms with the more pragmatic approach often adopted by
actuaries. This prompts the question of whether the data analysis and model testing are sufficiently
rigorous to ensure that all important issues are highlighted sufficiently.

On the question of actuarial judgement, the author makes no apologies for the selection and
manipulation of data sets to provide what he considers to be a more sensible series and, consequently,
more sensible results. This prompts the question as to when actuarial judgement should be allowed to
over-ride statistical technical analysis and when it should not.

On the issue of stationarity, there is little doubt that the series being modelled, such as consumer
prices, are non-stationary. Of course, within what we might call a stationary sub-period, models can,
and do, appear stationary. The author accepts this non-stationarity, for example, by embracing a
fundamental secular shift in productivity. Consequently, while he examines inflation over 730 years,
he chooses to fit a reasonable model to the last stationary sub-period of some less than 10% of the
whole period. The model does produce some credible projections for the period from 1982 to 1994,
as demonstrated in the paper. However, this begs the question of when the current paradigm will be
broken, and when this current stationary sub-period will end and another different stationary sub-
period begin. Also, how will we know when this event occurs?

Next, on the treatment of increased uncertainty with deviation from the mean and shocks, there is
little doubt that the distributions of residuals are non-normal, and that they have fat tails. Apart from
the modelling being more complicated, and suggesting that extreme caution must be exercised when
working with the tails of the distributions of results, this also raises the question of the distinction
between fundamental secular change and shocks.

Then, on the application of the model, there are many difficult questions that remain to be answered
satisfactorily in the development and application of stochastic financial models. It is important to
realise that these questions are important if models are to be applied in an intelligent and critical
manner, rather than as a ‘black box’.
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If we are to accept that these financial time series are non-stationary, then it may be appropriate to
re-examine the fundamental concept of the actuary’s role in risk diversification over the medium to
long term, if we are to avoid lulling our clients into a false sense of security. For encouraging the
development and application of these models, and for prompting the discussion of all these important
questions, the author is to be thanked.

Professor R. S. Clarkson, F.F.A.: I begin my remarks by commenting on Section 12:

(1) The author states in 112.1: “I am convinced that this type of modelling is more realistic for the
long term than the random walk, efficient market, style of model so well established among
financial economists.” With this [ agree strongly.

(2) I agree with the very perceptive last area of suggested research in 912.2; namely, to explore why,
if the models of this paper are realistic, share prices and other variables fluctuate more than would
be reasonable if markets were efficient. Shiller’s 1989 book, Market Volatility, is, in my view, an
excellent documentary of this phenomenon; but it seems to me that very few financial economists
have faced up to this important issue impartially.

(3) I also agree with the author’s observation, at the end of 12.2: “Some of these investigations
would take us beyond pure investment models, into wider economic modelling, or into the
psychology of markets, or into the inefficiencies of markets.” The psychology of markets should,
in my opinion, be the key to financial economics, but I have grave doubts as to the validity of the
simple models of rational behaviour that are universally employed at present.

Having, as many of you know, criticised numerous aspects of financial economics at various times, 1
have given considerable thought as to how a better way forward might be found. My conclusion is
that a better model for human behaviour in the face of uncertainty is required. This links in very well
with what [ think is a very perceptive statement at the end of the paper.

The main observation I should like to make is that, based on what I would call my ‘sharp end’
experience of investment management over around a quarter of a century, 1 was forced to abandon
linear models of the ARIMA or Box Jenkins type in favour of custom-built non-linear models that
seemed to me to reflect real world behaviour in a better fashion. For instance, my gilts model, as
described in T.F.A. 36, 85 and J.LA. 106, 85, can be regarded as an obvious extension of Pepper’s
excellent yield curve model, once we relax the condition that price is a linear function of coupon. In
a similar fashion, my equity model, as described in T.F.A. 37, 439 and J.I.A. 110, 17, can be regarded
as an extension of the Weaver & Hall model, once we replace linear regression and the analysis of
variance by non-linear formulations.

I have grave doubts as to whether it is fair to regard the time series we are examining as stationary
over the long term. It seems to me that the major movements in investment markets are a change from
one consensus to another. In the discussion of the Geoghegan et al. paper (J.LA. 119, 173), it was
suggested that, at that time, there had been a fundamental change in the economic background.
Clearly this referred to the fact that the U.K. was then a member of the ERM. There were different
policies being pursued by both the Treasury and the Bank of England, and it would seem to me
unreasonable to expect the same model of inflation fo apply both to that period and to, say, the period
from 1970 to 1980.

I have a great regard for all the detailed work that the author has put into the paper; | found it most
interesting and most stimulating. However, the work that was done by the Geoghegan et al. working
party, of which I was a member, drew attention to some of the problems of non-linearity, and [ would
have been happier if the author had addressed these questions in this paper rather than working mainly
in the context of linear models. In that paper there was comment on the main inflation series, that
provides for negative and positive movements in inflation with equal probability, and provides for a
significant probability of negative inflation. The working party concluded that, in practice, such
behaviour was unlikely.

The paper that I produced for the AFIR colloquium in 1991 was a first attempt at a better model.
However, I was somewhat unhappy about the author’s description of it in this paper. I introduced an
intrinsic rate below which inflation rarely fell, since it is clearly skewed to the upside. In his
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description of my model, the author talks of QMU as the mean value, whereas that should actually be
the intrinsic value. The author suggests that I had not investigated the mean and variance of my non-
linear inflation series. However, 1 was running out of space, as my AFIR paper was limited to 20
pages, and my final paper was 22, so I added an appendix of 200 values as a 200-year simulation.
One can easily produce a histogram in five percentage points of my simulation. If you do the same
for inflation in the post-war period, 1951 to 1994, you obtain a histogram which looks rather similar
to mine. It is skewed very strongly to the upside.

The author mentions that there are problems of estimation in my non-linear model. With a mortality
table, you could argue as to whether the true select period was two, three, four or five years; but you
might find, from practical experience, that using two years as a select period was a reasonable,
practical way forward. Similarly, many of the parameters in my model were estimated from ‘actuarial
judgement’, as was said by the working party. My first guess of the parameters was the one I used
for the 200-year simulation, and the mean rate of inflation over the period came out at 6%, which I
regarded as a very reasonable average value.

The main criticism that 1 would make of the paper is that it does not use downside risk. Variance,
the symmetric measure, is not an adequate measure of risk. If you look at the very skewed
distributions of my rate of inflation and also at the actual experience, they are quite different from the
symmetric picture of the author’s simple ARIMA measure. That, however, is my only major criticism
of the paper.

Mr A. D. Smith: This paper presents models which describe a number of financial markets, and 1
asked myself to what extent these markets are efficient, as described by the model. In other words, is
there a relationship between risk and return in this model or are they unrelated?

I begin by considering an investor who can switch investments each year, according to some rule.
The rule 1 used was to invest everything in whatever investment class does best for the next year,
under the hypothesis that all the normal error terms turn out to be zero. | then simulated, for the year,
to see what actually happens, and sometimes I made the best choice, but sometimes, with the benefit
of hindsight, I could have done better. 1 kept on rolling this up for fifty years, and performed the
whole exercise 200 times, resulting in 10,000 simulated investment decisions. Over all the scenarios,
the average 50-year return for my switching rule is 17.16% p.a. This compares with 13.04% for the
single best class, which is property. In this paper the author gets 13.16%, which is not significantly
different, given the number of simulations. Furthermore, the switching strategy reduces the standard
deviation by a small margin, so we have a marginally reduced risk, and an out-performance of 4.1%
p.a. compound. This suggests that the market is rather inefficient.

I have not really taken a proper account of risk, but just gone for the highest expected return. One
way to adjust for risk is to assume a utility function. I assumed a log utility function. If this were a
typical investor, we would expect to see equities outperforming gilts by around 3% p.a. in the long
run, which seems about right and also fits with the model that we have here. So, let us suppose that
we have a log utility function, with a 50-year time horizon, but can still trade every year. If we are
to believe the textbooks, we expect to see some trade-off between risk and return, and some
justification for diversification. This happens only to a small degree with the Wilkie model. Most of
the time, it is still optimal to be fully invested in a single class; the most popular being property, and
then equities. Some degree of diversification, where more than one asset class is held, can be justified
in about one year in six. I could have assumed a more concave utility function to describe a lower
risk tolerance and justify more frequent diversification, but this would not be consistent with the
observed risk premium of equities over gilts.

One notable feature of the Wilkie model is the popularity of property investment. It is noticeable
that, over a 50-year time horizon, Table 11.1 shows property outperforming equity by an average of
2.37%, the level of risk, as measured by the standard deviation, being identical for the two classes.
Although, at first sight, these conclusions appear to arise from historic data, it seems to me that this
degree of outperformance cannot be sustainable in the long run. Indeed, the property income
projection is extrapolated from a relatively short period of exceptional growth. I do not expect this to
continue, and neither does the market, judging by the recent rise in rental yields. However, the
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property model does not seem to allow for any connection between high yields and reduced income
growth, and so a combination of high yields and generous income growth is projected into the future.

It is particularly interesting that the author himself had suggested some parameters for the property
model before he had examined the data, and these parameters were quoted in the Daykin & Hey paper
(J.LA. 117, 173). Rerunning the model with these parameters, 1 find that equities outperform property
by about 1.9% p.a., on average, over 50 years, roughly on a par with index-linked gilts, which seems
more reasonable to me. I guess that the Daykin & Hey model was based on the subjective assessment
of the returns which might be expected on property, given the level of risk involved. It seems that an
actuary’s hunch has produced a more plausible model than detailed analysis of historic data. It would
be interesting to examine whether the same principle applies to the other economic series described
in the paper.

I have, therefore, rerun my optimisation based on the Daykin & Hey parameters. Sadly, I find again
that diversification only makes sense one year in six. The switching strategy outperforms equities,
which is now the best single class, by 5.6% p.a. compounded over a 50-year time horizon. There is
little extra risk involved; in every one of my 200 scenarios the active strategy outperformed the best
of the rest by at least 40 basis points p.a. over 50 years. Although the Daykin & Hey parameters
improve matters slightly from the point of efficiency, I still cannot detect a meaningful risk return
relationship in this model.

The models I use most of the time are broadly consistent with efficient markets, and so it is useful
for me to have a different kind of model, such as the one in this paper, for comparison in practical
investigations.

Professor H. Tong (a visitor): My comments on the technical side have to do with the non-linear
aspect of time series analysis. There are several aspects of linear models which limit one’s horizon.
For example, linear models tell you that you do not respect your current position. In a sense, it does
not matter where you are; if you are asked to make a forecast, you will give exactly the same
prediction interval regardiess of your current position. Whether it is a bull market or a bear market,
you would get the same prediction interval if you used a linear model to produce any forecast. This,
to my mind, is unrealistic. If you want to have a more realistic model to respect your current position,
then it would be unavoidable that non-linear models would have to be used.

The second point is that the current position is not always known precisely, because of information
delay, for example. There is always some relevance in looking at the sensitivity of your model to the
initial value. Initial value here means your current position; so it is important to see how sensitive
your model is to any perturbation of the initial condition. Of course, if your model is linear, then this
is a trivial exercise, and it will not throw much light. So, it is in this sense that the non-linear model
will also be quite important.

Another aspect is that, if you look at some time series, in particular univariate time series, then,
because of incomplete information, you may wish to use a linear model which may be valid over a
certain area of the state space. If you bring in some exogenous variables, then some non-linearity may
be thrown up. For example, in hydrology data, it is well known that, if you look at the amount of
water passing through a certain point of the river, you get the river flow data. If you model on the
basis of a single time series a lincar time series model would be adequate, but, if you bring in the
temperature or the rainfail, then there is a different story. Suppose you live somewhere to the north
of Greal Britain, say lcetand. If the temperature is above 2°C you have an enormous amount of river
flow, simply because of the melting of the ice and snow from the glaciers, hence the non-linearity.
So it is very clear that non-linearity will come in a very natural way.

If that is the case, then non-linearity will be inevitable. Some earlier speakers mentioned a
phenomenon which is related to time reversibility, and also to some non-linear model, which looks to
me as if it tried to take account of the conservation of energy in an abstract sense.

I point these features out only to encourage the author to look further ahead in his next paper by
incorporating non-linearity.

Mr M. H. D. Kemp, F.LA.: | am pleascd that the model is now extended to property and overseas
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equities. However, | do sometimes wonder whether the model is a little too complicated for the types
of applications to which it is often put. I shall concentrate on pension fund asset/liability studies. Such
studies essentially provide some estimate of the range of likely outcomes in the future for key features
of the pension fund. You then identify an investment strategy that gives you the best spread of
outcomes in terms of the risks involved. So, you certainly need assumptions about how the future
might evolve, that is the sorts of assumptions that are involved in a stochastic model. However, the
question is: do you need a model as complicated as this one?

My doubts in this area coalesced into something tangible when I read paragraphs like 2.11.4 and
5.11.2, and Figure 5.5 and others similar to it. What they effectively show is the spread of the
confidence intervals for the dividend index, the RPI, and so on, looking out into the future. The author
rightly makes the point that the graphs are different from those that might arise with a ‘random walk’.
You can see this, for example, in Figure 5.5, where the solid lines are the results that come from the
author’s model, and the dotted lines are a ‘random walk’ model. However, looking at this type of
graph, it did strike me that, if you just doubled the standard deviation that was being used for the
‘random walk’, you would get close to the results that came out of the Wilkie model. Indeed, looking
through the paper, it seems that, provided that you use the right adjustments, you can always arrange
to get roughly the same kind of spread of results from these two ostensibly different models. You
might get the ‘envelope’ spreading in a slightly different way, but it seems that you can get a similar
picture to the Wilkie model by adopting what might be called an adjusted ‘random walk’ type of
approach.

Having noticed this, my next thought was that, given that we can produce the same sorts of results
by using a different model with different assumptions, which are the key assumptions in a stochastic
investment model which drive the results that come out of an asset/liability study? Here [ think that,
perhaps, a ‘random walk’ or some kind of adjusted version as I have just described, does score over
a more complicated model. At least with a ‘random walk’, the key assumptions that you need to make
are intuitively obvious, that is the expected returns on the different assets; how volatile those assets
are going to be; and also what kind of linkage they have to each other. It is much more difficult to
work out what are the key underlying assumptions within the Wilkie model.

One other thing that also concerns me about the Wilkie model! is rather more fundamental, and
looks forward to the days when, as actuaries, we will concentrate on dynamic investment strategies
rather than static ones. The Wilkie model implies the existence of profitable trading strategies. Mr
Smith appeared to imply that you can get 4% p.a. excess return just by exploiting anomalies in the
model. I am quite prepared to believe that such anomalies do exist. However, 1 think that it is
dangerous, when you are making stochastic projections, to assume that your fund manager will
actually be able to take advantage of those anomalies. You need to be quite careful, when you employ
models like this, to avoid them homing in on such anomalies. Again, a random walk type of model
has the advantage of robustness. It does not build in any of these types of anomalies.

Dr M. R. Hardy, F.L.A.: Stochastic simulation is regarded by many actuaries, particularly life office
actuaries, as an esoteric exercise, which is deemed superfluous or unnecessary to the financial
management of their companies. Only a handful of companies use stochastic simulation techniques on
a day-to-day basis. I do not believe that this situation can last. Increasingly, stochastic simulation will
be recognised as an essential tool in all areas of life office management — particularly in solvency
control. In the not-too-distant future, life offices will have to pick up the techniques of stochastic
simulation; and for almost every U.K. company the most crucial element in the stochastic
asset/liability model is the investment model. At the moment the only useful model in the public
domain is the Wilkie model. The author has shown that his model has been rigorously tested, and
where there are on-going problems these are clear, and there are discussions for further development.

Other long-term asset models exist, and are used in the profession, but they are not in the public
domain. None of them has been subject to the kind of scrutiny that the Wilkie mode!l has been
subjected to. Actuaries continue to use the models, not because they are not aware of its flaws, but
because they are aware of them and feel that they do not invalidate the results, provided that the
model is used appropriately and the results are interpreted intelligently. In particular, in the work I do,
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I find that I am more interested in how results move in relative terms, comparing strategies or inputs,
than in the absolute level of the results. Even actuaries who eschew the author’s model, and use their
own, tend to borrow elements from it and use it as a benchmark for their own models.

Stochastic simulation is an exciting technique that provides new insights into patterns and
distributions of cash flows in insurance and pension funds. Broadly, in my experience of exploring
the Wilkie model, the results appear feasible. The links that do not appear in a straight random walk
model seem credible and important in, for example, life office solvency work.

That the Wilkie model is much better than nothing has been demonstrated in this paper, if you work
through the statistical testing of the parameters, and, I think, also by the very informative graphs. 1
particularly like the graphs which show the past patterns followed by simulated future patterns, for
example in Figures 2.6 and 2.7. The paper includes the original model and some extensions. The
much vaunted inflation residual problem has been dealt with, or considered, by using an ARCH
model. I am not entirely convinced that this is going to turn out to be the best approach. As the
standard deviation of the annual inflation rate increases, and this increase is passed through to all the
other variables, this increases their standard deviations significantly. Further, we have been introduced
to two extra parameters. The main problem that the ARCH mode! addresses — that of non-
independence of residuals — is not apparently necessary, according to 92.8.7, which says that there
does not seem to be much evidence of autocorrelation. So the conditional hetero-schedastic element
of the model has been introduced solely to allow for the fat tails of the residuals. My instinct — and
I have not tested this — is that something like Gamma residuals would be a simpler solution, and
would be at least one parameter less.

I wonder whether the p values in Table 2.9 make sense. If the ARCH models give fat-tailed
residuals and the p values are testing normality, then, presumably, you would not expect an ARCH
model to pass a test of normality.

I do not know the answer to the point raised earlier about stationarity, but I do know that to ignore
this model, because of possible long-term stationarity problems, and to stick with a deterministic
model, will mean that actuaries are missing out on insights which, T think, will prove essential, and
they will find themselves falling behind the offices who are using stochastic simulation to make
decisions.

Mr P. P. Huber, F.LA.: The author is to be congratulated on introducing the actuarial profession to
cointegration, unit root tests, and vector autoregressive models. These are very useful techniques for
the analysis of time series. However, | have reservations about the methodology proposed in
Appendix C and in ¥1.4.1. It appears that the author is recommending that asset models should be
developed by establishing a linear relationship based on economic theory (or ‘common sense’), fitting
it to the data, and then testing whether this relationship satisfies various goodness-of-fit tests. If the
tests are not satisfied, then parameters should be added until they are satisfied or the result should be
ignored on theoretical grounds. This methodology ignores the problems associated with multiple
hypothesis testing (which can lead to data-mining). It basically restricts the choice of models to the
ARIMA class, and it does not allow ‘common sense’ to be influenced by the data (which would allow
us to improve our understanding of the economy). This methodology only ensures that the ‘common
sense’ used to develop the model is used consistently in applications of the model.

The problems associated with the Wilkic model stem primarily from this methodology, and have
been illustrated by Kitts (1990), by Geoghegan et al. (1992) and by myself (1995), all of which are
referred to in the paper. As the important problems have not been addressed in this paper, I will
attempt to summarise them. Evidence of data-mining can be obtained by considering the fit of the
model over all the available out-of-sample data. Over this interval, the variance of the inflation and
consols residuals are significantly less than, and greater than, QSD and CSD, respectively; and the
cross-correlation between the inflation residuals and the dividend growth and consols residuals are 0.6
and 0.7, respectively (which are significant at the 5% level). These results suggest that the variance
and covariance structure of the model is inappropriate.

In ARIMA modelling, non-stationarity can only be removed by differencing the data. However,
differencing is not a suitable method for dealing with all types of non-stationarity. Therefore, in
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110.3.3, the author chooses to ignore the test result on theoretical grounds. This approach can lead to
biased parameter estimates. Only considering standard ARIMA models also causes problems when
confronted with outliers. The significance of YW (in the dividend yield model) and CY (in the consols
model) depend entirely on outliers, and it is not statistically valid to use the models suggested to
account for them.

In addition, the stability of the model over different time intervals was not adequately examined.
The Chow test rejects the hypothesis that the inflation model is stable. The value of BA (in the short-
term rate model) is affected by the period during and after the Second World War in which interest
rates were constant. Over the period 1955-93, Ong (1994) obtained a value of 0.43 for BA. This is
significantly less than 0.74. This result is not significantly affected by the differences in the
transformations used. The dividend yield and consols models are also unstable as a result of outliers.

The methodology adopted is inflexible when dealing with prior theory. This is illustrated in the
fitting of the inflation transfer functions in the dividend growth and consols models. The values of
CW and CD (in the consols model) are fixed and DD (in the dividend growth model) is included,
even though it is not significant. Surprisingly, in Section 5.3, the author did not consider setting DW
to zero and including DX. He, uncharacteristically, ignores prior theory in determining the consols
model’s transformations by allowing negative nominal yields, but preventing negative real yields.

In conclusion, these are very significant problems that need to be properly addressed. I am aware
that it is easier to criticise than to create, but criticism is an essential part of the scientific process. It
is sometimes necessary to take a few steps back before any meaningful progress can be made.

Mr G. S. Finkelstein: At the start of the discussion, the opener predicted that the apparent non-
stationarity and non-normality of some of the data used by the author were likely to be among the
key issues discussed. It seems that his prediction was correct, given some of the comments of
previous speakers. For example, concern has been expressed about the skewness of the data and,
therefore, the assumption of normality; about considering using a Gamma distribution instead of the
Normal; and about the apparent non-stationarity of the inflation data. I believe that these issues are
related; the connection being that the underlying probability distributions are stable non-Gaussian. I
was pleased to see that the author, in 912.2, placed stable distributions at the top of his list for further
research, since I have been conducting research into their use.

Mr Huber has recently showed that the apparent non-stationarity of the inflation data is due to
occasional random shocks over the whole time period. This leads to sub-periods, demarcated by the
occasions when the shocks occurred, over which the data appeared to be stationary. [ suggest that
these random shocks are consistent with a stable non-Gaussian distribution. This is because all stable
distributions, apart from the Gaussian, have infinite variance, and give rise to occasional extreme
stochastic fluctuations. In addition, I think that the stationarity requirement changes if the distributions
are stable non-Gaussian. This is because it does not seem sensible to expect the same mean and
variance to apply at all points of time, when the variances are infinite or do not exist. It is also
possible to allow for skewness with stable non-Gaussian distributions.

A word of warning to anyone attempting to fit stable distributions to the author’s share price data
— the Actuaries Investment Index before 1962 was a geometric one. Geometric indices are likely to
lead to more kurtosis and skewness than arithmetic ones, since the former are more sensitive to
downward movements in the price of their constituents. In the extreme case, if any one of the
constituent companies becomes insolvent, the whole of the geometric index collapses, while the
impact on an arithmetic index will be much less.

[ have one minor reservation with the paper, and that is the author’s revised choice of starting date
for his time series in Section 2.3. By treating the period 1919 to 1923 as an outlier, and excluding it
from the analysis, this leads to much lower kurtosis (see 12.3.9). This is likely to lead to a model with
much less extreme stochastic fluctuations. Whether or not this is appropriate depends on the purpose
for which it is intended to use the model. It could be inappropriate in applications where the user is
interested in extreme tail probabilities, that is very low probabilities of insolvency for a life fund.

The author’s model is just that — a model; and by definition of the word it must be imperfect.
However, in my view, it is the best model that is publicly available.
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Professor S. Haberman, F.I.A.: Like Dr Hardy, I think we should acknowledge the debt that we owe
to the author for presenting his model to the profession in full detail, and then sharing it with us on
successive updatings. This openness is to be applauded. I know from anecdotal comments that there
are a number of similar models being used by practitioners, without their having been exposed to
rigorous scrutiny by their peers in the profession. I find this possibility rather worrying.

I first look at the nature of the model. It is just one of many that could be fitted to the past data
available and then used for predicting the future. Any such model is essentially, in broad terms, a
combination of statistics and economics, and we can regard the set of models as lying on some sort
of spectrum connecting the extremes of a time series model with no economic input whatsoever and
an econometric model. The Wilkie model lies somewhere between these extremes. This characteristic
should be recognised, and we should note that there are, and doubtless will be, criticisms of the model
from both a statistical viewpoint and from an economic or econometric viewpoint.

Mr Huber has spoken about his own work. I think that he has demonstrated that the model has
deficiencies; it does provide a poor fit in statistical terms to the past data; in some sense it is over-
parameterised; and perhaps it is too complex. Its structure is sensitive to outliers in the data set, and,
as others have said, the predictions do depend heavily on certain values of certain parameters.

In econometric terms, one could make criticisms of the model. There are deficiencies, in that
exogenous variables that might contribute towards explaining the data are not present. For example,
if we look at the recent period of economic history of the U.K., there is no item in the model to
represent the oil price shock of the early 1970s.

My second point concerns what the actuarial profession expects of a stochastic asset model, and the
uses to which it is to be put. In 11.2.2. the author mentions some of the many papers and reports that
have used the Wilkie model. In general, these papers have dealt with the forecasting of future
contingent cash flows, and the availability of the Wilkie model has provided an extra dimension
relative to using the traditional deterministic asset return model. The Wilkie model enables variability
in the future to be estimated. Let us consider such an application, and I pose the following question:
do we believe the resulting estimates of means, variances, percentiles, probabilities of ruin, etc., that
come out of using the Wilkie model? Your answer should be ‘no’. What the calculations based on the
model do is to give us an indication.

If your answer to this hypothetical question that 1 posed were ‘yes’, then I believe that you are
expecting too much of any stochastic asset model. The estimates from any model cannot be taken
blindly. [ have drawn your attention to the implications of a thorough statistical analysis, but we
should also note various other points: the high and unpredictable volatility of financial markets; and
the difficulty of making estimates for the long-term future in relation to the credible data sets that we
have available now. We also note that, for estimating quantities like the probability of insolvency, we
would need a model with satisfactory properties in the tails of the relevant asset return distributions.

So, the second question that I would pose is the following: does this weight of criticism and caution
matter? 1 do not think that it does in certain circumstances. Providing that we have the right
philosophical approach, I believe that models like that of the author can be extremely useful, despite
the difficulties to which I have alluded. The model provides a self-contained and consistent way of
generating simulations or scenarios. The estimates of moments, percentiles, etc. cannot be regarded as
unbiased, but they can be informative as general indications of results, especially if conducted
alongside a thorough sensitivity analysis and monitoring of the results as they emerge. Further, if the
model is used in an application that is repeated at regular intervals (for example in valuation work in
pensions or insurance), then the use of such a methodology for carrying out calculations means that
the series of updating estimates themselves provide valuable information, providing that the approach
is reinforced by the appropriate checking. I believe that models like the author’s will continue to be
of great practical value, providing that they are appreciated for what they can achieve and not
regarded as an astrologer’s crystal ball.

Professor S. M. Schaefer (a visitor): The paper makes an important contribution to the interface
between actuarial science and financial economics, which is a fruitful area, and one which would
merit a great deal more study.
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Most of the analysis that the author does is on rates of various kinds, such as the rate of inflation,
the rate of return, and so on. I assume that you are interested in assessing the distribution of the levels
connected with those rates — for example, the level of the stock market, the level of the inflation
index, and so on. The latter are non-linear transformations of the former. This means that the
distribution of, for example, the retail price index will depend, not just on the first moments of the
distribution of the inflation rate (or, correspondingly, the distribution of the rate of return on the
equity market), but also on second moments. When you do your simulations, this will come out in
the numbers, as it were, perfectly automatically; but it means that, in projecting these distributions, it
is also interesting to think about the stochastic behaviour of second moments, which is something that
the author raises in his paper. lts direct impact on these levels may be something which might be
worth more thought.

I now make some comments connected, in one way or another, with efficient markets. Some
considerable time ago | was told it was probably a mistake to go into financial economics, because
“more or less all the interesting problems had been solved.” We had efficient markets theory; we had
the capital assets pricing model; we had option pricing theory; we had Modigliani & Miller, and that
was that. It was a period when financial economists were almost shrill about the efficient markets
hypothesis. 1 think that that era has now passed, and financial economists have had to face up to ail.
sorts of anomalies in the data that do not fit the theory.

One point worth stressing is that, for a long time, people have understood that there is really no
such thing as ‘the efficient markets hypothesis’ that is independent of some theory about pricing. In
fact, you cannot actually state what the efficient markets hypothesis is without some statement about
pricing. So, when we talk about the applicability or usefulness of the efficient markets model, what
we are really talking about is whether or not one should be using some sort of pricing model. From
my perspective, [ think that this type of approach is very helpful. One reason is this: faced with a
very large amount of data, and without some a priori structure on these data, it is virtually impossible
to say anything at all.

1 would argue that the author is using ‘theory” when he says that he thinks some specifications are
a priori reasonable or not. In doing this, he is excluding certain possibilities based on his experience.
The only difference is whether or not, as a matter of judgement, one thinks that it is worth taking a
priori reasoning further in placing certain constraints, via a model, on the way one analyses the data.
From my own experience, I think that, on the whole, this is rather a fruitful thing to do. On occasions
extremely useful results emerge from essentially a priori bits of analysis. I mention two examples.
First, option pricing theory has been hugely constructive, whether it is correct or incorrect in detail,
and it certainly did not come out of a ‘free form” analysis of the data.

As a second example, modern term structure theory predicts that interest rate volatility will have an
impact on bond prices. This also emerged from the theory, and was subsequently confirmed by
looking at the data. This is a very respectable line of approach (e.g. in physics), and so on. I do not
think we should discount it altogether.

Leading on from that, there are a number of aspects of theory which would be helpful in the
context of the specific model that the author is looking at. When we look at asset prices — take
bonds, once again — potentially they contain quite a lot of information about the market’s long-term
predictions of certain variables, and the relationship between the prices of long-term bonds and short-
term bonds once again provides potentially useful information. I am sure that you will have seen the
analysis that the Bank of England is now producing on a regular basis, looking at the relationship
between index-linked and conventional bonds, in order to derive long-term projections of inflation.
This information might be a very useful adjunct to the short-term projection techniques that the author
is using.

Mr T. J. Sheldon, F.LA.: 1 was disappointed to read that, in a paper as extensive this, there would
be no consideration of the applications of the author’s model. Maybe that will be the subject of a
further paper — it certainly merits one, since, as actuaries, we should be at least as interested in the
applications of the model as in the model itself.

One potential application of the author’s model is the study of the interaction between solvency and
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investment strategy in a life office. The regulations governing solvency valuations relate the valuation
interest rates to gross redemption yields on fixed-interest assets and running yields on equities and
property. A life office can, therefore, improve its published solvency position by switching into higher
yielding assets. If we consider an office writing predominantly conventional life business, with an
excess of investment income over expenses, other things being equal, it will prefer to receive capital
gains rather than investment income. An office which switches into higher-yielding assets for short-
term solvency considerations may well find that, in the longer term, any advantage is outweighed by
an increased tax bill.

How can an actuary set about formulating some suitable rules for investment strategy subject to
solvency constraints? The obvious way is to try out a few deterministic scenarios. Such an exercise
will generally show that it makes little sense switching into higher running yield assets, unless the
solvency position is particularly acute.

An alternative approach would be to use the Wilkie model to tackle the problem. If you do so, you
may well find that switching to higher-yielding assets not only improves statutory solvency in the
short term, but also enhances longer-term investment performance, despite the adverse tax
consequences. This occurs because, under the Wilkie model, income streams (such as dividends or
property rents) are relatively stable, so price movements in the short term are determined mainly by
changes in yield. Yields follow autoregressive processes, and so revert to their averages.
Consequently, when an asset class has a high yield, its yield is likely to fall and its price is likely to
rise (and vice versa). This is, of course, the rationale of high income funds, but clearly not everyone
believes in this principle. The alternative view, based on discounted cash flow, is that a high yield
reflects low expected growth in income. The conclusion one would draw from applying the Wilkie
model to the problem is that a yield-based switching rule is beneficial both for short-term solvency
and for net-of-tax long-term investment returns.

Should we believe this result? Can such a simple strategy really work in practice? It may well be
true that the model is a faithful representation of history. Is it, however, prudent for this particular
application to accept that such a strategy will succeed in future; for this is what we would be doing
if we unquestioningly accept the results of our modelling work? There is a danger that a well-
intentioned asset/liability study, such as this, could lure the office into a false sense of security. Is the
model really suitable for this type of investigation, or should we place more faith in simple
deterministic scenarios?

Mr A. F. Wilson, F.LA.: The minimum funding requirement is one area where this paper is going
to be important. When we are dealing with the question of setting minimum funding standards and
cash equivalent terms, including taking into account ‘equity’ investments, we do have to set
appropriate parameters, and these should probably not be too far removed from the parameters which
the author talks about as the neutral initial parameters in the paper. It is, therefore, comforting that
the work that has been going on behind the scenes on this question is coming out with figures not
very different from those parameters, although the actual fit of them is somewhat different. This leads
me to wonder whether, when one is putting together a comprehensive model from all the various
models that the author has in this paper, one should ensure that the periods over which one is testing
to get the parameters are consistent; otherwise one finds that some of the parameters, when compared
one against the other, do not fit together as well as one might expect.

This model, as has been said, had its origin in the Maturity Guarantees Working Party. | remember
thinking at the time, and ever since, that one of the most important prerequisites of all models that
we produce is to make sure we have the correct null hypothesis, because, in most of the series we
deal with, the ability to refute the null hypothesis is often very limited. In other words, when you look
at the white noise inevitable in these various runs of data, you can find that it is actually quite
difficult to take the null hypothesis and say that we must reject it. The reason why I think that this is
very important is that I believe that the choice for the null hypothesis is between some variation of a
random walk model and some variation of a cyclical model. Very often the two look very similar over
short periods, but when one looks over longer periods they look very different. If one goes to sea, all
around looks flat, but that does not mean that the whole world is flat; if we go far enough we have
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to consider curvature. Thus, for example, when I read Mr Huber’s paper, I wondered whether this was
not a case of looking too closely at the locally flat surrounds, and not trying to think what happens
when one goes further away.

Much of human life is dictated by cycles — not much by linearity. I feel that, in many aspects, one
has to start from looking at whether or not thete are, if I can put it this way, cyclical models with
fluctuations around means, that ought to be taken as the primary model, only taking into account
random walk models and revisions to means if the cyclical model can be shown to be inappropriate.
This is the strength of much of the author’s work; choosing his null hypotheses and testing them
thoroughly. This is where the financial economics comes in, and why it is not purely statistical. It is
a question of getting the null hypotheses right.

Mr Smith highlighted another interesting point; the possibility of finding a strategy which,
historically, would have given you consistent out-performance to choose some asset class that is
demonstrably relatively cheap, then you should not be diversifying, but concentrating on that asset.
One of the problems is that, if everybody used the strategy, or if an increasing proportion of people
did so, then all the various parameters and graphs would gradually change to prevent the
outperformance continuing. You would then gradually lose the ability to make that sort of extra
money.

This illustrates one of the problems we have if we are looking backwards: to what extent have there
been secular changes which we should, or should not, take into account; and to what extent should
we extrapolate those into the future? A further problem is that discrete changes do happen. One does
have to remember that many of these price series involve only marginal buyers and sellers, with the
vast majority of stock remaining untouched. In those circumstances, a move from one consensus to
another can, therefore, happen very rapidly. It does not surprise me to find that we have fat tails.

One of the most interesting aspects is the extension of the paper to overseas markets. | hope that
we shall get some discussion on whether what the author has done on overseas markets is appropriate,
or whether better parameters could be put forward. That is the area where minimum funding
requirements could give rise to significant problems. There has been the suggestion that just using
U.K. equities as an equity content is wrong, and one should use overseas equities. To do so, it is very
important that we know what we are doing, and that we have appropriate parameters to use.

Dr A. J. G. Cairns, F.F.A. (in a written contribution that was read to the meeting): In the field of
stochastic investment modelling, any model can only be an approximation to a much more complex
reality. Such models can range from the very simple Geometric Brownian Motion models, often used
in the pricing of derivatives, to complex asset models, such as the one now under discussion. Finding
what one regards as a good model is a difficult process. The author readily admits that there are
alternatives which may be just as good, and, indeed, makes a number of suggestions at the end of his
paper indicating where improvements could be made. Inevitably there will be a number of discussants
who will criticise the Wilkie model. This is because there are many criteria, some conflicting, which
must be satisfied by a good model. Many of these critics will see that one or two of these criteria are
not wholly satisfied, and use this as conclusive evidence that the Wilkie model should not be used
under any circumstances. However, | rarely see these critics putting forward alternative models which
are anything like as comprehensive or as good as the Wilkic model. I challenge them to make their
models availabie for scrutiny.

In applications, it is important for one to be able to quantify, for example, the level of risk inherent
in a certain investment strategy. It is only possible to do this using stochastic investment models;
deterministic scenarios tell us nothing in this respect. Even if the model is flawed, we can at least give
ourselves a good feel for the level of risk, and be confident that the numerical results generated by
such a model reflect this risk with reasonable accuracy.

I now make some points of a rather statistical nature, which I consider to be of relevance to the
whole field of stochastic modelling. In the present paper, much time is spent discussing the standard
errors of parameter estimates. This is a very important point, because, not only is a model an
approximation to reality, but we do not know what the ‘true’ set of parameters should be for this
model. It is, therefore, essential as part of any simulation exercise, to repeat the exercise many times
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using a range of parameter values which is consistent with the past data and with the standard errors
of the parameters and their correlations. One can carry out such a process in a more rigorous way by
using a Bayesian approach, as | have shown in my paper ‘Uncertainty in the Modelling Process’, that
is to be presented to the 25th International Congress of Actuaries.

The models, themselves, are also not known with certainty. There may be a range of models which
all fit the data equaily, or almost as well, as the Wilkie model. In all applications, one should, as a
matter of course, entertain a range of such models. If it is found that our conclusions are not sensitive
to the choice of stochastic investment model used, then there is no problem. If, instead, it is found
that our conclusions do depend significantly on the choice of model, then one can use the model
averaging approach, described in the papers: ‘Model Uncertainty, Data Mining and Statistical
Inference’, by C. Chatfield and ‘Assessment and Propagation of Model Uncertainty’ by D. Draper,
both to appear in the Journal of the Royal Statistical Society, and in my paper that | have already
referred to, which allows one to take account of model uncertainty. It is important, under such
circumstances, that one does not provide the results of an analysis of uncertainty based on a single
model when one knows that other plausible models would give rise to different conclusions.

I consider that it is inappropriate to stick dogmatically with a single parameter set and with a single
model. Failure to take parameter and model uncertainty into account could result in a significant
underestimation of the level of risk.

Mr P, Stanyer (a visitor): I am from the railways pension fund. The railways pension fund has about
half of its assets accounted for by a closed fund for pensioners. One of the major poticy issues that
we have to confront is the likely performance of bonds compared with equities. This is a problem of
interest to all institutional investors.

There are a number of ways in which one tries to address this particular policy problem. However,
it is clear that one particular stark difference that arises from the author’s work and the work of
financial economists is in the different treatment of the statistical properties of bond and equity
returns, and specifically in how plausible the random walk hypothesis is considered to be. If I think
about long-term investment strategy, [ am quite content to think of equities as following entirely a
random path, particularly for the ‘duration’ (the effective horizon), for a very mature scheme (eight
years for the railway pension fund). 1 am quite aware of all the literature on why that is not quite
right, but, as a broad assumption in setting strategy for a mature fund, that is fine.

However, do [ really think that returns from bond investments are going to follow a random path?
I do not know. The literature seems to be divided into two. The paper that comes to my mind is one
by Martin Leibowitz (from the Financial Analyst Journal). This is a simple, easy-to-read short paper,
which extrapolated annualised volatility. In terms of an equity market, [ am quite happy with this as
a starting assumption for a strategy over eight years. For bonds, [ am not so sure that we should
assume, when setting long-term strategy, a random walk with returns in one period independent of
returns in the preceding period.

The explicit modelling of these two different approaches is encourgaged by the author’s work. For
pension funds to be presented with alternative estimates for the likelihood of equities outperforming
bonds over different time horizons, according to both the ‘actuarial’ approach and, separately, the
‘random walk’ hypothesis, would be a service to pension funds and to the investors.

Mr D. J. Parsons, F.I.A.: What use is the Wilkie model! to the ordinary working actuary? Very few
are using it yet. I have heard from some that this is because it is too academic, and that it is only
really useful to high-powered investment people with high-powered computers, and that it would not
add anything to the advice that we give to our clients, customers or investors.

Looking at the Securities and Investments Board report on pension transfers and opt-outs recently,
I found the following: “If an investor is exposed to the risks of adverse fund performance without
understanding their nature, scale and likelihood, then the investor can be said to have been harmed if
financial loss has actually occurred or is reasonably likely to occur”. “Reasonably likely to occur”.
Who defines that? We, as actuaries, are uniquely able to identify such likelihoods, particularly with
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this tool provided by the author, but do we do it? Would there be any advantage to the investors if
we did?

In practice, advice on the likelihood of risk tends to comprise, simply, words such as: “values can
go down as welil as up”. However, we never put a probability rating on this. We hold ourselves out
to be experts in the field of financial probabilities, and yet we cannot, or do not, give a straight
answer to the question of how likely it is that values will go down.

Standard disclosure projections show the proceeds of savings and insurance products with assumed
investment returns of 6%, 9% and 12% for pensions products, and 5%, 7'% and 10% for insurance
business. The general public could be led to believe that the central rate is the one which is expected
to happen, and the other two rates are outliers — levels between which the investment return will fall.
Should they be allowed to believe this, and do we know better? We could give odds of twenty to one
against the money which is returned at the end of the term being less than the amount invested; four
to one against it being less than the lower projection; and so on. With appropriate use of the author’s
methodology, each and every investment provider could assess the appropriate odds for each of its
products. I am sure that the investors would appreciate this advice, as well as the salesmen. The
regulators may have to prescribe appropriate values for QMU, etc., to ensure that advertising was fair,
but I am sure that we can cope with that.

Mr J. P. Ryan, F.LLA.: | want to issue one or two notes of caution. This follows on some of the ideas
introduced by Mr Sheldon and Professor Haberman. Professor Haberman, in particular, said that the
Wilkie model was a cross between a general stochastic model and an econometric type model. Indeed,
if one had an extremely good econometric model or used only non-economic variables in order to
forecast interest rates, inflation rates and stock market prices accurately, one could significantly reduce
the overall uncertainty in asset forecasts. However, the very idea that that concept might exist needs
to be tailored into some other thinking when we use the model for forecasting things other than purely
long-term asset variability, If we are going to use it in broader model office solvency calculations —
I am thinking here particularly of non-life ones — then we may need to take some of these factors
into account, in particular some other means of how inflation impacts on share prices and other
financial variables. Other short-term factors come into play on the other side of the balance sheet. We
are not necessarily going to get the correlations right if we combine a pure Wilkie-type model
together with estimates of the overall uncertainty derived from the liability side, because our claims
reserves are based on a forecast of 5% inflation, or whatever. There will be some other correlations
that are not necessarily picked up.

Clearly, that is outside the scope of this paper, and does not in any way invalidate anything that
the author has written in this paper, which I think is extremely good in terms of evaluating the asset
side of the balance sheet. These issues need to be taken into account if they are then being used in
another context, such as model office solvency. This applies, to a lesser extent, on the life assurance
side, where there are probably fewer variables than on the non-life side, where many very complex
variables come into play. Here relationships and the types of models used are fundamentally different,
and may lead to some different conclusions. 1 do not have any simple answers to this, but 1 would
like to add it on as a point (p) in the author’s list of recommended further work in 12.2.

Mr P. J. Lee, F.LLA.: | now, after this paper, think that I understand how the author produces a model
for a particular country. He has done the profession a great service in publishing what, effectively,
amounts to a ‘Do It Yourself” guide to producing a stochastic investment model. If anyone out there
wants to try and do it, | think that they now have the information available in this paper. I also think
that the author is setting standards, in asset/liability modelling work, of transparency and quality for
others in the profession to follow. The work of the profession in this area is expanding, as
asset/liability modelling is becoming increasingly common and accepted as part of the due diligence
work, and actuaries have an increasingly influential role to play in this area. We have already heard
Mr Sheldon refer to an application in the area of life insurance, Mr Stanyer has just mentioned
pension fund applications and Mr Ryan mentioned non-life. 1 could also mention charities, where
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some work has been done in assessing, not just investment strategy, but expenditure strategy. How
does a charity make sure that it does not over-spend and eat into its capital too fast?

Next, the extension of the Wilkie model to most of the major developed countries and to exchange
rates is not only a testament to its resilience and applicability, but should be very useful in helping
actuaries and others to assess the risks of international and currency risk in a more scientific manner.
It is now possible, using the Wilkie model, with the exchange rates and the interest rates for different
countries, to make a modelling assessment of the relative risks of hedging or non-hedging.

Then, to echo comments made by Mr Smith, Professor Schaefer and a couple of others, rather like
Galileo, the author has had the courage to challenge the orthodoxy of his time and to produce what
seems to be strong evidence that, however efficient markets ought to be in theory, in practice they
have been ‘travelling hopefully’, and have not arrived yet. Whoever says markets are inefficient also
says that there is a trading opportunity, and we, for our part, look forward to some very interesting
discussions on this point with the investment management community.

Mr P. M. Booth, F.LA. (closing the discussion): This paper is a thorough appraisal of stochastic
investment modelling, which has updated previous work to take into account more recent
developments in statistical techniques. It has also provided the profession with plenty of leads for
further research. A number of different approaches to stochastic modelling and testing models have
been presented. The author should be thanked by the profession for this paper, and I am sure that
those who have criticised aspects of the models which have been proposed would be happy to
recognise the contribution that the author has made to this field by exposing his work to rigorous
analysis. The author has also repaid his debt to the profession by not allowing narrow commercial
interests to prevent him bringing forward his stochastic investment modelling ideas for criticism. We
need to use the advantage of a professional body to subject our ideas to appraisal before they are used
in practice. This process is in our joint interest, and, ultimately, in the interest of us all as individuals.

I now refer to some difficulties that I and other speakers have with the inflation model. Models
have been produced for the U.K. based on long data series, and for other countries using shorter
periods. The skewness of the residuals in the U.K. model appears to be removed to some extent by
the use of ARCH models in Section 2.8. It is pleasing to see this subject introduced, but the reader
is left wondering whether the author believes that they are better than the ARMA type approach, as
no comparative conclusion appears to be drawn. Tests of the data indicate an absence of stationarity
in the inflation data. It would appear that the use of the ARMA straightjacket, without any allowance
for shocks, leads to an incomplete representation of the process. It is probably impossible, however,
to model completely the complex economic and political factors that lead to the fall in the purchasing
power of money to produce a model that captures either all the features of the data or the underlying
economic interactions, never mind both.

Points made by many speakers and the author’s own analysis indicate the importance of doing
further work to produce better models or to understand the limitations of existing models. An example
of how the estimated models could be used out of context, with some danger, can be seen in the
inflation models for New Zealand, estimated from one rather turbulent 25-year period. The QMU
value in Table 2.7 is about 9%.

Both the author and his critics make a contribution to the development of our knowledge in this
field, and I hope that they all mutually recognise the contribution that they all make. It should always
be remembered that it is hardly the fault of the author that there is an inherent non-stationarity about
the inflation data; and the model used, in its proper practical context, is still likely to be valuable, as
long as the user understands the difficulties. Actuaries should always test the robustness of their
modelling to the assumptions underlying the model.

The model for wages seems sensible. | think statisticians may be concerned about the remark, in
Appendix B.1.4, that the vector autoregressive model may be inconvenient for wages and prices,
because both would have to be simulated together. However, for practical actuarial use it may be a
satisfactory approach simply to use transfer functions from prices to wages. The dividend yield and
dividend series are examples of models where the fundamental model structure appears sound, but
where the author gives us a number of leads for further research and discussion on detail. The strong
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positive correlation between dividend residuals and yield residuals at a later stage, mentioned in
95.3.5, could result from an increase in the level of real dividends being recognised by the market in
a later year as unsustainable, or as involving a reduction in dividend cover, and thus causing a later
fall in capital values compensating for the earlier rise in capital values at lag zero, when dividends
appear to have been followed up by share prices. This would, of course, be an indication of market
inefficiency. The reverse process may take place when, for example, dividend controls were imposed.
It would be useful to investigate the effects of changes in payout ratios and the imposition and
subsequent removal of dividend controls on the residuals in greater detail. As Mr Smith mentioned,
the dividend yield model does not assume market efficiency. This means that dividend yields are
expected to fall when dividend yields are too high and vice versa. This would probably accord with
the views of most actuaries.

I am not familiar with Professor Brennan’s work, mentioned in %5.10.6, but Fama & French,
mentioned in ¥5.10.5, produce a relationship between dividend yields and returns which does not
contradict the efficient market hypothesis. Fama & French argue that a shock, for example a rise in
long-term real interest rates, decreases capital values and increases yields. The share has a higher
expected return from this high dividend yield position, not because the market is inefficient in a way
which would cause the dividend yield to return to its previous lower level through a rise in capital
values, but because the long-term income stream provides a higher internal rate of return on the
purchase price. When looking at relationships between dividend yields and returns, it is important to
distinguish between market inefficiency and what are, in effect, compound interest effects. This is a
rich area for further work by the author and others, and may resolve some of the minor disagreements
between the author and Mr Kemp.

I am nervous about estimating the long-term bond model using the whole data set. It is clear, from
Section 6.2, that there was a fundamental change in the 1970s, when the market stopped being
‘surprised’ by inflation. The author mentioned this, but then went ahead to estimate the model from
the whole data set. Perhaps, in practice, greater judgement could be used in selecting the estimating
period, perhaps estimating the bond mode! from more recent history. Perhaps, as Professor Haberman
meuntioned, dummy variables would be needed to deal with the effects of the 1970s oil shock and
monetary shocks.

Since the author estimated the original model, a whole mass of literature has appeared on rational
expectations, and, perhaps, this could have been referred to, or could be brought in in future work. In
Section 9.3 the author discusses the issue of market implied inflation rates. These may, as was pointed
out by Professor Schaefer, enable us to produce better models for the effect of recent inflation on
consols yields. However, we would not expect any revised model for market expected inflation to be
universally appropriate for the last 70 years. Thus, stochastic modelling requires actuarial judgement
in the choice of the estimation period and in other aspects of modelling, and does not negate the need
for such judgements, as is often thought. It is not a black box.

Judgement should also be used when modeiling short-term interest rates. It has already been
mentioned that the author’s inclusion of the war-time period, when short-term, but not long-term,
interest rates were fixed, makes a very significant difference to the parameter estimates; much more
significant than that caused by any difference in model forms, discussed in Section 7.5. In fact, the
inclusion of the war-time period leads to the almost doubling of the parameter estimate. Again, we
see that the data period chosen for the estimation of the model can greatly affect the parameters. Users
of models should use their experience and knowledge of the data in choosing periods over which to
fit models and in interpreting the results of applying models.

It is on this note, on the philosophy of model use and on construction, on which I would like to
end. The author is to be thanked for introducing the profession to a wide range of statistical
techniques and applications. It is a most comprehensive paper. It provides a fine review which will
assist the profession in developing practical models. There are, of course, difficulties which have been
brought out by a number of speakers, but, as we have heard from Dr Hardy, the models give intuitive
appeal and provide useful results in practical situations; although the author has, perhaps, left himself
open to greater criticism than he deserves by not giving sufficient attention to some of the real
statistical and economic difficulties which exist.



More on a Stochastic Asset Model for Actuarial Use 961

To take up Mr Wilson’s challenge, the foreign currency model, in Sections 10.1 to 10.4, appears to
accord with economic common sense. However, this model, together with the property model, should
only be used with great care, given the short experience period and enormous data difficulties,
particularly on the property side. They may help us to obtain an understanding of the problems we
seek to solve, but they should never be allowed, as certain econometric models have often led
economists to do, to obscure the fundamental issues, as they could easily do if not used with great
care. The answer to dealing with some of these difficulties may lie in improving modelling
techniques. However, the management of these difficulties lies in the hands of the user: in the way
he models; in the estimation period used; in the applications chosen; and in the reporting to clients.

The President (Mr C. D. Daykin, C.B., F.LLA.): The author is to be congratulated on another
thoroughly researched and comprehensively argued paper. A decade or so ago he led the way for the
profession in the development of a consistent set of stochastic models of inflation and investments.
The models have been widely used by many members of the profession in a number of applications,
the description of which could certainly fill a book. However, they also came under some criticism,
partly from members of our own profession and partly from North American financial economists,
who were implacably opposed to the use of autoregressive investment models to represent stock
market behaviour. Patient explanation of the important differences between the role of a long-term
model, such as that proposed by the author, and the ability to predict short-term investment behaviour
for the purposes of tactical investment decisions, which was thought by many as being best
approached by the random walk model, led to a degree of reluctant acceptance, at least as being
possibly appropriate for the U.K.

This paper, extending some limited results that the author presented at the 1994 AFIR Colloquium,
demonstrates that the modelling approach can be used quite effectively for a whole range of countries;
it is certainly not just a U.K. phenomenon. This paper is invaluable in extending the scope of the
earlier work to other countries and to other asset classes, and, as has been mentioned, this has been
particularly topical in relation to the discussions taking place currently on the minimum funding
requirement.

I believe that stochastic modelling is of fundamental importance to our profession. How else can
we seriously advise our clients and our wider public on the consequences of managing uncertainty in
the different areas in which we work? It is important for all actuaries to come to grips with this type
of modelling work, and we have much to learn about the alternative ways in which such modelling
can be approached.

The author is a shining example of an actuary who, not only carries out excellent research and
comes up with a multitude of new ideas, but also publishes it and exposes it to view. Several
speakers, including the closer, have referred to the importance of this for the intellectual health of our
profession. I am sure that you will all want to join with me in congratulating the author for the fine
paper which he has presented.

Professor A. D. Wilkie, F.F.A,, F.IA. (replying): Mr Huber said that it was important, in time series
forecasting, to difference series until they became stationary. In his own paper he suggested that
certain of the series should be differenced more than [ have done. The problem about differencing an
already stationary series is that, when you integrate it again, the series ceases to be stationary. In
effect, if you say that the change in interest rates in each period is stationary, that means that interest
rates themselves are not. This may be fine if all that you are interested in is one-step-ahead
forecasting, which is essentially what the Box Jenkins ARIMA models were developed for. They were
primarily interested in forecasting the next value. The whole purpose of actuarial models is that we
are not interested in forecasting just the next value, but we are interested in the structure for very
many years ahead. Therefore, the over-differencing, as I would call it, which is recommended for time
series modelling, is a mistake for this sort of modelling.

Mr Smith and others made a point about the fact that this model conflicts, in certain respects, with
an efficient markets model. I think, in a sense, that my model is a very bad model — bad in the sense
that it correctly represents an economy which is behaving badly. It would be very much better if
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people believed this model, and then behaved accordingly, and it changed. Share prices would not go
up to the silly heights that they got to in the middle of 1987. There would not then have been the
subsequent crash. There would not then have been the response of the Government which destabilised
the economy for about the next three years. It would be much better if share prices remained fairly
constant multiples of dividends or fairly constant P/E ratios. People who make their money dealing in
the stock market might not like it, but it would be beneficial for all the rest of us. Similarly, when
we look at currencies; it would be much better if currencies retained an approximate purchasing
power parity. The yen would now be falling instead of rising. It would again be much better for
international trade to have more stable exchange rates rather than less stable ones. If people go out
from this meeting with any message, it is this: please believe the model and make it come untrue.

WRITTEN CONTRIBUTION

The author subsequetly wrote: 1 should like to thank all those who contributed to a most stimulating
discussion. 1 hope that the various suggestions made will be taken up, either by the speakers or by
others, in order to advance the frontiers of this vast, and for me most exciting, subject. I should like
to comment on a few of the remarks made.

The opener asked when we might know when a current paradigm is broken and the current
stationary sub-period ends, and another different stationary sub-period begins. Prices have risen in
Britain almost every year since 1934. 1 do not think that it was until the late 1950s, about 25 years
later, that people recognised this as a permanent feature. | therefore think that we only notice that a
different sub-period has begun many years after it has happened. For example, it is possible that we
have entered a new phase of low and stable inflation, which will last for many years, but we will not
know this until it has, in fact, lasted for a couple of decades.

Professor Clarkson defended what I described as his ad hoc model. 1 do not dispute that such ad
hoc models are useful. They are easy to use for simulation, and I have used them myself for certain
purposes. My point is that 1 would like to see the statistical characteristics of the model better
investigated.

Mr Smith made some pertinent observations about how one could use my model to trade profitably.
I made much the same points in Wilkie (1986b). I think it is sensible for investment managers or
individuals to act as if such trading were profitable, but it would be unsafe to rely on the potential
profits. See also my final oral remarks at the meeting.

Professor Tong made some remarks about non-linear models. Indeed, I think these are very much
worthy of further investigation, and his own book on the subject, Tong (1990), is invaluable.
Unfortunately, many of our data series are rather too short to allow clear phases of different types to
be distinguished; but it is worth trying.

Mr Kemp suggested that one can do a lot by using a random walk model with a suitable standard
deviation. There is something to be said for this approach, but much against it. The modifications to
the standard deviation need to be different in the short and the long term; that is the point of the
several graphs in the paper that show the random walk confidence interval along with the model
confidence interval (e.g. Figures 2.7, 3.4, 5.5, etc.). Further, the cross correlations are not uniform, as
shown in particular by the results in Tables 11.1 and 11.2. So I think one may get broadly right
results in some cases, but miss a lot of relevant, and possibly important, details by using a pure
random walk model.

Dr Hardy asked whether the p values in Table 2.9 make sense. Yes, they do. ARCH residuals are
still normally distributed, even though the standard deviation for each residual is different. Thus,
dividing the observed residual by the appropriate standard deviation gives what should be a series of
unit normal variates. Practitioners in the options market appear to believe that ‘volatility’ varies from
time to time. This suggests that some form of conditional heteroscedastic distribution might have
advantages. Presumably Dr Hardy’s gamma residuals would be homoscedastic. It is worth
investigating whether, with a homoscedastic fat-tailed distribution, one can be fooled into believing
that it is heteroscedastic, because occasionally some large “blips’ turn up.
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However, it is nice to have a model that suits both short intervals of observations and longer
intervals, and it seems to me that only the stable distributions mentioned by Mr Finkelstein do this
nicely. I hope that Mr Finkelstein will carry on with his investigations into stable distributions.

Mr Huber raised pertinent questions about my model and my parameter estimation. I shall await his
improved model with interest.

Professor Haberman wondered whether additional exogenous variables (such as the oil price shock
of the early 1970s) might not help to explain the observed variables better. They might well,
especially if one were writing an economic history. However, for the purpose of random simulation
of many years into the future, all the variables must be endogenous. So, if I include price shocks, 1
need to have a stochastic model to forecast how frequently these will occur in the future, and of what
size. I prefer to leave such shocks as part of the random residuals.

Professor Haberman also makes the very pertinent point that, if one is simulating in order to
estimate probabilities from the tails of the distributions of the simulated variables, one need to have
a model with satisfactory properties in the tails of the underlying distributions.

Professor Schaefer had done a lot of work himself on the term structure of interest rates. | have
done no more than fit models to the very short and very long end of the term structure, and I have
not attempted to model the intervening curve. There have been many valuable academic papers about
the term structure of interest rates, some from Professor Schaefer himself, but | have not yet seen one
that has investigated what I think are the minimum of four necessary parameters: short and long
nominal rates and short and long real rates. Many academic papers set up a theoretical model and
investigate the mathematics of it without testing it against observed data at all. I have started from the
other end, with no preconceived theory about the term structure, but plenty of observations. There still
seems a lot to do to bridge the gap.

One approach, however, is the analysis done by the Bank of England, to which Professor Schaefer
referred, in relation to expectations for inflation, the quantity of R/ that I plot in Figure 9.2. Instead
of my single value at each time, the bank is able to construct a ‘yield curve’ of the market’s
expectation of future inflation over all future periods. However, nowhere have | seen substantial
academic theory about the investigation in a time-series manner of a complete curve, such as a yield
curve or a mortality table. The best approach, so far, seems to be to be that of Tilley (1990).

If Dr Cairns had not already suggested the paper by Chatfield (1995), discussing model uncertainty,
1 would have done so myself. I would recommend both this paper and Cairns’s own paper (1995) on
this subject.

The closer asked whether I believe that ARCH models are better than simply using normally
distributed residuals. I am not sure whether 1 do, but they are one way of dealing with the fat-
tailedness of the observed residuals, a problem that I think needs to be tackled somehow. A different
problem arises with the ARCH model 1 have used for inflation. As | note in 911.5.2, the ARCH
model [ use produces occasional exceptionally high values similar to hyperinflations. This creates both
computational and interpretational difficulties; but perhaps an ARCH model with different parameters
would be all right.

The closer also drew attention to the problems of interpreting values such as those shown in Table
2.7, which relate to a relatively short and ‘turbulent’ 25-year period. 1 quite agree. The value of QMU
for the U.K. in that table is 8.38%, and | would not think that this is a good value to use for future
simulation; the same is true for other countries.

The closer also discussed the periods over which parameters are estimated. In general, I prefer to
use the longest period that seems to make sense, and for which the model appears to have been
uniform (if not statistically stationary). The longer the period one uses the smaller the standard errors
of the parameter estimates. However, if you go too far back, it is likely that the model will have
changed. The change from gold to paper currency was a significant change in the mechanisms
affecting inflation, and it seems reasonable therefore, to use the post-1920 data for inflation rather
than pre-First World War data. However, if data were available for share dividend yields pre-1914, |
would expect that they would show much the same pattern as nowadays. It seems to me reasonable
to use the evidence of Consols in the 19th Century to assist in modelling index-linked stocks
nowadays, and so on.
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In earlier papers, (e.g. Wilkie, 1986a) 1 discussed estimating parameters over different periods.
However, to do this again would have made the paper even longer than it is already. | leave this as
a task for others.
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