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1. INTRODUCTION 

 
Stochastic methods consist in applying parametric stochastic models to the claims payments 
rectangle. Model parameters are estimated with the upper triangle data. 
 
Thus, it is assumed that components (cumulative or incremental) of the payments rectangles 
are real random variables.  

 
In addition to a “best estimate” of reserve amounts the stochastic approach allows: 

 
(1) To explain the underlying assumptions of the model, 
(2) To validate the assumptions with a residuals analysis (at least partially), 
(3) To assess the volatility of the predicted amounts of reserve provided by the model, 
(4) To build confidence intervals, 
(5) To simulate with Monte-Carlo methods the loss reserve for future accident years, 

as required for a DFA analysis. 
 

A probability distribution of the total amount of reserve R can be also estimated. As a 
consequence some of its characteristics, which were up to now difficult to calculate 
analytically, can also be estimated: default risk, Value-at-Risk,…Such statistics are or will be 
fundamental to determine sufficient statutory claims reserves.  

 
However, uncertainty in estimating parameters is significant with the stochastic approach. 
This risk consists in using an inadequate model which leads consequently to wrong results. 

 
Two models, whose results are closed to chain ladder estimates, are well adapted to handle 
the analyses described below. The first one is Mack’s recursive model (1993) and some 
subsequent developments like the Munich Chain Ladder method. 
  
The second model has been proposed by Kremer in 1982 and  extensively used. It considers 
the factorial LogNormal models or Generalized Linear Models (GLM) and specifically the 
over dispersed Poisson model (Renshaw et al., 1998). Bootstrapping the Pearson residuals of 
an over dispersed Poisson model gives an estimate of the reserves distribution (England et al., 
2002) and the corresponding percentiles. However it is commonly admitted that bootstrap is 
less efficient for extreme values and tail distribution. 

 
For this paper the factorial GLM approach has been chosen. First we show the efficiency and 
the generality of the Delta method (detailed in appendix) for the calculation of the estimation 
risks. We extend with the building of confidence intervals for parameters linked to the 
reserves. The calculation of such confidence intervals is straightforward within an Excel 
spreadsheet thanks to products of matrix.  
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This paper deals also with  approaches which can provide us with an estimation of reserve 
distribution and the corresponding percentiles. They are concerned with moments and 
moment generating functions (m.g.f.) which are stable under addition of independent random 
variables. Standard approximation formulas or inversion of the m.g.f. can provide us with 
such estimates but also with estimation risk and confidence intervals if needed.  
 

 
2. NOTATIONS, MAIN ISSUES 
 

For a given line of business, claims are assumed to be closed in (n + 1) years. Generalized 
linear models (GLM) are based on incremental payments which are supposed to be random 
variables , , 0,...,ijX i j n=  under a strong independence assumption:  

The random variables , , 0,...,ijX i j n=  are assumed to be independent. 
 
In particular, for a given origin year, compensation payments between one delay to another 
are excluded. 
Among the (  variables of the payments rectangle, those located in the upper triangle)21n + 1 

( )ij i j n
X

+ ≤
 have been observed. Their observations are noted ( )ij i j n

x
+ ≤

. 

 
 
 
 
 

 
 
 

Payments delays 

Origin 
Years 0 1 ""  j ""  n-i ""  n-1 n  

0 00x  01x  ""  0 jx  ""  ""  ""  0, 1nx −  0nx   

1 10x  11x  ""  1 jx  ""  ""  ""  1 1,nx −    

#  #  #  ""  #   #      

i ""  ""  ""  ijx  ""  ,i n ix −      

#  #  #   #     

#  ""  ""  ""  ,n j jx −     

payments 
for the calendar year n 

#            

n-1 1,0nx −  1,1nx −          

n 0nx    Payments for the calendar year ( )i j+   

 

                                                      

1  We count 
( )( )1 2

2
n n

m
+ +

=  observations 
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Most of those models are parametric models as the variables ijX  have the same kind of 
distributions. Their distributions are assumed to belong to the exponential family of GLM 
(Poisson, Normal, Gamma …) or to their respective transformations (Log Normal, Pareto…). 
Those distributions depend on real or vector parameters ijθ . 

 
The reserve for the ith origin year is the sum of , 1 ,...,i n i inX X− + : 

1

n

i i
h n i

hR X
= − +

= ∑  

and the total reserve (random variable) is calculated as : 

1

n

i
i

R R
=

= ∑  

Remark: To analyze future annual cash flows by integrating new business, the cash flows 

may be calculated as 
n

ij
i j n k

X
+ = +
∑  for the calendar year ( )n k+ . 

2.1 Interest Parameters 

 
Most of interest parameters are linked to probability distributions of iR  or R. If  is the 
cumulative distribution function (c.d.f.) of R and 

RF

( )RFΠ  a real or vector interest parameter 

related to , then  could be: RF ( )RFΠ

• An indicator of location for R : mean ( )E R , median, percentile… 

• An indicator of dispersion: variance , standard deviation ( )V R ( )Rσ … 

• An indicator of margin:  for instance ( ) ( )E R Rγ σ+ ,  

• The probability of insufficiency for a given reserve amount oR : ( ) (0 01 RP R R F R> = − )  

• A tail indicator: the Value-at-Risk for a fixed 0ε > : VaRε is defined by: , 

in other words VaR
( )P R VaRε> = ε

ε  is the ( th)1− ε  percentile of R.  

 Alternatively we could use a hyper tail parameter: the Tail VaR defined by ( / )E R R VaRε; . 

 

More ambitiously the whole distribution of R could be obtained by its c.d.f. , or by its 

m.g.f. 
RF

( ) ( )R
RM s E s=  if defined. Due to the assumed independence of the ijX , we calculate 

the generating function as follow: 

( ) ( ) ( )
1 1

i i

n n

R R X
i i i j n

j
M s M s M

= = + ≥

= =∏ ∏∏ s   
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2.2 Estimation 

If ( )ˆ ˆ
ij i j n

X
+ ≤

⎡Π = Π
⎣

⎤
⎦

 is an estimator of ( )RFΠ 2, uncertainty related to this estimation is 

classically measured by the Mean Square Error: 

( )ˆMSE Π  ( ){ }2ˆ
RE F⎡ ⎤= Π −Π⎣ ⎦  

 ( ) ( ) ( )
2ˆ ˆ

RV E F⎡ ⎤= Π + Π −Π⎣ ⎦  

 ( )ˆV= Π  if  is an unbiased estimator Π̂

or asymptotically defined by l( )asV Π . 

 
We then calculate the standard error as the square root of estimation variance to obtain the 
estimation risk:  
 

( ) ( )ˆ ˆ. .s e MSEΠ = Π . 

or asymptotically defined by l l. . ( ) ( )as ass e VΠ = Π . 

 

Those functions are themselves respectively estimated by ( )n̂MSE Π and . ( )n̂. .s e Π

 
In addition, a level (for instance) 95% (respectively asymptotic) confidence interval 
for , is defined by its upper and lower bounds ( )RFΠ ( )ij i j n

A X
+ ≤

⎡ ⎤
⎣ ⎦

 and  such 

as 

( )ij i j n
B X

+ ≤
⎡ ⎤
⎣ ⎦

( ) ( ) ( ){ } 0,95 ( . 0,95)ij R iji j n i j n
P A X F B X resp

+ ≤ + ≤
⎡ ⎤ ⎡ ⎤≤ ∏ ≤ = →
⎣ ⎦ ⎣ ⎦

. 

 
 

3. GLM FACTORIAL MODELS 
 

Generalized Linear Models have been introduced by J. Nelder and R.Wedderburn in 1972. 
Many papers set out in details the underlying statistical theory3. One of the best reference is 
Mc Cullag and Nelder, 1989. 
 

 

                                                      
2 An indicator of location is frequently chosen: mean or median of R. Then the resulting reserves estimates 
should be closed or strictly the same as those obtained with the chain ladder technique 

 
3  Models can be implemented with specific procedures from standard statistical packages (for instance Proc 
GENMOD or REG for SAS)  
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3.1 Random Component 

 
We consider independent «response» ( ), 0,...,=ijX i j n  with probability distributions 

belonging to the exponential family. The density4 function of ( ), 0,...,ijX i j n=  is defined by  

( ) ( ) ( ){ }; , exp ,ij ij ij ij ij ijf x x b c x⎡ ⎤θ φ = θ − θ φ+ φ⎣ ⎦  

where   
  is a real parameter, called natural parameter, θij

  is a dispersion parameter (eventually known) independent of i and j, 0φ >

 b and c are functions specifically defined by the distributions, b being 
“regular”. 

 
It can be shown that : 

( ) ('μ = = θij ij ijE X b )  or, if b’ is invertible, 1' ( ) ( )ij ij ijbθ μ θ μ−= =   

( ) ( ) ( ) ( )1
ij ij ij ijV X b b b V−⎡ ⎤′ ′′ ′= φ θ = φ μ = φ μ⎣ ⎦  

 
The function V is called the variance function of the distribution. Moreover, third order 
central moment and skewness can be written as follow: 

2 2
3 ( ) '''( ) ''' ( )ij ij ijX b bμ φ θ φ θ μ⎡ ⎤= = ⎣ ⎦  and 2

3( ) (ij ijX W )μ φ μ=  with ( ) ( ) ( )W V Vμ μ μ′=  

 

3
1 3 3

2 2

( ) '''( ) ( )
( )

( ) ''( ) ( )

ij ij ij
ij

ij ij ij

X b W
X

V X b V
3

2

μ θ μ
γ φ φ

θ μ
= = =
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
Finally, the expressions of m.g.f. and cumulant generating function are: 

1( ) exp ( ) ( )

1( ) log ( ) ( ) ( )

ij

ij ij

X ij ij

X X ij

M s b s b

C s M s b s b

θ φ θ
φ

ijθ φ θ
φ

⎧ ⎫⎡ ⎤= + −⎨ ⎬⎣ ⎦⎩ ⎭

⎡ ⎤= = + −⎣ ⎦

 

By successive derivations it would be possible to deduce the moments of ijX  firstly 
depending on ( , )ijθ φ  and secondly on ( , )ijμ φ . 

                                                      
4   True probability density function in the continuous case, simple probability in the discrete case. 
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Examples:  (1) Discrete case 
 
• Bernoulli distribution : ( )1B π,

( ) ( )ln ln 1
1

x
P X x e

π
+ −π

−π= = . :0,1=x ln , 1, ( ) ln(1 )
1

b eθπ
θ = φ = θ = +

− π
 

( ) ( ) ( ) ( ), 1 , ( ) 1 (1E Y V Wμ= = π μ = μ −μ μ = μ −μ − μ2 ) . 

 
• Poisson distribution : ( )P λ

( ) ( ) ( )lnλ−λ += = x c xP X x e . :∈`x ln , 1, ( )b eθθ = λ φ = θ =  

( ) ( ), , ( )E X V Wμ = = λ μ = μ μ = μ  

 
• Over-dispersed Poisson distribution ( , )surdP λ φ : 

 Formally it would be written ( , ) ( )surd
XX P if P λλ φ
φ φ

≈ ≈   

In section  4.4  the reader will find additional rigorous presentation of this specific case.  

 
(2) Continuous case5 
 

• Gamma distribution ,⎛ ⎞υ
γ υ⎜ ⎟μ⎝ ⎠

: 

( ) ( )exp ln ,xf x c x
⎡ ⎤⎛ ⎞

= − − μ υ+ υ⎢ ⎥⎜ ⎟μ⎝ ⎠⎣ ⎦
.  :0>x ( ) ( ) 21 1, , ,E X Vθ = − φ = = μ μ = μ

μ υ
 

 
•    Inverse Gaussian distribution ( )2,μ σIG : 

( ) ( ) ( )
2

2
3 2 2 2
2

1 1 1exp exp ,
2 22

x xf x c x
xx

⎡ ⎤ ⎡ ⎤−μ ⎛ ⎞
= − = − + +⎢ ⎥ σ⎢ ⎥⎜ ⎟μσ μ μ σ⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦πσ

0>x.  

( ) ( )2 3
2

1 , , ,
2

θ = − φ = σ = μ μ = μ
μ

E X V  

• Tweedie’s compound Poisson distribution (see Wüthrich, 2003) 
 

                                                      
5For a Normal distribution :( )2,N μ σ ( ) ( )2, , ,E X Vθ = μ φ = σ = μ μ =1 

 



    8 

Remark: A similar approach could be envisaged for transforms of GLM random 
components. It would generate Log Normal, Pareto, Log Gamma … 
 
 

3.2 Covariates 

 

The covariates used by the different models represent the three natural directions of the 
payments triangle: 
 

  Development Delay covariate 

  0 j n  
    

0 
    

 
Origin Year 
covariate 

   i 
 

    
n 

 

    i+j 

Calendar Year covariate 
Including specific claims inflation  

The “Year” covariates (origin or calendar) are (qualitative) ordinal covariates. The levels 0, 1 
…n which are used within this paper are a pure arbitrary codification. However procedures 
which are used to implement covariates methods do not allow integrating such covariates. 
That’s why in the following part, the Origin Year covariates will be considered as pure 
qualitative covariates, or in other words as factors.  
 
If the origin year is assumed to be a factor, it will count (n+1) levels: 0, 1 …, n. And it will be 
replaced by n auxiliary covariates in 0, 1 associated to parameters 1 2, ,..., nα α α . The level 0 
will be used as a reference ( 0 0α = ). 
In the same way, the calendar year would be associated to parameters i jμ +  ( ). 
Here the annual inflation is assumed to be constant for the 2n considered years:

, 0,...,i j n=

i jμ μ+ = . If 
this assumption is invalid, amounts have to be deflated. 

 
The delay covariate would be differently modeled. By definition this covariate is discrete 
quantitative covariate with values equal to 0, 1… A way to model it is to use a linear 
combination of functions of j : , , log(1 )rj j j+ … (see England et al.. 2002). However in this 
paper this covariate will be considered as a (n+1) levels factor associated to 
parameters 1 2, ,...., nβ β β  ( 0 0β = ). 
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To sum up, a modeling using categorical covariates related to parameters ( ) ( )0, , 0, ,
,i ji n j n= =

α β  

and to a constant parameter μ  will be used in this paper6. To make it easier, no interactions 
between origin year and delay have been introduced. 

 
As opposed to Mack’s recursive model of which assumptions are only concerned with the 
two first (conditional) moments of ijX , factor models require an a priori link between 
distribution of variables ijX  and parameters ( ), ( ),i jα β μ . A function which links 

(ij ij )E Xμ =  to the systematic components of the GLM is extensively used. 

 
3.3 Systematic Component, link function 

Within the context of reserving, the systematic component is: 
 

ij i jη = μ + α +β   with( ), 0,...,i j n= 0 0 0α = β =  (to identify the model). 

 
The link function allows to link together the random and systematic component. It is a strictly 
monotone and derivable real function g such as: 

 
   ( )ij ijgη = μ  or ( )1

ij ijg −μ = η . 

 
Standard links7 are: 
• Identity link:  or ij ijη = μ ij i jμ μ α β= + +  (additive model) 

• Log link:  or  or logij ijη = μ e ij
ij

ημ = i j
ij eμ α βμ + +=  (multiplicative model). 

 
The parameters  which appear within the density function have only a temporary interest. 
Finally a GLM can be characterized by: 

ijθ

 
• A probability distribution for the response variable, 
• A variance function V and a dispersion parameter φ  with: 

( )ij ijE X = μ . ( ) ( ) ( ) (2
3, ( )ij ij ij ij ijV X V X V V ′ )= φ μ μ = φ μ μ . 

• A link function  ( )ij ijgη = μ

 
 
 
 
 

                                                      
6 With p=2n+1 parameters 
7 A specific “canonical “ link exists for each distribution ( Mc Cullagh et al., 1989). 
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4. INFERENCE 
 
4.1 Estimation 

As the ijX  have been assumed independent  the likelihood function related to variables of the 

upper triangle  is straightforward. ( ) ( ) ( ); , , ,ij i ji j n
L x

+ ≤
⎡ ⎤μ α β φ
⎣ ⎦

 
Putting the partial derivatives of log L with respect to parameters , ( ), ( )i jμ α β  to 0 leads to 
the Wedderburn system of which equations are independent of the parameterφ  : 

 ( ) ( )
( )

( )

, 1
0

n
ij ij ij k

ij
i j ijij
i j n

x
S b

V=
+ ≤

−μ δμ
=

δημ
∑  . 1,...,k p=  

where ( )k
ijb  is  not depending on parameters , ( ), ( )i jμ α β . 

Remark: putting log 0Lδ
=

δφ
 in addition within the system (S) would give an estimator ofφ . 

 

The system (S) can only be numerically solved with the standard Newton-Raphson or score 
algorithms. It allows to obtain the maximum likelihood estimate (m.l.e.) ( ) ( )ˆˆˆ , ,i j

⎡ ⎤ξ = μ α β⎣ ⎦
�  

of . ( ) ( ), ,i jμ α β⎡ ⎤ξ = ⎣ ⎦
Second-order partial derivatives of log L with respect to parameters allow obtaining the 
Fisher information matrix ( )I ξ . 

Its inverse ( )1I − ξ  is the asymptotic variance-covariance matrix8, denoted �( )as ξΣ , of the 

estimator �ξ . Its diagonal elements are the variances l l m2 2 2( ) , ( ) , ( )as as i as jσ μ σ α σ β  and its other 
elements are the covariances: 

l l l m l mcov ( , ) , cov ( , ) , cov ( , )as i as j as i jμ α μ β α β . 

 
If the model contains a dispersion parameter φ , we have �( )as asξ φΣ = Σ  where  is a matrix 
which is independent of

asΣ
φ . 

Under standard conditions concerning the maximum likelihood (Shao. 1999), �ξ  is 

asymptotically Normal AN [ �, (as )ξ ξΣ ].  

 

                                                      
8 Estimated asymptotic variances and covariances are extensively reported as GLM output of 
statistical packages. 
 



    11 

The functional invariance property of the maximum likelihood gives:  and ˆˆ ˆˆij i jη = μ +α +β

( ) ( )ij ijE Xμ = . 1− ˆˆ ij ijgμ = η  which are respectively the m.l.e. of ijη  and

ˆ ijμ  is the predicted value by the model. 
 

Remark :If g is a derivable function with ( ) 0g μ′ ≠ , the Delta Method (see appendix) leads 
to the asymptotic variance of : ˆ ijμ

   . ( ) ( ) ( ) (
2

2 1 2 ˆˆas ij ij as ijg −⎡ ⎤′σ μ = η σ η⎢ ⎥⎣ ⎦
)

j

 
 

Specifically for the reserves: 
 

i i
j n i

R X
> −

= ∑  gives ( ) ( )i ij
j n i j n i

E R E X
> − −

= =∑ ∑
;

ijμ

ij

 

 

  is the m.l.e. of n ˆ( )i
j n i

E R
> −

= μ∑ ( )iE R . 

 

Consequently 
1

n

i i
i i j n

jR R
= +

= =∑ ∑
;

X  gives ( ) ( )ij ij
i j n i j n

E R E X
+ +

= = μ∑ ∑
; ;

 

 

and  is the m.l.e.. of( )n ˆ ij
i j n

E R
+

= μ∑
;

( )E R . 

 
 
4.2 Estimation risk 
 

 
Let us consider the following transformation: 
 

  
22 1 ( 1): : ( )n n

ij( )η ξ η ξ η+ +→ → =\ \ ∼  
 
The Jacobian matrix Jη  related to this transformation is defined for its line (i, j) by:  

 
1 1

1, ,
0 0

ij ij ij

k l

k i l j
if if

k i l j
η η η
μ α β

∂ ∂ ∂= =⎧ ⎧
= = =⎨ ⎨≠ ≠∂ ∂ ∂⎩ ⎩  

 
Thanks to the Delta method,  � l( )ijη η=  is asymptotically Normal AN [η , �( )as ηΣ ] with:  

  � �( ) ( )as asJ Jη ηη ξ ′Σ = Σ  

for  the transposed matrix Jη′   of Jη . 
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Assuming that the link function g is strictly monotone and derivable, we will call D the 
Jacobian matrix related to the transformation ( ) ( )ij ijη μ→∼  :  
 

2 2( 1) ( 1) 1: ( ) ( )n n
ij ijgη η+ + −⎡ ⎤→ → ⎣ ⎦\ \ ∼  

This matrix is diagonal with the following standard components: 1( ) ( ijg )η− ′ . 

Thanks to the Delta method, the estimation l m( )ijμ μ=  is asymptotically Normally distributed 

AN[ m, (as )μ μΣ ] with: 

l �( ) ( )as asD Dμ ηΣ = Σ  

As ( ) ( 1,..., )i ij
j n i

E R i
−

= μ =∑
;

n , the Jacobian matrix Jμ  related to the transformation 

[ ]2( 1) : ( ) ( )n n
ij iE Rμ+ → →\ \ ∼  

has an ith line defined as: 

0
( ) 0 ,

1 ,

i

kl

if k i
E R if k i l n i

if k i l n i
μ

≠⎧
∂ ⎪= = ≤ −⎨
∂ ⎪ = −⎩ ;

 

The random vector  is asymptotically Normally distributed n
1,...,

( )i
i

E R
=

⎡ ⎤
⎣ ⎦ n

 

AN [ ] n{ }{ }1,...,
( ) , ( )i as ii n

E R E R
=

⎡ ⎤Σ ⎣ ⎦  
with n }{ l( ) ( )as i asE R J Jμ μμ ′⎡ ⎤Σ = Σ⎣ ⎦  

 
Finally   is the Jacobian matrix  of the transformation: (1,1,...,1)RJ =

[ ]: ( ) ( )n
iE R E R→ →\ \ ∼  

 

As a result n( )E R  is asymptotically normally distributed 
n{ }2( ), ( )asAN E R E Rσ ⎡ ⎤
⎣ ⎦  with: 

 
n n{ }2 ( ) ( )as R as i RE R J E R Jσ ′⎡ ⎤ ⎡ ⎤= Σ⎣ ⎦ ⎣ ⎦  

or using elements of the matrix 
n{ }( )as iE R⎡ ⎤Σ ⎣ ⎦  (see above): 

n n nn2 2( ) ( ) 2 cov ( ), ( )as as i as i j
i i j

E R E R E R Eσ σ
≠

R⎡ ⎤ ⎡ ⎤ ⎡= + ⎤
⎣ ⎦ ⎣ ⎦ ⎣∑ ∑ ⎦  

 
Those results allow measuring estimation risk thanks to the estimated asymptotic relative 
standard error: 
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m n

n
( )

( )
as E R

E R

σ ⎡ ⎤
⎣ ⎦

 

From the asymptotic Normality of n( )E R  a asymptotic level (1-η)  confidence interval of 

( )E R  (with η such as 0< η <1) can be deduced: 

  
n m n n m n

1 1( ) ( ) , ( ) ( )as asE R q E R E R q E Rη ησ σ− −
⎡ ⎤⎡ ⎤ ⎡− + ⎤

⎣ ⎦ ⎣⎣ ⎦⎦  
where 1q η−  is the (1-η)th percentile of the standard Normal distribution. 
 
If the variance function V is strictly monotone and derivable, the same approach could apply 
to the variance of R because: 

1 1

( ) ( ) ( )
n n

ij ij
i j n i i j n i

V R V X Vφ μ
= − = −

= =∑ ∑ ∑ ∑
; ;

 

And more generally, it could be applied to the cumulants and then to the moments of this 
variable R. 
 
Estimation risk and confidence intervals for the margin ( ) ( )E R Rγσ+  could be obtained by 
using the Delta method as well. 

 

4.3 Deviance 
 

For , we consider for the celli j n+ ≤ ( ),i j , the following residuals9: 
 
 (i) Raw residual:  ˆij ij ijr x= −μ

 
 (ii) Deviance residual: ( ) ( )ˆsgnD

ij ij ij ijr x= −μ d   where: 

  ( ) ( ) ( ){ }ˆ ˆ2ij ij ij ij ij ijd x b b⎡ ⎤= θ − θ − θ − θ⎣ ⎦
� �  

 
is the ( ,i j) ith deviance term by using the notations introduced in section § 3.1: 

( )1
ij ijb x−′θ =�  and ( )1ˆ ˆij ijb −′θ = μ . 

 
The aim of  residuals analyses is to detect outlier cells and deviation from the hypotheses 
(Fahrmeir et al, 2001). 
 
By considering these residuals globally, they lead to the deviance10, which is a goodness-of-
fit indicator of the model: 

                                                      

9 Alternatively we could consider the Pearson residual : : 
( )

( ) ˆ

ˆ
ij ijp

ij

ij

x
r

V

−μ
=

μ
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    2 ij

i j n
D d

+ ≤

= ∑  

The statistic * DD
φ

=  is the standardized deviance. 

Let emphasize that minimizing D or will give an optimal combination of covariates but 
only within the same random component (same V and

*D
φ ). 

 
Particular cases: 

• Poisson  :  ( )P λ ( )ˆ2 ln
ˆ

ij
ij ij ij

i j n ij

x
D x x

+ ≤

⎡ ⎤
= −⎢ ⎥

μ⎢ ⎥⎣ ⎦
∑ −μ  

• Normal  :( )2N ,μ σ ( )22 ˆij ij
i j n

D X x
+ ≤

= = −μ∑  or the sum of squared residuals of the standard 

case. 

• Gamma ,⎛ ⎞υ
γ υ⎜ ⎟μ⎝ ⎠

  : 
ˆ

2 l
ˆ ˆ

ij ij ij

i j n ij ij

n
x x

D
+ ≤

⎛ ⎞−μ
= −⎜ ⎟⎜ ⎟μ μ⎝ ⎠
∑  

• Inverse-Gaussian 2( , )IG μ σ  : 
m

m

2

2

( )
2 ij ij

i j n
ij ij

x
D

x

μ

μ+ ≤

−
= ∑  

 
 

4.4 Quasi-likelihood, selection of models 
 

If the variance function ( ) 0V μ ;  and possibly the dispersion parameter φ  are specified 
without any reference to an underlying distribution of the exponential family, Wedderburn’s 
equations and asymptotic properties of the m.l.e. �ξ  remain valid (Mc Cullagh et al.. 1989). It 
leads to quasi-likelihood models that are used for ratemaking ( Renshaw, 1994).  

The quasi-likelihood  is defined by ( , )
( )

ij

ij

ij

x
i j n

x u
q x du

V u
μ

μ
φ+ ≤

−
= ∑ ∫  

The system of partial derivative functions  gives the Wedderburn’s equations. 
 
Remark : Under certain conditions, such approach can be used with negative increments 
within the payments triangle. 

 

By analogy the deviance defined before can be extended to the quasi-deviance D11  

                                                                                                                                                                     
2 22 ( )P

i
i j n

r
+ ≤

= ∑  Xχ  :  10 Alternatively we could obtain the generalized Pearson statistic

 
11 Alternatively we could use the quasi-likelihood coming from Pearson's chi-squared statistic 
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l2 ( , )ij
i j n

D d q xφ μ
+ ≤

= = −∑       with     m2
( )

ij

ij

x ij
ij

x u
d d

V uμ
u

−
= ∫ , 

and can be extended also to the standardized deviance * DD
φ

= . 

Ifφ  is a parameter, it is replaced everywhere by its deviance estimate � 1 D
m p

φ =
−

. 

Particular case : Over-dispersed Poisson distribution 
 we obtain  ,  ( ) ( ), , ( )E X V Wμ = = λ μ = μ μ = μ φ  

and    2
3( ) , ( )V X Xφμ μ φ μ= =  (see section § 3.1) 

 
To compare different models, Nelder et al. (1987), have introduced the extended quasi-
likelihood , defined by:  q+

l 12 ( , ) log 2 ( )ij ij
i j n i j n

q x d V xμ π
φ

+

+ ≤ + ≤

φ⎡ ⎤− = + ⎣ ⎦∑ ∑  

Maximizing the statistic q  allows comparing models with different structures+ ( , , )V gφ . 
Minimizing  is then equivalent. 2q+−
 
Remark: In this approach, the family of power variance functions would be the main case : 

( )V τμ μ= , where τ  is a real parameter, and 0( ) logV τμ μ→⎯⎯⎯→ . 
It would be the same with additive and multiplicative links. 
 
 
         5. ESTIMATION OF THE PREDICTIVE DISTRIBUTION 
 
Knowing the moments of R will not be sufficient to obtain additional characteristics of R (see 
section § 2.1) : probability of insufficiency, percentiles (or VaR) …That’s why it is necessary 
to get the distribution of R. 
 
The distribution of R can be obtained using the additive properties of the m.g.f. of the ijX  in 
some very specific cases : Poisson, over dispersed Poisson and Normal distributions. 
 
If the variables ijX  are over-dispersed Poisson distributed ( , )surd ijP μ φ , then R is formally 
over-dispersed Poisson distributed and its distribution is : 

   ( , )surd RP μ φ  with 
1

n

R i
i i j n

jμ μ
= +

=∑ ∑
;

. 

Commonly if 50Rμ ≥ , the c.d.f. of the Poisson distribution is approximated by a standard 
Normal distribution with correction for continuity : 
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1/ 2( ) R

R

rP R r μ
φμ

⎛ ⎞+ −
≤ = Φ⎜⎜

⎝ ⎠
⎟⎟  and percentile 1 1

1( )
2R Rq R qη ημ φμ− −= − +  

From the m.l.e. m( )ijμ  of ( )ijμ , we deduce mRμ  and n1 ( )q Rη−  for Rμ and  :  1 ( )q Rη−

 

    n m �m
1 1

1( ) 2R Rq R qη ημ φμ− −= − +  

We would obtain the estimation risk and confidence intervals. 
 
Usually we cannot obtain directly such predictive distribution. Therefore we suggest some 
appropriate approaches described in the next section. 
 
 

5.1 Inversion of the moment generating function 
 

As the independence of the variables ijX  has been assumed, the m.g.f. of R can easily be 
obtained by: 

( ) ( ) ( )
1 1

i i

n n

R R X
i i i j n

j
M s M s M

= = + ≥

= =∏ ∏∏ s  

( ) { }1 1

1 1

1exp ( ( )) ( ( ))
n n

R ij
i j n i

M s b g s b gθ η φ θ η
φ

− −

= = − +

⎧ ⎫
ij⎡ ⎤ ⎡ ⎤= + −⎨ ⎬⎣ ⎦ ⎣ ⎦

⎩ ⎭
∑ ∑  

 
If this generating function is not standard, this one must be inverted to get the c.d.f. of R. The 
Fast Fourier Transform may allow resolving numerically the problem (Klugman et al.,1998) 
 
 

5.2 Approximated distributions 

 
Approximated distributions based on the first moments of R use classical methods in actuarial 
sciences: Normal Power, Esscher, translated Gamma, Bower’s Gamma approximation.…. 
(Gerber, 1979,  Partrat et al.. 2005) 
Such methods enable to approximate quite precisely the c.d.f.   and the insufficiency 
probability. Half of them provide also with a simple analytical approximation of percentiles. 
These quantities are then estimated by maximum likelihood. The Delta method could give the 
estimation risks and asymptotic confidence intervals.   

RF

With 
1 1

n n

ij
i j n i

R X
= = − +

=∑ ∑  and independence of ijX ,  the moments of R can be expressed as a 

function of ( )ijμ (see section § 3.1) : 

1 1
( )

n n

ij
i j n i

E Rμ μ
= = − +

= =∑ ∑  
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2

1 1 1 1

( ) ( ) ( )
n n n n

ij ij
i j n i i j n i

V R V X Vσ φ μ
= = − + = = − +

= = =∑ ∑ ∑ ∑  

2
3 3 3

1 1 1 1
( ) ( ) ( )

n n n n

ij ij
i j n i i j n i

R X Wμ μ μ φ
= = − + = = − +

= = =∑ ∑ ∑ ∑ μ  

3
1 1 33

2

( )
( )

( )

ij
i j

ij
i j

W
R

V

μ
μγ γ φ
σ

μ

= = =
⎡ ⎤
⎢ ⎥
⎣ ⎦

∑∑

∑∑
 

The invariance property of the maximum likelihood would give a m.l.e. l l l1( , , )μ σ γ  for 

1( , , )μ σ γ  by replacing ijμ  by mijμ  in the above formulas. 
Under the condition of second order derivability of the function V, we would deduce the 
asymptotic Normality of the estimator l l l1( , , )μ σ γ  and its variance-covariance matrix using 

l( )as μΣ . 
 

5.2.1 Normal Power Approximation 

We obtain directly ( )
2

1 1 1

3 9 6( ) ( ) 1NP
R

xF x F x μ
γ γ γ σ

⎡ ⎤− −⎛ ⎞≈ = Φ + + +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

  

From the equation ( ) ( ) 1NPF x η= −  or 12
1 1 1

3 9 61 x q η
μ

γ γ γ σ −

− −⎛ ⎞+ + + =⎜ ⎟
⎝ ⎠

 

 

we deduce the approximated value of the (1 η− )th percentile ( ) 21
1 1 1

6
NPq q qη η

γμ σ− −
⎡ ⎤

1 η−= + +⎢ ⎥⎣ ⎦
−  

estimated (maximum likelihood) by  n l l l
( ) 21
1 1 1

6
NPq q qη η

γμ σ− − 1 η−

⎡ ⎤
= + + −⎢ ⎥

⎢ ⎥⎣ ⎦
. 

 
Finally we would obtain the estimated standard error of n( )

1
NPq η− and asymptotic confidence 

interval for ( )
1

NPq η− . 

 

 

Remark: Esscher approximation (Gerber,1979, Denuit et al.. 2004) 
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The Esscher transform of  with parameter h is the c.d.f. FRF h defined by: 

  
0

1( ) ( )
( )

x hy
h RF x e dF y

M h
= ∫  

with m.g.f.. 

( )( )
( )h

M s hM s
M h

+
=  

Expectation of Fh is '( )( )
( )

M hE h
M h

=  

 
For x μ;  the Esscher approximation of is obtained by applying the third order 
Edgeworth approximation to  for h such as

( )RF x
( )hF x ( )E h x= . Hence for the tail function : 

 

  
( ) 1

0 3
( )( ) ( ) ( ) ( ) ( )
6

ES hx
R h

hF x F x M h e E h E hγσ σ−
h

⎡ ⎤≈ = −⎢ ⎥⎣ ⎦
 

2
1, ( )h hσ γ  being respectively the variance and  skewness of  and the Esscher functions:

  

hF

[ ]
2

2
0 ( ) 1 ( )

u

E u e u= −Φ  

  
2

3
3 0

1( ) ( )
2
uE u u E
π

−
= + u  

 
Contrary to the NP approximation, the estimation of percentiles requires a numerical solution.  
 
Particular case : over-dispersed Poisson distribution 
 

As R
φ

 follows a Poisson distribution ( )P μ
φ

, we have formally :  

   ( )( ) exp 1sM s eφμ
φ
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

 

 

   ( )( ) exp ( 1)
( )

h s
h

M s hM s e e
M h

φ φμ
φ
⎡ ⎤+

= = −⎢ ⎥
⎣ ⎦

  

 
which is the m.g.f. of an over-dispersed Poisson model ( ,h

surdP eφ )μ φ  
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This means that 1 ln( )xh
φ μ

= , 
1

2 2
1, ( )

hh
h e h e

φφ φσ φμ γ
μ

= = and we deduce the Esscher 

approximation of . ( )hF x
 

5.2.2 Gamma approximation 

A. Translated Gamma 

The distribution of R is approximated by a translated Gamma distribution 0( , , )xγ υ β . The 
corresponding parameters are obtained from identification of the three first moments: 

0 32 2

2( ) , ( ) , ( )E R x V R Rν ν νμ
β β β

= + = =  

 so that   02
1 1

4 2, , x
1

2σν β μ
γ σγ γ

= = = −  

and          [ ] [ ]2
2

( )
0 0( ) ( ) , ( ) 2 ( )GT

R RF x F x x x F x x
νχ

ν β β≈ = Γ − = −  

where 2
2

( , ) , ( )y F y
νχ

νΓ are respectively the incomplete Γ  function and the c.d.f. of a  

Chi-squared distribution with 2ν  degrees of freedom. This distribution is available in most 
statistical packages.  
 
From the equation defining the percentiles ( ) ( ) 1GT

RF x η= −  we deduce : 

    ( ) 2
1 0 2

1( ) (1 )
2

GTq R xη νχ η
β− = + −  

where 2
2 (1 )νχ η− is the (1 )thη−  percentile of the Chi-squared distribution with 2ν degrees of 

freedom. Such value is easily available. 
 
Estimations (maximum likelihood), estimation risk and confidence intervals of parameters 
could be obtained as described in section 5.2.1. 
 
 B. Bowers' Gamma 

This method is based on Laguerre orthogonal polynomials and the distribution ( , )γ ν β  where 
the two first moments coincide with those of R. 

This means that  
2

2 2,μ μν β
σ σ

= =  

We deduce  ( )( ) ( ) ( )GB
RF x F x G xβ≈ =  

with 
2

2
3

1 2( ) ( , ) ( 2 )
6 ( 3) ( 2)

y y yG y y e yνν β μ ν
ν ν ν

− 1
( 1)

⎡ ⎤
= Γ − − − +⎢ ⎥Γ + Γ + Γ +⎣ ⎦
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As for the Esscher approximation, the approximation of percentiles requires a numerical 
solution. 
. 

6. NUMERICAL EXAMPLE ON MARINE BUSINESS 

The table 1 gives the incremental claims amounts for some line of Marine business with 
underwriting years from 1984 to 1991. 
 
Table 1: triangle of incremental payments  

 
 

Years  
0 1 2 3 4 5 6 7 

0 1 381 4 399 4 229 435 465 205 110 67 
1 859 6 940 2 619 1 531 517 572 287  
2 6 482 6 463 3 995 1 420 547 723   
3 2 899 16 428 5 521 2 424 477    
4 3 964 15 872 8 178 3 214     
5 6 809 24 484 27 928      
6 11 155 38 229       
7 10 641        

 
 
By applying the standard chain ladder method we obtain the following future incremental 
predicted values. In addition the last column provides with the reserve amounts for each 
underwriting year and the total reserves amount (table 2) : 
 
Table 2 : Chain ladder reserves 
 

1 381 4 399 4 229 435 465 205 110 67 0 
859 6 940 2 619 1 531 517 572 287 80 80 

6 482 6 463 3 995 1 420 547 723 323 119 442 
2 899 16 428 5 521 2 424 477 984 472 174 1 631 
3 964 15 872 8 178 3 214 921 1 141 547 202 2 811 
6 809 24 484 27 928 5 923 1 921 2 379 1 141 421 11 786 

11 155 38 229 26 719 7 611 2 469 3 057 1 467 541 41 864 
10 641 35 782 25 117 7 155 2 321 2 874 1 379 509 75 137 

       Total 133 750 
 
 
The table 3 gives the useful part of the statistic 2q+−  for some standard GLM distributions 
according to the canonical, identity and log links. By minimizing this statistics we keep over- 
dispersed and Gamma models.   
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Table 3 : values of the statistic  2q+−

 Canonical Identity Log 

Poisson 15 319 37 201 15 319 

Over dispersed Poisson 536 569 536 

Normal 620 620 2 369 

Gamma 530 534 478 

Normal – Inverse 797 798 788 

 
 
6.1 Over-dispersed Poisson model 
 
The table 4 gives the parameters estimates and their associated standard errors. We present 
two ways of estimating the dispersion parameterφ  : either with the deviance, or with the 
Pearson residuals. The standard error is impacted but not the parameters estimates. 
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Table 4: Parameters estimates 
 

Over-dispersed Poisson model 

Estimation of φ  : Deviance Estimation of φ  : Pearson

Parameter Estimates Standard errors Estimates Standard errors 
μ  7.2447 0.2914 7.2447 0.3083 

0α  0.0000 0.0000 0.0000 0.0000 

1α  0.1716 0.3429 0.1716 0.3627 

2α  0.5753 0.3174 0.5753 0.3358 

3α  0.9563 0.3011 0.9563 0.3186 

4α  1.1035 0.2968 1.1035 0.3140 

5α  1.8388 0.2793 1.8388 0.2954 

6α  2.0896 0.2881 2.0896 0.3048 

7α  2.0278 0.3902 2.0278 0.4128 

0β  0.0000 0.0000 0.0000 0.0000 

1β  1.2127 0.1664 1.2127 0.1761 

2β  0.8588 0.1936 0.8588 0.2048 

3β  -0.3969 0.3261 -0.3969 0.3450 

4β  -1.5229 0.6223 -1.5229 0.6584 

5β  -1.3090 0.7173 -1.3090 0.7588 

6β  -2.0434 1.3617 -2.0434 1.4406 

7β  -3.0400 3.2824 -3.0400 3.4725 

φ  716.1832 - 801.5148 - 
 
Hereafter is the estimated variance-covariance matrix �( )as ξΣ  (section 4.1) obtained with φ  
estimated by  deviance 

10,770,050,040,030,030,020,020,080,070,070,070,060,060,060,08-
0,051,850,040,030,030,020,020,050,030,030,030,030,030,000,05-
0,040,040,510,030,030,020,020,040,020,020,020,020,000,000,04-
0,030,030,030,390,030,020,020,030,010,010,010,000,000,000,03-
0,030,030,030,030,110,020,020,030,010,010,000,000,000,000,03-
0,020,020,020,020,020,040,020,020,010,000,000,000,000,000,02-
0,020,020,020,020,020,020,030,020,000,000,000,000,000,000,02-
0,080,050,040,030,030,020,020,150,070,070,070,060,060,060,08-
0,070,030,020,010,010,010,000,070,080,070,070,060,060,060,07-
0,070,030,020,010,010,000,000,070,070,080,070,060,060,060,07-
0,070,030,020,010,000,000,000,070,070,070,090,060,060,060,07-
0,060,030,020,000,000,000,000,060,060,060,060,090,060,060,06-
0,060,030,000,000,000,000,000,060,060,060,060,060,100,060,06-
0,060,000,000,000,000,000,000,060,060,060,060,060,060,120,06-
-0,08-0,05-0,04-0,03-0,03-0,02-0,02-0,08-0,07-0,07-0,07-0,06-0,06-0,060,08
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Products of matrix (see section 4.2 ) give  the relative standard errors in table 5. 

Table 5: Reserve estimates and estimation risks 
 

Over-dispersed Poisson model 

 Estimation ofφ  : 

Deviance 

Estimation ofφ  : Pearson 

residuals 

Bootstrap (1000 samples) 

 
Estimates 

of E(Ri) 
se(Ri)/Ri

Estimates of 

E(Ri) 
se(Ri)/Ri

Estimates of 

E(Ri) 
se(Ri)/Ri

1 80 329% 80 348% 71 331% 

2 442 134% 442 142% 427 123% 

3 1 631 70% 1 631 74% 1 624 62% 

4 2 811 53% 2 811 56% 2 777 46% 

5 117 86 32% 11 786 34% 11 706 28% 

6 41 864 20% 41 864 21% 41 799 18% 

7 75 137 31% 75 137 33% 75 595 29% 

Total 133 750 19% 133 750 20% 134 000 20% 

 
 
In the tables 6 and 7 we give the estimates of the percentiles of R using additivity and Normal 
Power approximation. 
 
 

A. Additivity 

l �133750 , 26,762 (28,311)μ φ= =  where �φ is the deviance estimate (or Pearson Chi-

squared) : 
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Table 6: Percentiles estimates 

1 η−  0.50 0.75 0.80 0.90 0.95 0.99 

1q η−  0 0.6745 0.8416 1.2816 1.6449 2.3263 

n
1

( )q R
η−

 
133 750 

(133 750) 

140 351 

(140 733) 

141 987 

(142 463) 

146 293 

(147 019) 

149 849 

(150 781) 

156 518 

(157 836) 

 

B. NP Approximation 

With 

l � l � l

l �
l1

133750 , 26,762(28,311), 9787,358 (10353,856)

0,0732 (0,0774)

μ φ σ φμ

φγ
μ

= = = =

= =
 

we obtain the table 7 giving the estimated percentiles of  R : 

Table 7: Percentiles estimates 

1 η−  0.50 0.75 0.80 0.90 0.95 0.99 

1q η−  0.0000 0.6745 0.8416 1.2816 1.6449 2.3263 

n( )
1 ( )NPq Rη−  

123 963 

(123 396) 

130 619 

(130 441) 

132 284 

(132 205) 

136 702 

(136 885) 

140 385 

(140 789) 

147 377 

(148 205) 

 

C. Gamma Approximation 

We observe a very small value of 1γ (0.0753). As a consequence the approximation based on 

a Gamma distribution is not suitable.  
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6.2 Gamma model 
 
The table 8 gives the parameters estimates of a Gamma model with Log link and their 
respective standard errors. φ  has been estimated with maximum likelihood, deviance and 
Pearson residuals.  
 
Table 8: Parameters Estimates and standard errors 

Gamma Model  
Estimation of φ  :  

likelihood 

Estimation of φ  : 
Deviance 

Estimation of φ  : 
Pearson 

parameters Estimates Standard errors Estimates Standard 
errors Estimates Standard 

errors 
μ  7.2097 0.1783 7.2097 0.2355 7.2097 0.2409 

0α  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1α  0.4076 0.1791 0.4076 0.2366 0.4076 0.2421 

2α  0.8203 0.1880 0.8203 0.2483 0.8203 0.2540 

3α  0.9075 0.1983 0.9075 0.2619 0.9075 0.2679 

4α  1.2144 0.2151 1.2144 0.2841 1.2144 0.2906 

5α  1.9319 0.2365 1.9319 0.3124 1.9319 0.3196 

6α  2.1280 0.2781 2.1280 0.3673 2.1280 0.3757 

7α  2.0627 0.3727 2.0627 0.4923 2.0627 0.5036 

0β  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1β  1.1958 0.1783 1.1958 0.2355 1.1958 0.2409 

2β  0.7055 0.1901 0.7055 0.2511 0.7055 0.2568 

3β  -0.5224 0.2005 -0.5224 0.2648 -0.5224 0.2709 

4β  -1.4714 0.2158 -1.4714 0.2850 -1.4714 0.2915 

5β  -1.5017 0.2379 -1.5017 0.3142 -1.5017 0.3214 

6β  -2.1960 0.2844 -2.1960 0.3756 -2.1960 0.3842 

7β  -3.0050 0.3727 -3.0050 0.4923 -3.0050 0.5036 

φ  0.1071 2.1620 0.1869  0.1956  
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With these estimates we get the predicted values by the models and the relative standard 
errors (table 9): 
 
Table 9: Reserve estimates and estimation risks 

Gamma Model  
Estimation of φ  : 

likelihood 
Estimation of φ  : 

Deviance 
Estimation of φ  : Pearson

 Estimates 

of E(Ri) 
se(Ri)/Ri

Estimates 

of E(Ri) 
se(Ri)/Ri

Estimates 

of E(Ri) 
se(Ri)/Ri

1 101 37% 101 49% 101 50% 

2 494 25% 494 33% 494 34% 

3 1 286 22% 1 286 29% 1 286 30% 

4 2 793 22% 2 793 28% 2 793 29% 

5 11 262 23% 11 262 30% 11 262 31% 

6 36 702 27% 36 702 35% 36 702 36% 

7 69 563 36% 69 563 48% 69 563 49% 

Total 122 200 22% 122 200 29% 122 200 30% 

 

We deduce the estimates l l l
1, ,μ σ γ  for the reserve R: 

 
l l l

1122192 , 21129 , 0.4927μ σ γ= = =  

. 
Percentiles estimates are given in tables 10 (Normal Power) and 11 (Translated Gamma). 

Results in brackets are the percentiles estimates using the chain ladder estimate  
of

l 133750μ =
μ : 
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A. Normal Power Approximation 
 

Table 10: Percentiles estimates (Normal Power approximation) 
 

1 η−  0.50 0.75 0.80 0.90 0.95 0.99 

1q η−  0 0.6745 0.8416 1.2816 1.6449 2.3263 

n( )
1 ( )NPq Rη−  

101 063 

(112 621) 

116 104 

(127 662) 

120 074 

(131 632) 

130 992 

(142 550) 

140 513 

(152 071) 

159 606 

(171 164) 

 
 

B. Translated Gamma approximation 
 

With the values above we deduce 016.4750 , 0.000192 , 36431xν β= = =  and the estimated 
percentiles in table 11 : 
 
Table 11: Percentiles estimates (Gamma approximation) 

1 η−  0.50 0.75 0.80 0.90 0.95 0.99 

2
2 (1 )νχ η−  32.2878 37.9965 39.5081 43.6774 47.3338 54.7324 

n( )
1 ( )GTq Rη−  

120 469 

(132 027) 

135 327 

(146 885) 

139 262 

(150 820) 

150 113 

(161 671) 

159 630 

(171 188) 

178 887 

(190 445) 

 
 
 

7. CONCLUSION 

Within the general framework of GLM models, by definition asymptotic, this paper gives a 
simple procedure to determinate the estimation risk of any reserving parameter. It provides 
also with alternative methods to estimate the percentiles of reserves amounts.  
The fact that such approaches can be used within a quasi-likelihood framework potentially 
increases the scope of modeling based on a claims amounts triangle. 
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Appendix: the Delta Method12

 
1. Real parameter case  
 

Given a random variable X with distribution depending on a parameter θ ∈Θ , open in \ and 
1( ,..., )nX X  a n-sample (i.i.d.) from X. 

 
Given an estimator T X of 1( ,..., )n nX θ  asymptotically Normal13 with asymptotic variance and 
standard error:  

   
2 ( )( )as nV T
n

σ θ
=     and  ( )( )as nse T

n
σ θ

=  

meaning that: 
2 ( )( , )nT AN
n

σ θθ  or  ( ) (0,1)
( )

Ln
n

n T Nθ
σ θ →+∞

−
⎯⎯⎯→  

Remark:  if σ  is a continuous function n
2 ( )( ) n

as n
TV T

n
σ

= estimates  ( )as nV T

 
Given a regular functionπ 14, then ( )nTπ  is an asymptotically Normal estimator of ( )π θ  with 
asymptotic variance:  

[ ]2'( ) ( )
( )as nV T

n
π θ σ θ

=                                                       

2[ '( ) ( )]( ) ( ),nT AN
n

π θ σ θπ π θ
⎡ ⎤
⎢ ⎥
⎣ ⎦  

Remark: if σ  is  a continuous function and if π is continuous and derivable then and 
 are estimated by : 

( )as nV T
( )as nse T

 

   n [ ]2'( ) ( )
( ) n n

as n

T T
V T

n
π σ

=  and n
'( ) ( )

( ) n n
as n

T T
se T

n
π σ

=  

 

As the Slutsky theorem gives  [ ]
n

( ) ( )
(0,1)

( )
n L

n
as n

T
N

se T
π π θ

→+∞

−
⎯⎯⎯→  

we deduce  an level 95% asymptotic confidence interval for ( )π θ : 
 

     n n( ) 1,96 ( ) ; ( ) 1,96 ( )n as n n as nT se T T se Tπ π⎡ ⎤− +⎣ ⎦

                                                      
12     Proofs of these results are given in Shao,1998.  
13  As every maximum likelihood estimator under some regularity conditions 
14   Derivable function with ( ) 0π θ′ ≠  for θ ∈Θ . 
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2. General case  

 
Given  a random variable  whose distribution depends on a parameter nT θ ∈Θ (with  open 
in ) and is asymptotically Normal : 

Θ
r\

    1[ , ( )] ( ) [0, ( )]L
n r n rnT AN ie n T N

n
θ θ θ →+∞Σ − ⎯⎯⎯→ Σ θ  

where 1( ) ( )as nT
n

θΣ = Σ  is the asymptotic variance-covariance matrix of . nT

 
Given 1( ,..., )sπ π π= a regular function on Θwith values in s\  and the Jacobian matrix of 

π , i

j
θ

π
θ

⎛ ⎞∂
Δ = ⎜ ⎟⎜ ⎟∂⎝ ⎠

1,..., ; 1,...,i s j= = r , then  

( )nTπ  is 1( ), ( )AN
n θ θπ θ θ⎡ ⎤′Δ Σ Δ⎢ ⎥⎣ ⎦

 

 

so that the variance-covariance matrix of ( )nTπ is [ ] 1( ) ( )as nT
n θ θπ θ ′Σ = Δ Σ Δ . 

 
Denoting [ ] , 1,...,

( ) ( )kl k l r
θ σ θ

=
Σ = , the (  order component of the matrix is defined by:  , )thi j

( )

1 1

1( ) ( ) ( ) ( )
r r

ji
ij kl

k l k ln
π ππσ θ σ θ θ

θ θ= =

θ
∂∂

=
∂ ∂∑∑  

 
with  

[ ]( ) ( ) ( )ii as i nV Tπσ θ π=  and ( ) ( ) ( ), ( )ij as i n j nCov T Tπσ θ π π⎡ ⎤= ⎣ ⎦  

 
Remark: if π  is a C1 function and if klσ  is a continuous function for  then , 1,...,k l r=

[ ]( )as nTπΣ  is estimated by n 1( ) ( )
n nas n T n TT T

n
′Σ = Δ Σ Δ  
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	(1) To explain the underlying assumptions of the model, 
	(2) To validate the assumptions with a residuals analysis (at least partially), 
	(3) To assess the volatility of the predicted amounts of reserve provided by the model, 
	(4) To build confidence intervals, 
	(5) To simulate with Monte-Carlo methods the loss reserve for future accident years, as required for a DFA analysis. 
	  
	 
	Most of interest parameters are linked to probability distributions of   or R. If   is the cumulative distribution function (c.d.f.) of R and   a real or vector interest parameter related to , then   could be: 

	 An indicator of location for R : mean , median, percentile… 
	 The probability of insufficiency for a given reserve amount :   
	 A tail indicator: the Value-at-Risk for a fixed :  is defined by:  , in other words   is the th percentile of R.  
	 Alternatively we could use a hyper tail parameter: the Tail VaR defined by . 
	More ambitiously the whole distribution of R could be obtained by its c.d.f.  , or by its m.g.f.   if defined. Due to the assumed independence of the , we calculate the generating function as follow: 
	If   is an estimator of   , uncertainty related to this estimation is classically measured by the Mean Square Error: 
	    
	   
	   if   is an unbiased estimator 
	 . 



	 Bernoulli distribution : 
	 Poisson distribution : 
	 Gamma distribution  : 
	    Inverse Gaussian distribution : 
	    with  (to identify the model). 

	 Identity link:   or   (additive model) 
	 Log link:   or   or   (multiplicative model). 
	 A probability distribution for the response variable, 
	 A variance function V and a dispersion parameter   with: 
	 A link function  
	 
	    . 

	 
	 (i) Raw residual:   
	 (ii) Deviance residual:    where: 
	 Poisson   :    
	 Normal   :  or the sum of squared residuals of the standard case. 
	 Gamma    :   
	 
	 
	As the independence of the variables   has been assumed, the m.g.f. of R can easily be obtained by: 


