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Summary

The nonparametric graduation of mortality data aims to estimate death rates by carrying out a
smoothing of the crude rates obtained directly from original data. The main difference with regard
to parametric models is that the assumption of an age-dependent function is unnecessary, which is
advantageous when the information behind the model is unknown, as one cause of error is often the choice
of an inappropriate model. This paper reviews the various alternatives and presents their application to
mortality data from the Valencia Region, Spain. The comparison leads us to the conclusion that the best
model is a smoothing by means of Generalised Additive Models (GAM) with splines. The most interesting
part of this paper is the development of a plan that can be applied to mortality data for a wide range
of age groups in any geographical area, allowing the most appropriate table to be chosen for the data in
hand.
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1 Introduction

Nonparametric graduation aims to obtain new values from the original data, in which any influence
that does not come from the predictor variable is eliminated and, contrary to parametric graduation,
a function that expresses the relationship between death rates and age is not provided.

Although this paper only applies graduation to the probability of death,q x, the results can be
extended to the force of mortality at agex, � x or mx central mortality rates at agex.

Parametric and nonparametric methods can complement each other in certain cases, in the sense
that the result of nonparametric graduation can more adequately describe the type of equation to be
used. Moreover, nonparametric methods can be used to carry out a diagnosis of parametric models
or simply to examine data.

Univariate smoothing techniques are compared in an extensive simulation in Breiman & Peters
(1992).

A review of smoothing life tables can be found in Wanget al. (1998) and Wang (2005). They
provide rigorous asymptotic results and show that the transformation approach is supported by both
asymptotic and simulation results.

The representation of mortality data by means of nonparametric models attracted the attention of
actuaries, demographers and statisticians throughout the past century. Nielsen (2003) reviews papers
on smoothing and prediction, most of these are papers with theoretical considerations; however,
applications to actuarial science, biostatistics and finance are also discussed. Another review of these
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methods, though only applicable to medicine, can be found in Zhang (2004).
This paper intends to review the various nonparametric methods, all of which are based on

smoothing techniques. The forerunner of these methods was moving averages (Hoem & Linnemann,
1988; Benjamin & Pollard, 1992), a method that is not dealt with in this paper due to the fact that this
concept has since been clearly improved upon by other alternatives. In section 2, the main methods
are described: kernel smoothing, splines, locally-weighted regression (LOESS) and GAM. In section
3, the various nonparametric methods are applied to mortality data from the Valencia Region (Spain),
specifically to the three-year period from 1999–2001. The last section is dedicated to a comparison
of how well each method fits and the subsequent conclusions that can be drawn.

2 Nonparametric Methods

We consider a set of mortality rates in the form of life tables. We wish to produce smoother
estimates,�qx, of the true but unknown mortality probabilitiesqx from the set of crude mortality rates,
�qx, for each agex. The crude rate at agexi is typically based on the corresponding number of deaths
recorded,di , relative to initial exposed to risk,Ei .

Nonparametric methods obtain an estimate,�qx, at a particular age,x, by means of the weighted
averages of crude mortality rates of neighbouring ages,�x �� x�� � � � � xr �. The differences among
nonparametric estimates mainly lie in the number of points in the averager , and the differences
in weights. Habitually, the size of the neighbour is represented by the bandwidth,b, the maximum
distance from agex to any age of the neighbour,x i , so�xi � x� � b.

The power of modern computers makes all these techniques considerably more accessible and
easier to apply (see the softwareS-plus andR, for example). In the following subsections, each one
of these techniques is discussed in more detail.

2.1 Kernel Smoothing

This technique is a generalisation of the moving averages method used in temporal series to soften
them. It is a flexible technique, initially developed to estimate density functions. The first application
of this method to graduation is found in Copas & Haberman (1983). To achieve its objective, this
method uses a weighted average with weights based on a kernel function,K , according to the
equation
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where parameterb is the bandwidth. DifferentK function choices result in different types of kernel
estimations: Normal, Gaussian, Triangular, Parzen and Epanechnikov’s are the best known and,
particulary, with the latter providing the best results (Epanechnikov, 1969).

Gavinet al.(1993) describes and compares two kernel estimators ofq x that are attributed to Copas
& Haberman (1983),
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and Nayadara–Watson (Nayadara, 1964; Watson, 1964),
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respectively, in which no transformationwhatsoever is considered.Both kernel methods are discussed
in more detail, together with the criteria for bandwidth choice, in Gavinet al. (1993, 1994, 1995)
and Verrall (1996).

One problem that arises with this technique is bias in the estimation of the upper and lower bands.
Various solutions to avoid this problem are discussed in Gavinet al. (1995) and Verrall (1996).
The former defines and discusses a general adapting kernel estimation with a bandwidth that varies
according to age and studies the convenience of transforming the data. The solution proposed by
Verrall (1996) is a data transformation to which a straight line may be fitted. The literature relating
to the use of this technique leads us to conclude that the choice of kernel functionK does not have
as much influence as the value of the smoothing parameterb (Gasser & Müller, 1979; Gasseret al.,
1991; Brockmanet al., 1993; Montenegro, 2001).

Felipe et al. (2001) propose a nonparametric smoothing method to visualize the evolution of
mortality rates in Denmark and Spain. The smoothing method is based on a two-dimensional kernel.
This methodology has also been applied by Guillenet al. (2006) for studying the evolution of
mortality rates in different countries and Fledeliuset al. (2004) in the study of Swedish old-age
mortality.

2.2 Splines Smoothing

The method proposed by Whittaker (1923) and Henderson (1924), looks for the estimator ofq x,
�qx, by minimizing

W �

n�
j��

� j � �qj � �qj �
� 	 �

n�z�
j��

�	z �qj �
�� (4)

a criteria that combines fitting and smoothness and where� j are the weights,qj denotesqxj , � is
the smoothing parameter,	 is the difference operator defined by

	qj � qj � q� j���

and	z is the difference operator appliedz times. This graduation is expressed as a generalised
dynamic linear model by Verrall (1993a, l994).

The method of Whittaker–Henderson is a precedent of the splines smoothing method (Wang,
2005). Really, when we consider�qx � f �x�, a continuous function,� j � � andz � �, this criterion
becomes the penalized sum of squares defined by

n�
j��

� �qj � f �x j ��
� 	 �

� xn

x�

� f ���t���dt� (5)

where the first term measures proximity by means of the squares of the differences between the orig-
inal and adjusted values. This term is penalized by the second one, which increases with fluctuations
of the f �x�. It can be shown that (5) has a unique minimizer, which is a natural cubic spline with
knots at the values ofx j � j � �� � � � � n (Hastieet al., 2001). The parameter� determines the relative
importance of the terms and has the same role as the bandwidth in kernel estimation.

We have chosen cubic splines for two reasons, because they minimise (5) and use the smallest
number of parameters possible (the principle of parsimony). This supposes that the nodes must
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coincide with the ages,x j � j � �� � � � � n, the smooth, spline function available inS-plus and in
R works on this assumption. A cubic spline with knotsx�� x�� � � � � xn is a cubic polynomial whose
expression is

s�x� � sj �x� �
��

l��

a� j �
l �x j�� � x�l � j � �� � � �n� �

in each interval�x j � x j��� j � �� � � �n� �. This minimization problem is reformulated by Chanet
al. (1986) and they show how this graduation can be formulated as a linear programming problem
in some cases and a quadratic programming problem in others.

Detailed information on smoothing splines can be found in Hastieet al.(2001). In a recent article,
Kaishevet al. (2004) present a new algorithm that allows us to choose the number and partition of
the knots.

The use of this spline graduation begins with McCutcheon (1980, 1981) and in McCutcheon
(1987), it is applied to English Life Tables ELT No. 14. Later, Forfaret al. (1988) provide a brief
introduction to spline graduation. As far as Spain is concerned, Betzuen (1997) uses this model to
graduate data for a set of active people.

In this section, we describe a variant of the cubic spline method that does not require the optimal
choice of knots, smoothing splines. Haberman (1997) gives a brief summary of the method as applied
to English Life Tables ELT No. 15.

2.3 Locally-weighted Regression (LOESS)

The locally-weighted regression smoother was introduced by Cleveland (1979) and is discussed at
length in Fan & Gijbels (1996). This method locally (in neighbourhoods) adjusts polynomials of low
degree, whose estimates,�qx, are obtained by the regression of�qx over agex by means of weighted
least squares in each neighbourhoodN�x�. � xi weightings are assigned to each point ofN�x�, using
the tricubic weighting function

�xi � T

�
�x � xi �

	�x�

�

where

T�u� �

�
��� u���� for � � u � �

�� in other case,

and	�x� � ���xi�N�x� �x � xi �.
The amount of smoothness is determined by the span parameter, the proportion of the number of

elements in the neighbourhood in comparison with the total number of points. The relative importance
of each neighbour in the estimate depends on its distance at pointx, thereby obtaining a better fit to
valleys and peaks.

In Verrall (1996), this method, which as far as we know has not been used for the graduation
of mortality data, is considered to be promising. Finally, it is worth pointing out that the LOESS
method is related to the generalised linear models proposed by Verrall (1993a) and to the graduation
by Whittaker, all of which are based on a straight line whose gradient varies smoothly with age
(Verrall, 1993b).

2.4 Generalised Additive Models (GAM)

Generalised Linear models (GLM) are an extension of linear models for distributions of the
non-normal response variable and non-linear transformations. A regression model constitutes a
specification for the averagem of the variable in terms of a small number of unknown parameters
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p. In the particular case of linear models, we wish to find a linear function such that
E�Y�X� � m � 
� 	
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i�� 
i xi , and for that a constant variance ofY is supposed, var�Y� � � �.

In a different way from those, a generalised linear model (GLM) provides a method for estimating
a function of the average of the response variable as a linear combination of the set of predictive
variables, which is

l �E�Y�X�� � l �m� � ��x� � 
� 	

p�
i��


i xi �

The function of the response average,l �m�, is called functionlink, and is considered to be the same
as a linear function of the predictors,��x�, which is calledlinear predictor.

The distribution of each componentyi of Y has a density that can be expanded according to

f �yi 
 i � �� � 	�
 �Ai �yii � � �i ���� 	 ��yi � ��Ai �� (6)

where� is a parameter of scale (possibly known),Ai is known, and the parameter i depends on the
linear predictor.

In our case,Di number of deaths at agexi follows a Binomial distribution,Di � Bi�Ei � qi �. If
we takeyi � di �Ei as responses, the density can be expressed in the form
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which, when compared with (6), it can be deduced thatAi � Ei , � � �, i will be the logit
transformation ofqi , ���qi ��� � qi �� and � �i � � � ���� � qi � � ���� 	 e�i �. A detailed
description of GLM can be found in McCullagh & Nelder (1989).

Generalised additive models (GAM) are a natural extension of GLM in the sense that they adjust
nonparametric functions to study the relationship between predictive variables and the answer. In
effect, the predictor� no longer has to be a linear function of predictive variables, but is

� � � 	

p�
j��

f j �x j �	 � (7)

where f j is a smooth function (splines, locally-weighted regression,� � � ). In graduation, the variable
is the age,x, and the answer is the logit-transformation ofqx. These models are a semi-parametric
approach, an improvement with respect to the nonparametric techniques because they allow us to use,
in a similar way to generalised linear models, the exact distribution that corresponds to the number
of deaths, the Binomial distribution under the hypothesis of independence among the deaths. The
importance these models have in graduation is that they allow for an improvement in the formulation
of some of the nonparametric methods already described in actuarial theory. For example, cubic
spline graduation uses Normal approximate distribution. However, this is not necessary with the
GAM approach as these models are able to use an exact distribution. Comprehensive research on
GAM can be found in Hastie & Tibshirani (1990) and Hastieet al. (2001). Verrall (1996) describes
how graduation theory can be incorporated and enlarged within a GAM scheme. As in the case of
the LOESS method, GAM have not been used in the graduation of mortality data.

2.5 Bandwidth or Span Smoothing Parameter Choice

The optimum choice of the bandwidth parameter or the span parameter is an issue that has been
widely commented upon in the literature on data smoothing. A common statistical technique in
actuarial science is to firstly choose the model that best fits the data and later verify its smoothness by
standard actuarial graduation tests: chi-squared, run and autocorrelation tests. In modern statistics,
both steps are combined by using a method to choose bandwidth that balances variance and bias.
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Gavinet al.(1994) use cross-validation, which is later compared with that attributed to Bloomfield &
Haberman (1987). In both cases, insurance tables from 1967–70 (CMI data) are studied and similar
choices are obtained, although cross-validation is more intuitive and theoretically firmer. The cross-
validation criterium in a more general context has been examined in Stone (1974) and Silverman
(1984).

According to Verrall (1996), the cross-validation method in the context of graduation consists of
choosing the bandwidth valueb, which minimizes

CV�b� �
�

n

n�
i��

� �qi � �q��i �
i ���

where�q��i �
i is the estimate obtained on using all crude values except�qxi , which, in order to simplify,

is written as�qi .
Finally, degrees of freedom for a smoother is a concept that is equivalent to the number of

parameters in parametric graduation. They are related to the bandwidth through the linear smoother
matrix S� (d f � tr �S��), whereS � si j is a n � n matrix whose elementsi j is the weight of
observationj in the estimation ofqi .

3 Application of Nonparametric Methods to Mortality Data from the Valencia Region

The methods described in the previous section are applied to mortality data from the Valencia
Region, a Spanish region on the coast of the Mediterranean Sea. The data consist of aggregate
population and death values corresponding to the three-year period 1999–2001. These two data sets
were published by the Spanish National Institute of Statistics (INE) and are classified by age (ranging
from 0 to 100 or older) and sex. They both refer to the Valencia Region as the place of residence,
which means the two sets of data correspond to each other coherently.

As censuses are carried out during the first year of each decade, this means that only the data
corresponding to 2001 are actually real, as the rest are census estimates published in INE reports
(INE 1997 and INE 2001).

The first step is to calculate the crude estimations ofqx from these data. From among the different
existing proposals for carrying out such estimations, we have used that of Navarroet al. (1995)
expressed by

�qx �
dx�t��� 	 dxt

���Px�t��� 	 Pxt 	 ���Px�t��� 	 ����dx�t��� 	 dxt�
� (8)

wherePxt is the population of people whose ages are betweenx andx 	 � years old on�-st January
of the yeart , anddxt is the number of individuals’ deaths whose ages are betweenx andx	� during
the yeart .

This choice is made as we do not have the deaths classified according to the year of birth, but
according to age and sex, thus the expression (8) allows us to avoid this difficulty because it supposes
a uniform death distribution throughout the year. The denominator of the expression is an estimation
of those initial exposed to risk.

The graphic representation of the logarithms of the crude estimations led us to take a range of ages
between 0 and 96, which seems to us compatible with the use of the maximum possible and with the
demand for relatively stable behavior. Beyond this age the logarithms decreased, showing behavior
that was difficult to explain.

In the period and range under study, there were nearly 3.96 million men at risk and 4.11 million
women. Of these, 77% were between 21 and 96 years of age. In the same period, nearly 39.3 thousand
men died and 51.4 women, with the great majority, approximately 99%, doing so between the ages
of 21 and 96 (see Table 1).
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Table 1

Age, xi , number of initial exposed to risk, Ei , and number of deaths, di , observed in the period 1999–2001 in the
Valencia Region (Spain).

MEN WOMEN MEN WOMEN
xi Ei di Ei di Age Ei di Ei di

0 39199.70 180.00 36955.70 182.00
1 38315.50 21.00 36211.50 17.00 49 48797.50 212.00 50280.50 137.00
2 38139.50 5.00 35822.50 11.00 50 48223.00 234.00 49786.00 132.00
3 38096.00 7.00 35797.00 10.00 51 47697.50 254.00 49363.50 151.00
4 38345.00 6.00 36114.50 6.00 52 47301.50 298.00 49073.50 160.00
5 39066.00 8.00 36755.50 7.00 53 46565.50 265.00 48400.50 180.00
6 39971.50 9.00 37689.00 1.00 54 45335.00 318.00 47270.00 195.00
7 40772.50 10.00 38576.00 11.00 55 43837.00 345.00 45854.00 189.00
8 41449.00 8.00 39300.50 7.00 56 42854.00 349.00 44903.00 205.00
9 42046.50 2.00 39956.00 8.00 57 42080.50 376.00 44140.00 199.00
10 42696.50 8.00 40522.50 9.00 58 40376.50 359.00 42484.00 227.00
11 43574.50 5.00 41207.00 3.00 59 38943.50 457.00 41196.00 268.00
12 44781.00 5.00 42271.00 4.00 60 38785.00 440.00 41292.50 248.00
13 46223.00 10.00 43662.50 9.00 61 38629.50 476.00 41424.50 303.00
14 47927.00 11.00 45348.50 8.00 62 38341.50 487.00 41368.00 347.00
15 50014.50 20.00 47414.00 19.00 63 39109.00 591.00 42455.00 398.00
16 52505.50 34.00 49799.50 19.00 64 39885.50 656.00 43643.50 416.00
17 55265.50 50.00 52413.50 26.00 65 39758.50 706.00 43911.00 488.00
18 58202.00 66.00 55256.00 24.00 66 39325.00 744.00 43958.00 507.00
19 61265.00 49.00 58248.50 29.00 67 38834.50 868.00 43998.50 614.00
20 64133.00 66.00 61040.00 30.00 68 37958.00 939.00 43610.00 665.00
21 66470.00 60.00 63360.50 22.00 69 36676.50 922.00 42844.00 748.00
22 68160.50 58.00 65063.50 36.00 70 35290.50 994.00 42032.50 821.00
23 68999.50 59.00 66045.50 31.00 71 33869.00 1043.00 41144.50 881.00
24 69101.50 70.00 66303.00 31.00 72 32269.50 1146.00 40023.00 977.00
25 68737.50 56.00 66035.00 33.00 73 30646.50 1245.00 38763.00 1136.00
26 68178.00 71.00 65598.00 29.00 74 29109.00 1276.00 37516.50 1281.00
27 67544.00 73.00 65109.00 33.00 75 27468.00 1273.00 36204.50 1383.00
28 66988.50 69.00 64620.50 40.00 76 25565.00 1327.00 34564.00 1542.00
29 66568.50 81.00 64415.50 40.00 77 23332.00 1484.00 32491.50 1579.00
30 66311.00 71.00 64476.50 37.00 78 20987.50 1488.00 30287.50 1715.00
31 66111.00 99.00 64526.00 41.00 79 18440.50 1290.00 27841.50 1704.00
32 65994.00 77.00 64630.00 52.00 80 15972.00 1199.00 25308.50 1796.00
33 65963.00 93.00 64775.00 65.00 81 13771.50 1148.00 22870.00 1856.00
34 65564.00 111.00 64497.50 41.00 82 12148.50 1169.00 20833.00 2095.00
35 64618.50 109.00 63797.00 75.00 83 10820.00 1040.00 18958.50 2096.00
36 63513.00 123.00 63059.50 72.00 84 9785.50 1094.00 17317.00 2256.00
37 62503.50 102.00 62347.00 68.00 85 8764.50 1074.00 15721.50 2325.00
38 61467.00 117.00 61572.50 69.00 86 7716.50 1021.00 14113.00 2332.00
39 60471.00 128.00 60830.50 83.00 87 6670.50 973.00 12400.50 2306.00
40 59447.50 136.00 59983.00 89.00 88 5589.50 845.00 10596.00 2141.00
41 58063.00 128.00 58719.00 85.00 89 4631.00 733.00 8933.00 2051.00
42 56272.50 164.00 57007.00 90.00 90 3737.00 593.00 7320.00 1809.00
43 54271.00 162.00 55168.50 104.00 91 2995.50 550.00 5883.00 1654.00
44 52509.00 165.00 53575.00 102.00 92 2301.00 462.00 4558.50 1396.00
45 51236.50 165.00 52366.50 122.00 93 1702.50 334.00 3416.50 1097.00
46 50214.50 173.00 51369.50 118.00 94 1269.50 234.00 2535.00 936.00
47 49358.50 202.00 50587.50 116.00 95 852.50 179.00 1740.00 667.00
48 48993.50 188.00 50376.00 133.00 96 576.50 130.00 1148.50 530.00
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The performance of the nonparametric methods will be evaluated with the goodness-of-fit statistics:
log-likelihood, deviance and� �. These three statistics measure the distance between observed values
�qx and adjusted values�qx. The likelihood is

L�q� �

n	
i��

�
Ei

di

�
qdi

i ��� qi �
Ei�di



n	
i��

qdi
i ��� qi �

Ei�di

and the log-likelihood (without constants) is

�� L�q� �
n�

i��

�di ���qi �	 �Ei � di � ����� qi �� �

From the log-likelihood function, we can calculate the deviance,

D� �q� � � �� L� �q�� � �� L� �q��

The discrepancy between observed and expected deaths is measured with the corresponding� �,

�� �
�
i��n

�di � Ei �qi �
�

Ei �qi ��� �qi �
�

We want to find the model with maximum log-likelihood and minimum deviance and� �. When
comparing two models, the difference between deviances can be related approximately to the chi-
square distribution having a number of degrees of freedom equal to the difference between the
number of parameters in each model. We then choose the model with a significant improvement. To
explore the changes in the number of terms in a model, we consider the Mallows statisticC p defined
by

Cp � RSS	 �� �p�

whereRSSis the residual squared sum andp is the number of parameters. This statistic penalizes
the complexity of models, because it increases with the number of parameters.

These measures of goodness-of-fit along with the graphical representations of estimated values
have been used in order to choose the optimal model of each nonparametric method.

3.1 Kernel Graduation

A graduation of death probabilities,qx, is carried out using different bandwidth choices. The
goodness-of-fit tests mentioned above lead us to conclude that the Nayadara–Watson estimator fits
better than that of Copas–Haberman for both sexes.

Figure 1 shows the graphic corresponding to the fit for men and women, respectively. The graphic
of residuals against estimated values confirms the existence of heteroscedasticity (Figures 2 and
3), which leads us to propose the transformation of the crude probabilities. The transformations
proposed are:���qx�, logit�qx� and clog�qx� � ���� ����� qx��.
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Figure 1. Comparison of kernel estimations for men (left) and women (right).
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Figure 2. Residuals versus Nayadara–Watson estimations for men (left) and women (right).
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Figure 3. Residuals versus Copas–Haberman estimations for men (left) and women (right).
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The goodness-of-fit statistics in Table 2 show that the best results are obtained forqx. Among all the
transformations, logit behaves best. It is worth remembering that we need to carry out transformation
of the data in order to eliminate heteroscedasticity. Logit transformation is that which behaves best
among all the transformations,and we use it to compare kernel density estimation with other methods.
The success in removing heteroscedasticity is confirmed by Figure 4 showing the graph of residuals
versus the estimates of transformed scores. Nevertheless, estimates for early ages still show high
deviation.

Table 2

Goodness-of-fit statistics for the Nayadara–Watson estimator (kernel).

MEN WOMEN
�� b � � b � � b � � b � � b � � b � � b � � b � �

Deviance 77.90 160.08 228.36 287.75 84.24 158.83 222.71 290.68

log-likelihood -169391 -169432 -169466 -169496 -190080 -190118 -190149 -190183

�� 73.05 156.73 235.95 313.35 76.52 154.72 231.87 318.93

������� b � � b � � b � � b � � b � � b � � b � � b � �

Deviance 100.44 240.61 362.31 457.64 113.48 238.37 334.66 417.60

log-likelihood -169402 -169472 -169533 -169580 -190094 -190157 -190205 -190247

�� 118.47 343.00 610.46 879.72 136.54 340.51 548.30 762.43

��������� b � � b � � b � � b � � b � � b � � b � � b � �

Deviance 100.25 240.22 361.73 456.81 113.11 237.38 332.58 413.44

log-likelihood -169402 -169472 -169472 -169533 -190094 -190156 -190156 -190204

�� 118.18 342.26 609.22 877.97 136.05 339.15 545.60 757.45

�������� b � � b � � b � � b � � b � � b � � b � � b � �

Deviance 100.34 240.41 361.99 457.17 113.28 237.81 333.46 415.17

log-likelihood -169402 -169472 -169472 -169533 -190094 -190157 -190157 -190205

�� 118.32 342.62 609.80 878.76 136.28 339.77 546.79 759.57
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Figure 4. Residuals versus estimation of logit�qx � for men (left) and women (right).

Bandwidth choice is carried out according to values obtained by cross-validation (Table 3), where
age zero is excluded. We have eliminated age 0 because it has greater curvature and presents more
difficulties when it comes to adjustment. Haberman (1997) does the same. In accordance with this
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criteriab � �, this value is a trade-off between smoothness and goodness-of-fit.

Table 3

Goodness-of-fit statistics for kernel estimation
applied with logit-transformed crude proba-
bilities for the bandwidth obtained by cross-
validation.

MEN WOMEN
Bandwidth 5.218196 4.554322

Deviance 113.2749 96.087

log-likelihood -169408.8 -190086.2

�� 117.979 96.01836

Df 20.44698 23.35616

3.2 Smoothing Spline Graduation

The choice of smoothness (degrees of freedom) to be applied to the various transformations of
crude probabilities is decided by cross-validation. Cross-validation is easier to apply with splines
than the previous and following methods because it is implemented inS-plus andR software .

Age zero was excluded for the above-mentioned reasons, allowing us to obtain a reasonably
smooth final curve, as can be seen in Figure 5.

The same transformations that are applied to kernel methods are used to avoid the problem of
heteroscedasticity. As in the previous case, results improve. Log transformation is chosen as it offers
the best fit (Table 4), despite the fact that there is not much difference with respect to other methods
(Figure 5). An advantage of the smoothing spline over kernel density estimation is that we can obtain
forecasts for age values greater than 96 using the last piece of spline function. This extrapolation
beyond the age range requires, as Haberman (1997) points out, thatq x approaches the value of 1 as
age increases.
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Figure 5. Spline smoothing for men (left) and women (right).
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Table 4

Goodness-of-fit statistics for spline adjustment.

MEN WOMEN
with zero �� ������� ��������� �������� �� ������� ��������� ��������

Deviance NA 41.19 41.12 41.16 235.73 160.49 160.80 160.66

log-likelihood NA -169373 -169373 -169373 -190156 -190118 -190119 -190118

�� NA 41.66 41.59 41.62 391.58 19 186.21 186.13

Df 57.67 52.54 52.60 52.56 22.80 24.99 24.98 24.99

without zero �� ������� ��������� �������� �� ������� ��������� ��������

Deviance 40.08 116.98 117.16 117.06 69.75 88.70 89.68 89.16

log-likelihood -169372 -169411 -169411 -169411 -190074 -190083 -190083 -190083

�� 39.53 119.88 120.06 119.96 69.75 88.70 89.68 89.16

Df 56.79 17.79 17.77 17.78 22.54 15.93 15.91 15.92

3.3 Graduation with Locally-weighted Regression

This smoother has several possibilities as it allows us to manipulate the span parameter and the
local polynomial degree used, which can be linear or quadratic. In the first place, the different
possibilities are tested and, afterwards, cross-validation is used to choose the parameters.

Although the results in Table 5 show better behaviour forqx than for its transformations, as
was done in previous methods, the transformations have been applied to avoid the problem of
heteroscedasticity. We will use logit transformation in cross-validation because it is slightly better.

In Figure 6, the comparison of results of the linear and quadratic local polynomial regressions
with span chosen by cross-validation can be observed. The quadratic solution for men forms quite
a rough curve in ages close to zero and for this reason it shows better goodness-of-fit (Table 6).
Nevertheless, the linear regression is chosen because it is much smoother. However, for women,
contrary behaviour occurs and quadratic regression is chosen.
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Figure 6. Linear and Quadratic LOESS comparison with span chosen by cross-validation for men (left) and women (right).
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Table 5

Goodness-of-fit statistics for LOESS adjustment.

MEN WOMEN
Linear

�� s � ���� s� ��� s� ���� s� ��� s� ���� s� ��� s � ���� s� ���

Deviance 93.15 283.30 432.77 575.95 100.86 254.92 480.93 785.18

log-likelihood -169399 -169494 -169568 -169640 -190089 -190166 -190279 -190431

�� 83.02 248.48 416.97 604.15 85.65 225.25 469.28 802.72

Df 36.8 18.2 11 8.7 36.8 18.2 11 8.7

������� s � ���� s� ��� s� ���� s� ��� s� ���� s� ��� s � ���� s� ���

Deviance 56.63 301.88 473.74 595.43 69.23 214.04 408.03 560.61

log-likelihood -169380 -169503 -169589 -169650 -190073 -190145 -190242 -190318

�� 56.66 418.88 840.00 1273.73 70.93 266.33 701.97 1200.24

Df 36.8 18.2 11 8.7 36.8 18.2 11 8.7

��������� s � ���� s� ��� s� ���� s� ��� s� ���� s� ��� s � ���� s� ���

Deviance 56.64 301.78 472.79 593.60 69.42 214.55 404.47 546.05

log-likelihood -169380 -169503 -169588 -169648 -190073 -190145 -190240 -190311

�� 56.67 418.33 838.15 1270.64 71.10 266.61 697.59 1184.24

Df 36.8 18.2 11 8.7 36.8 18.2 11 8.7

�������� s � ���� s� ��� s� ���� s� ��� s� ���� s� ��� s � ���� s� ���

Deviance 56.63 301.82 473.15 594.17 69.32 214.20 405.26 550.00

log-likelihood -169425 -169503 -169589 -169649 -190245 -190145 -190241 -190313

�� 56.66 418.60 838.96 1271.84 71.01 266.38 698.78 1188.88

Df 36.8 18.2 11 8.7 36.8 18.2 11 8.7

Quadratic
�� s � ���� s� ��� s� ���� s� ��� s� ���� s� ��� s � ���� s� ���

Deviance 77.62 NA NA 425.51 95.41 NA NA 343.31

log-likelihood -169391 NA NA -169565 -190086 NA NA -190210

�� 69.52 NA NA 3299.61 82.14 NA NA 969.79

Df 47.9 35.2 20.2 15.5 47.9 35.2 20.2 15.5

������� s � ���� s� ��� s� ���� s� ��� s� ���� s� ��� s � ���� s� ���

Deviance 46.17 80.20 243.12 319.23 66.42 106.21 152.47 249.94

log-likelihood -169375 -169392 -169474 -169512 -190071 -190091 -190114 -190163

�� 46.57 81.73 301.05 441.63 69.04 112.88 169.67 328.73

Df 47.9 35.2 20.2 15.5 47.9 35.2 20.2 15.5

��������� s � ���� s� ��� s� ���� s� ��� s� ���� s� ��� s � ���� s� ���

Deviance 46.18 80.21 243.05 318.97 66.69 106.28 152.79 250.06

log-likelihood -169375 -169392 -169474 -169512 -190071 -190091 -190115 -190163

�� 46.58 81.72 300.71 440.99 69.30 112.90 169.91 328.60

Df 47.9 35.2 20.2 15.5 47.9 35.2 20.2 15.5

�������� s � ���� s� ��� s� ���� s� ��� s� ���� s� ��� s � ���� s� ���

Deviance 46.17 80.20 243.08 319.10 66.56 106.25 152.62 249.94

log-likelihood -169419 -169392 -169474 -169512 -190242 -190091 -190114 -190163

�� 46.58 81.73 300.88 441.31 69.18 112.89 169.78 328.61

Df 47.9 35.2 20.2 15.5 47.9 35.2 20.2 15.5
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Table 6

Bandwidth and goodness-of-fit statistics for LOESS on logit transformations
of crude probabilities.

MEN WOMEN
Lineal Quadratic Linear Quadratic

span 0.10 0.12 0.10 0.26

Deviance 108.50 87.83 73.39 100.33

log-likelihood -169406.4 -169396 -190074.9 -190088.3

�� 110.79 88.36 72.87 99.40

Df 18 27.2 18 11.9

3.4 Generalised Additive Models Graduation

The graduation of logit�qx� is now carried out using GAM. In (7) two kinds of smooth functions
f j are used: splines and locally-weighted regression.

3.4.1 GAM with splines

The result obtained with splines (see section 3.2) is taken into account when choosing the range,
from 10 to 24, of the number of degrees of freedom. These graduations are carried out separately for
men and women, and for ages ranging from 1 to 96 years old, age zero being excluded as in previous
methods.

Table 7 compares the different models, paying attention to their increase in complexity. For this
reason, the table shows the change in deviance and Mallow’sC p statistic when the degrees of
freedom increase from unit to unit. A gradual improvement in goodness-of-fit can be deduced from
the p-values associated with deviance as the number of degrees of freedom increase. We can see
that for men the p-value of improvement in deviance is significant for all degrees of freedom and,
therefore, the model with the greatest number of degrees of freedom should be accepted. For women,
this significance ceases in models with 15 or 16 degrees of freedom.

Table 7

Comparison of GAM’s with different degrees of freedom.

MEN WOMEN
Df Deviance p-value 	� Deviance p-value 	�

10 221.00 136.96

11 6.55 0.0106 217.21 4.46 0.0351 134.39

12 7.02 0.0081 212.95 4.32 0.0377 131.96

13 7.36 0.0066 208.33 4.21 0.0406 129.65

14 7.79 0.0054 203.35 3.98 0.0453 127.53

15 7.64 0.0056 198.43 3.86 0.0497 125.56

16 7.67 0.0057 193.53 3.71 0.0554 123.77

17 7.53 0.0063 188.81 3.42 0.0642 122.23

18 7.04 0.0079 184.52 3.20 0.0741 120.92

19 6.48 0.0110 180.80 2.93 0.0868 119.87

20 6.23 0.0126 177.33 2.67 0.1022 119.09

21 5.70 0.0167 174.36 2.39 0.1204 118.56

22 5.28 0.0215 171.83 2.21 0.1404 118.27

23 4.90 0.0270 169.69 1.94 0.1639 118.22

24 4.53 0.0336 167.93 1.71 0.1881 118.37
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As there is not one model that can simultaneously serve both sexes, nonparametriccontrasts (Forfar
et al., 1988) are carried out on models with 16 or more degrees of freedom. The results shown in
Table 8 would lead us to choose modeld f � �� for men and modeld f � �� for women.

Table 8

Nonparametric contrasts of GAM with splines.

MEN
df �� z � � z � � pos p(pos) runs p(runs) K-S p(K-S)

16 149.01 6 2 46 0.3424 45 0.4407 0.062 0.993

17 140.68 5 2 46 0.3424 45 0.4407 0.062 0.993

18 132.98 5 2 45 0.2713 47 0.4770 0.062 0.993

19 125.57 5 2 43 0.1550 45 0.4472 0.062 0.993

20 118.98 5 2 44 0.2084 45 0.4444 0.062 0.993

21 112.99 3 2 45 0.2713 49 0.5119 0.062 0.993

22 107.50 3 1 45 0.2713 49 0.5119 0.062 0.993

WOMEN
df �� z � � z � � pos p(pos) runs p(runs) K-S p(K-S)

16 85.56 5 0 46 0.3424 55 0.6128 0.083 0.899

17 82.25 4 0 47 0.4196 57 0.6444 0.083 0.899

18 79.19 4 0 48 0.5000 57 0.6439 0.083 0.899

19 76.42 2 0 48 0.5000 57 0.6439 0.062 0.993

20 73.92 2 0 49 0.5804 57 0.6444 0.062 0.993

21 71.71 2 0 49 0.5804 57 0.6444 0.062 0.993

22 69.69 2 0 49 0.5804 57 0.6444 0.0619 0.993

Figure 7 shows a comparison of the various models for each sex. Both are presented in log scale
to enable their comparison with the rest of the graphs, even though the graduation was carried out
by logit transformation.
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Figure 7. Comparison of GAM’s with splines for men (left) and women (right).
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3.4.2 GAM with LOESS

The locally-weighted regressions used with GAM are both linear and quadratic as in section 3.3.
The comparison between the two is carried out in a similar way to that of the previous section. The
p-value of deviance andC p statistic (Table 9) does not allow us to choose the best linear model for
men as the improvement is continuous. However, Figure 8 shows that the model with the lowest span
can be discarded because it produces fluctuations in lower age groups. The model with the lowest
span that does not produce the above-mentioned fluctuations is the model with a span of���. As far
as women are concerned, we would choose the models with a span of��� or����, in accordance with
the value of theCp statistic. The best quadratic models for both sexes are the models with a span of
0.15, according to Table 9 and Figure 8.

Table 9

Comparison of GAM’s with different spans.

MEN WOMEN
Linear Deviance g.l. p-value 	� Deviance g.l. p-value 	�

0.20 166.56 130.23

0.15 19.23 2.71 0.0002 152.75 14.86 2.66 0.0013 120.38

0.10 23.30 8.51 0.0041 146.46 22.89 8.48 0.0047 113.44

0.09 1.36 0.23 0.0477 145.56 0.99 0.23 0.0679 112.88

0.08 17.97 6.57 0.0092 140.72 6.83 6.59 0.4022 118.46

0.05 29.28 13.79 0.0087 138.99 12.59 13.80 0.5441 131.85

Quadratic Deviance g.l. p-value 	� Deviance g.l. p-value 	�

0.20 149.49 119.25

0.15 11.65 5.22 0.0455 148.31 13.88 5.19 0.0186 115.98

0.14 6.72 3.26 0.10 148.13 4.39 3.25 0.2550 118.25

0.13 1.16 0.25 0.0646 147.48 0.61 0.2512 0.1138 118.15

0.10 32.09 12.67 0.0019 140.81 9.40 12.69 0.7208 134.71

0.05 19.20 13.29 0.1283 148.29 9.49 13.29 0.7543 152.40
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Figure 8. Comparison of GAM with LOESS for men (left) and women (right).
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3.4.3 Choice of the best GAM

We now choose a GAM to be compared with those models chosen in the previous sections
according to the results of the nonparametric contrasts. Even when results are similar, GAM with
LOESS show marginally significant autocorrelation in statistical terms. In this respect, GAM with
splines, despite showing a slightly worse fit, have more residual degrees of freedom. They do not show
autocorrelation for women and the autocorrelation for men is almost insignificant. Consequently, the
model chosen for both sexes is the GAM with splines.

4 Conclusions

We must begin this section by pointing out that, as far as we know, LOESS models and GAM
have not been used to date for the graduation of mortality data.

The comparison is carried out by applying the tests proposed by Forfaret al.(1988). We have also
obtained the values of the mean absolute percentage error (MAPE) andR� that Felipe & Guilĺen
(1999) and Felipeet al. (2002) use in their work. Results are presented in Table 10. In summary, all
models display favourable results making it difficult to choose one of them. Nevertheless, we can
conclude that:

1. kernel models and splines fit worse than the other two,
2. all models fit better for women, and
3. GAM models provide a better fitting for both sexes and have the additional advantage of

allowing us to use the real distribution of data.

Table 10

Results of nonparametric contrasts with kernel and splines.

Kernel Splines LOESS GAM
Men Women Men Women Men Women Men Women

Relative � � 5 2 5 2 4 4 3 2
Desv.a � � 1 1 1 0 1 0 2 0

Signs pos. (neg.) 52 (44) 54 (42) 50 (46) 56 (40) 49 (47) 53 (43) 45 (51) 49 (47)
test p-value 0.7916 0.8886 0.6576 0.9401 0.5804 0.8450 0.2713 0.5804

Runs runs 51 57 51 57 49 57 49 57
test p-value 0.5495 0.6607 0.5495 0.6741 0.5009 0.6555 0.5119 0.6444

K-S K-S 0.0412 0.0515 0.0412 0.0515 0.0412 0.0515 0.0619 0.0619
testb p-value 1 0.9996 1 0.9996 1 0.9996 0.993 0.993

�� �� 117.98 96.03 119.87 88.70 110.79 99.40 112.99 71.71
testc g.l. 75.53 72.64 78.21 80.07 78 84.1 74.01 74.05

p-value 0.0011 0.03085 0.0017 0.2385 0.0087 0.1219 0.0024 0.5554


� 0.9346 0.9247 0.9946 1 0.9960 0.9996 0.9852 0.9910

MAPE 10.93 13.44 10.93 14.12 10.17 14.82 13.94 17.33

a standarized residuals
b Kolmogorov–Smirnov test
c �� statistic, sum of squared standarized residuals

Finally, we should point out that the fitting of all the models presents problems for the early ages
due to their irregular profile. Many authors achieve better fittings by eliminating this group of ages,
which they justify by arguing that actuarial operations begin at a more advanced age. Contrary to
this criterion, we have decided to include the young age groups, excluding zero, for two reasons.
Firstly, it enables us to compare our results with those obtained by Navarroet al. (1995), who
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graduate mortality data for the Valencia Region for the years 1990–92 for the complete range of
ages. Secondly, as far as we know, Navarroet al. (1995) is the only study that covers the same
geographical area as ours and a comparison is vital. However, we have to point out that the inclusion
of the early ages produces an increase as a result of the curvature that the data present at these
ages (Gavinet al., 1994). It is worth remembering that the double exponential which appears in
Heligman & Pollard (1980) and related parametric models, was introduced specifically to deal with
the difficulty of adjusting 0 and 1 ages.

A future line of work would be to extend the previous methods to the graduation of mortality
data over time with the aim of obtaining dynamic mortality tables. The work by Felipeet al.(2001),
Guillen et al. (2006) and Fledeliuset al. (2004) go in this direction using kernel bivariante. Two-
dimensional GAM have been used by Clementset al. (2005) to model and predict lung cancer
rates.
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Résumé

La graduation non paraḿetrique des donńees sur la mortalité envisage d’estimer les differents mesures de mortalité, en
effectuant un lissage des mesures brutes directement obtenuesà partir des donńees originelles. La différence fondamentale
avec les mod̀eles paraḿetriques est qu’il n’est pas nécessaire de supposer une fonction dépendant de l’âge, ce qui représente
un avantage lorsque l’on n’a pas d’information sur le modèle sous-jacent, puisqu’une source d’erreur en est souvent le choix
inad́equat. Dans ce travail, nous en avons examiné les diff́erentes alternatives et nous y avons montré leur applicatioǹa des
donńees sur la mortalité dans la Region de Valencia, Espagne. Nous concluons d’après cette comparaison que le meilleur
mod̀ele en est le rabotage par des modèles additifs ǵeńeraliśes (GAM) avec des “splines”. L’intér̂et principal de notre travail
est le d́eveloppement d’un plan qui peutêtre appliqúe à des donńees sur la mortalité pour une large plage d’âge dans n’importe
quel domaine ǵeographique, de sorte qu’il nous permet de choisir le tableau le plus adéquatà l’expérience concerńee.
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