8th International Congress on Insurance: Mathematics & Economics

ACTUARIAL THEORY

FOR DEPENDENT RISKS *

MICHEL DENUIT

Institut de Statistique & Institut des Sciences Actuarielles, UCL

B-1348 Louvain-la-Neuve, Belgique

Email: denuit@stat.ucl.ac.be

(* title of a book co-authored with J. Dhaene, M. Goovaerts, R. Kaas and D. Vyncke) M. Denuit, IME, Rome, June 14-16, 2004 – p. 1/55

<u>Risk measures</u>

Stochastic orders

Dependence structures

Credibility models

Bonus-malus scales

Stochastic extrema

Reinsurance pricing

- A risk measure is a functional ρ mapping a risk X to a non-negative real number ρ[X], possibly infinite.
- The meaning of *ρ*[X] is as follows: *ρ*[X] represents the minimum extra cash which has to be added to X to make it "acceptable".
- A large value of $\rho[X]$ indicates that *X* is "dangerous".
- Risk measures have been extensively studied in the actuarial literature since 1970, in the guise of premium principles; see e.g. GOOVAERTS ET AL. (1984).

A risk measure satisfying **Translativity:** $\rho[X + c] = \rho[X] + c$ whatever the risk X and the constant c: Subadditivity: $\rho[X+Y] \leq \rho[X] + \rho[Y]$ whatever the risks X and Y; **Homogeneity:** $\rho[cX] = c\rho[X]$ whatever the risk X and the positive constant c; Monotonicity: $\Pr[X \leq Y] = 1 \Rightarrow \rho[X] \leq \rho[Y]$ whatever the risks X and Y: is said to be coherent in the sense of ARTZNER ET AL. (1999).

• (X, Y) is comonotonic $\Leftrightarrow \exists Z \text{ and } \uparrow \text{ functions } t_1 \text{ and } t_2 \text{ such that}$

$$(X,Y) =_d \left(t_1(Z), t_2(Z)\right);$$

See DHAENE ET AL. (2002a,b) for theory and applications in insurance and finance.

- The risk measure ρ is comonotonic additive if $\rho[X+Y] = \rho[X] + \rho[Y]$ whatever the comonotonic risks *X* and *Y*.
- There is no diversification effect for comonotonic risks when the risk measure is comonotonic additive.

- Let \mathcal{B} be the set of bounded risks.
- If ρ : B → ℝ⁺ is comonotonic additive, monotone and satisfies ρ[1] = 1 then there exists a non-decreasing distortion function g satisfying g(0) = 0 and g(1) = 1, such that

$$\rho[X] \equiv \rho_g[X] = \int_0^{+\infty} g\Big(\Pr[X > t]\Big) dt.$$

- ρ_g is known as a Wang risk measure.
- Moreover,

$$\rho_g$$
 subadditive $\Leftrightarrow g$ concave.

Given a risk X and a probability level p ∈ (0,1), the corresponding VaR, denoted as VaR[X; p], is defined as

$$\mathsf{VaR}[X;p] = F_X^{-1}(p).$$

• Note that any Wang risk measure can be represented as a mixture of VaR's:

$$\rho_g[X] = \int_0^1 \mathsf{VaR}[X; 1-p] dg(p).$$

 VaR is associated with the distortion function g(x) = I[x > 1 − p]; it is not coherent (it fails to be subadditive). • Given a risk X and a probability level p,

$$\mathsf{TVaR}[X;p] = \frac{1}{1-p} \int_{p}^{1} \mathsf{VaR}[X;\xi] \ d\xi, \ p \in (0,1).$$

- TVaR is associated with the distortion function $g(x) = \min\left(\frac{x}{1-p}, 1\right)$; it is coherent.
- If F_X is continuous then

$$\mathsf{TVaR}[X;p] = \mathbb{E}\Big[X\Big|X > \mathsf{VaR}[X;p]\Big], \ p \in (0,1),$$

and is the "average loss in the worst 1 - p% cases".

Risk measures Stochastic orders **Dependence** structures Credibility models **Bonus-malus scales** Stochastic extrema Reinsurance pricing

Stochastic orders and risk measures

- Most classical stochastic orderings are associated with particular risk measures.
- Given two risks *X* and *Y*,

 $\begin{array}{ll} X \preceq_{\mathsf{ST}} Y & \Leftrightarrow & \rho_g[X] \leq \rho_g[Y] & \forall \uparrow \text{ distortions } g \\ & \Leftrightarrow & \mathsf{VaR}[X;p] \leq \mathsf{VaR}[Y;p] \text{ for all } 0 \leq p \leq 1. \end{array}$

• Given two risks *X* and *Y*,

 $\begin{array}{ll} X \preceq_{\mathsf{ICX}} Y & \Leftrightarrow & \rho_g[X] \leq \rho_g[Y] & \forall \uparrow \text{ concave distortions } g \\ \Leftrightarrow & \mathsf{TVaR}[X;p] \leq \mathsf{TVaR}[Y;p] \text{ for all } 0 \leq p \leq 1. \end{array}$

• See e.g. Denuit et al. (2004).

• Given two random variables X and Y,

 $X \preceq_{\mathsf{CX}} Y \Leftrightarrow X \preceq_{\mathsf{ICX}} Y \text{ and } \mathbb{E}[X] = \mathbb{E}[Y].$

• It can be shown that

$$X \preceq_{\mathsf{CX}} Y \Rightarrow \mathbb{V}\mathrm{ar}[X] \le \mathbb{V}\mathrm{ar}[Y]$$

so that \leq_{CX} expresses the intuitive idea of "X being less variable than Y".

• Separation Theorem: $X \preceq_{ICX} Y$ iff $\exists Z$ such that

$$X \preceq_{\mathsf{ST}} Z \preceq_{\mathsf{CX}} Y.$$

 Given two random variables X and Y, X is said to be smaller than Y in the likelihood ratio order, denoted as X ≤_{LR} Y, when

 $\Pr[X \in A] \Pr[Y \in B] \ge \Pr[X \in B] \Pr[Y \in A]$ for all $A \le B$.

• Let X and Y be two rv's. Then, $X \preceq_{\mathsf{LR}} Y$ if, and only if,

 $[X|a \leq X \leq b] \preceq_{\mathsf{ST}} [Y|a \leq Y \leq b]$ for all $a < b \in \mathbb{R}$

or

 $p \mapsto F_Y(\mathsf{VaR}[X;p])$ is convex.

Risk measures Stochastic orders Dependence structures Credibility models Bonus-malus scales

Stochastic extrema

Reinsurance pricing

- A copula is (the restriction to the unit square [0, 1]² of) a joint cdf for a bivariate random vector with unit uniform marginals.
- Let us consider $X = (X_1, X_2)$ with marginals $X_1 \sim F_1$ and $X_2 \sim F_2$.
- Then, there exists a copula $C: [0,1]^2 \rightarrow [0,1]$ such that

$$F_{\boldsymbol{X}}(x_1, x_2) = C(F_1(x_1), F_2(x_2)), \ \boldsymbol{x} \in \mathbb{R}^2.$$

• $C(\cdot, \cdot)$ is called a copula since it "couples" the marginals $F_1(\cdot)$ and $F_2(\cdot)$ to form the bivariate cdf $F_X(\cdot, \cdot)$.

• The random couple X is said to be CI if

 $\Pr[X_2 > x_2 | X_1 = x_1]$ is non-decreasing in x_1 $\Pr[X_1 > x_1 | X_2 = x_2]$ is non-decreasing in x_2 .

• This is equivalent to

 $[X_2|X_1 = x_1] \preceq_{ST} [X_2|X_1 = x'_1]$ for any $x_1 \le x'_1$ $[X_1|X_2 = x_2] \preceq_{ST} [X_1|X_2 = x'_2]$ for any $x_2 \le x'_2$.

• CI is a property of the copula, that is, if C is a copula for $X, X CI \Leftrightarrow C CI$.

• A function $\phi: \mathbb{R}^2 \to \mathbb{R}$ is said to be supermodular when

 $\phi(b_1, b_2) - \phi(a_1, b_2) - \phi(b_1, a_2) + \phi(a_1, a_2) \ge 0$

for all $a_1 \le b_1, a_2 \le b_2$.

- Such a function assigns more weight to points (a_1, a_2) and (b_1, b_2) expressing positive dependence.
- If ϕ is twice differentiable, it is supermodular iff $\frac{\partial^2}{\partial x_1 \partial x_2} \phi \ge 0$ (such a function is called regular supermodular).

 The random couple X is said to be TP₂ if its pdf is log-supermodular, that is, if

 $f_{\mathbf{X}}(a_1, a_2) f_{\mathbf{X}}(b_1, b_2) \ge f_{\mathbf{X}}(a_1, b_2) f_{\mathbf{X}}(b_1, a_2)$

for any $a_1 \leq b_1$ and $a_2 \leq b_2$.

• This is equivalent to

 $[X_2|X_1 = x_1] \preceq_{\mathsf{LR}} [X_2|X_1 = x_1']$ for any $x_1 \le x_1'$ $[X_1|X_2 = x_2] \preceq_{\mathsf{LR}} [X_1|X_2 = x_2']$ for any $x_2 \le x_2'$.

• \boldsymbol{X} is said to be MTP₂ if

 $f_{\boldsymbol{X}}(\boldsymbol{x})f_{\boldsymbol{X}}(\boldsymbol{y}) \leq f_{\boldsymbol{X}}(\boldsymbol{x} \vee \boldsymbol{y})f_{\boldsymbol{X}}(\boldsymbol{x} \wedge \boldsymbol{y}) \ \forall \ \boldsymbol{x} \in \mathbb{R}^{n}.$

Risk measures Stochastic orders Dependence structures Credibility models Bonus-malus scales Stochastic extrema

Reinsurance pricing M. Denuit, IME, Rome, June 14-16, 2004 – p. 18/55

- Let N_t be the number of claims reported by a given policyholder during period t, t = 1, 2, ..., T.
- Being generated by the same individual, the *N_t*'s may be correlated; this serial correlation justifies a posteriori corrections.
- Let

$$N_{\bullet} = \sum_{t=1}^{T} N_t$$

be the total number of claims reported during the T observation periods.

- Let us denote as $\mathbb{E}[N_t] = \lambda_t$ the expected annual claim number; λ_t contains all the information included in the price list about the policyholder in period *t* (like age, sex, power of the car, and so on).
- Let Θ be a positive random variable with unit mean; it represents the unexplained heterogeneity.
- Given $\Theta = \theta$, the random variables N_t , t = 1, 2, ..., are independent and $\sim Poi(\lambda_t \theta)$, i.e.

$$\Pr[N_t = k | \Theta = \theta] = \exp(-\theta\lambda_t) \frac{(\theta\lambda_t)^k}{k!}, \ k \in \mathbb{N}.$$

- In this model, we intuitively feel that the following statements are true:
 - **S1** Θ "increases" in the past claims N_{\bullet}
 - S2 N_{T+1} "increases" in the past claims N_{\bullet}
 - **S3** N_{T+1} and N_{\bullet} are "positively dependent".
- The meaning of "increases" in S1 and S2, as well as of "positive dependence" involved in S3 has to be precised.
- These statements are true in the classical Poisson-Gamma model if the increasingness is wrt \leq_{LR} and the positive dependence is TP₂.

The results valid in the Poisson-Gamma model remain true in any Poisson mixture model, that is

$$\begin{bmatrix} \Theta | N_{\bullet} = n \end{bmatrix} \preceq_{\mathsf{LR}} \begin{bmatrix} \Theta | N_{\bullet} = n' \end{bmatrix} \text{ for } n \le n'$$
$$\begin{bmatrix} N_{T+1} | N_{\bullet} = n \end{bmatrix} \preceq_{\mathsf{LR}} \begin{bmatrix} N_{T+1} | N_{\bullet} = n' \end{bmatrix} \text{ for } n \le n'$$

but

$$\mathbb{E}[N_{T+1}|N_{\bullet} = n] = \lambda_{T+1}\psi(n)$$

where ψ is increasing but not necessarily linear.

- (N_{T+1}, N_{\bullet}) as well as each (N_t, N_s) are TP₂. Moreover, $(\Theta, N_1, \ldots, N_T)$ is MTP₂.
- SHAKED & SPIZZICHINO (1998), PURCARU & DENUIT (2002a,b, 2003).

Risk measures Stochastic orders **Dependence** structures **Credibility models Bonus-malus scales** Stochastic extrema Reinsurance pricing

- In practice, bonus-malus scales are enforced in MTPL, and not credibility models.
- The model for claim numbers is the same as for credibility theory.
- Policyholders are now placed in a scale:

Level	Relativities		
S	r_s		
	÷		
l	r_ℓ		
	÷		
0	r_0		

- Such scales possess a number of levels, s + 1 say, numbered from 0 to s.
- A specified level is assigned to a new driver (often according to the use of the vehicle).
- Each claim free year is rewarded by a bonus point (i.e. the driver goes one level down).
- Claims are penalized by malus points (i.e. the driver goes up a certain number of levels each time he files a claim).

 Let L(t) be the level occupied by a given policyholder in year t; typically,

$$L(t) = \max \left\{ 0, \min\{L(t-1) - 1 + N_t \times k_{pen}, s\} \right\}.$$

- Let L(∞) be the level occupied by an "infinitely old" policy (stationary regime).
- Denoting as ⊖ the unknown (relative) expected claim frequency, Norberg Bayesian relativity attached to level ℓ is

$$r_{\ell} = \mathbb{E}[\Theta | L(\infty) = \ell].$$

- The random vector $(\Theta, L(1), \dots, L(t))$ is MTP₂ for any $t \ge 1$
 - $\Rightarrow (\Theta, L(t)) \text{ and } (\Theta, L(\infty)) \text{ are both TP}_2.$
- The following stochastic inequalities hold true:

$$\begin{split} [\Theta|L(t) = \ell] & \preceq_{\mathsf{LR}} \quad [\Theta|L(t) = \ell'] \text{ for any } \ell \leq \ell', t \geq 1 \\ [\Theta|L(\infty) = \ell] & \preceq_{\mathsf{LR}} \quad [\Theta|L(\infty) = \ell'] \text{ for any } \ell \leq \ell' \\ & \Rightarrow \quad r_{\ell} \text{ is increasing with } \ell \end{split}$$

• Furthermore,

 $[N_{t+1}|L(t) = \ell] \preceq_{\mathsf{LR}} [N_{t+1}|L(t) = \ell'] \text{ for any } \ell \leq \ell'.$

Risk measures Stochastic orders **Dependence** structures **Credibility models Bonus-malus scales** Stochastic extrema Reinsurance pricing

- Often, actuaries act in a conservative way by basing the decision on the worst case compatible with the partial information at their disposal.
- In the univariate case, given the first few moments of the risk X, its support, mode, etc., two rv's X_ and X₊ are determined such that

$$X_{-} \preceq X \preceq X_{+}$$

(here \leq can be \leq_{ST} , \leq_{ICX} or \leq_{CX} for instance).

• This is closely related to the problem of maximizing/minimizing $\mathbb{E}[\phi(X)]$ for some function ϕ when X belongs to a given moment space.

Example with \leq_{ICX}

$$\Pr[X_{+} \leq x] = \begin{cases} 0 & \text{if } x < 0, \\ \frac{\sigma^{2}}{\sigma^{2} + \mu^{2}} & \text{if } 0 \leq x < \frac{\mu^{2} + \sigma^{2}}{2\mu}, \\ \frac{1}{2} + \frac{1}{2} \frac{x - \mu}{\sqrt{(x - \mu)^{2} + \sigma^{2}}} & \text{if } x \geq \frac{\mu^{2} + \sigma^{2}}{2\mu}. \end{cases}$$
$$\Pr[X_{-} \leq x] = \begin{cases} 0 & \text{if } x < \mu - \frac{\sigma^{2}}{b - \mu}, \\ 1 - \frac{\mu}{b} & \text{if } \mu - \frac{\sigma^{2}}{b - \mu} \leq x < \frac{\mu^{2} + \sigma^{2}}{\mu}, \\ 1 & \text{if } x \geq \frac{\mu^{2} + \sigma^{2}}{\mu}. \end{cases}$$

(See JANSEN ET AL. (1986) and DE VYLDER & GOOVAERTS (1982))

- In the bivariate case, one could imagine that the marginal distributions are given but the underlying copula is only partially specified (it is PQD, for instance).
- Now, two random couples X₋ and X₊ are determined such that

$$X_- \preceq X \preceq X_+$$

(here \leq is a suitable bivariate order).

 Good candidates for ≤ in the above stochastic inequality are the supermodular order and the directionally convex order. • A function $\phi: \mathbb{R}^2 \to \mathbb{R}$ is said to be supermodular when

$$\phi(b_1, b_2) - \phi(a_1, b_2) - \phi(b_1, a_2) + \phi(a_1, a_2) \ge 0$$

for all $a_1 \le b_1, a_2 \le b_2$.

- Given two random couples X = (X₁, X₂) and Y = (Y₁, Y₂), X ≤_{SM} Y if E[φ(X)] ≤ E[φ(Y)] for all the (regular) supermodular functions φ for which the expectations exist.
- \leq_{SM} can only compare random vectors with identical marginals (it is a dependence order).

Extremal elements wrt _{≤SM} with given marginals

• Any X satisfies $X^- \preceq_{\sf SM} X \preceq_{\sf SM} X^+$, where X^- (resp. X^+) has copula

$$C_L(u_1, u_2) = \max\{u_1 + u_2 - 1, 0\}$$

(resp. $C_U(u_1, u_2) = \min\{u_1, u_2\}$)

and the same marginals as X.

• If X is known to be PQD, that is if

 $\Pr[X_1 > t_1, X_2 > t_2] \ge \Pr[X_1 > t_1] \Pr[X_2 > t_2]$ for all t_1, t_2 ,

then X^- can be taken with independent components.

∠_{ICX}-ordering of functions of dependent risks

• For any non-decreasing supermodular function Ψ , MÜLLER (1997) established that $X^- \leq_{SM} X \leq_{SM} X^+$ implies

$$\Psi(X_1^-, X_2^-) \preceq_{\mathsf{ICX}} \Psi(X_1, X_2) \preceq_{\mathsf{ICX}} \Psi(X_1^+, X_2^+).$$

• True e.g. for

$$\Psi(x_1, x_2) = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2,$$

with $\alpha_0 \in \mathbb{R}$, $\alpha_1 > 0$, $\alpha_2 > 0$, so that

 $X_1^- + X_2^- \preceq_{\mathbf{CX}} X_1 + X_2 \preceq_{\mathbf{CX}} X_1^- + X_2^-.$

- A function φ : ℝ² → ℝ is directionally convex, if it is supermodular, and in addition convex in each component, when the other component is held fixed.
- $X \preceq_{\mathsf{DIR-CX}} Y$ if $\mathbb{E}[\phi(X)] \le \mathbb{E}[\phi(Y)]$ for all the directionally convex functions ϕ for which the expectations exist.
- Directional convex order allows to compare random vectors with different marginals (and allows for shift in both the copula and the marginal cdf's).

• If *X* expresses less PQD than *Y*, in the sense that $Pr[X_1 > t_1, X_2 > t_2] - Pr[X_1 > t_1] Pr[X_2 > t_2]$ $\leq Pr[Y_1 > t_1, Y_2 > t_2] - Pr[Y_1 > t_1] Pr[Y_2 > t_2]$ for all t_1, t_2 , then

 $X_1 \preceq_{\mathsf{CX}} Y_1 \text{ and } X_2 \preceq_{\mathsf{CX}} Y_2 \Rightarrow \mathbf{X} \preceq_{\mathsf{DIR-CX}} \mathbf{Y}.$

• See RÜSCHENDORF (2004) for further results in that vein.

Comparing random vectors with a common copula

 Let X, X⁻ and X⁺ have the same CI copula C, and X⁻_i ≤_{CX} X_i ≤_{CX} X⁺_i, i = 1, 2, Müller & SCARSINI (2001) proved that

$$X^- \preceq_{\mathsf{DIR} ext{-}\mathsf{CX}} X \preceq_{\mathsf{DIR} ext{-}\mathsf{CX}} X^+.$$

- DENUIT, GENEST & MESFIOUI (2004) suggest to proceed in two steps:
 - first, the copula is replaced with a worse/better CI one (in the \leq_{SM} -sense)
 - second, the marginals are replaced with worse/better ones (in the ∠_{CX}-sense)
 giving bounds in the ∠_{DIR-CX}-sense on X.

Risk measures Stochastic orders **Dependence** structures **Credibility models Bonus-malus scales** Stochastic extrema Reinsurance pricing

- Data set provided by Insurance Services Office, Inc.
- ALAE's: expenses that are specifically attributable to the settlement of individual claims such as lawyers' fees and claims investigation expenses.
- The data consist of 1500 observed values of the pair (loss, ALAE), as well as a corresponding Policy Limit.

Losses and ALAE's in reinsurance

- Let us consider a reinsurance treaty on a policy with unlimited liability and insurer's retention *R*.
- Assuming a prorata sharing of expenses, the reinsurer's payment for a given realization of (LOSS,ALAE) is described by

$$g(\text{LOSS,ALAE}) = \begin{cases} 0 \text{ if } \text{LOSS} \leq R, \\ \text{LOSS} - R + \frac{\text{LOSS} - R}{\text{LOSS}} \text{ALAE} \\ \text{if } \text{LOSS} > R. \end{cases}$$

- Particularity of the data: some losses were <u>censored</u> because the claim amount cannot exceed the policy limit.
- Specifically,

$$\begin{cases} (T, ALAE_i), & i = 1, \dots, n \quad \text{where} \quad T = \min(loss_i, \ell_i), \\ \delta_i = \mathbb{I}[T = \ell_i] = \begin{cases} 1, & \text{if} \quad loss_i > \ell_i \Rightarrow \text{censored claim} \\ 0, & \text{if} \quad loss_i \le \ell_i \Rightarrow \text{uncensored claim} \end{cases} \end{cases}$$

Summary statistics of the Loss-ALAE data

	Loss	ALAE	Loss	Loss
			(uncensored)	(censored)
Total N	1,500	1,500	1,466	34
Min	10	15	10	5,000
1st Qu.	4,000	2,333	3,750	50,000
Mean	41,208	12,588	37,110	217,941
Median	12,000	5,471	11,049	100,000
3rd Qu.	35,000	12,577	32,000	300,000
Max	2,173,595	501,863	2,173,595	1,000,000
Std Dev.	102,748	28,146	92,513	258,205

Scatterplot of the Loss-ALAE data

M. Denuit, IME, Rome, June 14-16, 2004 – p. 43/55

- Empirical investigations carried out
 - by DENUIT & SCAILLET (2004), distance tests
 - by SCAILLET (2004), Kolmogorov-type tests strongly support PQD between Losses and their ALAE's.
- PQD means that large (resp. small) values of Loss and ALAE tend to occur simultaneously.
- Both methodologies only deal with complete data, and were thus applied to the 1466 uncensored pairs (loss,ALAE).

- Consider a function $\phi : [0,1] \to \overline{\mathbb{R}}^+$ satisfying $\phi(1) = 0$, $\phi^{(1)}(\tau) < 0$ and $\phi^{(2)}(\tau) > 0$ for all $\tau \in (0,1)$.
- Every such function ϕ generates a copula C_{ϕ} given by

$$C_{\phi}(u_1, u_2) = \begin{cases} \phi^{-1} \{ \phi(u_1) + \phi(u_2) \} \\ \text{if } \phi(u_1) + \phi(u_2) \le \phi(0), \\ 0 \text{ otherwise;} \end{cases}$$

the copula C_{ϕ} is called an archimedean copula.

- In the literature,
 - 1. GENEST & RIVEST (1993) for complete data, applied to the Loss-ALAE data by FREES & VALDEZ (1998)
 - 2. WANG & WELLS (2000) for doubly censored data
 - 3. DENUIT, PURCARU & VANKEILEGOM (2004) for Loss-ALAE data (truncation of loss).
- The nonparametric estimation of ϕ serves as a benchmark for selecting an appropriate parametric archimedean model.

Selection of the parametric generator on the basis of $\lambda = \phi/\phi^{(1)}$

Selection of the parametric generator: QQ-plot of $K(z) = z - \lambda(z)$

 To have an idea of the behavior of ALAE for some given Loss level, the next figure displays the graph of x₂ → Pr[ALAE ≤ x₂|Loss]:

 We also provide the quantile regression curves (i.e. the *q*th quantiles of ALAE for some given Loss level):

M. Denuit, IME, Rome, June 14-16, 2004 – p. 50/55

- Artzner, Ph., Delbaen, F., Eber, J.-M. & Heath, D. (1999). Coherent risk measures. Mathematical Finance 9, 203-228.
- Cossette, H., Denuit, M., Dhaene, J., & Marceau, E. (2001). Stochastic approximations for present value functions. Bulletin of the Swiss Association of Actuaries, 15-28.
- Cossette, H., Denuit, M., & Marceau, E. (2002). Distributional bounds for functions of dependent risks. Bulletin of the Swiss Association of Actuaries, 45-65.
- Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R., & Vyncke, D. (2004). Actuarial Theory for Dependent Risks. Forthcoming.
- Denuit, M., Genest, C., & Marceau, É. (1999). Stochastic bounds on sums of dependent risks. Insurance: Mathematics and Economics 25, 85-104.
- Denuit, M., Genest, C., & Mesfioui, M. (2004). Stop-loss bounds on functions of possibly dependent risks in the presence of partial information on their marginals.
 Discussion Paper 04-08, Institut de Statistique, UCL, Belgium.

- Denuit, M., & Müller, A. (2004). On the monotonicity of the Bayesian bonus-malus relativities. Discussion Paper, Institut de Statistique, UCL, Belgium.
 - Denuit, M., & Scaillet, O. (2004). Nonparametric tests for positive quadrant dependence. Journal of Financial Econometrics.
- Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., & Vyncke, D. (2002a). The concept of comonotonicity in actuarial science and finance: Theory. Insurance: Mathematics & Economics 31, 3-33.
- Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., & Vyncke, D. (2002b). The concept of comonotonicity in actuarial science and finance: Applications.
 Insurance: Mathematics & Economics 31, 133-161.
- Dhaene, J., Goovaerts, M.J., & Kaas, R. (2003). Economic capital allocation derived from risk measures. North American Actuarial Journal 7, 1-16 (with discussion).
- Dhaene, J., & Wang, S. (1998). Comonotonicity, correlation order and premium principles. Insurance: Mathematics and Economics 22, 235-242.

- Frees, E.W., & Valdez, E.A. (1998) Understanding relationships using copulas. North American Actuarial Journal 2, 1-15.
 - Genest, C., Ghoudi, K., & Rivest, L.-P. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82, 543-552.
- Genest, C., & Rivest, L. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association 88, 1034-1043.
- Goovaerts, M.J., De Vylder, F.E., and Haezendonck, J. (1984). Insurance Premiums: Theory and Applications. North-Holland. Amsterdam.
- Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall, London.
- Kaas, R., Goovaerts, M.J., Dhaene, J., & Denuit, M. (2001). Modern Actuarial Risk Theory. Kluwer Academic Publishers, Dordrecht.

- Müller, A., and Scarsini, M. (2001). Stochastic comparison of random vectors with a common copula. Mathematics of Operations Research 26, 723-740.
- Müller, A., & Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. Wiley, New York.
- Purcaru, O., & Denuit, M. (2002a). On the dependence induced by frequency credibility models. Belgian Actuarial Bulletin 2, 74-80.
- Purcaru, O., & Denuit, M. (2002b). On the stochastic increasingness of future claims in the Bühlmann linear credibility premium. German Actuarial Bulletin 25, 781-793.
- Purcaru, O., & Denuit, M. (2003). Dependence in dynamic claim frequency credibility models. ASTIN Bulletin 33, 23-40.
- Purcaru, O., Denuit. M. & Vankeilegom, I. (2004). Semiparametric archimedean copula modelling for pricing reinsurance treaties. Manuscript.

- Rüschendorf, L. (2004). Comparison of multivariate risks and positive dependence. Journal of Applied Probability 41, 391-406
- Shaked, M., & Spizzichino, F. (1998). Positive dependence properties of conditionally independent random lifetimes. Mathematics of Operations Research 23, 944-959.
- Wang, W., & Wells, M.T. (2000). Model selection and semiparametric inference for bivariate failure-time data. Journal of the American Statistical Association 95, 62-72.