8th International Congress on Insurance: Mathematics \& Economics

ACTUARIAL THEORY

FOR DEPENDENT RISKS *

MICHEL DENUIT

Institut de Statistique \& Institut des Sciences Actuarielles, UCL B-1348 Louvain-la-Neuve, Belgique

Email: denuit@stat.ucl.ac.be

Risk measures

Stochastic orders

Dependence structures
Credibility models
Bonus-malus scales
Stochastic extrema
Reinsurance pricing

Risk measures

- A risk measure is a functional ρ mapping a risk X to a non-negative real number $\rho[X]$, possibly infinite.
- The meaning of $\rho[X]$ is as follows: $\rho[X]$ represents the minimum extra cash which has to be added to X to make it "acceptable".
- A large value of $\rho[X]$ indicates that X is "dangerous".
- Risk measures have been extensively studied in the actuarial literature since 1970, in the guise of premium principles; see e.g. Goovaerts et al. (1984).

Coherent risk measures

A risk measure satisfying
Translativity: $\rho[X+c]=\rho[X]+c$ whatever the risk X and the constant c;
Subadditivity: $\rho[X+Y] \leq \rho[X]+\rho[Y]$ whatever the risks X and Y;
Homogeneity: $\rho[c X]=c \rho[X]$ whatever the risk X and the positive constant c;
Monotonicity: $\operatorname{Pr}[X \leq Y]=1 \Rightarrow \rho[X] \leq \rho[Y]$ whatever the risks X and Y;
is said to be coherent in the sense of Artzner et al. (1999).

Comonotonic additivity

- (X, Y) is comonotonic $\Leftrightarrow \exists Z$ and \uparrow functions t_{1} and t_{2} such that

$$
(X, Y)={ }_{d}\left(t_{1}(Z), t_{2}(Z)\right) ;
$$

see Dhaene et al. $(2002 a, b)$ for theory and applications in insurance and finance.

- The risk measure ρ is comonotonic additive if $\rho[X+Y]=\rho[X]+\rho[Y]$ whatever the comonotonic risks X and Y.
- There is no diversification effect for comonotonic risks when the risk measure is comonotonic additive.

Denneberg representation theorem

- Let \mathcal{B} be the set of bounded risks.
- If $\rho: \mathcal{B} \mapsto \mathbb{R}^{+}$is comonotonic additive, monotone and satisfies $\rho[1]=1$ then there exists a non-decreasing distortion function g satisfying $g(0)=0$ and $g(1)=1$, such that

$$
\rho[X] \equiv \rho_{g}[X]=\int_{0}^{+\infty} g(\operatorname{Pr}[X>t]) d t
$$

- ρ_{g} is known as a Wang risk measure.
- Moreover,
ρ_{g} subadditive $\Leftrightarrow g$ concave.

Value-at-Risk (VaR)

- Given a risk X and a probability level $p \in(0,1)$, the corresponding VaR, denoted as $\operatorname{VaR}[X ; p]$, is defined as

$$
\operatorname{VaR}[X ; p]=F_{X}^{-1}(p) .
$$

- Note that any Wang risk measure can be represented as a mixture of VaR's:

$$
\rho_{g}[X]=\int_{0}^{1} \operatorname{VaR}[X ; 1-p] d g(p) .
$$

- VaR is associated with the distortion function $g(x)=\mathbb{I}[x>1-p]$; it is not coherent (it fails to be subadditive).

Tail-VaR

- Given a risk X and a probability level p,

$$
\operatorname{TVaR}[X ; p]=\frac{1}{1-p} \int_{p}^{1} \operatorname{VaR}[X ; \xi] d \xi, p \in(0,1) .
$$

- TVaR is associated with the distortion function $g(x)=\min \left(\frac{x}{1-p}, 1\right)$; it is coherent.
- If F_{X} is continuous then

$$
\operatorname{TVaR}[X ; p]=\mathbb{E}[X \mid X>\operatorname{VaR}[X ; p]], p \in(0,1),
$$

and is the "average loss in the worst $1-p \%$ cases".

Risk measures

Stochastic orders

Dependence structures
Credibility models
Bonus-malus scales Stochastic extrema

Reinsurance pricing

Stochastic orders and risk measures

- Most classical stochastic orderings are associated with particular risk measures.
- Given two risks X and Y,

$$
\begin{aligned}
X \preceq_{\text {ST }} Y & \Leftrightarrow \rho_{g}[X] \leq \rho_{g}[Y] \quad \forall \uparrow \text { distortions } g \\
& \Leftrightarrow \operatorname{VaR}[X ; p] \leq \operatorname{VaR}[Y ; p] \text { for all } 0 \leq p \leq 1 .
\end{aligned}
$$

- Given two risks X and Y,
$X \preceq_{\operatorname{ICX}} Y \Leftrightarrow \rho_{g}[X] \leq \rho_{g}[Y] \forall \uparrow$ concave distortions g
$\Leftrightarrow \operatorname{TVaR}[X ; p] \leq \operatorname{TVaR}[Y ; p]$ for all $0 \leq p \leq 1$.
- See e.g. Denuit et al. (2004).

Convex order

- Given two random variables X and Y,

$$
X \preceq_{\mathrm{cX}} Y \Leftrightarrow X \preceq_{\operatorname{ICX}} Y \text { and } \mathbb{E}[X]=\mathbb{E}[Y] .
$$

- It can be shown that

$$
X \preceq \mathrm{cx} Y \Rightarrow \operatorname{Var}[X] \leq \operatorname{Var}[Y]
$$

so that $\preceq_{c x}$ expresses the intuitive idea of " X being less variable than $Y^{\prime \prime}$.

- Separation Theorem: $X \preceq_{\text {ıcx }} Y$ iff $\exists Z$ such that

$$
X \preceq \preceq_{\mathrm{st}} Z \preceq \mathrm{cx} Y .
$$

Likelihood ratio order

- Given two random variables X and Y, X is said to be smaller than Y in the likelihood ratio order, denoted as $X \preceq_{\mathrm{LR}} Y$, when
$\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B] \geq \operatorname{Pr}[X \in B] \operatorname{Pr}[Y \in A]$ for all $A \leq B$.
- Let X and Y be two rv's. Then, $X \preceq_{\text {LR }} Y$ if, and only if,

$$
[X \mid a \leq X \leq b] \preceq_{\text {ST }}[Y \mid a \leq Y \leq b] \text { for all } a<b \in \mathbb{R}
$$

or

$$
p \mapsto F_{Y}(\operatorname{VaR}[X ; p]) \text { is convex. }
$$

Risk measures
Stochastic orders
Dependence structures
Credibility models
Bonus-malus scales
Stochastic extrema
Reinsurance pricing

Copulas

- A copula is (the restriction to the unit square $[0,1]^{2}$ of) a joint cdf for a bivariate random vector with unit uniform marginals.
- Let us consider $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ with marginals $X_{1} \sim F_{1}$ and $X_{2} \sim F_{2}$.
- Then, there exists a copula $C:[0,1]^{2} \rightarrow[0,1]$ such that

$$
F_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=C\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right), \quad \boldsymbol{x} \in \mathbb{R}^{2} .
$$

- $C(\cdot, \cdot)$ is called a copula since it "couples" the marginals $F_{1}(\cdot)$ and $F_{2}(\cdot)$ to form the bivariate cdf $F_{\boldsymbol{X}}(\cdot, \cdot)$.

Conditional increasingness

- The random couple X is said to be Cl if

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{2}>x_{2} \mid X_{1}=x_{1}\right] \text { is non-decreasing in } x_{1} \\
& \operatorname{Pr}\left[X_{1}>x_{1} \mid X_{2}=x_{2}\right] \text { is non-decreasing in } x_{2} .
\end{aligned}
$$

- This is equivalent to

$$
\begin{aligned}
& {\left[X_{2} \mid X_{1}=x_{1}\right] \preceq_{\mathrm{ST}}\left[X_{2} \mid X_{1}=x_{1}^{\prime}\right] \text { for any } x_{1} \leq x_{1}^{\prime}} \\
& {\left[X_{1} \mid X_{2}=x_{2}\right] \preceq_{\mathrm{ST}}\left[X_{1} \mid X_{2}=x_{2}^{\prime}\right] \text { for any } x_{2} \leq x_{2}^{\prime} .}
\end{aligned}
$$

- Cl is a property of the copula, that is, if C is a copula for $\boldsymbol{X}, \boldsymbol{X} \mathrm{Cl} \Leftrightarrow C \mathrm{Cl}$.

Supermodular functions

- A function $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is said to be supermodular when

$$
\phi\left(b_{1}, b_{2}\right)-\phi\left(a_{1}, b_{2}\right)-\phi\left(b_{1}, a_{2}\right)+\phi\left(a_{1}, a_{2}\right) \geq 0
$$

for all $a_{1} \leq b_{1}, a_{2} \leq b_{2}$.

- Such a function assigns more weight to points $\left(a_{1}, a_{2}\right)$ and (b_{1}, b_{2}) expressing positive dependence.
- If ϕ is twice differentiable, it is supermodular iff $\frac{\partial^{2}}{\partial x_{1} \partial x_{2}} \phi \geq 0$ (such a function is called regular supermodular).

Total positivity of order 2 (PP $_{2}$)

- The random couple \boldsymbol{X} is said to be TP_{2} if its pdf is log-supermodular, that is, if

$$
f_{\boldsymbol{X}}\left(a_{1}, a_{2}\right) f_{\boldsymbol{X}}\left(b_{1}, b_{2}\right) \geq f_{\boldsymbol{X}}\left(a_{1}, b_{2}\right) f_{\boldsymbol{X}}\left(b_{1}, a_{2}\right)
$$

for any $a_{1} \leq b_{1}$ and $a_{2} \leq b_{2}$.

- This is equivalent to

$$
\begin{aligned}
& {\left[X_{2} \mid X_{1}=x_{1}\right] \preceq_{\mathrm{LR}}\left[X_{2} \mid X_{1}=x_{1}^{\prime}\right] \text { for any } x_{1} \leq x_{1}^{\prime}} \\
& {\left[X_{1} \mid X_{2}=x_{2}\right] \preceq_{\mathrm{LR}}\left[X_{1} \mid X_{2}=x_{2}^{\prime}\right] \text { for any } x_{2} \leq x_{2}^{\prime} .}
\end{aligned}
$$

- \boldsymbol{X} is said to be MTP_{2} if

$$
f_{\boldsymbol{X}}(\boldsymbol{x}) f_{\boldsymbol{X}}(\boldsymbol{y}) \leq f_{\boldsymbol{X}}(\boldsymbol{x} \vee \boldsymbol{y}) f_{\boldsymbol{X}}(\boldsymbol{x} \wedge \boldsymbol{y}) \forall \boldsymbol{x} \in \mathbb{R}^{n} .
$$

Risk measures
Stochastic orders
Dependence structures
Credibility models
Bonus-malus scales
Stochastic extrema
Reinsurance pricing

Notation

- Let N_{t} be the number of claims reported by a given policyholder during period $t, t=1,2, \ldots, T$.
- Being generated by the same individual, the N_{t} 's may be correlated; this serial correlation justifies a posteriori corrections.
- Let

$$
N_{\bullet}=\sum_{t=1}^{T} N_{t}
$$

be the total number of claims reported during the T observation periods.

The model

- Let us denote as $\mathbb{E}\left[N_{t}\right]=\lambda_{t}$ the expected annual claim number; λ_{t} contains all the information included in the price list about the policyholder in period t (like age, sex, power of the car, and so on).
- Let Θ be a positive random variable with unit mean; it represents the unexplained heterogeneity.
- Given $\Theta=\theta$, the random variables $N_{t}, t=1,2, \ldots$, are independent and $\sim \mathcal{P} o i\left(\lambda_{t} \theta\right)$, i.e.

$$
\operatorname{Pr}\left[N_{t}=k \mid \Theta=\theta\right]=\exp \left(-\theta \lambda_{t}\right) \frac{\left(\theta \lambda_{t}\right)^{k}}{k!}, k \in \mathbb{N} .
$$

Intuitive statements

- In this model, we intuitively feel that the following statements are true:
S1 Θ "increases" in the past claims N 。
S2 N_{T+1} "increases" in the past claims N_{\bullet} S3 N_{T+1} and N_{\bullet} are "positively dependent".
- The meaning of "increases" in S1 and S2, as well as of "positive dependence" involved in S3 has to be precised.
- These statements are true in the classical Poisson-Gamma model if the increasingness is wrt \preceq_{LR} and the positive dependence is TP_{2}.

Poisson mixture model

- The results valid in the Poisson-Gamma model remain true in any Poisson mixture model, that is

$$
\begin{array}{rll}
{\left[\Theta \mid N_{\bullet}\right.} & =n] & \preceq \operatorname{LR}
\end{array} \quad\left[\Theta \mid N_{\bullet}=n^{\prime}\right] \text { for } n \leq n^{\prime}, ~\left(\begin{array}{ll}
\prime
\end{array}\right.
$$

but

$$
\mathbb{E}\left[N_{T+1} \mid N_{\bullet}=n\right]=\lambda_{T+1} \psi(n)
$$

where ψ is increasing but not necessarily linear.

- $\left(N_{T+1}, N_{\bullet}\right)$ as well as each $\left(N_{t}, N_{s}\right)$ are TP_{2}. Moreover, $\left(\Theta, N_{1}, \ldots, N_{T}\right)$ is MTP $_{2}$.
- Shaked \& Spizzichino (1998), Purcaru \& Denuit (2002a,b, 2003).

Risk measures
Stochastic orders
Dependence structures
Credibility models
Bonus-malus scales
Stochastic extrema
Reinsurance pricing

Bonus-malus scales

- In practice, bonus-malus scales are enforced in MTPL, and not credibility models.
- The model for claim numbers is the same as for credibility theory.
- Policyholders are now placed in a scale:

Level	Relativities
s	r_{s}
\vdots	\vdots
ℓ	r_{ℓ}
\vdots	\vdots
0	r_{0}

Bonus-malus systems

- Such scales possess a number of levels, $s+1$ say, numbered from 0 to s.
- A specified level is assigned to a new driver (often according to the use of the vehicle).
- Each claim free year is rewarded by a bonus point (i.e. the driver goes one level down).
- Claims are penalized by malus points (i.e. the driver goes up a certain number of levels each time he files a claim).

Bayesian relativities

- Let $L(t)$ be the level occupied by a given policyholder in year t; typically,

$$
L(t)=\max \left\{0, \min \left\{L(t-1)-1+N_{t} \times k_{p e n}, s\right\}\right\} .
$$

- Let $L(\infty)$ be the level occupied by an "infinitely old" policy (stationary regime).
- Denoting as Θ the unknown (relative) expected claim frequency, Norberg Bayesian relativity attached to level ℓ is

$$
r_{\ell}=\mathbb{E}[\Theta \mid L(\infty)=\ell] .
$$

Dependence in BM scales

- The random vector $(\Theta, L(1), \ldots, L(t))$ is MTP_{2} for any $t \geq 1$
$\Rightarrow(\Theta, L(t))$ and $(\Theta, L(\infty))$ are both TP_{2}.
- The following stochastic inequalities hold true:

$$
\begin{array}{rll}
{[\Theta \mid L(t)=\ell]} & \preceq \operatorname{LR} & {\left[\Theta \mid L(t)=\ell^{\prime}\right] \text { for any } \ell \leq \ell^{\prime}, t \geq 1} \\
{[\Theta \mid L(\infty)=\ell]} & \preceq \mathrm{LR} & {\left[\Theta \mid L(\infty)=\ell^{\prime}\right] \text { for any } \ell \leq \ell^{\prime}} \\
& \Rightarrow & r_{\ell} \text { is increasing with } \ell
\end{array}
$$

- Furthermore,

$$
\left[N_{t+1} \mid L(t)=\ell\right] \preceq_{\mathrm{LR}}\left[N_{t+1} \mid L(t)=\ell^{\prime}\right] \text { for any } \ell \leq \ell^{\prime} .
$$

Risk measures
Stochastic orders
Dependence structures
Credibility models
Bonus-malus scales
Stochastic extrema
Reinsurance pricing

Stochastic bounds

- Often, actuaries act in a conservative way by basing the decision on the worst case compatible with the partial information at their disposal.
- In the univariate case, given the first few moments of the risk X, its support, mode, etc., two rv's X_{-} and X_{+}are determined such that

$$
X_{-} \preceq X \preceq X_{+}
$$

(here \preceq can be $\preceq_{\text {ST }}$, $\preceq_{\text {ICx }}$ or $\preceq_{\text {cx }}$ for instance).

- This is closely related to the problem of maximizing/minimizing $\mathbb{E}[\phi(X)]$ for some function ϕ when X belongs to a given moment space.

Example with $\preceq ı c x$

$$
\begin{gathered}
\operatorname{Pr}\left[X_{+} \leq x\right]= \begin{cases}0 & \text { if } x<0, \\
\frac{\sigma^{2}}{\sigma^{2}+\mu^{2}} & \text { if } 0 \leq x<\frac{\mu^{2}+\sigma^{2}}{2 \mu}, \\
\frac{1}{2}+\frac{1}{2} \frac{x-\mu}{\sqrt{(x-\mu)^{2}+\sigma^{2}}} & \text { if } x \geq \frac{\mu^{2}+\sigma^{2}}{2 \mu} .\end{cases} \\
\operatorname{Pr}\left[X_{-} \leq x\right]= \begin{cases}0 & \text { if } x<\mu-\frac{\sigma^{2}}{b-\mu}, \\
1-\frac{\mu}{b} & \text { if } \mu-\frac{\sigma^{2}}{b-\mu} \leq x<\frac{\mu^{2}+\sigma^{2}}{\mu}, \\
1 & \text { if } x \geq \frac{\mu^{2}+\sigma^{2}}{\mu} .\end{cases}
\end{gathered}
$$

(see Jansen et al. (1986) and De Vylder \& Goovaerts (1982))

Stochastic bounds

- In the bivariate case, one could imagine that the marginal distributions are given but the underlying copula is only partially specified (it is PQD, for instance).
- Now, two random couples \boldsymbol{X}_{-}and \boldsymbol{X}_{+}are determined such that

$$
\boldsymbol{X}_{-} \preceq \boldsymbol{X} \preceq \boldsymbol{X}_{+}
$$

(here \preceq is a suitable bivariate order).

- Good candidates for \preceq in the above stochastic inequality are the supermodular order and the directionally convex order.

Supermodular order

- A function $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is said to be supermodular when

$$
\phi\left(b_{1}, b_{2}\right)-\phi\left(a_{1}, b_{2}\right)-\phi\left(b_{1}, a_{2}\right)+\phi\left(a_{1}, a_{2}\right) \geq 0
$$

for all $a_{1} \leq b_{1}, a_{2} \leq b_{2}$.

- Given two random couples $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ and $\boldsymbol{Y}=\left(Y_{1}, Y_{2}\right), \boldsymbol{X} \preceq_{\text {sM }} \boldsymbol{Y}$ if $\mathbb{E}[\phi(\boldsymbol{X})] \leq \mathbb{E}[\phi(\boldsymbol{Y})]$ for all the (regular) supermodular functions ϕ for which the expectations exist.
- \preceq sм can only compare random vectors with identical marginals (it is a dependence order).

Extremal elements wrt \preceq sm with given marginals

- Any \boldsymbol{X} satisfies $\boldsymbol{X}^{-} \preceq$ SM $^{\boldsymbol{X}} \preceq \preceq_{\text {SM }} \boldsymbol{X}^{+}$, where \boldsymbol{X}^{-} (resp. \boldsymbol{X}^{+}) has copula

$$
C_{L}\left(u_{1}, u_{2}\right)=\max \left\{u_{1}+u_{2}-1,0\right\}
$$

$$
\left(\text { resp. } C_{U}\left(u_{1}, u_{2}\right)=\min \left\{u_{1}, u_{2}\right\}\right)
$$

and the same marginals as \boldsymbol{X}.

- If \boldsymbol{X} is known to be PQD , that is if
$\operatorname{Pr}\left[X_{1}>t_{1}, X_{2}>t_{2}\right] \geq \operatorname{Pr}\left[X_{1}>t_{1}\right] \operatorname{Pr}\left[X_{2}>t_{2}\right]$ for all t_{1}, t_{2},
then \boldsymbol{X}^{-}can be taken with independent components.
- For any non-decreasing supermodular function Ψ, Müller (1997) established that $\boldsymbol{X}^{-} \preceq_{\text {SM }} \boldsymbol{X} \preceq \preceq_{\text {sM }} \boldsymbol{X}^{+}$ implies

$$
\Psi\left(X_{1}^{-}, X_{2}^{-}\right) \preceq \operatorname{lcx} \Psi\left(X_{1}, X_{2}\right) \preceq \operatorname{ICX} \Psi\left(X_{1}^{+}, X_{2}^{+}\right) .
$$

- True e.g. for

$$
\Psi\left(x_{1}, x_{2}\right)=\alpha_{0}+\alpha_{1} x_{1}+\alpha_{2} x_{2}
$$

with $\alpha_{0} \in \mathbb{R}, \alpha_{1}>0, \alpha_{2}>0$, so that

$$
X_{1}^{-}+X_{2}^{-} \preceq \mathrm{cx} X_{1}+X_{2} \preceq \mathrm{cx} X_{1}^{-}+X_{2}^{-}
$$

Directionally convex order

- A function $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is directionally convex, if it is supermodular, and in addition convex in each component, when the other component is held fixed.
- $\boldsymbol{X} \preceq$ Dir-cx $^{\boldsymbol{Y}}$ if $\mathbb{E}[\phi(\boldsymbol{X})] \leq \mathbb{E}[\phi(\boldsymbol{Y})]$ for all the directionally convex functions ϕ for which the expectations exist.
- Directional convex order allows to compare random vectors with different marginals (and allows for shift in both the copula and the marginal cdf's).

A sufficient condition for $\preceq_{\text {DIR-cx }}$

- If \boldsymbol{X} expresses less PQD than \boldsymbol{Y}, in the sense that

$$
\begin{gathered}
\operatorname{Pr}\left[X_{1}>t_{1}, X_{2}>t_{2}\right]-\operatorname{Pr}\left[X_{1}>t_{1}\right] \operatorname{Pr}\left[X_{2}>t_{2}\right] \\
\leq \operatorname{Pr}\left[Y_{1}>t_{1}, Y_{2}>t_{2}\right]-\operatorname{Pr}\left[Y_{1}>t_{1}\right] \operatorname{Pr}\left[Y_{2}>t_{2}\right] \text { for all } t_{1}, t_{2},
\end{gathered}
$$

then

$$
X_{1} \preceq_{\mathrm{cx}} Y_{1} \text { and } X_{2} \preceq_{\mathrm{cx}} Y_{2} \Rightarrow \boldsymbol{X} \preceq_{\mathrm{DIR}} \mathrm{Cx} \boldsymbol{Y}
$$

- See Rüschendorf (2004) for further results in that vein.

Comparing random vectors with a common copula

- Let $\boldsymbol{X}, \boldsymbol{X}^{-}$and \boldsymbol{X}^{+}have the same Cl copula C, and $X_{i}^{-} \preceq_{\mathrm{Cx}} X_{i} \preceq_{\mathrm{Cx}} X_{i}^{+}, i=1,2$, MüLler \& Scarsini (2001) proved that

$$
\boldsymbol{X}^{-} \preceq_{\text {DIR-CX }} \boldsymbol{X} \preceq_{\text {DIR-CX }} \boldsymbol{X}^{+} .
$$

- Denuit, Genest \& Mesfioul (2004) suggest to proceed in two steps:
- first, the copula is replaced with a worse/better Cl one (in the $\preceq_{\text {sm-sense }}$)
- second, the marginals are replaced with worse/better ones (in the $\preceq_{c x}$-sense) giving bounds in the $\preceq_{\text {DIR-CX-sense }}$ on \boldsymbol{X}.

Risk measures
Stochastic orders
Dependence structures
Credibility models
Bonus-malus scales
Stochastic extrema
Reinsurance pricing

Loss-ALAE data set

- Data set provided by Insurance Services Office, Inc.
- ALAE's: expenses that are specifically attributable to the settlement of individual claims such as lawyers' fees and claims investigation expenses.
- The data consist of 1500 observed values of the pair (loss, ALAE), as well as a corresponding Policy Limit.

Losses and ALAE's in reinsurance

- Let us consider a reinsurance treaty on a policy with unlimited liability and insurer's retention R.
- Assuming a prorata sharing of expenses, the reinsurer's payment for a given realization of (LOSS,ALAE) is described by

$$
g(\text { LOSS,ALAE })=\left\{\begin{array}{c}
0 \text { if LOSS } \leq R, \\
\text { LOSS }-R+\frac{\text { LOSS- } R}{\text { LOSS }} \text { ALAE } \\
\text { if LOSS }>R .
\end{array}\right.
$$

ISO Loss-ALAE data

- Particularity of the data: some losses were censored because the claim amount cannot exceed the policy limit.
- Specifically,

$$
\left\{\begin{array}{l}
\left(T, A L A E_{i}\right), \quad i=1, \ldots, n \quad \text { where } \quad T=\min \left(\operatorname{loss}_{i}, \ell_{i}\right), \\
\delta_{i}=\mathbb{I}\left[T=\ell_{i}\right]=\left\{\begin{array}{lll}
1, & \text { if } & \text { loss }_{i}>\ell_{i} \Rightarrow \text { censored claim } \\
0, & \text { if } & \text { loss }_{i} \leq \ell_{i} \Rightarrow \text { uncensored claim }
\end{array}\right.
\end{array}\right.
$$

Summary statistics of the Loss-ALAE data

	Loss	ALAE	Loss (uncensored)	Loss (censored)
Total N	1,500	1,500	1,466	34
Min	10	15	10	5,000
1st Qu.	4,000	2,333	3,750	50,000
Mean	41,208	12,588	37,110	217,941
Median	12,000	5,471	11,049	100,000
3rd Qu.	35,000	12,577	32,000	300,000
Max	$2,173,595$	501,863	$2,173,595$	$1,000,000$
Std Dev.	102,748	28,146	92,513	258,205

Scatterplot of the Loss-ALAE data

Testing for PQD

- Empirical investigations carried out
- by Denuit \& Scaillet (2004), distance tests
- by Scaillet (2004), Kolmogorov-type tests strongly support PQD between Losses and their ALAE's.
- PQD means that large (resp. small) values of Loss and ALAE tend to occur simultaneously.
- Both methodologies only deal with complete data, and were thus applied to the 1466 uncensored pairs (loss,ALAE).

Archimedean copulas: definition

- Consider a function $\phi:[0,1] \rightarrow \overline{\mathbb{R}}^{+}$satisfying $\phi(1)=0, \phi^{(1)}(\tau)<0$ and $\phi^{(2)}(\tau)>0$ for all $\tau \in(0,1)$.
- Every such function ϕ generates a copula C_{ϕ} given by

$$
C_{\phi}\left(u_{1}, u_{2}\right)=\left\{\begin{array}{c}
\phi^{-1}\left\{\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right\} \\
\text { if } \phi\left(u_{1}\right)+\phi\left(u_{2}\right) \leq \phi(0), \\
0 \text { otherwise; }
\end{array}\right.
$$

the copula C_{ϕ} is called an archimedean copula.

Nonparametric estimation of ϕ

- In the literature,

1. Genest \& Rivest (1993) for complete data, applied to the Loss-ALAE data by Frees \& Valdez (1998)
2. Wang \& Wells (2000) for doubly censored data
3. Denuit, Purcaru \& Vankeilegom (2004) for Loss-ALAE data (truncation of loss).

- The nonparametric estimation of ϕ serves as a benchmark for selecting an appropriate parametric archimedean model.

Selection of the parametric generator on the basis of $\lambda=\phi / \phi^{(1)}$

Selection of the parametric generator: QQ-plot of $K(z)=z-\lambda(z)$

Application to Loss-ALAE

- To have an idea of the behavior of ALAE for some given Loss level, the next figure displays the graph of $x_{2} \mapsto \operatorname{Pr}\left[\mathrm{ALAE} \leq x_{2} \mid\right.$ LOSs $]$:

Application to Loss-ALAE

- We also provide the quantile regression curves (i.e. the q th quantiles of ALAE for some given Loss level):

Short bibliography...

- Artzner, Ph., Delbaen, F., Eber, J.-M. \& Heath, D. (1999). Coherent risk measures. Mathematical Finance 9, 203-228.
- Cossette, H., Denuit, M., Dhaene, J., \& Marceau, E. (2001). Stochastic approximations for present value functions. Bulletin of the Swiss Association of Actuaries, 15-28.
- Cossette, H., Denuit, M., \& Marceau, E. (2002). Distributional bounds for functions of dependent risks. Bulletin of the Swiss Association of Actuaries, 45-65.
- Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R., \& Vyncke, D. (2004). Actuarial Theory for Dependent Risks. Forthcoming.
- Denuit, M., Genest, C., \& Marceau, É. (1999). Stochastic bounds on sums of dependent risks. Insurance: Mathematics and Economics 25, 85-104.
- Denuit, M., Genest, C., \& Mesfioui, M. (2004). Stop-loss bounds on functions of possibly dependent risks in the presence of partial information on their marginals. Discussion Paper 04-08, Institut de Statistique, UCL, Belgium.

Short bibliography...

- Denuit, M., \& Müller, A. (2004). On the monotonicity of the Bayesian bonus-malus relativities. Discussion Paper, Institut de Statistique, UCL, Belgium.
- Denuit, M., \& Scaillet, O. (2004). Nonparametric tests for positive quadrant dependence. Journal of Financial Econometrics.
- Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., \& Vyncke, D. (2002a). The concept of comonotonicity in actuarial science and finance: Theory. Insurance: Mathematics \& Economics 31, 3-33.
- Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., \& Vyncke, D. (2002b). The concept of comonotonicity in actuarial science and finance: Applications. Insurance: Mathematics \& Economics 31, 133-161.
- Dhaene, J., Goovaerts, M.J., \& Kaas, R. (2003). Economic capital allocation derived from risk measures. North American Actuarial Journal 7, 1-16 (with discussion).
- Dhaene, J., \& Wang, S. (1998). Comonotonicity, correlation order and premium principles. Insurance: Mathematics and Economics 22, 235-242.

Short bibliography...

- Frees, E.W., \& Valdez, E.A. (1998) Understanding relationships using copulas. North American Actuarial Journal 2, 1-15.
- Genest, C., Ghoudi, K., \& Rivest, L.-P. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82, 543-552.
- Genest, C., \& Rivest, L. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association 88, 1034-1043.
- Goovaerts, M.J., De Vylder, F.E., and Haezendonck, J. (1984). Insurance Premiums: Theory and Applications. North-Holland. Amsterdam.
- Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman \& Hall, London.
- Kaas, R., Goovaerts, M.J., Dhaene, J., \& Denuit, M. (2001). Modern Actuarial Risk Theory. Kluwer Academic Publishers, Dordrecht.

Short bibliography...

- Müller, A., and Scarsini, M. (2001). Stochastic comparison of random vectors with a common copula. Mathematics of Operations Research 26, 723-740.
- Müller, A., \& Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. Wiley, New York.
- Purcaru, O., \& Denuit, M. (2002a). On the dependence induced by frequency credibility models. Belgian Actuarial Bulletin 2, 74-80.
- Purcaru, O., \& Denuit, M. (2002b). On the stochastic increasingness of future claims in the Bühlmann linear credibility premium. German Actuarial Bulletin 25, 781-793.
- Purcaru, O., \& Denuit, M. (2003). Dependence in dynamic claim frequency credibility models. ASTIN Bulletin 33, 23-40.
- Purcaru, O., Denuit. M. \& Vankeilegom, I. (2004). Semiparametric archimedean copula modelling for pricing reinsurance treaties. Manuscript.

Short bibliography...

- Rüschendorf, L. (2004). Comparison of multivariate risks and positive dependence. Journal of Applied Probability 41, 391-406
- Shaked, M., \& Spizzichino, F. (1998). Positive dependence properties of conditionally independent random lifetimes. Mathematics of Operations Research 23, 944-959.
- Wang, W., \& Wells, M.T. (2000). Model selection and semiparametric inference for bivariate failure-time data. Journal of the American Statistical Association 95, 62-72.

