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Abstract

In a classical risk process reinsurance and investment can be chosen at any time. We
find the Lundberg exponent and the Cramér-Lundberg approximation for the ruin
probability under the optimal strategy in the case where no exponential moments
for the claim size distribution exist. We also show that the optimal strategies
converge.
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1. Introduction

Let St =
∑Nt

i=1 Yi be the aggregate claims process, where {Nt} is a Poisson process

with rate λ. The claim sizes {Yi} are iid, strictly positive and independent of the

claim arrival process. We denote by Y a generic random variable, by MY (r) =

IIE[exp{rY }] its moment generating function and by G(y) its distribution function.

All stochastic quantities are defined on a large enough complete probability space

(Ω,F , IIP).

The insurer follows a strategy (A(u), b(u)) of feedback form, where (A(u), b(u)) ∈

A = [0,∞) × [0, 1]. A(u) denotes the amount invested into a risky asset, modelled

1



as a geometric Brownian motion

dZt = µZt dt + σZt dWt ,

where {Wt} is a standard Brownian motion independent of {St}. We assume here

that all economic quantities are discounted. In particular, the claim sizes increase

with inflation and the amount “not invested” is put on a bank account or invested

in a riskless bond. It is even possible to borrow money at the same rate, as it

will be the case under the optimal strategy. The latter can be interpreted that the

portfolio under consideration has a debt to the capital resources of the company.

The parameters fulfil µ, σ > 0. σ > 0 is no loss of generality, µ > 0 is necessary

in order that investment reduces the ruin probability, but also makes sense from an

economic point of view.

b(u) is the retention level in proportional reinsurance, i.e. if a claim Y occurs at

the time where the surplus is u (before the claim payment) then the insurer pays

b(u)Y and the reinsurer pays (1− b(u))Y . In order to get this reinsurance cover the

insurer has to pay a continuous premium at rate c(b(u)). As in [7] we assume that

c(b) is strictly decreasing, c(1) = 0, and that c < c(0) < ∞, where c is the rate at

which the insurer gets premiums. We have chosen here proportional reinsurance for

simplicity. Other types of reinsurance can be treated similarly.

In this paper we work with the natural filtration {Ft} of {(St,Wt)}, i.e. the

smallest right continuous filtration such that {(St,Wt)} is adapted. The filtration

has to be right continuous in order that the ruin time defined below is a stopping

time.

Under the chosen strategy the surplus process is

dXt = (c− c(b(Xt)) + µA(Xt)) dt+ σA(Xt) dWt − b(Xt−) dSt , X0 = u . (1)

The time of ruin is τA,b = inf{t ≥ 0 : Xt < 0} and the ruin probability ψA,b(u) =

IIP[τA,b < ∞]. The control function is ψ(u) = infA ψ
A,b(u). Note that ψ(u) < 1
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even if no net profit condition is fulfilled. Positive safety loading can be achieved by

investment.

In [7] it was proved that if there exists a twice continuously increasing function

δ(u) solving the Hamilton-Jacobi-Bellman equation

sup
(A,b)∈A

1
2
σ2A2δ′′(u) + (c− c(b) + µA)δ′(u) + λ(IIE[δ(u− bY )] − δ(u)) = 0 (2)

with δ(u) = 0 for u < 0, then δ(u) is bounded and δ(u) = δ(∞)(1−ψ(u)). Moreover,

the arguments (A(u), b(u)) at which the supremum is taken in (2) define the optimal

strategy (A(Xt), b(Xt−)). It is also shown that if G(y) has a bounded density then

there exists an increasing twice continuously differentiable solution to (2). Similar

problems had been solved in [2] (no reinsurance possible) and [6] (no investment

possible).

For the rest of this paper we suppose that ψ(u) is twice continuously differen-

tiable. Then ψ(u) solves the Hamilton-Jacobi-Bellman equation

inf
(A,b)∈A

1
2
σ2A2ψ′′(u) + (c− c(b) + µA)ψ′(u) + λ(IIE[ψ(u− bY )] − ψ(u)) = 0 (3)

where we let ψ(u) = 1 for u < 0. The optimal strategy (A(u), b(u)) are then the

values of A, b in (3) for which the infimum is taken. In the following sections we

investigate the asymptotic behaviour of ψ(u) as u → ∞ as well as the asymptotic

behaviour of the strategies (A(u), b(u)) in the large claim case.

Similar problems had been considered before. In [3] the case without reinsurance

and small claims is considered. The small claim case with reinsurance, with and

without investment, is considered in [8]. The main step in the small claim case is to

use exponential change of measure. This demands that exponential moments exist.

Therefore we cannot use the same method here. However, it turns out that in our

case we can conclude the results directly from the equation (3).
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2. The Lundberg exponent and convergence of ψ(u)eRu

In this paper we assume that no exponential moments exist, i.e. MY (r) = ∞ for all

r > 0. We start by defining the Lundberg exponent.

Suppose we want to use a constant strategy (A, b). The corresponding Lundberg

exponent R(A, b) is the positive solution to

λ(MY (br) − 1) − (c− c(b) + µA)r + 1
2
σ2A2r2 = 0 . (4)

Obviously, b = 0, otherwise the Lundberg exponent does not exist. In order that

R(A, 0) > 0 it is needed that A > µ−1(c(0)− c), i.e. that the process gets a positive

drift. In this case

R(A, 0) =
2(µA− (c(0) − c))

σ2A2
.

Thus R(A, 0) has a unique maximum at A∗ = 2(c(0) − c)/σ2. Let R = R(A∗, 0) =

µ2/(2σ2(c(0) − c)). Note that A∗ = µ/(σ2R). Observe, that A∗ minimises the left

hand side of (4) at r = R. We call R the Lundberg exponent.

We now can find an upper bound to the ruin probability.

Proposition 1. The ruin probability is bounded by ψ(u) ≤ ψ(0)e−Ru. If u > 0

then the strict inequality holds

Proof. Using the constant strategy (A∗, 0) yields the ruin probability ψA∗,0(u) =

e−Ru, see [4, p.427]. In [7] it is proved that ψ(0) < 1. Suppose we follow the following

strategy. First the strategy (A∗, 0) is used. The first time the process reaches 0 the

optimal strategy is applied. Thus if u > 0, ψ(u) < ψ(0)e−Ru because the strategy

used is not optimal. �

Taking the infimum over A in (3), the Hamilton-Jacobi-Bellman equation reads

inf
b
−
µ2

2σ2

ψ′(u)2

ψ′′(u)
+(c−c(b))ψ′(u)+λ

(

∫ u/b

0

ψ(u−by) dG(y)+1−G(u/b)−ψ(u)
)

= 0 .

(5)
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b can be replaced by b(u). We want to find the limit of ψ(u)eRu. Therefore let

f(u) = ψ(u)eRu. Then

−
µ2

2σ2

(Rf(u) − f ′(u))2

R2f(u) − 2Rf ′(u) + f ′′(u)
− (c− c(b(u)))(Rf(u) − f ′(u))

+ λ
(

∫ u/b(u)

0

f(u− b(u)y)eRb(u)y dG(y) + (1 −G(u/b(u)))eRu − f(u)
)

= 0 . (6)

Note that Rf(u)−f ′(u) > 0 and R2f(u)−2Rf ′(u)+f ′′(u) > 0 by the corresponding

properties of ψ(u).

Let g(u) = Rf(u) − f ′(u) = −ψ′(u)eRu. Note that g(u) > 0 and g′(u) < Rg(u).

Equation (6) reads then

−
µ2

2σ2

g2(u)

Rg(u) − g′(u)
− (c− c(b(u)))g(u) + λ

∫ u

0

g(u− y)eRy(1 −G(y/b(u))) dy

+ λ(1 − ψ(0))eRu(1 −G(u/b(u))) = 0 . (7)

We are now ready to prove our main theorem.

Theorem 1. There exists a ζ ∈ [0, ψ(0)) such that

lim
u→∞

ψ(u)eRu = ζ .

Moreover, the functions f(u) and g(u) are monotonically decreasing.

Proof. Replacing b(u) by zero in (7) yields

−
µ2

2σ2

g(u)2

Rg(u) − g′(u)
+ (c(0) − c)g(u) ≥ 0 .

Because g(u) > 0 it is possible to divide by g(u)/R, giving

0 ≤ (c(0) − c)R−
µ2

2σ2

Rg(u)

Rg(u) − g′(u)
= −

µ2

2σ2

g′(u)

Rg(u) − g′(u)
,

using the definition of R. Because the denominator is strictly positive, the function

g′(u) is decreasing. If f ′(u) > 0 at some point u then f(u) is strictly increasing,

implying that also f ′(u) must be strictly increasing because g(u) = Rf(u) − f ′(u)

is decreasing. Because f(u) is bounded this is not possible, yielding f ′(u) ≤ 0 and

f(u) is decreasing. In particular, ζ exists and is smaller than f(0) = ψ(0). From

Proposition 1 we can conclude that ζ < ψ(0). �
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3. Convergence of the strategies

We first consider the strategy b(u).

Theorem 2. The strategy b(u) converges to zero.

Proof. Because g(u) is decreasing we get for the terms in (7) involving b(u)

(c(b(u) − c))g(u) + λ

∫ u

0

g(u− y)eRy(1 −G(y/b(u))) dy

+ λ(1 − ψ(0))eRu(1 −G(u/b(u)))

≥
(

c(b(u) − c+ λ

∫ u

0

eRy(1 −G(y/b(u))) dy
)

g(u) .

Replacing b(u) by 0 in (7) yields (c(0)−c)g(u) for the terms involving b(u). Because

b(u) is the argument for which the infimum is taken it follows that

λ

∫ u

0

eRy(1 −G(y/b(u))) dy ≤ c(0) − c .

Because
∫ ∞

0
eRy(1 −G(y/b)) dy = ∞ for all b > 0 it follows that b(u) → 0. �

The strategies A(u) also converge.

Theorem 3. The strategy A(u) converges to A∗ in the large claim case.

Proof. Using the definition of the Lundberg exponent equation (7) can be written

as

−
µ2

2Rσ2

g′(u)g(u)

Rg(u) − g′(u)
− (c(0) − c(b(u)))g(u)

+ λ
(

∫ u

0

g(u− y)eRy(1 −G(y/b(u))) dy + (1 − ψ(0))eRu(1 −G(u/b(u)))
)

= 0 .

The only negative term is −(c(0) − c(b(u)))g(u). Dividing this term by g(u) it

converges to zero. Thus also the positive terms divided by g(u) have to converge to

zero. In particular,

lim
u→∞

g′(u)

Rg(u) − g′(u)
= 0 .
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This is only possible if g′(u)/g(u) converges to zero. Thus

lim
u→∞

A(u) = lim
u→∞

µ

σ2

g(u)

Rg(u)− g′(u)
= A∗ .

�

4. Correct exponent and positivity of ζ

Because we have not shown that limu→∞ f(u) > 0 we need to proof that R is in fact

the Lundberg coefficient.

Proposition 2. For any ε > 0,

lim
u→∞

ψ(u)e(R+ε)u = ∞ .

Remark. Because we have shown convergence of the strategies we could alter-

natively use the Gärtner-Ellis theorem to prove that − limu→∞ u−1 logψ(u) = R.

�

Proof. We have seen that b(u) converges to zero. Choose b > 0 such that c(b) > c

and choose u0 such that b(u) ≤ b for all u ≥ u0. Consider now the following process

{X∗
t }. If X∗

t ≤ u0, the process follows the same law as {Xt}. For u > u0 the full

claims are reinsured but only the premium rate c(b) has to be paid for reinsurance.

For u > u0 the optimal investment strategy for {X∗
t } is chosen. The ruin probability

of {X∗
t } is denoted by ψ∗(u). Clearly, ψ(u) ≥ ψ∗(u). Ruin for {X∗

t } for an initial

capital u > u0 can only occur by reaching the level u0. Thus for u ≥ u0

ψ∗(u) = ψ∗(u0) exp
{

−
µ2

2σ2(c(b) − c)
(u− u0)

}

.

This shows that

lim
u→∞

ψ(u) exp
{( µ2

2σ2(c(b) − c)
+
ε

2

)

u
}

= ∞ .

Because b is arbitrary this proves the result. �
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An open question had been the following. We know that b(u) converges to zero.

Is it possible that b(u) = 0 for a finite u? The question is partially answered in the

following result.

Lemma 1. Consider the large claim case and suppose that x(1−G(x)) converges

to zero as x→ ∞. If limb↓0 b
−1(c(0) − c(b)) > λIIE[Y ] then b(u) > 0 for all u.

Remarks.

i) The condition limx→∞ x(1 − G(x)) = 0 is quite weak. Because the claim sizes

have to be integrable, x(1 − G(x)) > a for some a > 0 and all x > x1 is not

possible.

ii) If the expected value principle is used for the calculation of the reinsurance

premium then c′(b) = −(1 + θ)λIIE[Y ], i.e. b(u) > 0 for all u.

iii) In [7] the optimal strategy for Pareto distributed claim sizes was calculated.

From the graph one gets the impression that b(u) = 0 for u large enough. This

is not the case by the lemma above. Therefore the jump to zero in the graph is

either due to numerical errors, or b(u) is so small that it becomes zero by the

discretisation. �

Proof. Take the difference of the expression to be minimised with the expression

at zero and divide it by λbg(u). This gives for u > 1,

−
c(0) − c(b)

λb

+

∫ u

0

g(u− y)

g(u)

eRy

y

y

b
(1 −G(y/b)) dy + (1 − ψ(0))

eRu

ug(u)

u

b
(1 −G(u/b)) .

The last term goes to zero as b ↓ 0. The integral part
∫ u

1
also goes to zero as b ↓ 0.

The integral part
∫ 1

0
can be expressed as

∫ 1/b

0

g(u− by)

g(u)
eRby(1 −G(y)) dy .
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By bounded convergence this tends to IIE[Y ]. The expression to be minimised is

strictly decreasing in b close to zero and therefore b(u) > 0. �

To finish the paper we give a sufficient criterion under which ζ > 0.

Theorem 4. Suppose that there is a constant K > 0 such that c(0) − c(b) ≤ Kb

for all b > 0. Suppose also that there are constants α > 0 and 0 < γ < 1
2

such that

1 −G(u) ≥ α exp{−uγ} .

Then ζ = limu→∞ ψ(u)eRu > 0.

Proof. From the proof of Theorem 3 we know that h(u) = −g ′(u)/g(u) converges

to zero. Thus we can express

g(u) = g(0) exp
{

−

∫ u

0

h(v) dv
}

and ζ = 0 is equivalent to
∫ ∞

0
h(u) du = ∞. Again from the proof of Theorem 3 we

conclude that for u large enough

µ2

4R2σ2
h(u) ≤

µ2

2Rσ2

h(u)

R + h(u)
= −

µ2

2Rσ2

g′(u)

Rg(u)− g′(u)
< c(0) − c(b(u)) ≤ Kb(u) .

Thus
∫ ∞

0
b(u) du <∞ implies ζ > 0. Because eRu(1 −G(u/b(u))) converges to zero

we have for u large enough

αeRu−(u/b(u))γ

≤ eRu(1 −G(u/b(u))) ≤ 1 .

This is equivalent to

b(u) ≤ u(Ru+ logα)−1/γ .

This implies that b(u) is integrable for γ < 1
2
. �

The author conjectures that if 1 − G(u) ≤ α exp{−uγ} for some γ > 1
2
, also

called moderately heavy tailed case, then ζ = 0. This conjecture is based upon the

observation that often the behaviour in the moderately heavy tailed case is different

from what one would expect, see [5] or [1]. Future research has to solve this open

problem.
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