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Abstract

In this paper, we investigate the relationship between comonotonicity and stop-
loss order. We prove our main results by using a characterization of stop-loss order
within the framework of Yaari’s (1987) dual theory of choice under risk. Wang and
Dhaene (1997) explore related problems in the case of bivariate random variables. We
extend their work to an arbitrary sum of random variables and present several examples
illustrating our results.

1 Introduction

The stop-loss transform is an important tool for studying the riskiness of an insurance

portfolio. In this paper, we consider the individual risk theory model, where the aggregate

claims of the portfolio are modelled as the sum of the claims of the individual risks. We

investigate the aggregate stop-loss transform of such a portfolio without making the usual

assumption of mutual independence of the individual risks. Wang and Dhaene (1997) explore

related problems in the case of bivariate random variables. We extend their work to an

arbitrary sum of random variables.

To prove results concerning ordering of risks, one often uses characterizations of these

orderings within the framework of expected utility theory, see e.g. Kaas et al. (1994). We,

however, rely on the framework of Yaari’s (1987) dual theory of choice under risk. Our

results are easier to obtain in this dual setting.
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In Section 2, we provide notation and a brief introduction to Yaari’s dual theory of

risk. We introduce the notion of ”comonotonicity”, which is a special type of dependency

between the individual risks. Loosely speaking, risks are comonotonic if they ”move in the

same direction”. In Section 3, we consider stop-loss order. It is well-known that stop-

loss order is the order induced by all risk-averse decision makers whose preferences among

risks obey the axioms of utility theory. We show that the class of decision makers whose

preferences obey the axioms of Yaari’s dual theory of risk and who have concave distortion

functions, also induces stop-loss order. From this characterization of stop-loss order, we find

the following result: If risk Xi is smaller in stop-loss order than risk Yi, for i = 1, ..., n, and

if the risks Yi are mutually comonotonic, then the respective sums of risks are also stop-loss

ordered. In Section 4, we characterize the stochastic dominance order within Yaari’s theory.

In Section 5, we consider the case that the marginal distributions of the individual risks are

given. We derive an expression for the maximal aggregate stop-loss premium in terms of the

stop-loss premiums of the individual risks. Finally, in Section 6, we present several examples

to illustrate our results.

We remark that Wang and Young (1997) further consider ordering of risks under Yaari’s

theory. They extend first and second stochastic dominance orderings to higher orderings in

this dual theory of choice under risk.

2 Distortion Functions and Comonotonicity

For a risk X (i.e. a non-negative real valued random variable with a finite mean), we denote

its cumulative distribution function (cdf) and its decumulative distribution function (ddf)

by FX and SX respectively:

FX(x) = Pr{X ≤ x}, 0 ≤ x < ∞,

SX(x) = Pr{X > x}, 0 ≤ x < ∞.

In general, both FX and SX are not one-to-one so that we have to be cautious in defining

their inverses. We define F−1
X and S−1

X as follows:

F−1
X (p) = inf{x : FX(x) ≥ p}, 0 < p ≤ 1, F−1

X (0) = 0,

S−1
X (p) = inf{x : SX(x) ≤ p}, 0 ≤ p < 1, S−1

X (1) = 0.

where we adopt the convention that inf φ = ∞. We remark that F−1
X is non-decreasing, S−1

X

is non-increasing and S−1
X (p) = F−1

X (1 − p).

Starting from axioms for preferences among risks, Von Neumann and Morgenstern (1947)

developed utility theory. They showed that, within this axiomatic framework, each decision-
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maker has a utility function u such that he or she prefers risk X to risk Y (or is indifferent

between them) if and only if E (u(−X)) ≥ E (u(−Y )) .

Yaari (1987) presents a dual theory of choice under risk. In this dual theory, the concept

of ”distortion function” emerges. It can be considered as the parallel to the concept of

”utility function” in utility theory.

Definition 1 A distortion function g is a non-decreasing function g : [0, 1] → [0, 1] with

g(0) = 0 and g(1) = 1.

Starting from an axiomatic setting parallel to the one in utility theory, Yaari shows that

there exists a distortion function g such that the decision maker prefers risk X to risk Y

(or is indifferent between them) if and only if Hg(X) ≤ Hg(Y ), where for any risk X, the

”certainty equivalent” Hg(X) is defined as

Hg (X) =
∫ ∞

0
g[SX(x)]dx =

∫ 1

0
S−1

X (q)dg(q).

We remark that Hg (X) = E(X) if g is the identity. It is straightforward that g[SX(x)] is

a non-increasing function with values in the interval [0, 1]. However, Hg (X) cannot always

be considered as the expectation of X under a new probability measure, because g[SX(x)]

will not necessarily be right-continuous. For a general distortion function g, the certainty

equivalent Hg (X) can be interpreted as a ”distorted expectation” of X, evaluated with a

”distorted probability measure” in the sense of a Choquet-integral, see Denneberg (1994).

In the sequel, we often consider concave distortion functions. A distortion funtion g

will said to be concave if for each y in (0, 1], there exist real numbers ay and by and a line

l(x) = ayx+ by, such that l(y) = g(y) and l(x) ≥ g(x) for all x in (0, 1]. A concave distortion

function is necessarily continuous in (0, 1]. For convenience, we will always tacitly assume

that a concave distortion function is also continuous at 0. Remark that for any concave

distortion function g, we have that g[SX(x)] is right-continuous, so that in this case the

certainty equivalent Hg (X) can be interpreted as the expectation of X under an adjusted

probability measure.

In this paper, we will use two special families of distortion functions for proving some

of our results. In the following lemma, we derive expressions for the certainty equivalents

Hg (X) of these families of distortion functions. For a subset A of the real numbers, we use

the notation IA for the indicator function, which equals 1 if x ∈ A and 0 otherwise.

Lemma 1 (a) Let the distortion function g be defined by g(x) = I(x > p), 0 ≤ x ≤ 1, for an

arbitrary, but fixed, p ∈ [0, 1). Then for any risk X the certainty equivalent Hg(X) is given

by

Hg(X) = S−1
X (p).
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(b) Let the distortion function g be defined by g(x) = min (x/p, 1) , 0 ≤ x ≤ 1, for an

arbitrary, but fixed, p ∈ (0, 1] . Then for any risk X, the certainty equivalent Hg(X) is given

by

Hg(X) = S−1
X (p) +

1

p

∫ ∞

S−1
X (p)

SX(x)dx.

Proof. (a) First let g be defined by g(x) = I(x > p). As we have for any x ≥ 0 that

SX(x) ≤ p ⇔ S−1
X (p) ≤ x, we find

g(SX(x)) =


 1, x < S−1

X (p),

0, x ≥ S−1
X (p),

from which we immediately obtain the expression for the certainty equivalent.

(b) Now let g be defined by g(x) = min (x/p, 1). In this case we find

g(SX(x)) =


 1, x < S−1

X (p),

SX(x)/p, x ≥ S−1
X (p),

from which we immediately obtain the desired result.

We can use the distortion functions defined in part (b) of Lemma 1 to construct concave

piecewise linear distortion functions. Indeed, let g be the concave piecewise linear distortion

function with crack points at ai (i = 1, · · · , n− 1), where 0 = a0 < a1 < · · · < an−1 < an =

1. Further, let the derivative of g in the interval (ai−1, ai) be given by αi. Because of the

concavity of g, we have that αi is a decreasing function of i. The function g can then be

written as

g(x) =
n∑

i=1

ai (αi − αi+1) min (x/ai, 1)

if we set αn+1 = 0. We can conclude that any concave piecewise linear distortion function g

can be written as a linear combination of the distortion functions considered in Lemma 1(b).

Observe that we also have that any certainty equivalent Hg(X) of a concave piecewise linear

distortion function g can be written as a linear combination of the certainty equivalents of

the distortion functions considered in Lemma 1(b).

Yaari’s axiomatic setting only differs from the axiomatic setting of expected utility theory

by modifying the independence axiom. This modified axiom can be expressed in terms of

”comonotonic” risks.

Definition 2 The risks X1, X2, ..., Xn are said to be mutually comonotonic if any of the

following equivalent conditions hold:

(1) The cdf FX1,X2,...,Xnof (X1, X2, ..., Xn) satisfies

FX1,X2,...,Xn(x1, ..., xn) = min [FX1(x1), ..., FXn(xn)] for all x1 , ..., xn ≥ 0.
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(2) There exists a random variable Z and non-decreasing functions u1, ..., un on R such that

(X1, ..., Xn)
D
= (u1(Z), ..., un(Z)) .

(3) For any uniformly distributed random variable U on [0, 1], we have that

(X1, ..., Xn)
D
=
(
F−1

X1
(U), ..., F−1

Xn
(U)

)
.

In the definition above, the notation ”
D
=” is used to indicate that the two multivariate

random variables involved are equal in distribution. The proof for the equivalence of the three

conditions is a straightforward generalization of the proof for the bivariate case considered

in Wang and Dhaene (1997).

We end this section by the following theorem which states that the certainty equivalent

of the sum of mutually comonotonic risks is equal to the sum of the certainty equivalents of

the different risks.

Theorem 2 If the risks X1, X2, ..., Xn are mutually comonotonic, then

Hg(X1 + X2 + ... + Xn) =
n∑

i=1

Hg(Xi).

Proof. A proof for the bivariate case can be found in Denneberg (1994) or Wang (1996).

A generalization to the multivariate case follows immediately by considering the fact that if

X1, X2,..., Xn are mutually comonotonic, then also X1 +X2 + ...+Xn−1 and Xn are mutually

comonotonic.

3 Stop-Loss Order and Comonotonicity

For any risk X and any d ≥ 0, we define (X − d)+ = max(0, X − d). The stop-loss premium

with retention d is then given by E(X − d)+.

Definition 3 A risk X is said to precede a risk Y in stop-loss order, written X ≤sl Y , if

for all retentions d ≥ 0, the stop-loss premium for risk X is smaller than that for risk Y :

E(X − d)+ ≤ E(Y − d)+.

In the following theorem, we derive characterizations of stop-loss order, within the frame-

work of Yaari’s dual theory of choice under risk.

Theorem 3 For any risks X and Y , the following conditions are equivalent:

(1) X ≤sl Y.

(2) For all distortion functions g defined by g(x) = min (x/p, 1) , p ∈ (0, 1], we have that

Hg(X) ≤ Hg(Y ).

(3) For all concave distortion functions, we have that Hg(X) ≤ Hg(Y ).
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Proof.

(1) ⇒ (2) : Let p be an arbitrary but fixed element of (0, 1] and let g be defined by

g(x) = min (x/p, 1) . We have to prove that Hg(X) ≤ Hg(Y ).

Choose d = S−1
Y (p). Taking into account that E (X − d)+ ≤ E (Y − d)+ and that

SY (x) ≤ p ⇔ d ≤ x, we find

Hg(X) =
∫∞
0 min (SX(x)/p, 1) dx =

∫ d
0 min (SX(x)/p, 1) dx +

∫∞
d min (SX(x)/p, 1) dx

≤ d + 1
p
E (X − d)+ ≤ d + 1

p
E (Y − d)+ =

∫∞
0 min (SY (x)/p, 1) dx = Hg(Y ).

(2) ⇒ (3) : Let g be a concave distortion function. We have to prove that Hg(X) ≤
Hg(Y ).

If Hg(Y ) = ∞, the result is obvious.

Let us now assume that Hg(Y ) < ∞. The concave distortion function g can be ap-

proximated from below by concave piecewise linear distortion functions gn such that for any

x ε [0, 1], we have that g1(x) ≤ g2(x) ≤ · · · ≤ gn(x) ≤ · · · ≤ g(x) and limn→∞ gn(x) = g(x).

From earlier observations, we find that (2) implies Hgn(X) ≤ Hgn(Y ) ≤ Hg(Y ) < ∞ for all

n. From the monotone convergence theorem we find that limn→∞ Hgn(X) = Hg(X), so that

we can conclude that Hg(X) ≤ Hg(Y ).

(3) ⇒ (1) : Let d be an arbitrary but fixed non-negative real number. We have to prove

that E (X − d)+ ≤ E (Y − d)+ .

If SX(d) = 0, then E (X − d)+ = 0, so that we immediately find that E (X − d)+ ≤
E (Y − d)+.

Now assume that SX(d) > 0. In this case, choose g(x) = min (x/p, 1) with p = SX(d).

Taking into account that Hg(X) ≤ Hg(Y ) and that SX(x) ≤ p ⇔ d ≤ x, we find

E (X − d)+ = pHg(X) − ∫ d
0 min (SX(x), p) dx = pHg(X) − pd ≤ pHg(Y ) − pd

≤ pHg(Y ) − ∫ d
0 min (SY (x), p) dx ≤ E (Y − d)+ .

This completes the proof.

Remark that a proof for the equivalence of (1) and (3) in Theorem 3 can also be found

in Yaari (1987). The proof presented here is more elementary. The idea for the constructive

proof of (2) ⇒ (3) is due to Müller, A.

Within the framework of expected utility theory, stop-loss order of two risks is equivalent

to saying that one risk is preferred over the other by all risk averse decision makers. From

the theorem above, we see that we have a similar interpretation for stop-loss order within the

framework of Yaari’s theory of choice under risk: Stop-loss order of two risks is equivalent

to saying that one risk is preferred over the other by all decision makers who have non-

decreasing concave distortion functions. See Wang and Young (1997) for related results.

Note that our Theorem 3 is more general than the corresponding result of Wang and Young

(1997) because we do not assume that the distortion functions are differentiable.
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If we assume that g belongs to the class of concave distortion functions, then the certainty

equivalent is subadditive, which means that the certainty equivalent of a sum of risks is

smaller than or equal to the sum of the certainty equivalents. This property is stated in the

following theorem.

Theorem 4 If the distortion function g is concave, then for any risks X1, X2, ..., Xn, we

have that

Hg(X1 + X2 + ... + Xn) ≤
n∑

i=1

Hg(Xi).

Proof. For any risks X and Y, and for any uniformly distributed random variable U defined

on [0, 1], we have that X + Y ≤sl F−1
X (U) + F−1

Y (U), see Dhaene and Goovaerts (1996). As

we have for any risk X that X
D
= F−1

X (U), we find from Theorem 2 and Theorem 3 that for

any concave distortion function Hg (X + Y ) ≤ Hg (X) + Hg (Y ) . The generalization to the

multivariate case is straightforward.

This theorem (restricted to the bivariate case) can be found in Denneberg (1994), see

also Wang and Dhaene (1997).

It is well-known that stop-loss order is preserved under convolution of mutually indepen-

dent risks, see e.g. Goovaerts et al. (1990). In the following theorem we consider the case

of mutually comonotonic risks.

Theorem 5 If X1, X2, ..., Xn and Y1, Y2, ..., Yn are sequences of risks with Xi ≤sl Yi (i =

1, ..., n) and with Y1, Y2,..., Yn mutually comonotonic, then

n∑
i=1

Xi ≤sl

n∑
i=1

Yi.

Proof. Using Theorems 2, 3 and 4 we find that for any concave distortion function g,

Hg(X1 + X2 + ... + Xn) ≤
n∑

i=1

Hg(Xi) ≤
n∑

i=1

Hg(Yi) = Hg(Y1 + Y2 + ... + Yn).

which proves the theorem.

Note that in the theorem above, we make no assumption concerning the dependency

among the risks Xi. This means that the theorem is valid for any dependency among these

risks.

The following corollary follows from Theorem 5.

Corollary 6 For any random variable U , uniformly distributed on [0, 1], and any risks

X1, X2, ..., Xn, we have
n∑

i=1

Xi ≤sl

n∑
i=1

F−1
Xi

(U).
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Another proof for this corollary, in terms of ”supermodular order”, can be found in Müller

(1997).

Note that (X1, X2, ..., Xn) and
(
F−1

X1
(U), F−1

X2
(U), ..., F−1

Xn
(U)

)
have the same marginal

distributions, while the risks F−1
Xi

(U), i = 1, ..., n, are mutually comonotonic. Hence, Corol-

lary 6 states that in the class of all multivariate risks (X1, · · · , Xn) with given marginals,

the stop-loss premiums of X1 + X2 + ... + Xn are maximal if the risks Xi are mutually

comonotonic.

4 Stochastic Dominance and Comonotonicity

In this section, we first examine whether Theorem 5, which holds for stop-loss order, also

holds in the case of stochastic dominance, i.e. if ”≤sl”is replaced by ”≤st”.

Definition 4 A risk Y is said to stochastically dominate a risk X, written X ≤st Y , if the

following condition holds:

SX(x) ≤ SY (x) for all x ≥ 0.

Let X1, X2, Y1 and Y2 be uniformly distributed random variables defined on [0, 1], with

X2 ≡ 1−X1 and Y1 ≡ Y2. Then we have that Y1 and Y2 are comonotonic. Further, Xi ≤st Yi

(i = 1, 2). After some straightforward calculations, we find that

FX1+X2(x) ≤ FY1+Y2(x) if 0 ≤ x < 1,

FX1+X2(x) ≥ FY1+Y2(x) if x ≥ 1.

Hence, X1 + X2 is not stochastically dominated by Y1 + Y2 so that Theorem 5 cannot be

extended to the case of stochastic dominance. However, stochastic dominance implies stop-

loss order, so we should have that X1 +X2 ≤sl Y1 +Y2. This follows indeed from the crossing

condition above.

Theorem 7 For any risks X and Y , the following conditions are equivalent:

(1) X ≤st Y.

(2) For all distortion functions g we have that Hg(X) ≤ Hg(Y ).

(3) S−1
X (p) ≤ S−1

Y (p) for all p ∈ [0, 1].

Proof.

(1) ⇒ (2) : Straightforward.

(2) ⇒ (3) : As we have that S−1
X (1) = S−1

Y (1) = 0, the conclusions follows immediately

for p = 0.
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Now let p ∈ [0, 1) and consider the distortion function g defined by g(x) = I(x > p),

0 ≤ x ≤ 1. The proof then follows from Lemma 1.

(3) ⇒ (1) : For an arbitrary, but fixed x ≥ 0, let p = SY (x). From S−1
X (p) ≤ S−1

Y (p) and

S−1
Y (p) = S−1

Y (SY (x)) ≤ x and the fact that SX is non-decreasing, we find

SX(x) ≤ SX

(
S−1

Y (p)
)
≤ SX

(
S−1

X (p)
)
≤ p = SY (x).

As the proof can be repeated for any x ≥ 0, we find that condition (3) implies condition

(1).

Within the framework of utility theory, it is well-known that stochastic dominance of

two risks is equivalent to saying that one risk is preferred over the the other by all decision

makers who prefer more to less. From the theorem above, we see that, within the framework

of Yaari’s theory of choice under risk, stochastic dominance of risk Y over risk X holds if

and only if all decision makers with non-decreasing distortion function prefer risk X.

5 Maximal Stop-Loss Premiums in the Multivariate

Case

From Corollary 6, we concluded that in the class of all multivariate risks (X1, X2, ..., Xn)

with given marginals, the stop-loss premiums are maximal if the risks Xi, i = 1, ... , n, are

mutually comonotonic. For comonotonic risks Xi, the stop-loss premium with retention d is

given by

E(X1 + · · ·Xn − d)+ =
∫ 1

0

[
F−1

X1
(p) + · · · + F−1

Xn
(p) − d

]
+
dp

Now we will derive another expression for this upper bound.

Theorem 8 Let X1, · · · , Xn be mutually comonotonic risks. Then for any retention d ≥ 0,

we have

E(X1 + · · · + Xn − d)+ =
n∑

i=1

E(Xi − di)+ −
[
d− S−1

X (SX(d))
]

SX(d)

where X = X1 + · · · + Xn and the di are defined by di = S−1
Xi

(SX(d)).

Proof. If SX(d) = 0, then the inequality trivially holds.

Now assume that SX(d) > 0. Let p ≡ SX(d) and define a distortion function g by

g(x) = min (x/p, 1) for 0 ≤ x ≤ 1. As X1, · · · , Xn are mutually comonotonic, we find from

Theorem 2 that

Hg(X) =
∑n

i=1 Hg(Xi).
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Using Lemma 1 this equality can be written as

S−1
X (p) +

1

p
E
(
X − S−1

X (p)
)

+
=

n∑
i=1

S−1
Xi

(p) +
1

p

n∑
i=1

E
(
Xi − S−1

Xi
(p)
)

+
,

from which we find

E
(
X − S−1

X (p)
)

+
=

n∑
i=1

E (Xi − di)+ ,

because S−1
X (p) =

∑n
i=1 S−1

Xi
(p) for comonotonic risks, see Denneberg (1994) or Wang (1996).

On the other hand, we have that

E(X − d)+ = E
(
X − S−1

X (p)
)
−
[
d− S−1

X (SX(d))
]

SX(d)

Now combine these two equalities to obtain the desired result.

From Theorem 8 we see that, apart from a correction factor, any stop-loss premium for

the sum of comonotonic risks can be written as a sum of stop-loss premiums for the individual

risks involved.

Note that in general we have that S−1
X (SX(d)) ≤ d. However, if SX(x) > SX(d) for all

x < d, then S−1
X (SX(d)) = d, so that in this case

E(X1 + · · · + Xn − d)+ =
n∑

i=1

E(Xi − di)+

with the di as defined in Theorem 8. In this case, we also have that
∑n

i=1 di = d.

6 Examples

In this final section, we derive expression for the stop-loss premiums of a sum of comonotonic

risk, for some specific cases. We first consider the case for which all risks have a two-point

distribution and then three cases for which all risks have continuous distributions.

Example 1: The Individual Life Model

Assume that each risk Xi, (i = 1, · · · , n) has a two-point distribution in 0 and ai > 0

with Pr(Xi = ai) = qi. The ddf of Xi is then given by

SXi
(x) =


 qi, if 0 ≤ x < ai,

0, if x ≥ ai,

from which we find

S−1
Xi

(p) =


 ai, if 0 ≤ p < qi,

0, if qi ≤ p ≤ 1.
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Without loss of generality, we assume that the random variables Xi are ordered such that

q1 ≥ · · · ≥ qn. Now assume that the risks are comonotonic, then we have

S−1
X (p) =

n∑
i=1

S−1
Xi

(p) =




a1 + · · · + an, if 0 ≤ p < qn,

a1 + · · · + aj, if qj+1 ≤ p < qj,

0, if q1 ≤ p < 1.

Hence,

SX(x) =




q1, if 0 ≤ x < a1,

qj+1, if a1 + · · · + aj ≤ x < a1 + · · · + aj+1, 1 ≤ j < n,

0, if x ≥ a1 + · · · + an,

which means that X is a discrete random variable with point-masses in 0, a1, a1 + a2, a1 +

a2 + a3, · · · , a1 + a2 + · · · + an.

Now, using the formula E(X − d)+ =
∫∞
d SX(x) dx we find

E(X − d)+ =



∑n

i=1 qi ai − d q1, if 0 ≤ d < a1,∑n
i=j+1 qi ai −

(
d−∑j

i=1 ai

)
qj+1, if

∑j
i=1 ai ≤ d <

∑j+1
i=1 ai,

0, if d ≥ ∑n
i=1 ai.

This individual life model is more extensively considered in Dhaene and Goovaerts (1996).

Example 2: Exponential Marginals

Assume that each Xi, (i = 1, · · · , n) is distributed according to the Exponential (bi)

distribution (bi > 0) with ddf given by

SXi
(x) = e−x/bi , x > 0.

For comonotonic Xi, the inverse ddf of their sum X is

S−1
X (p) = −b ln p,

in which b =
∑n

i=1 bi. Thus,

SX(x) = e−x/b, x > 0.

In other words, the comonotonic sum of exponential random variables is exponentially dis-

tributed. Heilmann (1986) considers the case of n = 2.

One can easily verify that the stop-loss premium with retention d is given by

E(X − d)+ = be−d/b.

Example 3: Pareto Marginals
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Assume that each Xi (i = 1, · · · , n) is distributed according to the Pareto (a, bi) distri-

bution (a, bi > 0) with ddf given by

SXi
(x) =

(
bi

bi + x

)a

, x > 0.

For comonotonic Xi, the inverse ddf of their sum X is

S−1
X (p) = b

(
p−1/a − 1

)
,

in which b =
∑n

i=1 bi. Thus,

SX(x) =

(
b

b + x

)a

, x > 0.

In other words, the comonotonic sum of Pareto random variables (with identical first pa-

rameter) is a Pareto random variable.

One can easily verify that for any d ≥ 0 we have that

E(X − d)+ =

(
b

b + d

)a−1
b

a− 1
, a > 1.

Example 4: Exponential-Inverse Gaussian Marginals

Assume that each Xi, (i = 1, · · · , n) is distributed according to the exponential-inverse

Gaussian (bi, ci) distribution (bi, ci > 0) with ddf given by

SXi
(x) = exp

[
−2

√
ci

(√
x + bi −

√
bi

)]
x > 0,

see Hesselager, Wang and Willmot (1997). In this case the inverse ddf of Xi is given by

S−1
Xi

(p) =
1

4ci

(ln p)2 −
√

bi

ci

ln p.

Thus, for comonotonic Xi, the inverse ddf of their sum X is

S−1
X (p) =

1

4c
(ln p)2 −

√
b

c
ln p.

in which c =
(∑n

i=1
1
ci

)−1
, and b = c

(∑n
i=1

√
bi

ci

)2
. Thus

SX(x) = exp
[
−2

√
c
(√

x + b−
√

b
)]

, x > 0.
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In other words, the comonotonic sum of exponential-inverse Gaussian random variables

is also an exponential-inverse Gaussian random variable.

One can easily verify that for any d ≥ 0 we have that

E(X − d)+ = exp
[
−2

√
c
(√

d + b−
√

b
)] 

√
d + b

c
+

1

2c


 .
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