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Abstract

In this paper we use doubly stochastic processes (or Cox processes) in order to model the
random evolution of mortality of an individual. These processes have been widely used in the
credit risk literature in modelling default arrival, and in this context have proved to be quite flex-
ible, especially when the intensity process is of the affine class. We investigate the applicability
of affine processes in describing the individual’s intensity of mortality and the mortality trend.
We also provide some calibrations to the UK population. Calibrations suggest that, in spite of
their popularity in the financial context, mean reverting processes are less suitable for describing
the death intensity of individuals than non mean reverting processes. Among the latter, affine
processes whose deterministic part increases exponentially seem to be appropriate. As for the
stochastic part, negative jumps seem to do a better job than diffusive components alone. Stress
analysis and analytical results indicate that increasing the randomness of the intensity process
results in improvements in survivorship.
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1 Introduction

The issue of mortality risk – and, in particular, of longevity risk – has been largely addressed in
recent years when dealing with the pricing of insurance products. It is well known from the basics
of actuarial science that the price of any insurance product on the duration of life depends on two
main basis: demographical and financial assumptions. Traditionally, actuaries have been treating
both the demographic and the financial assumptions in a deterministic way, by considering available
mortality tables for describing the future evolution of mortality and by setting the so-called “best
estimate” of the rate of interest for discounting cash flows over time. More recently, stochastic
models have been adopted to describe the uncertainty linked both to mortality and to financial
factors. We focus on mortality risk and on modelling the survival function of the individual. In
the setting proposed here, the extension to stochastic interest rates is straightforward, under the
standard assumption of independence between financial and mortality risks (see, for instance, Dahl
(2004) and Biffis (2004)).

2 Modelling mortality risk

In the last decades significant improvements in the duration of life have been experienced in most
developed countries. Two indicators are typically used to describe the mortality of an individual:
the survival function and the death curve.

The survival function, denoted with S(t), is defined as follows:

S(t) = P (T0 > t) = 1− FT0(t)

where T0 is the random variable that describes the duration of life of a new-born individual, and
FT0 is its distribution function. The survival function indicates the probability that a new-born
individual will survive at least t years. Via the survival function, one can easily derive the distrib-
ution function of the duration of life of an individual aged x, given that he/she is alive at that age
(see, for instance, Bowers, Gerber, Hickman, Jones and Nesbitt (1986), Gerber (1997)).

The death curve, x/1q0, is defined as follows:

x/1q0 =
S(x)− S(x + 1)

S(0)

and indicates the probability for a new-born individual of dying in year of age [x, x + 1].

An easy way of capturing the mortality trend observed in the past decades consists in looking
at the graphs of the survival function and the death curves of a population in different years (for
an accurate report about mortality trends, see Pitacco (2004a)). One can notice that the shape
of the survival function becomes more and more “rectangular” and the mode of the death curve
moves towards right. The first phenomenon is known as rectangularization, the second as expan-
sion. Rectangularization occurs since the volatility of the duration of life around the mode of death
decreases, leading to lower dispersion of ages of death around the most likely age of death. Expan-
sion takes place because the age when death is most likely to occur increases as time passes, due to
improvements in economic and social conditions, medicine progresses etc..

It is clear that continuous improvements in the mortality rates have to be allowed for when pricing
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insurance products that heavily depend on the duration of life at old ages, like annuities. Indeed,
strong or unexpected reductions in mortality rates can lead to mispricing of these products and can
affect the solvency of the insurance company.

The actuarial literature about modelling and forecasting mortality rates is vaste and has a long
history: for a detailed survey of the most significant models proposed in the literature, see Pitacco
(2004b).
Traditionally, a central role has been played by the “force of mortality”, defined as the opposite of
the derivative of the logarithm of the survival function:

µx = − d

dx
log S(x)

The force of mortality is a good tool for approximating the mortality of the individual at age x,
since it can be shown that:

P (x < T0 ≤ x + ∆x|T0 > x) = µx∆x + o(∆x), (2.1)

i.e. the probability of dying in a short period of time after x, between age x and age x + ∆x, can
be approximated by µx∆x, when ∆x is small. The force of mortality is obviously increasing as x
increases, as the probability of imminent death increases when ageing 1.

When allowing for mortality trends over time, it is evident that the force of mortality has to
show a dependence also on calendar year, and not only on age. Thus, the force of mortality can be
described by a two variable function µx(y), where y indicates the calendar year. As time y increases
and the age x remains fixed, the decreasing mortality rates over time translate into a decreasing
function µx(y).

Several contributions have been proposed in the last decade in order to model and forecast the
year- and age-dependent mortality, i.e. “dynamic mortality”. One of the seminal works is the Lee-
Carter method (Lee and Carter (1992) and Lee (2000)), that models an actuarial indicator, similar
to the force of mortality, known as the central death rate, as a two variable function. Many authors
have modified the Lee-Carter method. Among these are the extensions proposed by Renshaw and
Haberman (2003) and Brouhns, Denuit and Vermunt (2002). The latter propose a fairly simple
model for the force of mortality:

ln(µx(y)) = αx + βxky

where the coefficients αx, βx and ky are to be determined by maximization of the log-likelihood
based on the assumption that the number of deaths at age x in year y follows a Poisson distribution.

Another way of dealing with mortality trends, largely adopted by insurance companies, is the use
of the so-called “projected mortality tables”, that incorporate (forecasts of) survival probabilities
at any age for different calendar years.

Finally, Milevsky and Promislow (2001) have used a stochastic force of mortality, whose expec-
tation at any future date has a Gompertz specification. They have not studied the existence of a
death process which admits their stochastic force of mortality as arrival rate. We will address this
issue below, after having examined the doubly stochastic processes literature, to which the next
section is devoted.

1With some exceptions, like very small values of x – due to the infant mortality – and values around 20-25 – due
to the young mortality hump.
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3 The mathematical framework

The theory of stochastic intensities, doubly stochastic processes and affine processes underlying
the actuarial application presented here is enormous and covered in many texts about stochastic
processes. A detailed and thorough treatment is clearly beyond the scope of this paper, and we
limit ourselves to a brief summary of the mathematical tools used, sacrificing scientific rigor and
omitting all the proofs. However, we refer the interest reader to Brémaud (1981) and Duffie (2001).

The reason why such a sophisticated mathematical framework has been used in describing the
mortality risk is the great analytical tractability of the models presented, once some useful and not
too restrictive assumptions are introduced. These mathematical tools have been extensively used
in the credit risk literature, when modelling time to default of firms. The pioneering works in this
field are Artzner and Delbaen (1992), Lando (1994) and Duffie and Singleton (1994). Applications
of this mathematical framework to dynamic mortality modelling and to insurance products pricing
can be found in Biffis (2004), Dahl (2004) and Schrager (2004). The similarity between the time to
default and the remaining duration of life is strong, and, although the factors underlying the death
of an individual and the default of a firm are obviously completely different, the mathematical tools
used in the two literatures are the same.

3.1 Counting processes

In describing the mathematical tools, we will mainly follow Duffie (2002). We are given a complete
filtered probability space (Ω,F ,P) and a filtration {Gt : t ≥ 0} of sub-σ-algebras of F satisfying the
usual conditions.

A counting process (or point process) N is defined using a sequence of increasing random vari-
ables {T0, T1, ...}, with values in [0,∞], s.t. T0 = 0 and Tn < Tn+1 whenever Tn < ∞, in the
following way:

Nt = n for t ∈ [Tn, Tn+1)

and Nt = ∞ if t ≥ T∞ = limn→∞ Tn. It is easy to see Tn as the time of the nth jump of the process
N and Nt as the number of jumps occurred up to time t, including time t (hence the definition
“counting” process). The counting process is said to be nonexplosive if T∞ = ∞ almost surely.

3.2 Stochastic intensity

The definition of random intensity is not uniform in the literature. We will follow Duffie (2001).

Let {Ft : t ≥ 0} be a filtration satisfying the usual conditions, with Ft ⊂ Gt, and λ be a nonnegative
(Ft)-predictable process s.t.

∫ t
0 λ(s)ds < ∞ almost surely. A nonexplosive adapted counting process

N is said to admit the intensity λ if the compensator of N admits the representation
∫ t
0 λ(s)ds, i.e.

if Mt = Nt−
∫ t
0 λ(s)ds is a local martingale. If the stronger condition E(

∫ t
0 λ(s)ds) < ∞ is satisfied,

Mt = Nt −
∫ t
0 λ(s)ds is a martingale.

From this, one gets:

E(Nt+∆t −Nt|Ft) = E

(∫ t+∆t

t
λ(s)ds|Ft

)
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which, after a few passages and under technical conditions, leads to:

E(Nt+∆t −Nt|Ft) = λ(t)∆t + o(∆t) (3.1)

Equation 3.1 (see the analogy with equation 2.1) stresses the importance of the process λ in giving
information about the average number of jumps of the process under observation in a small period
of future time. Observe that conditioning is made on the smallest filtration, therefore on the
availability of poorer information. The idea is that the information at time t can give insight about
the expected number of jumps in the next future or, in other words, about the likelihood of a jump
in the immediate future. It cannot predict the actual occurrence of a jump, that comes as a “sudden
surprise”.

3.3 Doubly stochastic processes

A nonexplosive counting process N with intensity λ is said to be doubly stochastic driven by
{Ft : t ≥ 0}, if for all t < s, conditional on the σ−algebra Gt ∨ Fs, generated by Gt ∪ Fs, the
process Ns −Nt has Poisson distribution with parameter

∫ s
t λ(u)du.

As an example, we observe that any Poisson process is a doubly stochastic process driven by the
filtration Ft = (∅,Ω) = F0 for any t ≥ 0, in that the intensity is deterministic.

A stopping time τ is said to be doubly stochastic with intensity λ if the underlying counting process
whose first jump time is τ is doubly stochastic with intensity λ.

The mathematical arsenal presented so far is now sufficient to present the first interesting result
that will be used in the applications. If τ is a stopping time doubly stochastic with intensity λ, it
can be shown, by using the law of iterated expectations, that:

P (τ > s|Gt) = E
[
e−
R s

t λ(u)du|Gt

]
(3.2)

Readers who are familiar with mathematical finance can easily see in the r.h.s. of equation (3.2) the
price at current time t of a unitary default-free zero-coupon bond with maturity at time s > t, if
the short-term interest rate model is given by the process λ. All the mathematical finance literature
about interest rate models can thus be retrieved in this setting.

Another interesting result that can be used relates to the density function of a doubly stochas-
tic stopping time τ . If we let p(t) = P (τ > t) be the survival function, then the density function of
τ , if it exists, is given by −p′(t). Under technical conditions (see for example Grandell (1976)), we
have:

p′(t) = E
[
−e−

R t
0 λ(u)duλ(t)|Gt

]
(3.3)

It is clear how these results can be naturally applied in the actuarial context: if one sees τ as
the future lifetime of an individual aged x, Tx, equations 3.2 and 3.3 can be applied to find the
survival function and the density function of Tx, given a model for the death intensity λ.

3.4 Affine processes

Our next step will be to show how equations like 3.2 and 3.3 can be approached. It turns out that
it is convenient to specify the stochastic intensity λ as a function Λ of another process X in R,
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whose dynamics are given by the SDE:

dX(t) = f(X(t))dt + g(X(t))dW (t) + dJ(t) (3.4)

where J is a pure jump process and where the drift f(X(t)), the covariance matrix g(X(t))g(X(t))′

and the jump measure associated with J have affine dependence on X(t). Such a process is named
an affine process: interest readers can find a thorough treatment of affine processes in Duffie, Fil-
ipovič and Schachermayer (2003).

The financial literature on interest rate modelling is full of examples of affine processes: the Ornstein-
Uhlenbeck process, used by Vasicek (1977) for modelling interest rates, is affine, as is the Feller
process, used by Cox, Ingersoll and Ross (1985).

The convenience of adopting affine processes in modelling the intensity lies in the fact that, under
technical conditions (see Duffie and Singleton (2003)), it yields, for any w ∈ R:

E
[
e
R T

t −Λ(X(u))du+wX(T )|Gt

]
= eα(T−t)+β(T−t)X(t) (3.5)

where the coefficients α(·) and β(·) satisfy generalized Riccati ODEs. The latter can be solved at
least numerically and in some cases analytically. Therefore, the difficult problem of finding the
survival function 3.2 can be transformed in a tractable problem, whenever affine processes for X(t)
are employed.

4 The actuarial application: mean reverting processes

Turning back to our initial problem of modelling adequately the dynamic mortality, we will now
use some of the mathematical tools presented in the previous section.

As above, the uncertainty is described by a complete filtered probability space (Ω,F ,P) and a
filtration {Gt : t ≥ 0} of sub-σ-algebras of F satisfying the usual conditions. We consider an indi-
vidual aged x and model his/her random future lifetime Tx as a doubly stochastic stopping time
with intensity λx driven by the sub-filtration {Ft : t ≥ 0}, where Ft ⊂ Gt. In other words, Tx is the
first jump time of a nonexplosive counting process N with intensity λx. Intuitively, the counting
process N may be seen as a process that jumps whenever the individual dies: Nt = 0 if t < Tx,
Nt > 0 if t ≥ Tx.

According to (3.2) the survival probability is:

Sx(t) = P (Tx > t|G0) = E
[
e−
R t
0 λx(u)du|G0

]
(4.1)

The similarity with the actuarial survival probability for t years for an individual aged x, tpx,
expressed in terms of the force of mortality, is strong:

tpx = e−
R t
0 µx+sds

The specification of the intensity process λx is now crucial for the solution of equation 4.1.

Recent studies on the firm’s mortality (as reported in Duffie and Singleton (2003)) indicate the
suitability of the following affine processes for modelling the intensity λx(t):

CIR process : dλx(t) = k(γ − λx(t))dt + σ
√

λx(t)dW (t)

Version: Page 6



mean reverting with jumps (m.r.j.) : dλx(t) = k(γ − λx(t))dt + dJ(t)

where W (t) is a standard Brownian motion, k > 0, γ > 0, σ ≥ 0 and J(t) is a compound Poisson
process with intensity l and jumps exponentially distributed with expected value µ.

In addition, we consider the Vasicek process (see Vasicek (1977)) for λx(t):

V AS process : dλx(t) = k(γ − λx(t))dt + σdW (t)

We notice that in all cases, according to the notation introduced before, the choice is w = 0 and
Λ(x) = x: the intensity λ is itself an affine process.

Using the result 3.5 and solving the Riccati ODEs, one gets the survival probabilities in closed
form for all the specifications of the intensity process:

Sx(t) = eα(t)+β(t)λx(0) (4.2)

where, in the CIR case (see for instance Duffie and Singleton (2003)):

α(t) = −2kγ

σ2
ln

(
c + debt

b

)
+

kγ

c
t

β(t) =
1− ebt

c + debt

b = −
√

k2 + 2σ2 c =
b− k

2
d =

b + k

2

In the m.r.j. case instead (see again Duffie and Singleton (2003)):

α(t) = −γ(t + β(t))− l
µt− ln(1− µβ(t))

µ + k

β(t) =
e−kt − 1

k

In the Vasicek (VAS) one (see Vasicek (1977)) β(t) is defined as in the m.r.j. case, while:

α(t) = −(β(t) + t)(k2γ − σ2

2 )
k2

− σ2β(t)2

4k

It is possible to calibrate the values of the parameters starting from a time series of survival prob-
ability data. We notice that, when t changes, the process λx(t) describes the future intensity of
mortality for any age x + t of an individual aged x at time 0. In other words, our process λ cap-
tures the mortality intensity for a particular generation and a particular initial age. This has to be
allowed for when choosing the mortality table: the approach adopted here is a “diagonal” one.
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4.1 Calibration to the UK population: projected and observed generation tables

As a first application, we have calibrated the three processes to the UK population.

The mortality tables selected for the calibration are two observed generation tables, for individ-
uals born in 1880 and in 1900 respectively, and two projected mortality tables, for individuals born
in 1935 and 1945 respectively. The data relative to the observed mortality tables are taken from the
Human Mortality Database (University of California, Berkeley (USA), and Max Planck Institute
for Demographic Research (Germany) (2002), data downloaded on August 10, 2004). Those for the
projected tables are taken from the Standard tables of mortality 1992 for UK immediate annuitants,
IML92 (Institute and Faculty of Actuaries (1990)).

In the calibration, we have set µ < 0. The choice of a negative jump size is motivated by the
expectation of sudden improvements in the force of mortality: jumps should correspond to discon-
tinuity points of the intensity process, that can be related, for instance, to medicine progresses. We
must say that negative jumps in the intensity process render positive the probability that the in-
tensity becomes negative. This inconvenient is also observed by Biffis (2004). However, in practical
applications and calibrations the jump size and frequency result to be so small that the probability
of negative values can be considered negligible.

In fitting the table, we have adopted the least squares method, considering the spreads between the
different model survival probabilities and the table ones. Table 1 reports for each intensity process
the optimal values of the parameters and the calibration error2. We report data only for males, as
well as the corresponding initial value of λ, λ65(0) (which has been chosen equal to − ln(p65)).

TABLE 1

1880 1900 1935 1945
λ65(0) 0.03515 0.03797 0.01145 0.00885
CIR-error 0.02182 0.01662 0.40945 0.20552
CIR-k 0.00448 0.01365 0.06494 0.0078
CIR-σ 0.00103 0.00298 0.00005 0
CIR-γ 1.24656 0.4301 0.07552 0.41711
mrj-error 0.02236 0.01327 0.15816 0.1965
mrj-k 0.00571 0.00392 0.005 0.00465
mrj-µ -0.00246 -0.00227 -0.00249 -0.00492
mrj-l 0.00247 0.00234 0.00249 0.0099
mrj-γ 0.99382 1.31818 0.64908 0.67935
VAS-error 0.02247 0.01473 0.16191 0.1982
VAS-σ 0.00046 0.00048 0.00002 0.00002
VAS-k 0.00591 0.00835 0.00604 0.00526
VAS-γ 0.96029 0.65393 0.53278 0.59302

In all models, the value of the long term mean for λ, γ, lies between 0.41 and 1.3 and generally
decreases when considering younger generations, which is an expected result. The exceptions to this

2The error is the minimized sum of the squared differences between the survival probabilities of the relevant table
and the ones implied by the model.
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trend are probably due to the fact that the initial value of λ, λ65(0), tends to decrease when moving
from the left to the right of the table. In particular, when passing from the 1935 generation to the
1945 one, it drops from 0.011 to 0.0088, and this dramatic reduction is likely to be counterbalanced
in the calibration procedure by a high value of the long term mean (furthermore, notice that these
last two values are only projected and not observed, and refer to the population of immediate annu-
itants, who are supposed to experience a lighter mortality than the general population). The speed
of convergence k seem to be stable in the last two models (ranging between 0.004 and 0.008), and
volatile in the first one. The size of jumps ranges between -0.002 and -0.005, indicating that negative
jumps are part of the optimally calibrated intensity process, though with a very low frequency (that
ranges between 0.002 and 0.01). The value of σ is very low in all cases, ranging between 0 and 0.003.

The most remarkable result is the change in the value of the error when passing from the ob-
served old tables to the projected ones for younger generations: it more than decuplicates, ranging
for the latter around 0.15-0.4 against 0.01-0.02 for the former. The different magnitude of the error
can be better perceived when considering the curve of the survival function S65(t) implied by the
three models and the survival probabilities of the relevant table.

Graphs 1, 2, 3 and 4 report, for the different generations, the survival function of the three processes
analyzed (CIR, m.r.j. and VAS) and the ones of the tables considered.
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Graph 3 Graph 4

It is evident from a first inspection of the graphs that, while the fit can be considered satisfactory for
the first two generations, it cannot be considered so for the last two. In particular, one can notice
that, in the last two cases the survival functions implied by the three processes do not capture
the rectangularization phenomenon. In addition, the survival probability at very old ages is much
higher and at lower ages much lower than in the fitted tables. Therefore, although the last two tables
refer to projected mortality tables and not to observed ones, these results seem to suggest that in
the presence of high rectangularization phenomenon – which is an expected feature in the future
generation tables – the intensity of mortality cannot be properly described by the three proposed
processes.

5 The actuarial application: non mean reverting processes

The calibration of the mean reverting processes presented so far gives a survival function that, with
respect to the new generations, fails to capture the rectangularization phenomenon and produces
unrealistic survival probabilities at very old ages. The question arises as to whether the common
and disturbing element in those processes is the mean reverting term.

Furthermore, the force of mortality observed and/or extrapolated from the mortality tables does
not seem to present a mean reverting behaviour, but rather an exponential one. This observation,
consistent with all the deterministic exponential models presented in the actuarial literature, natu-
rally leads to the simple idea of dropping the mean reverting term in the classical affine processes
used in finance and choosing processes whose deterministic part increases exponentially. Four affine
models with these two desired characteristics are presented and discussed below.

5.1 The Ornstein Uhlenbeck process without jumps

The first model candidate for describing the intensity λx(t) is an Ornstein Uhlenbeck process (from
now on, we omit the initial age x for convenience).

OU process dλ(t) = aλ(t)dt + σdW (t) (5.1)

with a > 0 and σ ≥ 0.
By solving it, we get to the following expression for the intensity:

λ(t) = λ(0)eat + σ

∫ t

0
et−sdW (s) (5.2)

The main drawback when choosing this process for the intensity is that it becomes negative with
positive probability.

By applying standard results on linear stochastic differential equations (see, for instance, Arnold
(1974)) to the process (5.2) we have that λ(t) is normally distributed with mean

E(λ(t)) = λ(0)eat
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and variance

V ar(λ(t)) = σ2 · e2at − 1
2a

Therefore, the calculation of the probability of λ(t) taking negative values is straightforward:

P (λ(t) ≤ 0) = P

(
λ(0)eat + σ

√
e2at − 1

2a
N ≤ 0

)
= P


N ≤ − λ(0)eat

σ
√

e2at−1
2a


 = Φ(ζ(σ, a))

with

ζ(σ, a) = − λ(0)eat

σ
√

e2at−1
2a

where N ∼ N (0, 1) and Φ is its distribution function.

It turns out that the function ζ(·, ·) is an increasing function of σ and a decreasing function of
a, and so is the probability of negative values of λ. In practical applications to mortality modelling
this probability tends to be small, since the relevant values of σ and a are respectively small and
high enough. We will come back to this point later, when presenting the numerical applications.

By applying the framework of equation (3.5) (in particular, see Duffie, Pan and Singleton (2000)
pagg. 1350–1351) we have that:

Sx(t) = E
(
e−
R t
0 λ(u)du|G0

)
= eα(t)+β(t)λ(0) (5.3)

where the functions α and β solve the system of ODEs’:

{
β′(t) = −1 + aβ(t)
α′(t) = 1

2σ2β2(t)
(5.4)

with boundary conditions
β(0) = 0, α(0) = 0 (5.5)

By solving the system 5.4–5.5, we find α and β:

{
α(t) = σ2

2a2 t− σ2

a3 eat + σ2

4a3 e2at + 3σ2

4a3

β(t) = 1
a

(
1− eat

) (5.6)

We observe that with a strictly positive value of σ, the survival probability for t large enough
becomes an increasing function of age; in addition, the probability of surviving forever tends to
infinity. These unrealistic and undesirable features are due to the fact that the survival intensity
can take negative values with positive probability. Thus, from a purely theoretical point of view,
the Ornstein Uhlenbeck model can be considered inadequate to describe the intensity of mortality.

However, it can be seen that in the applications this model turns out to be rather appropriate.
In fact, the calibration of the model to different mortality tables gives surprising results, leading to
very good fits of the survival probabilities tpx. The reason of its successful application is that the
values of σ and a resulting from the calibration process are respectively small and high enough to
make negligible the probability of negative values of λ. Furthermore, the period under consideration
in the applications is limited to some decades of years, which makes the model applicable for two

Version: Page 11



main reasons: firstly, during this period, the survival probability is a decreasing function of age
(as it should be); secondly, it avoids the explosion of the survival probability. Thus, the evidence
seems to be an encouraging one, with respect to practical application of the model by actuaries and
demographers, though with an important warning on the theoretical limitations of it.

5.2 The Ornstein Uhlenbeck process with jumps

In the second model we add a jump component in the stochastic part of the mortality process.
Therefore, the process λ is given by:

OUj process dλ(t) = aλ(t)dt + σdW (t) + dJ(t) (5.7)

where J is a pure compound Poisson jump process, with Poisson arrival times of intensity l > 0
and exponentially distributed jump sizes with mean µ < 0. We assume independence between the
Brownian motion W (s) and the Poisson process, as well as between the jump sizes. As in the
previous section, we allow only for negative jumps, which correspond to sudden improvements in
the intensity of mortality.

Applying the formulae of Duffie et al. (2000) we have to solve the following system of ODE’s
for α and β:

{
β′(t) = −1 + aβ(t)
α′(t) = 1

2σ2β2(t) + l µβ(t)
1−µβ(t)

(5.8)

with boundary conditions
β(0) = 0, α(0) = 0 (5.9)

The equation for β is the same as before (cfr 5.4), so is the solution. The solution for α is instead
different (due to the inclusion of the jump component), and we have:

{
α(t) = ( σ2

2a2 + la
a−µ)t− σ2

a3 eat + σ2

4a3 e2at + 3σ2

4a3 + l
a−µ ln(1− µ

a + µ
aeat)

β(t) = 1
a

(
1− eat

) (5.10)

The technical condition that has to be satisfied for the solution (5.10) to make sense is:

1− µ

a
+

µ

a
eat > 0 ∀t ≥ 0 (5.11)

that corresponds to:

β(t) >
1
µ

∀t ≥ 0

Since the function β is decreasing over time (being a > 0), this requirement is satisfied provided
that

β(T ) >
1
µ

(5.12)

In the calibration exercise, we will see that adding the jump component improves remarkably the
goodness of the fit.
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5.3 The Feller process without jumps

The third model proposed is the Feller process, already investigated in the previous section as CIR
process, without the mean reverting term:

FEL process dλ(t) = aλ(t) + σ
√

λ(t)dW (t) (5.13)

where a > 0 and σ > 0.

The main advantage of this process is that it does not violate the non-negativity constraint of
the intensity, provided that the starting point is non-negative.

The solution λ(t) of the SDE (5.13) is

λ(t) = λ(0)eat + σ

∫ t

0
ea(t−u)

√
λ(u)dW (u) (5.14)

and its distribution can be obtained following Feller (1951)).

The application of the affine framework gives the following system of ODE’s for α and β:
{

α′(t) = 0
β′(t) = −1 + aβ(t) + 1

2σ2β2(t)
(5.15)

with boundary conditions
β(0) = 0, α(0) = 0 (5.16)

The solution is:

{
α(t) = 0
β(t) = 1−ebt

c+debt

(5.17)

with: 



b = −√a2 + 2σ2

c = b+a
2

d = b−a
2

(5.18)

Given that the coefficients b, c, d are negative, the survival probability is bounded between 0 and 1,
which is a desirable feature. As for the previous two models, the calibration to some given mortality
tables gives very satisfactory results (see next section), and the main theoretical inconvenient of
negative intensity, with consequent survival probabilities greater than one, is avoided.

5.4 The Feller process with jumps

In the fourth model, we add a jump component in the stochastic part of the Feller process. The
intensity λ is given by:

FELj process dλ(t) = aλ(t)dt + σ
√

λ(t)dW (t) + dJ(t) (5.19)

Version: Page 13



where J is the pure jump process defined above.

The functions α and β that enter the survival probability (5.3) solve the following system of ODE’s
equations: {

α′(t) = lµβ(t)
1−µβ(t)

β′(t) = −1 + aβ(t) + 1
2σ2β2(t)

(5.20)

with boundary conditions
β(0) = 0, α(0) = 0 (5.21)

Similarly to the OU case, the equation for β is the same as in the no-jump setting. The jump
component enters only the equation for α. We have:

{
α(t) = lµ

c−µ t− lµ(c+d)
b(d+µ)(c−µ) [ln(µ− c− (d + µ)ebt)− ln(−c− d)]

β(t) = 1−ebt

c+debt

(5.22)

with b, c, d given by the equations (5.18) above.

The introduction of the jump component leads to the requirement

µ− c− (d + µ)ebt > 0 (5.23)

which is equivalent to:

β(t) >
1
µ

requirement satisfied whenever

β(T ) >
1
µ

(5.24)

As we will see in the next section, the extra stochastic component to the intensity process gives
significantly better results in terms of goodness of the fit, and adds richness and flexibility to the
model.

6 The link with existing models for the force of mortality

We devote this section to investigating the relationship between our models for the stochastic
intensity of mortality and the deterministic force of mortality actuaries are more familiar with.
Recall that the force of mortality µx at age x is defined as

µx = lim
h→0

P (x < T0 ≤ x + h|T0 > x)
h

In our case, we have:

µx = lim
h→0

1
h

(
1− S(x + h)

S(x)

)
= lim

h→0

1
h

(
1− eα(x+h)−α(x)+λ0(0)(β(x+h)−β(x))

)
=

= lim
h→0

α(x)− α(x + h) + λ0(0)(β(x)− β(x + h))
h

= −α′(x)− λ0(0)β′(x)
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For example, in the OU model the force of mortality, after a few passages, becomes:

µx = λ0(0)eax − σ2

2a2
(eax − 1)2 (6.1)

If σ = 0 we have:
µx = λ0(0)eax = λ0(x)

i.e. in this case the force of mortality coincides with the intensity of mortality for a new born
individual after x years. Furthermore, the force of mortality is of the Gompertz type. This is
straightforward also observing that if σ = 0 the evolution of λ0(t) is deterministic and given by

dλ0(t) = aλ0(t)dt

However, the coincidence between intensity of mortality and force of mortality is clearly no longer
true when the intensity is stochastic, and equation (6.1), compared with equation (5.2) for λ tells
us that

µx < E(λ0(x)) (6.2)

In other words, the force of mortality decreases, hence the survivorship improves, when the diffusion
coefficient increases. We will come back to this feature later, when considering the impact of the
random part of the process on the survival probabilities 3.

With the other three models, we have:

OUj µx = λ0(0)eax − σ2

2a2
(eax − 1)2 − l

a− µ

(
1− aµeax

a− µ + µeax

)
(6.3)

FEL µx =
4λ0(0)b2ebx

[(a + b) + (b− a)ebx]2

FELj µx =
4λ0(0)b2ebx

[(a + b) + (b− a)ebx]2
+

lµ(1− ebx)
µ− c− (d + µ)ebx

It is clear (and easy to check) that also with these three models, when the coefficients σ and l
of the random part are set to 0 there is coincidence between intensity of mortality and force of
mortality, which turns out to be of the Gompertz type.

7 The calibration of the non mean reverting processes

In this section we calibrate the four models just introduced (OU, OUj, FEL, FELj) to the same
mortality tables used in the previous calibration. The calibration procedure is the same followed in
section 4.1. The results are shown in Table 2.

3Observe that the inequality (6.2) is also consistent with the fact that

Z t

0

µsds <

Z t

0

E(λ0(s))ds

a result that derives by application of Jensen inequality to the survival function.
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TABLE 2

1880 1900 1935 1945
λ65(0) 0.03515 0.03797 0.01145 0.00885
OU-error 0.00043 0.00012 0.00085 0.00027
OU-a 0.0861 0.07949 0.09856 0.10859
OU-σ 0.00183 0.00341 0.0001 0.00048
OUj-error 0.0001 0.00004 0.00002 0.00016
OUj-a 0.09101 0.08192 0.10014 0.10865
OUj-σ 0.00377 0.00414 0.0001 0.00011
OUj-l 0.00173 0.00088 0.00105 0.00036
OUj-µ -0.00003 -0.00003 -0.00003 -0.00003
FEL-error 0.00044 0.00012 0.00084 0.00027
FEL-a 0.08553 0.07896 0.09867 0.10811
FEL-σ 0.00431 0.01348 0.00005 0.0001
FELj-error 0.00043 0.00012 0.00053 0.00027
FELj-a 0.0858 0.07897 0.10164 0.10811
FELj-σ 0.00735 0.01349 0 0.00001
FELj-l 0.001 0.001 0.1856 0.001
FELj-µ -0.0001 -0.0001 -0.00034 -0.0001

The main conclusion that can be drawn from the table is that the calibration errors are dramati-
cally lower than with mean reverting intensities: they range between 0.00002 and 0.0008. In terms
of calibration error, the best fitting model is the OU with jumps, though the differences between
the models are quite small 4. Models with jumps generally fit better than the corresponding ones
without jumps. This result seems to suggest that negative jumps are an appropriate way to describe
random variations in mortality.

Graphs 5, 6, 7 and 8 report the survival probabilities as from the four models analyzed and from
the relevant tables.
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4We notice that with these values of the parameters the probability of negative intensity for the OU model can be
considered negligible for all practical applications.
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Generation 1935
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The fit is very good, also in the presence of strong rectangularization (the last two generation), and
all the survival functions cannot be distinguished from each other.

To have a better idea of the goodness of the fit, for each generation we plot the differences between
the survival probabilities (tp65) used as data and the survival function implied by the different mod-
els (S65(t)). Graphs 9 to 12 report these differences for all the (seven) models considered so far for
generations 1880 to 1945.
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Difference (observed table - survival function), 

generation 1900: all models
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Difference (IML35 - survival function): all models
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Difference (IML45 - survival function): all models
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The improvement in the goodness of the fit when choosing a non mean reverting process for the
intensity of mortality is evident.

It is not a surprising result that the differences in graphs 9 and 10 are very irregular, whereas
they are smooth curves in graphs 11 and 12. Namely, the survival probabilities tp65 for graphs 9
and 10 are observed data, while they are projected probabilities for the generations 1935 and 1945,
hence constructed with deterministic algorithms based on regular curves (exponentials of polyno-
mials).

To conclude, let us plot in Graph 13 the differences between the IML92-45 survival probabilities
and their theoretical counterparts, for the non mean reverting processes only (notice the difference
in the scale w.r.t. the previous graphs).
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Difference (IML45 - survival function): non mean 
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The difference between tp65 of the IML92-45 table and S65(t) of each model is positive for t ≤ 20
approximately and negative between t = 20 and t = 30 approximately, then approaches 0 from
above. This means that, in the case considered here, the fitted survival probabilities, in comparison
with the basic table (on which the calibration is done), underestimate the survival probabilities
between ages 65 and 85, overestimate them between ages 85 and 95 and underestimate them again
after age 95. These considerations become quite important whenever the model were to be used
for pricing purposes (under the assumption of no stochastic mortality risk premium): for example,
underestimation of the survival probability between ages 65 and 75 would lead to lower than needed
premiums for pure endowment policies with duration 10 years, sold to an individual aged 65, and
premiums higher than needed for term assurances with the same duration sold to the same individ-
ual5.

8 Impact of higher randomness: analytical results and stress tests

This section moves from the observation that non mean reverting optimally fitted models present
low diffusion parameters on the one side, and improvements of fit when adding a jump component
on the other side. This feature is evident both in the observed mortality tables and in the projected
tables. Therefore, while the explanation for the low value of σ in the latter case can be the fact
that projected mortality tables are constructed in a deterministic way (in UK the CMI bureau in
projecting mortality rates uses a simple formula based on exponentials of polynomials), the same
explanation cannot apply for the observed generation tables. This seems to indicate that, relying
on the observed data, the future evolution of the intensity of mortality for an individual aged x now
(observing his/her current force of mortality) presents low variability.

5These conclusions take for granted that the projected tables which we are calibrating are the correct ones.
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Obviously, this feature does not need to occur also for future generations and the question arises as
to the effect of higher variability in the mortality intensity on the survival probabilities. Analytical
results allow us to answer this question for the first two models, the OU and the OUj. Namely, the
force of mortality in these two cases (see eqs. 6.1 and 6.3) decreases when σ or l increase: therefore,
the survival probability increases when the stochastic component increases. Furthermore, it can be
shown that the function α of equation (5.6) is an increasing function of σ and the function α of
equation (5.10) is increasing in both σ and l (we observe that β does not depend on σ and l). This
means that when we increase the diffusion coefficient or the jump intensity (the latter meaning a
reduction in the expected arrival time of jumps), both models predict a higher survivorship.

Analytical results help to determine the behaviour of the survival function when σ increases also
in the FEL case. Indeed, it can be shown that the function β of equation (5.17) is an increasing
function of σ. This implies that also in the FEL model the survival probability increases when
the diffusive part increases. As for the model with jumps, FELj, it turns out impossible to say
something about the dependence of α from σ and l, since this involves the relationship between
other coefficients like a and µ, which in general is not known.

Therefore, for the FELj model we provide a sensitivity or stress test analysis, in order to assess
the impact of higher stochastic components on the survival function. We do this with reference to
a single generation, the 1945 one. The optimal values of the parameters, which we are going to
stress, are the ones collected in table 2: these values produce the differences between the table and
model-implied survival probabilities reported in graph 13. We increase the value of the parameters
σ and λ, omitting the stress tests for the average magnitude of the single jumps (µ), since in our
experiments this has not led to significant changes in survival probabilities.

Graph 14 reports the results from the stress analysis: it presents the difference between the ta-
ble and model-implied survival probabilities under the optimal parameter values (optimal diff.), as
well as with a diffusion coefficient σ and an intensity l equal to a thousand times the optimal ones.
The reader can appreciate the fact that when we increase the diffusion coefficient or the jump inten-
sity, the differences become more negative. The model therefore would predict a higher survivorship,
if ever the stochastic components were higher than the ones calibrated from the IML92-45 table.
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Difference (IML45-survival function): 

sensitivity analysis for the FELj model
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9 Forecasting mortality and mortality trend

The calibration performed so far has been applied either to old generations, considering observed
mortality tables or to younger generations, considering projected mortality tables. It is clear that
neither set of results is of central interest for practical applications. The aim of the calibration
has been to show the appropriateness of the non mean reverting models in describing the intensity
of mortality. Once this has been done, our next step consists in making the model applicable to
younger generations so as to allow forecasting.

The ideal set of data one needs in order to make a calibration of the model to a relatively young
generation is a generation mortality table until the observation date. For example, if the calibration
is done in 2005 and the generation under consideration is the one born in 1905, the data needed are
the observed mortality rates of this particular generation for 100 years. Unfortunately, generation
tables are typically available only for generations whose members are all dead. However, one can
extrapolate the desired data by first collecting in a unique table all the observed mortality rates
year by year (i.e. contemporaries tables) from 1905 to 2005 and then taking the diagonal starting
from q0 in 1905 to q100 in 2005. This procedure is feasible because one can easily have access to
observed mortality rates year by year – for example, the Human Mortality Database (University
of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany)
(2002)) is a convenient database that provides yearly data for many countries dating back to the
last century. This procedure does not give exactly the mortality rates of a certain generation ob-
served throughout life, but is considered a good approximation.

The next step consists in following the calibration procedure used above, on the diagonal data.
It is clear that the younger the generation, the lower the number of observed survival probabilities
on which we make the calibration. However, the initial age x can be lowered in order to produce
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a sufficiently high number of data. For instance, we have reduced the initial age x from 65 to 35
and have considered sixteen different generations: persons born in every year from 1900 to 1915.
We have followed the diagonal approach described above until 1998 (the last year in which data are
available in the Human Mortality Database at the time of writing the paper, for males population
of England and Wales).

For a given generation, after having calibrated the intensity process, one can forecast the evo-
lution of the survival function in the future, according to the chosen model, by considering its right
tail, after the last observation. This mortality forecasting is a first simple way in which future
mortality can be extrapolated by application of this model.

A second, more difficult, way is to consider how the different parameters of the intensity process
change when changing generation: in such a way one can consider the mortality trend. We will come
back again to these two different procedures in sections 9.1.1 and 9.1.2, and give some examples in
sections 9.2.1 and 9.2.2.

Before proceeding with the calibration results, it is worth spending a few words on the effect of
changing either the initial age or the generation.

9.1 Some considerations on the effect of changing initial age or generation

It is convenient to make a deeper analysis of the family of intensity processes we are considering.
We first want to explain what happens to the value of the parameters of the process when we
change initial age inside the same generation. Then we want to see what happens when we change
generation, holding the same initial age. The second issue usually refers to the mortality trend
phenomenon. Since these two issues are completely different, we will study them separately.

9.1.1 Changing initial age, given the generation

Imagine to describe the evolution of mortality intensity for a given generation6 (in order to keep
things simple, we will not introduce any index for the generation). Observe that the intensity
process described so far, equation (3.4) should be written more properly as:

dλx(t) = fx(λx(t))dt + gx(λx(t))dW (t) + dJx(t) (9.1)

where the dependence of the drift, the diffusion and the jump components on the initial age x is put
into evidence by the index x. For example, in the case of the OU process, if x and y are different
initial ages, we will have:

dλx(t) = axλx(t)dt + σxdW (t)

dλy(t) = ayλy(t)dt + σydW (t).

It can be shown that if σ = 0 for any age, then we will have ax = a for any age x. However, in
general, the calibrated parameters are age dependent, i.e. it is ax 6= ay and σx 6= σy. The same
considerations apply for the other processes and the other parameters (l and µ). Therefore, when
we change the initial age we expect to find different values for the optimal parameters. The fact
that we do find different values when changing initial age (in fact, it is a35 6= a65 in all cases, for each
generation analyzed) is a clear confirmation of the fact that it must be σ 6= 0, and that, therefore,
assuming a simple Gompertz force of mortality cannot be considered appropriate.

6By generation we mean year of birth.
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9.1.2 Changing generation, given the initial age: mortality trend

Let us consider the intensity of mortality for a given initial age x and different generations. A
complete description of the intensity surface would be given by a two parameters-family λx,gen (for
a description of the intensity mortality surface via random fields with application to the pricing of
insurance products, see Biffis and Millossovich (2005)). However, for simplicity, here we focus only
on the change of generation and omit the initial age x. We have a family of intensity processes:

dλgen(t) = fgen(λgen(t))dt + ggen(λgen(t))dW (t) + dJgen(t) (9.2)

where the index gen refers to the year of birth7.

The change in λgen(0) and in the parameters that characterize fgen and ggen gives the description
of the mortality trend in our setting.

9.2 The calibration results

9.2.1 Mortality forecasting

As an illustration Graph 15 and Graph 16 report the mortality forecast for the generation 1915
for the initial ages 35 and 65, respectively. Both graphs report the observed and the theoretical
survival function according to the FELj model.
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7For example, in the case of the OU process, if we were considering the generations 1880 and 1905, we would have:

dλ1880(t) = a1880λ1880(t)dt + σ1880dW (t)

dλ1905(t) = a1905λ1905(t)dt + σ1905dW (t)
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Generation 1915, initial age 65
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In both graphs, the right tail of the ”Theoretical” curve gives the forecast of the survival function
after the observation date (t = 49 for Graph 15, t = 19 for Graph 16) implied by FELj the model.
It should be noted that, although the two graphs refer to the same generation, the two right tails
are not the same. This is due to the fact that in the first graph the ”Theoretical” curve reports
the survival function S35(t) for a person aged 35, whereas the second reports the survival function
S65(t) for a person aged 65.

9.2.2 Mortality trend

In order to investigate the mortality trend, we have made the calibration for the sixteen generations
born in years 1900 to 1915. The initial age x has been set equal to 65. In what follows, we will
adopt the notation:

λgen(t) gen = 1900, ..., 1915

omitting the initial age 65 for notational convenience. The model selected is the FELj. For each
generation we calculate the value of λgen(0) and we find a set of optimal parameters:

agen σgen lgen µgen

as well as the calibration error:
errorgen

Table 3 reports these values:
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TABLE 3

gen a σ l µ error λ65(0)
1900 0.07921 0.014216 0.0009996 -0.0001999 0.0001228 0.0379719
1901 0.0790077 0.0147243 0.0009994 -0.0001999 0.0001009 0.0374008
1902 0.0839328 0.0191703 0.0009989 -0.0001998 0.0000883 0.0352956
1903 0.0778313 0.0129487 0.0009995 -0.0001999 0.0001555 0.0362388
1904 0.0703711 0.0000099 0.0075351 -0.001489 0.0010081 0.0375461
1905 0.0728105 0.0000099 0.0035533 -0.0007034 0.000589 0.0362284
1906 0.0743114 0.0012004 0.001 -0.0002 0.0009499 0.0348192
1907 0.0719484 0.0000001 0.0010175 -0.0002034 0.0020362 0.035192
1908 0.0741248 0.0000005 0.0002505 -0.0001002 0.0029992 0.0341464
1909 0.078007 0 0.0577247 -0.0024017 0.0047226 0.033443
1910 0.0787267 0.0000097 0.0698797 -0.0023458 0.0077625 0.0331122
1911 0.0832346 0.0000093 0.2096394 -0.0020138 0.0128429 0.0328228
1912 0.0791876 0.0000089 0.0076029 -0.0015 0.0188194 0.0312121
1913 0.0959986 0 0.6722936 -0.0012941 0.0264356 0.0315629
1914 0.0939347 0 0.5279437 -0.0013913 0.0374799 0.0315423
1915 0.0806945 0.0000098 0.0010029 -0.0002006 0.0533393 0.0309851

We observe an evident linearly decreasing trend of λ65(0). Indeed, its linear regression on the cal-
endar year gives an R2 of 0.912. This is consistent with our intuition about mortality trend.

The behaviour of the other parameters is much less pronounced: polynomial regressions give much
smaller values of R2.

The calibration errors are very small, and increase when considering younger generations.

10 Summary and concluding remarks

In this paper, we have described the evolution of mortality by using doubly stochastic (or Cox)
processes. The time of death has been modelled as a doubly stochastic stopping time: namely, as
a jump time whose intensity is stochastic. The intensity has been described as an affine process,
with two different specifications: first, as in the default risk literature, with mean reversion, then
without it. For both specifications, the survival probabilities have been provided in closed form.

The intensity processes have been calibrated to the population of England and Wales, using ob-
served mortality tables for old generations and projected tables for younger ones. Results from the
calibration seem to suggest that, in spite of their popularity in the financial context, mean reverting
processes are not suitable for describing the death intensity of individuals. On the contrary, affine
processes whose deterministic part increases exponentially seem to be appropriate. Furthermore,
the analysis of the relation between the stochastic intensity of mortality and the deterministic force
of mortality has underlined how the non mean reverting affine processes proposed can be considered
natural extensions of the Gompertz model.

An interesting result from the calibration is the fact that the stochastic component of the in-
tensity processes seems to be appropriately described by negative jumps together with diffusions.
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Stress analysis and analytical results, whenever they can be obtained, indicate that increasing the
randomness of the intensity processes results in improvements in survivorship.

After having specified the dependence of the model parameters on the initial age and the genera-
tion, we provide a procedure for mortality forecasting and mortality trend assessment. Examples
are given.
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