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The mathematical tools: some basic ideas

The default time is often modelled as a “doubly stochas-
tic stopping time”.

The definition of doubly stochastic stopping times needs
some preliminaries:

1) A counting process Nt is said to admit the stochastic
intensity λ (where λ is a nonnegative predictable pro-
cess s.t. E(

∫ t

0 λudu) < ∞) if Mt = Nt −
∫ t

0 λ(u)du is a
martingale.

2) If a counting process Nt admits the intensity λ, then

E(Nt+∆t −Nt|Ft) = λt∆t + o(∆t)

In other words, the process λ gives information about
the average number of jumps of the process under ob-
servation in a small period of future time.

3) A counting process with stochastic intensity is doubly
stochastic driven by the subfiltration Gt ⊂ Ft if, condi-
tionally on the path of λ until s, the process Ns−Nt has
Poisson distribution with parameter

∫ s

t
λudu.
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Stopping time

The stopping time of a doubly stochastic process is the
analogous of the first jump time of a Poisson process,
where the intensity is a stochastic process.

If τ is the first jump time of a Poisson process with
parameter λ, then τ has exponential distribution and

P (τ > t) = e−λt

Similarly, an important result for doubly stochastic stop-
ping times is that if τ is doubly stochastic with intensity
λ, then:

P (τ > t|Fs) = E

[
e
−

∫ t

s
λ(u)du|Fs

]
(?)

If the stopping time τ is chosen to be the random time
of death of an individual aged x at time s, Tx, then the
probability (?) is the survival probability tpx.
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The affine framework

The choice of the intensity process is crucial for the
solution of (?).

Classical results from the credit risk literature show that
if the process chosen for the intensity is of the affine
class, then the expectation (?) turns out to be tractable.

A process λt is affine if it is a jump-diffusion process,
i.e. if it can be described by the SDE :

dλt = µ(λt)dt + σ(λt)dBt + dJt

where J is a pure jump process and where the drift µ(λt),
the covariance matrix σ(λt)σ(λt)′ and the jump measure
associated with J have affine dependence on λt.

Examples of affine processes in finance: Vasicek, CIR.
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IMPORTANT RESULT

If λ is affine:

E

[
e
∫ T
t −λ(u)du|Gt

]
= eα(T−t)+β(T−t)λ(t) (??)

where the coefficients α(·) and β(·) satisfy gen-

eralized Riccati ODEs, that can be solved at

least numerically and in some cases analytically

(Duffie Pan Singleton, 2000).
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The actuarial application

We consider an individual aged x and model her ran-
dom future lifetime Tx as a doubly stochastic stopping
time with intensity λx.

According to (?) the survival probability is:

Sx(t) = P (Tx > t|G0) = E

[
e
−

∫ t

0
λx(u)du|G0

]

Previous (recent) literature on this: Biffis (2004), Dahl
(2004), Shrager (2004).

The crucial point now becomes: how do we choose the
process λ so that to apply the useful equation (??)?
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First application: mean reverting processes

In the credit risk literature, mean reverting processes
work quite well to describe the intensity of default (Duffie
and Singleton, 2003):

1. CIR process:

λx(t) = k(γ − λx(t))dt + σ
√

λx(t)dW (t)

2. mean reverting with jumps (m.r.j.):

dλx(t) = k(γ − λx(t))dt + dJ(t)

3. VASICEK process:

dλx(t) = k(γ − λx(t))dt + σdW (t)

with k > 0, γ > 0, σ > 0, W (t) standard Brownian mo-
tion, J(t) compound Poisson process with intensity l and
jumps exponentially distributed with expected value µ.
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Survival function

These processes are affine and we can apply (??) and
express the survival function in closed form (these are
standard results):

P (Tx > t|F0) = Sx(t) = eα(t)+β(t)λx(0)

where:

1. CIR process:

α(t) = −2kγ

σ2
ln

(
c + debt

b

)
+

kγ

c
t β(t) =

1− ebt

c + debt

b = −
√

k2 + 2σ2 c = 0.5(b− k) d = 0.5(b + k)

2. mean reverting with jumps process:

α(t) = −γ(t + β(t))− l
µt− ln(1− µβ(t))

µ + k

β(t) =
e−kt − 1

k

3. Vasicek process:

α(t) = −(β(t) + t)(k2γ − σ2

2
)

k2
− σ2β(t)2

4k

β(t) =
e−kt − 1

k
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The calibration to the UK population

Since λx(t) is the intensity of mortality at age x + t
of an individual aged x at time 0, we choose a genera-
tion mortality table and not a contemporaries one.

Two observed generation tables (1880 and 1900, HMD
data) and two projected mortality tables (1935, 1945).

Assumptions for the calibration:

• initial age x = 65, for both males and females

• jump size µ < 0 (to capture improvements in mor-
tality rates)

• λ65(0) = − ln(p65)

We minimize the sum of the squared differences between
the survival probabilities of the relevant table and the
ones implied by the model, and compute the calibration
error.
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Results from the calibration: value of the op-
timal parameters

TABLE 1

1880 1900 1935 1945
λ65(0) 0.03515 0.03797 0.01145 0.00885

CIR-error 0.02182 0.01662 0.40945 0.20552
CIR-k 0.00448 0.01365 0.06494 0.0078
CIR-σ 0.00103 0.00298 0.00005 0
CIR-γ 1.24656 0.4301 0.07552 0.41711

mrj-error 0.02236 0.01327 0.15816 0.1965
mrj-k 0.00571 0.00392 0.005 0.00465
mrj-µ -0.00246 -0.00227 -0.00249 -0.00492
mrj-l 0.00247 0.00234 0.00249 0.0099
mrj-γ 0.99382 1.31818 0.64908 0.67935

VAS-error 0.02247 0.01473 0.16191 0.1982
VAS-σ 0.00046 0.00048 0.00002 0.00002
VAS-k 0.00591 0.00835 0.00604 0.00526
VAS-γ 0.96029 0.65393 0.53278 0.59302

Result: the error more than decuplicates when pass-
ing from old observed tables to the projected tables for
younger generations.
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Results from the calibration: survival functions
for the older generations

Generation 1880
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Results from the calibration: survival functions
for the younger generations

Generation 1935
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Evidence:

• fit more satisfactory for the old generations

• for the younger generations, the rectangularization
phenomenon is not captured

• the expansion feature is also not captured

• the survival probability at old ages is much higher
and at lower ages much lower than in the tables

• the survival probability at very old ages (like 130-
140) is positive

Conclusion: in the presence of high rectangularization
phenomenon – which is an expected feature in the future
generation tables – the intensity of mortality cannot be
properly described by the three proposed processes.
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QUESTION: is the bad fit due to the common

feature of mean reversion of the three models

(see also Cairns, Blake and Dowd, 2004)?

OBSERVATION: the force of mortality shows

no mean reversion, but rather an exponential

increase

SIMPLE IDEA: why not dropping the mean

reversion term and calibrate a process whose

non stochastic part increases exponentially?
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Second application: non mean reverting pro-
cesses

We propose four models:

1. Ornstein Uhlenbeck process without jumps (OU):

dλ(t) = aλ(t)dt + σdW (t)

2. Ornstein Uhlenbeck process with jumps (OUj):

dλ(t) = a λ(t)dt + σdW (t) + dJ(t)

3. Feller process without jumps (FEL):

dλ(t) = aλ(t)dt + σ
√

λ(t)dW (t)

4. Feller process with jumps (FELj):

dλ(t) = aλ(t)dt + σ
√

λ(t)dW (t) + dJ(t)

with a > 0 and σ ≥ 0 and J pure compound Poisson jump
process, with Poisson arrival times of intensity l > 0 and
exponentially distributed jump sizes with mean µ < 0

15



Survival function

The survival function in closed form is:

P (Tx > t|F0) = Sx(t) = eα(t)+β(t)λx(0)

where:

1. OU process:

α(t) =
σ2

2a2
t− σ2

a3
eat +

σ2

4a3
e2at +

3σ2

4a3

β(t) =
1

a

(
1− eat

)

Problem: the intensity λ can become negative. The
probability of λ becoming negative is:

P (λ(t) ≤ 0) = P


N ≤ − λ(0)eat

σ
√

e2at−1
2a




This probability in the applications is negligible.
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2. OUj process:

α(t) = (
σ2

2a2
+

la

a− µ
)t− σ2

a3
eat +

σ2

4a3
e2at +

3σ2

4a3
+

+
l

a− µ
ln(1− µ

a
+

µ

a
eat)

β(t) =
1

a

(
1− eat

)

3. FEL process:

α(t) = 0 β(t) =
1− ebt

c + debt

4. FELj process:

α(t) =
lµ

c− µ
t− lµ(c + d)

b(d + µ)(c− µ)
·

·[ln(µ− c− (d + µ)ebt)− ln(−c− d)]

β(t) =
1− ebt

c + debt
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Calibration of non mean reverting processes

TABLE 2

1880 1900 1935 1945
λ65(0) 0.03515 0.03797 0.01145 0.00885

OU-error 0.00043 0.00012 0.00085 0.00027
OU-a 0.0861 0.07949 0.09856 0.10859
OU-σ 0.00183 0.00341 0.0001 0.00048

OUj-error 0.0001 0.00004 0.00002 0.00016
OUj-a 0.09101 0.08192 0.10014 0.10865
OUj-σ 0.00377 0.00414 0.0001 0.00011
OUj-l 0.00173 0.00088 0.00105 0.00036
OUj-µ -0.00003 -0.00003 -0.00003 -0.00003

FEL-error 0.00044 0.00012 0.00084 0.00027
FEL-a 0.08553 0.07896 0.09867 0.10811
FEL-σ 0.00431 0.01348 0.00005 0.0001

FELj-error 0.00043 0.00012 0.00053 0.00027
FELj-a 0.0858 0.07897 0.10164 0.10811
FELj-σ 0.00735 0.01349 0 0.00001
FELj-l 0.001 0.001 0.1856 0.001
FELj-µ -0.0001 -0.0001 -0.00034 -0.0001

• The calibration errors are very small.

• The OUj model dominates the others. The models
with jumps perform better than the corresponding
models without.

• The value of σ is very low.
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Results from the calibration: survival functions
for the older generations

Generation 1880
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Survival functions for the younger generations

Generation 1935
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The fit is remarkable, in all cases.
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Differences between Sx(t) and tpx

To have a better idea of the goodness of the fit, we
plot the differences between the survival function that
has to be calibrated and the one implied by the seven
models.

Difference (observed table - survival function), 

generation 1880: all models
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Differences between Sx(t) and tpx

Difference (IML35 - survival function): all models
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⇒ significant improvement in the fit when dropping the
mean reversion term

⇒ non mean reverting affine processes seem ap-
propriate to describe the intensity of mortality
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Differences between Sx(t) and tpx in the non

mean reverting processes

Difference (IML45 - survival function): non mean 

reverting processes

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

6
6

6
9

7
2

7
5

7
8

8
1

8
4

8
7

9
0

9
3

9
6

9
9

1
0
2

1
0
5

1
0
8

1
1
1

1
1
4

1
1
7

1
2
0

OU OUj FEL FELj

Notice the difference in the scale w.r.t. the previous
graphs: this allows us to use interchangeably all the
four models.
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Sensitivity analysis

Evidence from the calibration of the non mean reverting
processes:

• low or null diffusion parameter (σ)

• improvements of fit when adding a jump component

In the case of projected tables, maybe the low value
of σ is due to the fact that the calibration is done on
mortality tables that are constructed with deterministic
algorithms. However, with the observed mortality tables
this explanation cannot apply.

Fact: this seems to suggest that the future evolution
of intensity of mortality for a head aged x presents low
variability.

This does not need to be true for the future. So, what
would be the effect of higher variability in the intensity
λ on the survival probabilities?
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Assessing the effect of higher variability

For the processes OU, OUj and FEL, we can
answer this question with analytical results:
when we increase the diffusion coefficient or
the jump intensity (the latter meaning a re-
duction in the expected arrival time of jumps),
these models predict a higher survivorship.

For the model FELj analytical results cannot
be obtained and we provide a sensitivity or
stress test analysis. Let us consider the dif-
ferences between the survival probabilities of
the table and those implied by the model

• under the optimal parameter values (opti-
mal diff.)

• with a diffusion coefficient σ and an inten-
sity l equal to a thousand times the optimal
ones.
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Difference (IML45-survival function): 

sensitivity analysis for the FELj model
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Increasing the diffusion coefficient σ or the jump inten-
sity l, leads to differences becoming more negative.

⇒
Increasing the stochastic part of the intensity pro-
cess implies improvement in the survival probability
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The link with existing models for the force of
mortality

What is the relation between the stochastic intensity
of mortality and the deterministic force of mortality?

µx = lim
h→0

P (x < T0 ≤ x + h|T0 > x)

h

In our case, we have:

µx = lim
h→0

1

h

(
1− S(x + h)

S(x)

)
= −α′(x)− λ0(0)β′(x)

For example, in the OU model the force of mortality,
becomes:

µx = λ0(0)eax − σ2

2a2
(eax − 1)2

If σ = 0 we have:

µx = λ0(0)eax = λ0(x)

i.e. in this case the force of mortality coincides with
the intensity of mortality for a new born individual after
x years. Furthermore, the force of mortality is of the
Gompertz type. This is straightforward also observing
that if σ = 0 the evolution of λ0(t) is deterministic and
given by

dλ0(t) = aλ0(t)dt
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The coincidence between intensity of mortality and force
of mortality is clearly no longer true when the intensity
is stochastic. Furthermore:

µx < E(λ0(x))

In other words, the force of mortality decreases, hence
the survivorship improves, when the diffusion coefficient
increases.

With the other three models, we have:

OUj µx = λ0(0)eax− σ2

2a2
(eax−1)2− l

a− µ

(
1− aµeax

a− µ + µeax

)

FEL µx =
4λ0(0)b2ebx

[(a + b) + (b− a)ebx]2

FELj µx =
4λ0(0)b2ebx

[(a + b) + (b− a)ebx]2
+

lµ(1− ebx)

µ− c− (d + µ)ebx

It is clear (and easy to check) that also with these three
models, when the coefficients σ and l of the random
part are set to 0 there is coincidence between intensity
of mortality and force of mortality, which turns out to
be of the Gompertz type.
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Forecasting mortality

One can use this model to see what is the

future evolution of mortality for a given gen-

eration.

In the next two graphs, we report the mortality

forecast for the generation 1915 for initial ages

35 and 65 (FELj model). The right tail of the

“Theoretical” curve gives the forecast of the

survival function beyond the observation date.
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Generation 1915, initial age 65
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We have applied the same forecast procedure on the
generation 1880, initial age 65, in order to compare the
forecasted mortality with the experienced one.

Generation 1880 observed in 1940
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Mortality trend

Let us consider the intensity of mortality for a given
initial age x and different generations. A complete de-
scription of the intensity surface would be given by a two
parameters-family λx,gen (Biffis and Millossovich, 2005).

Here we focus only on the change of generation and
omit the initial age x. We have a family of intensity
processes:

dλgen(t) = fgen(λgen(t))dt + ggen(λgen(t))dW (t) + dJgen(t)

where the index gen refers to the year of birth (eg 1880,
1905).

The change in λgen(0) and in the parameters that char-
acterize fgen and ggen gives the description of the mor-
tality trend in our setting.

32



Mortality trend - first approach

• calibration for the sixteen generations born in years
1900 to 1915

• initial age x = 65

• FELj model

• for each generation we calculate the value of λgen(0)
and find a set of optimal parameters:

agen, σgen, lgen, µgen, errorgen

Results

• decreasing trend of a and linearly decreasing trend
of λ65(0) (R2 of 0.912 wrt to calendar year)

• the calibration errors are very small.
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Mortality trend - second approach

We have simulated the process λ65(t) for the gener-
ations 1880, 1900 and 1920. The graph reports the
mean of λ65(t) for the three generations. As expected,
the older the generation, the higher the mean of the
intensity.
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Concluding remarks

• In this paper, we have described the the time of
death as a doubly stochastic stopping time: namely,
as a jump time whose intensity is stochastic. The
intensity has been described as an affine process,
with mean reversion and without it. For both spec-
ifications, the survival probabilities have been pro-
vided in closed form.

• The intensity processes have been calibrated to the
UK population, using observed mortality tables for
old generations and projected tables for younger
ones.

• Results seem to suggest that, in spite of their pop-
ularity in the financial context, mean reverting pro-
cesses are not suitable for describing the death in-
tensity of individuals.

• On the contrary, affine processes whose determin-
istic part increases exponentially seem to be appro-
priate for describing the intensity of mortality.
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• The non mean reverting affine processes proposed
can be considered natural extensions of the Gom-
pertz model.

• The stochastic component of the intensity processes
seems to be appropriately described by negative
jumps together with diffusions.

• Stress analysis and analytical results indicate that
increasing the randomness of the intensity processes
results in improvements in survivorship.

• We provide a procedure for mortality forecasting
and mortality trend assessment: comparison of fore-
casted and experienced mortality for old genera-
tions gives very satisfactory results.
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