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EARLY DEFAULT,
ABSOLUTE PRIORITY RULE VIOLATIONS,

AND THE PRICING OF FIXED-INCOME SECURITIES

Abstract
This paper develops a corporate bond valuation model which takes
into account both early default and interest-rate risk. The bankruptcy
triggering mechanism is directly related to the payoff received by
bondholders when early bankruptcy is forced upon. More specifically,
the default barrier is simply defined as a fixed quantity discounted at
the riskless rate up to the maturity date of the risky corporate bond. As
soon as this barrier is crossed, bondholders receive an exogenously
specified fraction of the remaining assets. Deviations from the
absolute priority rule are also captured. Because it accounts for
gaussian interest rate uncertainty, default risk and deviations from the
absolute priority rule, this model is capable of producing quite diverse
shapes for the term structure of yield spreads. Interest rate sensitivity
and duration measures are also derived and analyzed. To sum up, the
model delivers a quite complete picture of corporate spreads and their

determinants.




1. INTRODUCTION

For corporate bondholders, default by the bond issuer is a possibility that cannot be
ignored. Expectations of possible future losses are reflected in current bond yields. For

instance, bonds issued by so-called "fallen angels" do command a higher yield than an

otherwise identical treasury bond 1 This extra-yield, the corporate default spread, rewards the
corporate bondholder for carrying the risk of not being repaid. Even though the contingent
claim analysis has delivered lots of insights into the modelling of default, corporate bonds turn

out to be more difficult to price than equivalent treasury bonds.

In their seminal papers, Black and Scholes [1973] and Merton [1973] have modeled
corporate liabilities as options on the total value of the firm. Merton [1974] and its refinements
(Lee [1981], Pitts and Selby [1983]) analyze default spreads of pure discount corporate bonds
and the risk structure of interest rates. In these models, default is assumed to occur when the
bond matures and when the firm exhausts its assets. The term structure of interest rates is flat
and deterministic. This contingent claim approach has been extensively used to price more
complex securities : Black and Cox [1976] examine the effects of some indenture provisions
(subordination arrangements, safety covenants). Ingersoll [1977] and Brennan and Schwartz
[1980] value callable and convertible bonds. Geske [1977] shows how coupon bonds can be

viewed as portfolios of compound options.

Although many theoretical papers have studied the pricing of corporate fixed-income

1. As shown by Grinblatt [1994], default is not the only reason that yields on corporate bonds may dif-
fer from yields on Treasury bonds. The relative liquidities of the two instruments is another reason.
Indeed, Treasury securities are more actively traded and they are more frequently used in the imple-
mentation of hedging policies for both government and corporate bond markets. This observation
induces Duffie and Singleton [1995] to introduce a “liquidity convenience” yield in their econometric
modeling of term structures of defaultable bonds. In what follows, we ignore this issue.
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securities, empirical investigation remains scarce. Jones, Mason and Rosenfeld [1984] show
that Merton's model with non stochastic interest rate is unable to generate corporate spreads
compatible with those observed in practice. Ogden [1987] obtains two results. On the one
hand, the two traditional default risk measures (the corporate asset volatility and the leverage)
explain about 78 percent of the variation in the agency ratings of corporate bonds. On the other
hand, default premia are inversely related to firm size, which the previous contingent claim
models do not obtain. To avoid some complicated bond features, Sarig and Warga [1989] use
pure discount bonds to test the relationship between risk premia and time-to-maturity. The
results appear to fit the predictions of theoretical models more closely : the term structure of
risky spreads is downward sloping for highly leveraged firms, humped for medium leveraged

firms and upward sloping for low leveraged firms.

The traditional contingent claim approach is also characterized by another weakness.
Indeed, it assumes that creditors receive their full payments before shareholders seize any
portion of the remaining assets. However, it is now a rather well documented fact that strict

priority is rarely enforced in financially distressed corporations. Franks and Torous [1989,

1994], Eberhart, Moore and Roenfeldt [1990] and Weiss [1990] indicate that the absolute
priority rule is enforced in only 25% of corporate bankruptcy cases. There is also a strong

evidence that bond and equity markets anticipate violations to the strict priority rule.

The simplified approach of corporate default is thus not really satisfying : actual credit
spreads are too large to be accounted for, even when excessive volatility and leverage levels
are uéed. Three refinements should be incorporated to be&er fit real world corporate spreads.
First, the very notion of corporate default is somewhat fuzzy. Indeed, traditional contingent

claim analysis in the spirit of Merton usually ignores the possibility of early default. The



corporate default threshold is not accurately modelled. To cope with this first weakness, Black
and Cox [1976] for instance assume a cutoff level whereby default can occur any time. This
cutoff is introduced by considering a safety covenant to protect bondholders. Second, interest
rates should no longer be considered constant. The stochastic movements of the term structure
of interest rates play obviously a crucial role. The assumpﬁon of constant rates is embarrassing
when one deals with the pricing of interest rate sensitive instruments. Moreover, to price
corporate bonds properly, the intertwined effects of interest rate uncertainty and corporate
default cannot be ignored. Finally, violations of the strict priority rule should be modelled to

better reflect the bargaining game between stakeholders upon default.

More recently, contributions have proposed modelling frameworks where the above
mentioned issues are taken into account (Jarrow and Turnbull [1992], Kim, Ramaswamy and

Sundaresan [1993], Lando [1994], Longstaff and Schwartz [1994], Nielsen, Saa-Requejo and

Santa Clara [1993]) 2 All of these contributions introduce default risk and interest rate risk.
They all consider quite general default triggering mechanisms. Nielsen et alii [1993] define
default as the first time when the value of corporate assets is lower than a stochastic level. This
level is stochastically driven by both the term structure uncertainty and the corporate assets
uncertainty. Longstaff and Schwartz [1994] and Kim, Ramaswamy and Sundaresan [1993]
look at default along the lines of Black and Cox [1976]. Financial distress in their models
occurs when the value of assets reach a constant or deterministic barrier. Despite this
difference in the definition of the default barrier, all contributions explicitly model the
deviation from the strict priority rule. Upon bankruptcy, bondholders _receive an exogenously

given number of riskless bonds. More specifically, their payoff upon default is limited to the

2. Leland [1994a, 1994b)] derives closed-form solutions for the pricing of risky debts with an endoge-
nous bankruptcy-triggering value. He assumes a constant default boundary, non stochastic interest
rates and time-homogeneous debt cash-flows.



product of an exogenously specified number and the value at the time default intervenes of an
equivalent (namely same maturity to go) riskless bond. As noted by Longstaff and Schwartz

[1994] such a modelling has the advantage of being consistent with the usual practice whereby

claimants are given new securities rather than cash 3

This paper develops an analysis of corporate spreads along the same lines. The main
objective is to provide a simple framework yielding a computationaly efficient "closed form"
solution. To achieve such a goal this paper combines aspects of the previous contributions.
Indeed, instead of relying upon a totally ad hoc threshold for default, this paper relates it to the
payoff that claimants receive upon bankruptcy. More specifically, the default barrier is simply
defined as a fixed quantity discounted at the riskless rate up to the maturity date of the risky
corporate bond. As soon as this barrer is crossed, bondholders receive an exogenously
specified fraction of the remaining assets. Thus deviations from the strict priority rule are
easily captured. As a result, the barrier is stochastic as in Nielsen et alii [1993]. But, on top of
it, it overcomes one of the weaknesses of Nielsen et alii' s contribution. Indeed, nothing in
Nielsen et alii's paper prevent bondholders from receiving upon bankruptcy more than assets
permit. Because in their model the payoff upon bankruptcy is exogenously specified (i.e.
independent of the level of the stochastic barrier and of the value of the assets) everything
goes as if an external guarantor were providing the bondholders with an implicit put.
Consequently, the pricing of corporate spreads is affected by the presence of this implicit put.

By relating the payoff upon bankruptcy to the level of the default barrier we avoid this

3. The real issue here is whether the new securities given to bondholders are riskless or default prone.
Longstaff and Schwartz [1994], Nielsen and alii [1993] consider that the defaulted bonds are
exchanged for equivalent riskless bonds. To put it differently, this choice implies that the defaultable
term structure of interest rates collapses to the default-free term structure of interest rates upon
default. Duffie and Singleton [1995] recognize that the issue of recovery under default is quite intri-
cate. They propose a recovery payout which is proportional to the value of a non-defaulted corporate

bond.




problem. Another difficulty arises in both contributions by Longstaff and Schwartz [1994] and
Nielsen et alii [1993]. Indeed, when the corporate bond reaches maturity the corporation may

find itself in a solvent position (according to the threshold) but nevertheless with assets

insufficient to match the face value of the bond # We also avoid the limitation of having a
constant default boundary as in Longstaff and Schwartz [1994] and Kim, Ramaswamy and

Sundaresan [1993].

The paper is organized as follows. In section 2, we set up the modelling framework and
the basic assumptions. Section 3 is devoted to the derivation of a closed form solution for
pricing pure discount corporate bonds. This solution is analyzed and the intuition underlying
its structure is given. In section 4, a closed form solution to the valuation of corporate spl;eads
is given and its properties are interpreted. In section 5, the interest rate sensitivity of corporate
bonds is computed. This elasticity measure enables one to assess the impact of potential
corporate default on the properties of the corporate bond. A conclusion summarizes the main

findings and suggests some avenues of further research.

2. THE MODEL

2.1 The assumptions

In this section we develop a continuous-time valuation model for corporate debt which

accounts both at the same time for interest rate risk and default risk. This model finds its roots

4. For example, assume a fixed default threshold of $50 and a promised repayment of $100. If it turns
out that the value of corporate assets until maturity has always been above the threshold (no early
default) and that the final value of these assets is $80 at maturity, the firm is "threshold-solvent" but

unable to repay the $100.




in the contributions of Black and Cox [1976], Longstaff and Schwartz [1994] and Nielsen et

alii [1993]. More specifically, our framework for modelling default is a contingent claim

framework as seminally proposed by Black and Scholes [1973] and Merton [1973]. To be

precise we now state the various building assumptions.

Assumption 1 : complete financial markets

Financial markets are assumed to be complete and frictionless. Trading takes place
continuously. Under this hypothesis, Harrison and Kreps [1979] have shown that there
exists a unique probability measure O - the risk neutral probability - under which the

continuously discounted price of any security is a Q-martingale.
Assumption 2 : gaussian interest rate uncertainty

Interest rates are assumed to be normally distributed and to follow a gaussian process. This
general continuous time model enables us to consider several different cases : for instance,
Merton [1973], Vasicek [1977], El Karoui and Rochet [1989], Jamshidian [1991] and

Heath, Jarrow and Morton [1992]. In such a framework, the short term riskless interest rate

r, at time ¢ follows a gaussian diffusion process and the volatility structure is a

deterministic function. The only drawback is that negative interest rates are not precluded
in such a gaussian environment. Nevertheless, it should be noted that for reasonable values

of the parameter the probability for the short term riskless interest rate low is quite low.

The process followed by 7, is governed under the risk neutral probability O by the

following stochastic differential equation :




dr. = a(t) [6(s) -, ]dt+o (1) a7, 1)

for some deterministic functions a(?) , 5(¢) and o(#) . o(#) is the instantaneous stan-

dard deviation of the riskless interest rate 7,. W, is a standard Wiener process.

According to (1), we can write at time ¢ under the probability O the dynamics of return of

the default-free zero coupon bond P(,7) maturing at T as:

dP(t,T) _
OB r, dt-c, (t,T) dW, ()

where o, (¢, T) is a deterministic function.

When it is necessary to specify the three functions a(?) , b (f) and o (f) in equation (1)
for numerical computations, we assume a Vasicek [1977] representation for the dynamics
of the term structure of interest rates :

dr,=a(b-r)dt+cdW, ?3)

where g, b and o are positive constants. b is the long-run mean of the riskless interest rate

r,, a is the speed of adjustment towards that mean. In such a framework, the volatility

op (£, T) of the zero-coupon bond is given by :

(LD = (1= @

The value of P(t,T) is given by Vasicek [1977] :

P(,T) =A(T-0) -exp[-B(T-1) -r] (5
where :
-a(T-1¢)
B(T-1) = = — Q)




0,2 0'2 0,2
A(T=0) = exp| (Z5-0) (T-0) + (b= B(T-1 + Z5B(2(T-1) (7

Assumption 3 : corporate asset process

Let ¥, denote the total value of the assets of the firm at time . Under O, we assume that ]

is governed by the following process :

%k = rdi+o, [paW,+ J1-pdz] ®)
t

where o, represents the instantaneous standard deviation of the retumn on corporate assets

and p the correlation coefficient between the riskless interest rate and the value of corpo-

rate assets. Z, is a standard Wiener process, independent of #,.

Assumption 4 : Modigliani-Miller theorem

The total value of the firm ¥, is independent of the capital structure decision of the firm. In

other words we assume that the standard Modigliani-Miller proposition does hold. Cash
outflows such as coupon or principal payments are assumed to be financed by issuing new

securities.

2.2 Definition of bankruptcy

Bondholders are assumed to be protected by a safety covenant which allow them to

trigger early bankruptcy. A safety covenant is a contractual mechanism which gives

bondholders the right to bankrupt or force a reorganization of the firm if its performance does

not match some prespecified benchmark. Let v (f) be this benchmark. v (£) denotes the
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threshold level at which bankruptcy occurs at time . As soon as the value of corporate assets

V, falls below v () , the safety covenant protects the bondholders and bankruptcy or workout

is forced upon. We assume that v (f) is exogenously specified and takes the following form:
v() =a-F-P(4D) ©

where F denotes the face value of the corporate bond and 0 <a < 1.

To use Duffie and Singleton [1995] terminology, the default time is assumed to be
accessible (predictable). In other words, the very first time the market value of the firm’s
assets hits the barrier is not a “sudden surprise”. Another route suggested by Madan and Unal
[1993] is to consider the default time as potentially inaccessible. For instance, default can be
modelled as a Poisson arrival. Default occurs the first time when some Poisson process jumps

from 0 to /. Such a framework is convenient when the objective is for example to disentangle

5. Under our set of

cashflow based insolvencies from market value based insolvencies
assumptions, this distinction is not necessary. Indeed, in a frictionless world cashflow based

insolvencies can only occur when the situation is viewed as hopeless by stakeholders from a

corporate net worth standpoint 6

Our default threshold v (f) can be viewed as an extension of the barrier of Black and
Cox [1976] to a stochastic interest rate environment. This specification has three obvious
advantages. First, because of the stochasticity of interest rates, the barrier v (#) is also
stochastic. The second benefit is obvious when the bondholders'payoffs upon bankruptcy are

defined. Franks and Torous [1993] indicate that, regardless of the reorganization form, each

5. Sudden cashflow shortages could be captured by the occurrence of the jump process.
6. Toputitin Leland’s [1994] words, “current cash flows could be negative, but if equity value remains,

the firm need not be forced into bankruptcy”.
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creditor receives a bundle of securities in exchange for his original claim in a distressed firm.
As can be seen in the next section, it is easy to relate the level of these payoffs, namely the
fraction of an equivalent riskless zero-coupon bond, to the level of the barrier. Finally, the

shape of the barrier enables us to draw comparisons with some of the previous literature. The
Mertonian case corresponds to a value for o equal to zero. The completely risk-free situation
is given by a very stringent covenant where o equal to /. In that case, bondholders are sure to

receive what they were promised in the first place. For values of o lying strictly between 0

and /, intermediate cases of early default are considered. Other things being equal, the closer

o gets to 0, the less protective is the safety covenant for early default.

2.3 Bondholders payoffs

When bankruptcy occurs, namely when ¥, crosses v (f) for the first time, corporate

bondholders receive a fraction of the corporate assets which is exogenously specified and

represents the write-down that is applied to the value that should be received by bondholders if

the strict priority rule were enforced. Let f; (0<f; < 1) denote this fraction when default

occurs before maturity and £, (0 <f, <1) when default occurs at maturity. In the limit case

where f; = f, = 1, the strict priority rule is enforced and shareholders receive nothing. Fons

[1994] indicates that the Moody's recovery rates for senior secured, senior unsecured, senior

subordinated, subordinated and junior subordinated debts are respectively 64.59%, 48.38%,
39.79%, 30.00% and 16.33%. Franks and Torous [1993] show that these recovery rates, based
on a sample of 37 firms that formally reorganized under Chapter 11 between 1983 and 1990,

for secured debt, bank debt, senior debt, junior debt and preferred stock are respectively

80.1%, 86.4%, 47.0%, 28.9% and 42.5%.
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This write-down of creditor claims is usually the outcome of a bargaining process which
results in shifts of gains and losses among corporate claimants relative to their contractual
rights (Milgrom and Roberts [1992, p.503]). Franks and Torous [1991] for instance report that,
over 41 Chapter 11 bankruptcies, junior claimants managéd to extract $878 million that should
have normally been received by senior claimants. Common stockholders gained a third of
those $878 million although they had no valid claim on them. Franks and Torous [1991] also
report the same kind of pattern in the case of 47 workouts. Franks and Torous [1993] find that
on a sample of 37 firms that reorganize under Chapter 11 deviations from absolute priority for
bank debt, secured debt; senior debt, junior debt, preferred stock and equity were respectively:
-0.96%, -1.67%, -1.44%, 0.94%, 0.80% and 2.28%. For 45 firms that restructure their debt
informally, the deviations for bank debt, senior debt, junior debt, preferred stock and equity

were respectively : -3.54%, -3.44%, -0.95%, -1.39% and 9.51%.

In any case, these observations suggest that senior claimants prefer to be sure to receive
a slice of a larger pie than all of a much smaller one. The objective of the paper is not to model
explicitly the bargaining process between the creditors and the firm and its outcome (forced
bankruptcy and liquidation, Chapter 11, informal debt workouts ...). Deviations from the

absolute priority rule are viewed as implicit bond covenants which are anticipated by market

players (see for instance Eberhart and Senbet [1993]). The fact that f; and f, could take

different values indicates that the nature of the bargaining process upon bankruptcy may be

different before or at maturity.
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3. THE VALUATION OF RISKY ZERO-COUPON BONDS

The corporation at time =0 issues two classes of securities : a single homogeneous debt

consisting of a zero-coupon bond (with face value F and maturity T) and the residual claim

(equity). In what follows, we derive the time ¢ value D), of the corporate zero-coupon bond

with maturity T and face value F. To clarify the valuation procedure, we first look at the cash
flows which corporate claimants are entitled to under the various scenarios. Bondholders have

a claim on the following potential cash-flows :

e No default before maturity

Under this first scenario, the value ¥, of total assets has always remained above the

default barrier v () with z<u < T and bankruptcy can only occur at maturity. In that

case, bondholders receive a fraction £, of the remaining assets.

Let T}, , denote the first passage time of the process ¥, through the barrier v (u) :

Ty, = inf{uzt,V,=v(u) =o-F-P(u,T)}

The payoffs D, at maturity are thus equal to :

F-lr, »1, V,zF+f2' Vr ITK,zT, Ve<F

Viv=

where the indicator function 15 for B is the real-valued random variable defined by :

1 Vo eB
0 otherwise

13(03) = {
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e Default before maturity

Under this second scenario, bondholders receive an amount :

DT,,', =/ VT,,,,
= f-aF-P(T,,,D if T, <T

To sum up, the total cash-flow picture of the firm at maturity reads as follows :
e Equityholders :

(1-f)-aF-1p, o+ Vp=F)1g, srpert (125) Vrdr, srvcr

V,v=
 Bondholders :

fl'aF;lTV'v<T+F'1T,,_v2T,V,.2F+f2'VT'ITV_VZT,V,<F 4

We are now in a position to price the risky zero-coupon bond issued by the firm. To do
so we use the risk-neutral pricing technique. The price as of time ¢ of the risky zero-coupon is
thus given by the discounted value of future expected cash-flows under the risk neutral

probability O :

T

—J r,du

D, =E°e™ '{flaF'1TV,,<T+F'lTV,VZT,VTZF+f2VT'1T >T,VT<F} (10)

Viv=

The first term within the expectations operator corresponds to the discount factor. The
second term captures the payoff conditional upon forced bankruptcy before maturity. The third
term represents the best case scenario for bondholders, namely solvency. The last term gives
the final cash-flow to bondholders conditional upon both no premature forced bankruptcy and

final insolvency (with assets at maturity higher than the threshold value but less than the face

value of the bond).
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After some computations (see Appendix 1), expression (10) collapses to the following
closed form solution which gives the price of a corporate zero-coupon bonds :
1 .9
D, = FP(,T) - {1 - (N (-] +NT-dy]) + (- gV [-dg] = 7V [-4])
t t t
1 q
- (1-£) GNI[-d5] + 7N [-d,]) (11)
t t

_(1-£) (},(N[dﬂ _N[4]) +‘f—:(N[d41 _N[dg])) }

] = FP (1)
t Vl

where _v() _ aFP(T)
%“~ v T T 7

t t

~Inl,+Z(t,T)%/2

1 (1, 1) =d,+I(t 1)
_ -lng,+2(,D?/2 _
dy = ACH)) =d,+Z( 1)
and _lng2/1+2(t, D?
_-Ing /L, +Z(D/2 _
dy ACH)) d+2(1,T)

[T

2(,7) = [f((po,,+cp(u,n>2+(1—p2>cf,)du}

(N() = the cumulative standard normal distribution

The value of the risky bond involves two ratios, namely /, and ¢,. The first one is the

classical Merton’s quasi-debt ratio /,. It is not equal to the true debt to asset ratio because the

numerator (i.e. the face value of corporate debt) is discounted at the riskless rate. As a result, it
is an upward biased estimate of the real debt to asset ratio. This quasi debt to asset ratio can

also be given another interpretation. Indeed, it is nothing but the forward price of assets,

namely the value of assets that prevails under the O -economy. The quantity g, can be defined
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as the bankruptcy or early default ratio. It is simply the ratio of the current default threshold to

the current value of the firm /. As soon as g, is equal to one, bankruptcy is forced upon.

Let P (l) denote the price as of time ¢ of the following european put of maturity 7 :
1
Pp(l) = “Z;N[_dll +N[-d,]

The above formula (11) can be rewritten as:

9; ‘I?
D, =FP(@tT) -\1-P:(l) T PE(7:)

- (=) 7 (VI-d] + N [-4]) 12)

- (1-£) 71; ((N[d;] -N[d|]) +q,(N[d,] -N[dc])) }

This last expression (12) lends itself to a rather intuitive interpretation. Indeed, the risky
corporate zero-coupon bond can be decomposed into five basic components. The first term
corresponds to an otherwise identical riskless zero-coupon bond. The second term is the usual
put-to-default at maturity as derived in both Black and Scholes [1973] and Merton [1973]. The
third term, a long position on a european put, appears because of the possibility of an early
default triggered by the safety covenant. As such it contributes to mitigate the effect of the

previous traditional put-to-default. This interpretation is even more convincing when one

considers the case whereby the absolute priority rule is strictly enforced (f, = f, = 1), The

last two terms disappear. In the polar case & = 1, g, = /, and the two put options cancel out.

The bondholder's situation has become riskless. As soon as the value of corporate assets reach

7. The inverse of g, is equivalent to Leland’s ratio [1994a, b] ¥/ V. The differences however are that,

in Leland, the default threshold is constant and endogenous and interest rates are non stochastic.
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the present value of liabilities discounted at the riskfree rate, early bankruptcy is forced upon.
The bondholder is then sure to receive the face value F at maturity. The last two terms in
equation (12) materialize the effect of the deviations from the strict priority rule. This effect is

negative. A discount is applied : when f; <1 or f, < 1, bondholders are somehow “spoliated”

because of the non enforcement of the strict priority rule. Each term measures the impact of
partially removing shareholders from their residual claimant positions. On top of being
economically sensible, the formula (12) is also computationaly efficient as it only involves

normal univariate distributions.

4. THE VALUATION OF CORPORATE SPREADS

In this section we derive the term structure of default spreads. For the sake of simplicity

and without loss of generality, we let £ = 0 and F = 1. We denote ¥, the yield of a

corporate zero-coupon bond whose maturity is 7 :

InD, (13)

By using the closed form solution (12) of the previous section, it obtains that :
q qz
-1 0 0
Y, = -7 InP(0,7) - {1 -Pg(ly) + YEPE(T(;)

~(1-£) }0 (VI=d;] +g,N[~d,]) (14)

-(1-£) 71(-) ((N[d;] -N[d,]) +q,(N[d,]:-N[dg])) }

The corporate spread S, is defined as the difference between the yield ¥, and the yield of an
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otherwise equivalent riskless zero-coupon bond. The corporate spread is thus given by the

following expression:

1
Sy = Yo+ 7P (0, 1) (15)

or equivalently :

2
S, = -7{- ln{l ~P () +3§PE(%)
SCEAP O EARTIEEAD 16)

-(1-£) 715 ((N[d;] -N[4)]) +q,(N[d,] -N[dg])) }

Under a flat term structure of interest rates, no safety covenant and no deviations from
the absolute priority rule, expression (16) boils down to Merton’s formula for corporate
spreads. If the safety covenant and the deviations from the strict priority rule are skipped but
the stochasticity of interest rates is preserved, expression (16) is similar to the one derived by
Decamps [1994]. As expected from the closed form solution (12), the term structure of
corporate spreads is affected by the presence of the safety covenant and the violations of the
absolute priority rule. Two immediate implications can be drawn from the wider set of
parameters influencing the term structure of corporate spreads as given in (16). First, larger
corporate spreads than those derived by Merton are to be expected. Spreads predicted by our
model will thus be closer to those observed in practice. Second, it is reasonable to guess that
corporate spreads will exhibit more complex properties than those derived in the previous

literature.

To confirm these implications, we now turn to a numerical implementation of our

model. The numerical computations are done with the following basic parameter values. For
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0.06, ¢ = 0.02 and r, = 0.05. The

the interest rate process, we fix : a = 02, b

corporate asset standard deviation is set to ¢, = 0.2 and the correlation coefficient to

p =-025 8 The coefficient o which determines the level of the default barrier is set equal
to o = 0.9 in most of the simulations. Equivalently, the early default ratio is set to

g, = 0.9-1, . It is worthwhile pointing out that, as expected, our model yields larger

corporate spreads than Merton's model as witnessed in Table 1. Indeed, Merton’s model®

corresponds to an early default ratio g, equal to zero and no deviation from the absolute

priority rule (f, = f, = 1.0).

Figure 1 illustrates the relationship between the level of the corporate spread and the

time-to-maturity of the bond for various leverage levels. Two different leverages are
examined: constant quasi-debt ratio /, (Figure la) and constant face value to asset ratio
(Figure 1b). These pictures resemble those drawn by Merton [1974] : the term structure is
downward sloping for highly leveraged firms, humped for medium leveraged firms and
upward sloping for low leveraged firms. These results match the empirical results by Sarig and

Warga [1989].

Figure 2 relates the corporate spread level to the time-to-maturity of the bond for various
values of the early default ratio. The main objective of this figure is to assess the impact of the
early bankruptcy threshold c. Table 1 is a useful complement in that respect since it also

displays the case where there is no violation of the strict priority rule. When any such

8. The correlation coefficient p is negative because an unexpected increase of interest rates implies an

unexpected decrease in asset prices.
9. More precisely, its extension to stochastic interest rate. See Decamps [1994].
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deviations are absent (f = 1), the spread level is a decreasing function of the degree of
protection provided by the safety covenant. As soon as violations of the absolute priority rule
are possible, the situation becomes more complex. Indeed, long term bonds exhibit a different
pattern from short term bonds. For long term bonds, the lower the early default ratio (i.e. the
less protective the safety covenant), the larger the corporate spread. For short term bonds, this
result does not carry over and an indeterminate relationship holds (see also Table 1, Panel A).
Bondholders are confronted with what could be dubbed a “bankruptcy dilemma”. According
to the pricing equation (12), they simultaneously hold a long position due to the early default

covenant and a short position due to the violations of the strict priority rule. These conflicting

positions combine with the solvency situation of the firm, as measured by /;, to deliver an
ambiguous picture of the spread - early default ratio relationship. In any case, firms that have
issued long term bonds and are /- insolvent (/,>1) are characterized by spreads inversely
related to the level of g, . In such cases, bondholders discount negatively the absence of any
safety covenant. In that respect, it is interesting to underline that, other things being equal, the

less I, - solvent the firm, the larger the corporate spread.

Violations of the strict priority rule have also a strong influence on the level of corporate
spreads as displayed by Table 1 and Figure 4. The less bondholders receive upon bankruptcy,

the larger the corporate spreads. Figure 2 and Figure 4 also suggest that the corporate spread is

more elastic to changes in f, and/or f, than to changes inq,.

Figure 5 to Figure 7 capture the effect of corporate asset volatility on the level of
corporate spreads. Merton [1974] showed that the corporate spread is an increasing function of

corporate volatility. Decamps [1994] proved that this result was a direct product of the
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constant interest rate assumption. According to Decamps [1994], when interest rates and the
value of the firm’s assets are negatively correlated, the corporate spread is a single peaked
function (first decreasing then increasing) of the volatility of the firm. Figure 6 indicates that
neither Merton’s result nor Decamps’s proposition extend to our setting (see for instance Panel

A and Panel C).

Figure 7 describes the impact of the correlation coefficient p on the level of corporate
spreads as a function of the firm’s asset volatility. For positive values of the correlation
coefficient p, the relationship is monotonically increasing while for negative values of the
same coefficient this is no longer true. As a matter of fact, corporate volatility is measured by
the quantity £ (¢, 7) which is the volatility of the ratio V,/P (¢, T) . As already mentioned
above, this last quantity is the forward price of corporate assets, namely the relevant
“underlying” asset for pricing the corporate zero-coupon bond under the Q -economy.
Expression (11) immediately shows that Z (¢, 7) is a monotonically increasing function of the

asset volatility o, if p is positive, while it is first decreasing then increasing if p is negative.

5. THE INTEREST RATE ELASTICITY OF CORPORATE BONDS

Our valuation model has interesting implications for both portfolio and asset - liability
management (ALM). Indeed, bond portfolios and the balance sheets of many institutions are
interest rate sensitive. To protect these latter against unexpected movements in the term
structure of interest rates, the investor needs to accurately evaluate his risk exposure. Interest

rate elasticity and duration measures are now commonplace. Nevertheless, most of them are
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quite restrictive and only apply under a specific set of assumptions. Corporate default is for
instance rarely taken into account. This is unfortunate and produces biased estimates of the
true elasticity of a corporate bond (see Ambarish and Subrahményam [1989] and Chance
[1990]). In that respect our model corrects this deficiencies. Moreover the simple structure of

our corporate bond pricing formula makes it easy to compute the relevant elasticity measure.

Let n, denote the interest elasticity measure of the corporate bond :

1 oD

—3 — t
Q" D, or,

After some computations detailed in Appendix 2, the following expression obtains:
_ POy, B(T- } Y
nt—-—B(T—t)+[—6—+B(T 1) 5] Q, 17)
with :
= ll
Q, = N(-d) - ‘ZN(—dS)

27(dy)
-(1-£) {N(-dy) _'E—(t-,_]%)—}
Z(d Z(d Z(d Z(d
-(1-£,) {N(-d))-N(-d3) _Z((t,lf)') +Z((t’3])’) qzt(tf 76')) +th(t(, ;))

}

where Z () is the standard normal distribution.

From expression (17) several polar cases can be recovered. The first one deals with the
situation where there is no violation of the absolute priority rule and where the safety covenant
is fully protective (i.e. & = 1). Under these assumptions, the interest rate elasticity of the

corporate bond is given by Vasicek’s formula for the interest rate elasticity of a riskless zero-
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coupon bond :

n, = - B(T-1) (18)

In the second case, no safety covenant is attached to the corporate zero-coupon bond
(ie. o = 0). There is, however, still no deviations from the strict priority rule (f; = f, = 1).

As a result, expression (17) collapses to Merton’s formula extended by Decamps [1994]

nt=_13(1"_0+[F_):_:__Z+B(T-t)}-%-N(—dl) (19)

t

A careful inépection of expression (19) enables a better understanding of the more
complex expression (17). Indeed, expression (19) is basically composed of three terms which
can be disentangled as follows. As already mentioned above, the first term corresponds to the
interest rate elasticity of a riskless zero-coupon bond. The second term within brackets is

equivalent to the interest rate elasticity gap between the firm’s assets and the default free zero-

coupon bond. This is so because the ratio pc;,/c measures the interest rate elasticity of the

firm’s assets (see equation (8)). At this point it is worthwhile mentioning the crucial role that

the correlation coefficient p plays in the determination of the overall interest rate elasticity of

the corporate bond 10 Other things being equal, a negative p entails a higher interest rate

elasticity. The third term of (19) can be defined as a probability adjusted ratio.

Expression (17) is obviously more complex than expression (19). The full Q, term

reflects the impacts of both the safety covenant and the violations of the absolute priority rule.

10.See Rabinovitch [1989] for a similar effect when pricing stock options under stochastic interest rates.
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When it comes to immunization or related techniques, practitioners use the duration tool
(especially Macaulay duration) more frequently than the interest rate elasticity itself.
Duration-matching methods are for instance quite popular. The accuracy of these methods,
however, crucially depends on the correct measurement of duration. To provide results that are

closer to the current managerial practices, we now define the effective duration of the

corporate zero-coupon bond. This duration A, is defined as the maturity of the default-free

bond which exhibits the same interest rate elasticity as the risky corporate zero-coupon bond,

namely :

cp(t,A)
- Lo__i_ = 7, (20)

In a Vasicek framework, expression (20) can be rewritten, as of time 7 = 0 :

_ In(1+an,) @1

Ay = =

Table 2 and Figure 8 give some numerical insights into the behavior of the duration of

the corporate zero-coupon bond. Table 2 is quite informative about the influence of the early

default ratio on the effective duration. Indeed, other things being equal, the closer g, gets to

zero, the smaller is the effective duration. This result makes sense if one remembers that a
safety covenant is equivalent for bondholders to a long position on a put option. If this long
position is progressively lifted, a gradual decrease in the duration of the corporate bond is
rather intuitive. Table 2 also delivers that the effective duration is usually smaller than the
maturity, i.e. the Macaulay duration. But this result is not general and does not carry over to

short term bonds. In Panel A, the duration of a one year to maturity corporate bond is, for

instance, 3.73 years (when [, = 1.1 and ¢, = 0). This result may seem quite

-25-



counterintuitive. In a constant interest rate environment, Leland [1994] obtains that effective
duration is always less than Macaulay duration. This is not true here. This point is confirmed
by Figure 8. In the three panels, effective duration is greater than Macaulay duration for short
term bonds. Moreover, this holds true whatever the intensity of the deviations from the strict
priority rule I This lengthening of the effective duration finds its roots in the interest rate
elasticity gap between the firm’s assets and the default free bond. This gap is one of the
determinants of the overall interest rate elastic_ity of the corporate bond. For short maturities,

the quantity B (T—-1?) is small. Moreover, Figure 8 displays results in the case of a negative

correlation coefficient p . Other things being equal, this entails a stronger elasticity m, which

in turn translates into a higher duration. For a positive correlation coefficient p, Leland’s

result would be recovered.

Finally it is worthwhile pointing out that more stringent deviations from the strict

priority rule contribute to shorten the effective duration.

6. CONCLUSION

In this paper, we have developed a corporate bond valuation model which avoids some
of the shortcomings of the previous literature. This model bears some analogies to the work of
Longstaff and Schwartz [1994] and Nielsen et alii [1993]. The bankruptcy triggering
mechanism is however somewhat different in that it is directly related to the payoff received

by bondholders when early bankruptcy is forced upon. As a result, a fairly simple closed-form

11.In the specific case where g, = /, and f; = f, = 1 (Panel C), effective duration is equal to
Macaulay duration (45 degree line). But in this scenario the risky bond becomes a riskless bond.
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solution for the pricing of corporate bonds is obtained. Because it accounts for stochastic
interest rates, default risk and deviations from the absolute priority rule, this model is capable
of producing quite diverse shapes for the term structure of corporate spreads. A detailed
analysis of corporate spreads has been proposed. This analysis and a thorough numerical
investigation show that corporate spreads exhibit complex relationships with the parameters of
the model. Interest rate elasticity and duration measures have also been derived. A more
accurate picture of the interest risk exposure of corporate bonds has been provided. Among
other things, effective duration has been shown to bve significantly different from the

traditional Macaulay duration.

Some additional work remains obviously to be done. Extensions‘to the pricing of
coupon-paying bonds is a natural candidate. Last but not least a detailed empirical
investigation comparing the theoretical spreads predicted by this paper and actual credit

spreads has to be carried out.
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APPENDIX 1

A. Preliminary

By integrating between 0 and ¢ the processes defined respectively by equation (2) and equation

(8), we obtain :

P(T) = P(O,T)-epr;rudu—%Jjocjz,(u,T)du—J)OcP(u,T)qu:!

1
V.=V, exp[Jj rudu—i.rocrz,du+o'yfo(deu+«/l—p2dZu)]
0

t

We introduce the two following processes /, and g, :

lt=FPgt,22 10=FP 0,
Vz VO
with
~WFP(LT) _ aFP(0,
qt - 7% qo Vo
t
or,
1 2
l, =1, exp [52(0, 1) —J)Ocp(u, D (pcV+cP(u, 7)) du
—I;(pGV+cP(u,7))qu—J}()GV l—pdeu:]
where :

$(0,H% = fo[(pc,,+c,,(u,7))2+ (1-pY) oy ]du

B. First passage time

Let W, be a standard brownian motion. We define the stopping time T}, , by :

Ty, = inf{t=0,W=h(0)}

From Harrison [1985] and Conze and Viswanathan [1991], one can easily show the following
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results when the frontier is of the form A (f) = a+bt .

P[W,2x,Ty ,2T] = N[—TxT] _ e-zabN[zcj/:Tx]

Taking x = a+bT gives :

P[Ty ,<T1] = N[aj'ﬁb]] +e-2abN[aj/;

C. Valuation of the risky zero-coupon bond

The time ¢ = O price D,, of the risky zero-coupon bond is defined by equation (10) :

T

-I r,du

= 2 0
D, = E"|e -{flaF- 1TV_,<T"'F' lT,,‘VZT,VTZF-*—fZ VT'IT,,'VZT,V,<F}

where v(#) = oF - P (4, 1)

Remarks :

«  {(V;2F} & {I;<1} because P(T,T) =1

/
. {VtZaFP(t, D} e {lts(—lg}
0
The first stopping time T Vv of the process 7, on the barrer v () = aFP (1, 1) and the

l
first stopping time T, , of the process /, on the barrer s (f) = 219- have the same law.
’ 0

Equation (10) thus becomes :

T

[ e

= g2|, 9o !
D, =E"|e F { 17;'lT,',<T+1T,',2T,I,$l+f2 1; 11,,,27,1,>1
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Under O, €, becomes :

99 0
o = AT FPOD 1y ]

We can define also the following Q -brownian motion (Girsanov theorem) :

W, = W,+f()cP (u, T) du

The process /, is thus given by :
1 2 ~
I, = lo-epr:Q-Z(O,t) —J:)(pc,,mp(u,z))dw,,—j';cV l—pdeu:I

By defining the process :

X: = r() (po,+op(y, D)qu+J:)°V*/1 -pde,,

one can write :

0 0
EQEIT,',<T] =E [lTx;<T]
where :

) = lnq0+%Z(0, 5>

Moreover :

(%) =2(0,0°
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With the following change of variable :

t=k(0) = 20,07
T = k(0) =0

»

T = k(D)

according to Karatzas and Shreve [1991, p.174], one can show that B; = X (o) is a Q-

brownian motion.

Moreover :

E[1r ] = Q:infOS,ST{)"(,-;(t)} <o}

(X ) — % ' (1)} < o}

ink-x . -1 1, e
L ()Y <k () <k ()

I
Qe

{B:-5(7)} <O]

_mfk" () <K' () <k (e

_lnft' <ttt

= [1 ]
T. <z
B,b

-1, . . .
because £ is an increasing function and where :

{B.-5(7)} <O]

I
\&Y}

() =x(k () = lnqo+é

With the previous results based on first passages times, we obtain :

B 1 [ing -200,D%*2] 4, |Ing +z(o,7)2/2}}
el—leP(O,T)-{%N[ 02(0,7) ]+TN[ 02(0,7)

0

T
—j r,du
o

0

C.2 Computationof €, = £% | e Felp s

Under the previous probability Q , we have :

T
—J- r, du

0 B -
E=|e ° -F- lTI_JZT,/TSI - FP(O:T) 'EQ[IT,‘,ZT,ITS 1]
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With the same notations :

0 _ 0
EO[IT,‘,ZT,ITSI] =E [1/{, ~-'1T.'_2T]

where :

. 1 2
£ =l 320D

- 1 2
x(f) = Ing,+ 52 (0,9

One can write :

Then we obtain :

i +20,n%2] 1 [ing/i-20,D%/2
82=FP(O,T)-{N[-HOZ(O’T) }-q—o-zv[ 0 ?z(o,n ]}

0 1

C.3 Computation of g; = E9e S F: L. 17 21151
T M

A similar proof can be developed thanks to Girsanov theorem. By introducing the probability

é defined by its Radon-Nikodym derivative :

1
= exp [- 5 J':cf,dw J’: o, (pdW, + N1 —pdeu)]

&.IQ.
QA

we have :

T

—I r, du @'
Cle ™ : - fFE-E[1
E” e 'f2F“1_7:'1T,',2T,IT>1 =/ I [ T,’,ZT,1,>1]

1 ¢-0 0
=f2F75 ’ {E [lTl,.rZT] —E [lTl,JZT’lTSIJ}
We can also define the following O -brownian motions :
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Wl = WI—J}OpO'Vdu

Z, = Z,—fol\ll —pchdu

The process /, is then given by :

1 2 — 5 -
| = 10.exp[—QZ(O,tV_I;(pcV+cP(u,7))dW,,—J:cV 1-p dZu}

t

We can go through the same computations by writing :
X, = fo (po,+0p(u, 1)) dW, +J:<5VA/1 - p’dZ,

with the following parameters :

= lnlo—%Z(O, n?

- 1 2
x(t) = lan-EE(O, 7

Finally, we obtain :

_LFP(OD) { N[—lnqo+2(0, 7)2/2]_ N[—1n10+z(o, 7)2/2}}

&3 /A N OWA) =0, D)
£FP(0,T) qo{ . Ing, + Z (O, 7’)2/2} NI:lnq(z)/l0 +Z(0, D) 2/2]}
Tk IO) B ¥, D

C.4 Conclusion
Dy =g +e,t¢g;

or:
Dy = FP(0,7) - {1— (N1 +NE-)) + (- N[ + TN 1-4g))

- (1-£) GV T-45] + %N{—dm

- (1-1) (715(N[—dl] -N[-d3]) +‘71£(N[— sl —N[-d,])) }

-36-



where :

(s

2
=l +Z(0,D°/2

_ —Ing,+Z(0,D)7/2

= d,+2(0,T)

=0, 1)

S0.7) =d,+2(0,7)

2 2,
- +Z (0 /2
Ingy 7l * 2 (0, 1) =d +3(0,7)
(0, )
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APPENDIX 2

We define the short term interest rate sensitivity of the corporate bond by

1 aD
"= D%

1!

t

Applying Itd’s lemmato D, = D [t,V, P (t,T)] gives:

dD, = f1,V, P (t, D]dt
oD,
[p o,V ,aV -, (W DPLD 550y n]dW

T4l Oy mV

and :

1 oD éD,
"= 55 {poV 'th cP(t,T)P(t,T)W}

The two partial derivatives of D, are given by :

S = V() - 2 (-
(-f) V) - )
(R WD) N LB TR e
and :
GP‘B(’Z'D = F-FN(~d,) +TFN( dJ)- (l—fl)TF{N(—d4) Z((td;)) +qu(;1,3;)

Z(-d) , Z(-dy)
(=R FF| W)V A) * sty * s D)

AR d4))}
1) =@, 1)

where Z () is the standard normal distribution.

Because :
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. oD, _, _, D
CDspan ~ 2 aw,

we obtain finally :

o'p(t T)

t = o

O'D [po,+op (s T)] "V

By noticing that o,(t,7) = c-B(T-1) where (-B(T-t)) represents the
sensitivity of a default free zero-coupon bond, we have :

n, = -B(T-0+ [%‘-’+B(T—t)} -gf-

t

Z(d,
N () - £V )= (1-£) V() - )

‘ Z(d) _Z(d) q2(dg) q,Z(4d,)
-(1-£) {N(-d))-N(-4;) - z(t7)+2(t37) ({S(ti) %:(17)}}
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Table 1

Yield spreads as a function of initial quasi-debt ratio |, for different early default

ratios qo. The parameters used are : 6, =0.2,f,=f,=f, a=02,b= 0.06,
o =0.02, r,= 0.05, p = -0.25. Spreads are expressed in basis points.

PanelA: T=2
qo=lg qe=0.9.1o qp=0.8.1y Q=0
lo f=10 =038 =1.0 f=0.8 f=1.0 f=0.8 f=1.0 f=0.8
0.4 0 2 0 1 0 1 0 1
0.6 0 86 21 67 23 64 23 63
0.8 0 493 148 452 184 424 188 418
1.0 0 1116 389 1191 550 1144 586 1113
1.2 0 1598 622 1972 1007 2018 1150 1941
1.4 0 1818 768 2513 1400 2816 1773 2733
PanelB: T=5
9o =1lo Go=0.9.1y qp=0.8.14 qo=0
lo f=10 f=0.8 =1.0 f=0.38 f=1.0 f=0.8 f=1.0 f=0.8
0.4 0 22 7 20 8 19 9 19
0.6 0 127 44 129 61 127 67 124
0.8 0 290 109 327 168 334 196 329
1.0 0 446 179 546 298 588 379 589
1.2 0 560 233 735 419 836 588 866
1.4 0 627 270 870 516 1044 805 1135
Panel C 10
Go=lo qp=0.9.1p qo=0.8.1y Q=0
lo f=10 =08 =1.0 f=0.8 f=1.0 f=0.8 f=1.0 f=0.8
04 0 43 16 47 24 48 29 48
0.6 0 109 43 128 71 137 93 141
0.8 0 173 72 216 125 242 .180 258
1.0 0 223 95 293 174 342 278 383
1.2 0 259 112 353 215 428 378 506
1.4 0 282 124 396 245 495 477 624




Table 2

Duration A, as a function of time-to-maturity for different early

default ratios q,. The parameters used are : 6, = 0.2, f; = f,= 0.8,
a=0.2, b=0.066=0.02, rp=0.05, p=-0.25.

Panel A:l;=1.1

Qo =lo 9 =091 9 =0
T Ao (Ao-T/T Ao (Ao-TIT Aq (Ao-T/T
(yrs) (yrs) (%) (yrs) (%) (yrs) (%)
1 2.76 176.0 4.20 320.0 3.73 273.0
5 4 47 -10.6 414 -17.2 3.79 -242
10 7.90 -21.0 6.83 -31.7 4.80 -520
15 10.87 -27.5 9.21 - 38.6 5.41 -63.9
20 13.14 -343 11.02 -449 5.75 -71.3
PaneiB:1,=0.8
Qo =lo qe=079.1 Q=0
T Ao (Ag-TIT Ao (Mo-DIT A (Ag-T)/T
(yrs) (yrs) (%) (yrs) (%) (yrs) (%)
1 2.02 102.0 1.82 82.0 1.76 76.0
5 443 -11.4 4.27 -146 4.20 - 16.0
10 7.57 -243 6.77 -323 5.77 -423
15 10.23 -31.8 8.84 -411 6.49 - 56.7
20 12.23 - 38.9 10.40 -48.0 6.78 - 66.1
PaneliC:l,=0.4
Qo =lo Q=091 Q=0
T Aq (Ag-T/T Ag (Ao-T/T Aq (Ao-T/T
(yrs) (yrs) (%) (yrs) (%) (yrs) (%)
1 1.00 0.0 1.00 0.0 1.00 0.0
5 490 -20 4.90 -20 4.91 -1.8
10 8.64 -13.6 8.45 -156.5 8.35 -16.5
15 11.11 -259 10.42 - 30.5 9.74 - - 35.1
20 12.63 - 36.9 11.46 -427 9.91 - 50.5




Figure 1a
Yield spreads as a function of time-to-maturity for different quasi-debt
ratios lo. The parameters used are : oy = 0.2, f;= ;= 0.8, Gy = 0.9 I,
a=0.2,b=0.06c=0.02 ry=0.05, p=-0.25.
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Figure 1b
Yield spreads as a function of time-to-maturity for different quasi-debt
ratios l,. The parameters used are : oy = 0.2, f;=f,= 0.8, gy = 0.9 I,
a=0.2,b=0.060=0.02 rp=0.05, p=-0.25.

Yieid Spreads

(bps)
1000
800
l,b=P(0T)/1.0
600
400
l,=P(0,T)/1.25
200
o= P(O,T)/1.5
0 /
0 2 4 (] 8 10 12 14 18 18 20 (yrs)

-jv -




Figure 2
Yield spreads as a function of time-to-maturity for different early
default ratios qo. The parameters used are : oy = 0.2, f; = f,= 0.8,
a=0.2,b=0.06c=0.02 rp=0.05, p=-0.25.
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Figure 3
Yield spreads as a function of time-to-maturity and earty defauit ratio qq.
The parameters used are : |y = 0.8, 0y=0.2,f;=f,=0.8,4,=0.9 lo,
a=0.2 b=0.06 5=0.02 ry=0.05 p=-0.25.

s
0
S
8

XD s Yi
Y ield spreads
Sy 0.02

Default ratio

Time-to-maturity

23 (yrs)




Figure 4
Yield spreads as a function of time-to-maturity for different deviations
from the absolute priority rule. The parameters used are : I, = 0.8,
oy=02,a=02b=006,c=0.02ry=0.05 p=-025.
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Figure §
Yield spreads as a function of time-to-maturity for different asset
volatility levels o,. The parameters used are : qo = 0.9 Iy, f; = ;= 0.8,
a=0.2,b=0.06,0=0.02, ry=0.05, p=-0.25.
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Figure 6
Yield spreads as a function of asset volatility for different early default
ratios qq. The parameters used are : f;=f,=0.8,
a=02b=0.06, 06=0.02,,=0.05 p=-025T=10.
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Figure 8

Duration as a function of time-to-maturity for different deviations from
the absolute priority rule. The parameters used are : I = 0.8,
oy=0.2,a=02b=0060=0.02r,=0.05p= -0.25.
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Figure 7
Yield spreads as a function of asset volatility for different correlation

coefficients. The parameters used are : ;= 0.9 lo, f; = f,= 0.8,
a=02,b=0.06,0=0.02r,=0.05T=10.
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